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Abstract

The two main types of logical relations and diagrams studied in logi-
cal geometry are the Aristotelian and the duality diagrams. The central
aim of this paper is to establish a typology of duality patterns exhibited
by fragments of four formulas which are closed under negation, i.e. which
consist of two pairs of contradictory formulas (pcds). These duality pat-
terns are computed in two steps. First of all, each of the pcds in the
four-formula fragment is shown to generate its own — possibly collapsed
— duality square. Secondly, these two ‘intermediate’ squares are super-
imposed onto one another, yielding seven major types of duality patterns
for the four-formula fragment as a whole. Furthermore, these seven dual-
ity patterns are related to the complexity of the semantic representations
assigned to the four formulas in the fragment, as expressed in terms of
their bitstring encodings.

Keywords: duality diagram, self-duality, degenerate duality square, col-
lapsed duality square, Boolean algebras, logical geometry.

1 Introduction

Duality phenomena occur in nearly all mathematically formalized disciplines,
such as algebra, geometry, logic and natural language semantics [17, 23]. How-
ever, many of these disciplines use the term ‘duality’ in vastly different —
sometimes even entirely unrelated — senses. The present paper exclusively
focuses on duality patterns involving the interaction between an ‘external’ and
an ‘internal’ negation of some kind, which primarily arise in logic and linguis-
tics. A well-known example from logic is the duality between conjunction and
disjunction in classical propositional logic. A well-known example from lin-
guistics concerns the duality between the aspectual particles already and still
in natural language [28, 30, 46, 48].1

1In particular, already outside means the same as not still inside, and hence, not already
outside means the same as still inside (where inside is taken to be synonymous to not outside).
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Since duality phenomena are ubiquitous both in formal logical languages
and in natural languages, it has been suggested that duality is a semantic uni-
versal, which can be of great heuristic value in comparative linguistic research
[47]. Furthermore, duality also plays a central role in artificial languages, which
can be viewed as occupying an intermediate position between formal and nat-
ural languages. For example, Lincos, which was developed by Freudenthal
[14] for the purpose of cosmic communication, contains duality principles for
conjunction/disjunction (1.36.8), universal/existential quantification (1.36.9),
necessity/possibility (3.25.1) and obligation/permission (3.32.3). It is impor-
tant to stress that many authors employ the notion of duality as a means to
describe the specific details of a particular formal or natural language, without
going into any systematic theorizing about the notion itself. The present pa-
per, however, does offer a more abstract, theoretical perspective on the concept
of duality.

The first main aim of this paper is to establish a typology of duality pat-
terns exhibited by fragments of four formulas which are closed under negation,
i.e. which consist of two pairs of contradictory formulas (pcds). These dual-
ity patterns are computed in two steps. First of all, each of the pcds in the
four-formula fragment is shown to generate its own duality square. Secondly,
these two ‘intermediate’ squares are superimposed onto one another, yielding
seven major types of duality patterns for the four-formula fragment as a whole.
Underlying this typology is the threefold distinction between (1) classical, (2)
collapsed and (3) degenerate constellations, which correlates with two formu-
las respectively standing (1) in exactly one duality relation, (2) in two duality
relations simultaneously, or (3) in no duality relation whatsoever. The second
aim of the paper is then to investigate the relationship between the seven du-
ality patterns and the complexity of the semantic representations assigned to
the four formulas in the fragment. In the framework of logical geometry, this
complexity gets expressed in terms of (the length of the) bitstring encodings.

Given the fact that we — once again [10, 41] — want to emphasize the con-
ceptual independence of the duality relations and the Aristotelian relations, it
may come as a surprise to see the two (sets of) concepts are so closely united in
the present paper. By focusing exclusively on 2-pcd fragments, we essentially
take the Aristotelian notion of contradiction as our starting point for the study
of duality patterns. Furthermore the 2-pcd fragments that we will study in
Section 4 can all be characterised as subdiagrams of a given Boolean closed
Aristotelian diagram. In other words, the fragments of four formulas that we
consider — together with their bitstring representations — are characterised in
terms of (Boolean-)Aristotelian considerations,2 whereas the logical relations

2See [12] for more mathematical details on the close relationship between Boolean and
Aristotelian structure.
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holding between the formulas are analysed from a duality perspective. How-
ever, this approach need not be problematic, as can be gathered from the fact
that exactly the opposite approach shows up time and again in the history of
logic, when duality considerations are used to delineate the set of formulas, but
the logical relations between them are studied from an Aristotelian perspective.
For example, already with the classical square of oppositions, the focus is on
the Aristotelian relations of contradiction and (sub)contrariety, while the for-
mulas are defined in duality terms, i.e. in terms of different syntactic positions
for the negation operator, such as pre- and postnegation.3 Furthermore, also
later and more complex octagonal diagrams primarily capture constellations of
Aristotelian relations, whereas the formulas decorating the eight vertices are
defined in duality terms.4

The paper is organised as follows. As for the broader background of the
typology of duality patterns, Section 2 stresses the need to draw a clear concep-
tual distinction between duality relations — such as internal and external nega-
tion — and Aristotelian relations — such as contradiction and (sub)contrariety.
The core results of the paper are presented in Section 3, which establishes the
typology of seven main duality patterns. Three subfamilies are distinguished
depending on whether the two superimposed intermediate squares are (1) both
classical (2) one classical and one collapsed or (3) both collapsed. Section 4
then investigates the relation between these seven duality patterns and the
differences in Boolean complexity of the semantic representations for the four
formulas (measured in bitstring length). Finally, Section 5 sums things up and
briefly introduces two topics for further research.

2 The Aristotelian versus the Duality Relations

In this section we start off by introducing the Aristotelian relations (Subsec-
tion 2.1) and the duality relations (Subsection 2.2). Among the similarities be-
tween the Aristotelian and the duality relations, we focus on the fact that both

3In medieval Latin rhymes, such as pre contradic, post contra, pre postque subalter, external
negation (‘pre’) is associated with contradiction, internal negation (‘post’) with contrariety,
and dual negation (‘pre postque’) with subalternation. These rhymes can be found in the
logical works of authors such as Peter of Spain (see [6, pp. 10–11] and [4, pp. 116–117]),
William of Sherwood [27, p. 38] and John Wyclif [13, p. 22].

4In the case of the octagons studied by John Buridan [25, 36], the formulas contain two
operators which give rise to three syntactic negation positions, namely external, intermediate
and internal negation. By contrast, in the case of the octagons studied by Keynes [24],
Johnson [22], Reichenbach [37] and Hacker [18], the formulas contain only one operator but
its two arguments — i.c. the subject and the predicate — can be negated independently,
yielding one external but two internal negation positions. For a detailed analysis of these two
types of octagons and the duality cubes they give rise to, see [10].
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sets of relations yield a distinction between classical and degenerate squares
(Subsection 2.3). As for the — more fundamental — differences between the
Aristotelian and the duality relations, a key role is played by the absence of
irreflexivity, which may trigger the collapse of a square into a pair in the case
of the duality relations but not in the case of the Aristotelian relations (Sub-
section 2.4).

2.1 The Aristotelian Relations

Logical relations such as contradiction and contrariety have become known as
the Aristotelian relations, since they were originally defined in the logical works
of Aristotle [1]. In contemporary terms, these relations are characterised rela-
tive to some background logical system S, which is assumed to have connectives
expressing Boolean negation (¬), conjunction (∧) and implication (→), and a
model-theoretic semantics (|=).5 Formally, the four Aristotelian relations are
defined as follows: the formulas ϕ and ψ are said to be

S-contradictory (cdS) iff S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
S-contrary (cS) iff S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ),
S-subcontrary (scS) iff S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
in S-subalternation (saS) iff S |= ϕ→ ψ and S 6|= ψ → ϕ.

More informally, two formulas are contradictory iff they cannot be true
together and cannot be false together; they are contrary iff they cannot be
true together but may be false together; they are subcontrary iff they cannot
be false together but may be true together; they are in subalternation iff the
first one entails the second one but not vice versa.

The Aristotelian relations holding between a given set of formulas are often
visualised by means of Aristotelian diagrams (based on graphical conventions
such as the one shown in Figure 1(d)). The most widely known of these dia-
grams is the so-called ‘square of oppositions’, which comprises 4 formulas and
the 6 Aristotelian relations holding between them.6 For example, Figure 1
shows Aristotelian squares involving (a) the propositional connectives of con-
junction and disjunction, (b) the universal and existential quantifiers, and (c)
the modal operators of necessity and possibility.

5When the system S is clear from the context, it is often left implicit.
6For a more exhaustive historical overview, see [33] and [39, chapter 5].
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Figure 1: Aristotelian squares: (a) conjunction-disjunction, (b) universal-
existential, (c) necessity-possibility; (d) graphical representations of the Aris-
totelian relations.

2.2 The Duality Relations

In order to present a precise formal definition of duality relations such as inter-
nal and external negation, we consider Boolean algebras A = 〈A,∧A,∨A,¬A,>A,⊥A〉
and B = 〈B,∧B,∨B,¬B,>B,⊥B〉 [15],7 and n-ary operators O1, O2 : An → B.
The duality relations are defined as follows: O1 and O2 are

• identical — abbreviated as id(O1, O2) — iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = O2(a1, . . . , an),

• each other’s external negation — abbreviated as eneg(O1, O2) — iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = ¬BO2(a1, . . . , an),

• each other’s internal negation — abbreviated as ineg(O1, O2) — iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = O2(¬Aa1, . . . ,¬Aan),

• each other’s dual — abbreviated as dual(O1, O2) — iff
∀a1, . . . , an∈A : O1(a1, . . . , an) = ¬BO2(¬Aa1, . . . ,¬Aan).

For any relation R ∈ {id, ineg,eneg,dual}, it holds that R is functional :
for each O1, there is exactly one O2 such that R(O1, O2). Hence we can simply
switch from relational to functional notation, and write O2 = R(O1). For
example, since dual(∧,∨), we can write ∨ = dual(∧), and say that ∨ is the

7Note that one can also give a definition of the Aristotelian relations relative to arbitrary
Boolean algebras, which has the definition in Subsection 2.1 as a special instance [11].
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(unique) dual of ∧. Furthermore, any relation R ∈ {id, ineg,eneg,dual}
is symmetric; this can functionally be expressed as follows: O2 = R(O1) iff
O1 = R(O2), which is itself equivalent to the property that R(R(O)) = O
for all operators O : An → B. Furthermore, the definitions of the duality
relations/functions can harmlessly be transposed from operators O : An → B
to the outputs of those operators. For example, if the operator O2 : An → B
is the dual of the operator O1 : An → B, then for all a1, . . . , an ∈ A, it holds
that O2(a1, . . . , an) ∈ B is the dual of O1(a1, . . . , an) ∈ B. Hence, in the case
of classical propositional logic (CPL), for example, we can say not only that
the operator ∨ is the dual of the operator ∧ — i.e. ∨ = dual(∧) —, but also
that the formula ϕ ∨ ψ is ‘the’ dual (up to logical equivalence) of the formula
ϕ ∧ ψ — i.e. ϕ ∨ ψ = dual(ϕ ∧ ψ) — for all ϕ,ψ ∈ LCPL.

When id, eneg, ineg and dual are viewed as functions, they map each op-
erator O : An → B onto the operators id(O),eneg(O), ineg(O),dual(O) : An
→ B, respectively. Since the input and output of these functions are of the same
type (namely: operators An → B), they can be applied repeatedly. For exam-
ple, starting with an operator O : An → B, we can apply ineg to it to obtain
the operator ineg(O) : An → B; by applying eneg to the latter we obtain the
operator eneg(ineg(O)) : An → B. It follows immediately from the definitions
of the duality relations/functions that eneg(ineg(O)) = dual(O). Since this
holds independently of the concrete operator O, we can write eneg ◦ ineg =
dual. In this way, we obtain a large number of functional identities that
descibe the behavior of the duality and internal/external negation functions.
These identities can be summarized by stating that the functions id, eneg,
ineg and dual jointly form a group that is isomorphic to the Klein four group
V4 (German: Kleinsche Vierergruppe).8 Its Cayley table looks as follows:

◦ id eneg ineg dual

id id eneg ineg dual
eneg eneg id dual ineg
ineg ineg dual id eneg
dual dual ineg eneg id

For every operator O : An → B, one can define the set of four operators
δ(O) := {id(O),eneg(O), ineg(O),dual(O)}.9 It is natural to view the set

8The fact that duality behavior can be described by means of V4 was already noted by
authors such as Piaget [35], Gottschalk [16], Löbner [29], van Benthem [47] and Peters and
Westerst̊ahl [34], although many of them used slightly differing labels for the group elements.
Furthermore, although the fact that the Klein four group V4 is isomorphic to the direct
product of Z2 with itself, i.e. V4

∼= Z2 × Z2 = Z2
2, is well-known in group theory, its logico-

linguistic significance has only recently begun to be explored (see [7] and [10]).
9In light of the correspondence between operators and formulas, one can also write δ(ϕ) :=

{id(ϕ), eneg(ϕ), ineg(ϕ),dual(ϕ)}, where ϕ = O(a1, . . . , an).
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δ(O) as ‘generated’ by the operator O; however, it should be emphasized that
δ(O) can be seen as generated by any of its elements, i.e. for any O′ ∈ δ(O),
it holds that δ(O′) = δ(O) (see [34, p. 134] and [49, p. 205]).10 The set δ(O)
is said to be ‘closed under duality’, in the sense that applying any of the id-
, eneg-, ineg- or dual-functions to its elements only yields operators that
already belong to δ(O). The operators (or formulas) in δ(O) thus constitute
natural families (see [34, p. 26] and [47, p. 31]), which are often visualised
by means of duality squares. Using the graphical conventions in Figure 2(d)),
duality squares involving (a) the propositional connectives of conjunction and
disjunction, (b) the universal and existential quantifiers, and (c) the modal
operators of necessity and possibility are shown in Figure 2(a-c) respectively.
It is important, in this respect, to emphasize that the id-relations are not
visualised explicitly in any of these duality squares, since they would simply
constitute loops on all vertices of the squares.

Figure 2: Duality squares: (a) conjunction-disjunction, (b) universal-
existential, (c) necessity-possibility; (d) graphical representations of the duality
relations.

2.3 Similarities between Aristotelian and Duality Relations

In terms of overall layout, the duality squares in Figure 2(a-c) closely resemble
the Aristotelian squares in Figure 1(a-c). In particular: (i) on the diagonals,

10For dual(O), for instance, we find that δ(dual(O)) = {id(dual(O)), eneg(dual(O)),
ineg(dual(O)),dual(dual(O))} = {dual(O), ineg(O), eneg(O), id(O)} = δ(O).
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the duality relation eneg corresponds to the Aristotelian relation of contra-
diction, (ii) on the vertical edges, the duality relation dual corresponds to the
Aristotelian relation of subalternation, and (iii) on the horizontal edges, the du-
ality relation ineg corresponds to the Aristotelian relations of contrariety and
subcontariety (see [47, p. 31], [21, p. 148], [34, p. 25] and [49, p. 202]).11 These
strong diagrammatic similarities might explain why authors such as D’Alfonso
[5], Mélès [32] and Schumann [38] have come close to straightforwardly identify-
ing the two types of squares — for example, by using Aristotelian terminology
to describe the duality square (or vice versa), or by viewing one as a gener-
alisation of the other. In spite of the important differences between the two
— which we discuss in full detail in Subsection 2.4 below — the fact remains
that in many concrete cases, a single fragment of four formulas simultaneously
constitutes an Aristotelian and a duality square (for a recent example involving
formulas with definite descriptions, see [9]).12

A second respect in which the sets of Aristotelian and duality relations
resemble one another concerns the distinction between classical and degenerate
constellations. If we focus — as will be the case in Sections 3 and 4 — on
fragments of 4 formulas (from a logical language L for a logical system S) which
are closed under negation, i.e. which consist of two pairs of contradictories, this
analogy between the two sets can be summarised in the following table:

classical degenerate
square square

Aristotelian 2 × cd 2 × sa 1 × c; 1 × sc 2 × cd

duality 2 × eneg 2 × dual 2 × ineg 2 × eneg

11Note that the visual representation of duality squares exhibits a much greater degree of
variation than that of the Aristotelian squares. In [29, p. 69ff.] and [26, p. 201], for instance,
the dual-relations occupy the diagonals, thereby graphically reflecting the fact that dual is
the combination of eneg on the vertical edges and ineg on the horizontal edges or vice versa.
Alternatively, on the basis of his phase quantification approach to duality, Löbner has argued
that ineg should be seen as the combination of eneg and dual, and should thus occupy the
diagonals of the square (see [30, p. 57] and [31, p. 488]).

12From a more linguistic point of view, both types of diagrams have been used to account for
asymmetries in certain lexicalization patterns in natural languages. For example, Horn [19],
Jaspers [21] and Seuren and Jaspers [40] make use of the Aristotelian relations to explain why
natural languages lack primitive lexical items for particular vertices in the diagrams, whereas
the phase quantification approach of Löbner [29, 31] explains the same linguistic phenomena
in terms of the duality relations.
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Figure 3: (a) classical Aristotelian square, (b) classical duality square, (c)
degenerate Aristotelian square, and (d) degenerate duality square (see Section 4
for more details on the concrete bitstring assignments used here).

With either set of relations, a classical constellation consists of six relations,
which means that any of the six pairs of distinct formulas that can be chosen
from the four-formula fragment actually does stand in a relation of that set.
By contrast, for each set of relations, a degenerate constellation consists of
only two relations: only two out of the six pairs of distinct formulas — in
particular those two pairs that we started out with to define the fragment in
the first place — stand in any relation of that set. Visually speaking, the
classical Aristotelian square in Figure 3(a) and the classical duality square in
Figure 3(b) — which were already introduced in Figure 1(a-c) and Figure 2(a-
c) respectively — represent two relations on the diagonals, two relations on
the horizontal edges and two relations on the vertical edges. The degenerate
Aristotelian and duality squares, by contrast, only represent the two relations
on the diagonals in Figure 3(c) and Figure 3(d) respectively. This yields X-
shaped patterns, with the four pairs of formulas along the edges of the squares
not standing in any Aristotelian/duality relation whatsoever.13 As for the
Aristotelian relations, the difference between the classical and the degenerate
square is well-understood: in order for two formulas ϕ and ψ to stand in no
Aristotelian relation whatsoever — as in the degenerate case of in Figure 3(c)
— four conditions must be met: ϕ and ψ (1) can be true together and (2)

13For the Aristotelian relations, Béziau and Payette [3, pp. 11–12] refer to this impoverished
structure as “an X of opposition”.
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can be false together, (3) ϕ does not entail ψ, and (4) ψ does not entail ϕ
either.14 As for the duality relations, by contrast, the difference between the
classical square in Figure 3(b) and the degenerate square in Figure 3(d) has
hardly ever — if at all — been discussed up till now. After all, the literature
exclusively focuses on fragments of the form δ(O) (see Subsection 2.2), which
will, by definition, always yield classical duality squares. It is precisely the
aim of Section 3 and 4 to offer a first broad typology of duality patterns,
which will also have to take into account the fact that certain duality squares
‘collapse’. This property does not have any straightforward counterpart among
the Aristotelian relations, as will be argued in Subsection 2.4.

2.4 Differences between Aristotelian and Duality relations

The conceptual independence of Aristotelian and duality relations has been
argued for by many authors over the past two decades (see [29], [31], [34],
[49], [7], [41], [10], among others). Globally speaking, the set of Aristotelian
relations is fundamentally heterogeneous whereas the set of duality relations
is fundamentally homogeneous. First of all, all four duality relations id, ineg,
eneg, and dual are symmetric (see Subsection 2.2), but not all Aristotelian
relations are: contradiction (cd), contrariety (c) and subcontrariety (sc) are
symmetric (due to being defined in terms of being true/false together), whereas
subalternation (sa) is not (since it is defined in terms of truth propagation;
see [43]). Secondly, all four duality relations id, ineg, eneg, and dual are
functional (again see Subsection 2.2), but not all Aristotelian relations are: as
a matter of fact, only cd is functional, whereas c/sc/sa are not.15

Furthermore, there is no overall one-to-one correspondence whatsoever be-
tween the two sets of four relations: id does not correspond to any Aristotelian
relation at all, whereas ineg corresponds to both c and sc. Although dual
may seem to correspond to sa, the former is both functional and symmetric,
whereas the latter is neither. The only true correspondence between the dual-
ity relations and the Aristotelian relations therefore holds between eneg and
cd, which are both functional and symmetric. The connection between these
relations at the diagonals of the two types of square diagrams will play a crucial
role — by defining the ‘pairs of contradictories’ (pcds) — in the typology of

14In terms of the bitstring format for assigning semantic representations to formulas (see
also Section 4 for more details), this relation of logical independence or ‘unconnectedness’
in the degenerate Aristotelian square can be shown to require bitstrings of length at least 4
in Figure 3(c), whereas the formulas in the classical Aristotelian square in Figure 3(a) can
always be encoded by means of bitstrings of length 3 [43], [45], [12]).

15In other words, whereas any formula has exactly one contradictory, it may be
(sub)contrary to or in subalternation with more than one formula.



Duality Patterns in 2-pcd Fragments 235

duality patterns to be established in Sections 3 and 4 below.16

The heterogeneous nature of the set of Aristotelian relations — as opposed
to the uniformity of the set of duality relations — has been captured in terms
of the properties of symmetry and functionality. A second cluster of differences
between the two sets of relations can be accounted for in terms of the notions
of uniqueness and (ir)reflexivity. As for uniqueness, we first of all observe that
two contingent formulas can only stand in at most one Aristotelian relation:
although the Aristotelian relations are not jointly exhaustive, they are mutually
exclusive (see [7, p. 321] and [43, Section 3.1]).17 With the duality relations,
by contrast, the situation is more complex, since two formulas may stand (1)
in no duality relation with each other, (2) in exactly one such relation, or even
(2) in two duality relations at the same time, as will be illustrated shortly. In
other words, the duality relations are neither mutually exclusive nor jointly
exhaustive.

Closely related to the notion of uniqueness is that of (ir)reflexivity. Here
as well, the picture is straightforward with the Aristotelian relations cd, c,
sc and sa, since all four of them are irreflexive: no contingent formula can
stand in any Aristotelian relation with itself.18 With the duality relations, by
contrast, the situation is again more complex. First of all, the duality relation
id is reflexive by definition (any operator/formula being identical to itself),
whereas the duality relation eneg is irreflexive on pain of inconsistency: if
an operator O : An → B is its own external negation, then B is the trivial
Boolean algebra (in which >B = ⊥B). The two remaining duality relations of
ineg and dual, however, are neither reflexive nor irreflexive: some but not all
contingent formulas may stand in the relation of ineg or dual with themselves.
Let us now consider these two cases — which crucially combine the properties
of non-uniqueness and non-irreflexivity — in some more technical detail.

16On a more abstract level, the Aristotelian relations are highly logic-sensitive, whereas the
duality relations are insensitive to the underlying logic: two formulas may very well stand in
different Aristotelian relations in different logical systems, but will always stand in the same
duality relation, regardless of the logical system (see e.g. [8], [11] and [12]).

17In [43] the Aristotelian relations are argued to be hybrid between a set of four opposition
relations and a set of four implication relations, both of which are mutually exclusive as well
as jointly exhaustive.

18Note that with the two new sets of four logical relations proposed in [43], each set
does contain a reflexive relation: as for the opposition relations, every contingent formula
stands in the relationship of non-contradiction with itself (can be true together and can be
false together), whereas among the implication relations, the relation of bi-implication by
definition holds between any contingent formula and itself.
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Figure 4: (a) Ordinary duality square, (b) collapsed duality pattern for an
operator that is its own dual, (c) collapsed duality pattern for an operator
that is its own internal negation.

For some operators O : An → B, it might happen that dual(O) = O =
id(O), i.e. O is self-dual. In this case, one can also show that ineg(O) =
eneg(O), i.e. O’s internal and external negation coincide with each other. For
example, consider the identity operator IA : A → A (for any Boolean algebra
A), which is defined by IA(a) := a. For any element a ∈ A, it holds that
dual(IA)(a) = ¬AIA(¬Aa) = ¬A¬Aa = a = IA(a), and thus dual(IA) = IA,
i.e. IA is self-dual. Similarly, for any element a ∈ A it holds that ineg(IA)(a) =
IA(¬Aa) = ¬Aa = ¬AIA(a) = eneg(IA)(a), and thus ineg(IA) = eneg(IA).

Completely analogously, for some operators O : An → B, it can happen
that ineg(O) = O = id(O), i.e. O is its own internal negation. In this case,
one can also show that dual(O) = eneg(O), i.e. O’s external negation and
dual coincide with each other. Consider, for example, the contingency operator
C : LD → LD, which is defined by C(ϕ) := 3ϕ∧3¬ϕ. For any ϕ ∈ LD, it holds
that ineg(C)(ϕ) = C(¬ϕ) = 3¬ϕ ∧ 3¬¬ϕ = 3ϕ ∧ 3¬ϕ = C(ϕ), and thus
ineg(C) = C. Similarly, it holds that dual(C)(ϕ) = ¬C(¬ϕ) = ¬(3¬ϕ ∧
3¬¬ϕ) = ¬(3ϕ ∧3¬ϕ) = eneg(C)(ϕ), and thus dual(C) = eneg(C).

Whenever an operator O is its own dual or internal negation, the set δ(O)
— defined in Subsection 2.2 — does not contain four, but only two distinct
operators (see [34, p. 134] and [49, p. 205]), and thus cannot be visualised using
a classical duality square. If O = dual(O), then δ(O) = {id(O), ineg(O)},
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and thus, the duality square in Figure 4(a) ‘collapses’ into the binary hori-
zontal duality diagram in Figure 4(b). Analogously, if O = ineg(O), then
δ(O) = {id(O),dual(O)}, and thus, the duality square in Figure 4(a) col-
lapses into the binary vertical duality diagram in Figure 4(c). Observe that
both these collapsed duality squares straightforwardly visualise the systematic
co-occurrence of the properties of non-uniqueness and non-irreflexivity in the
case of the duality relations. With the classical duality square in Figure 4(a),
the loops on the four vertices for the id relation are not visualised explicitly.
With the two collapsed duality squares in Figures 4(b-c), by contrast, the
loops nicely capture the idea that certain operators or formulas can be their
own dual or ineg respectively. At the same time, in the two collapsed duality
squares, the eneg relation (on the original diagonals of the square) turns out
to coincide with the ineg or dual on the respective horizontal and vertical
edges of the original square, again demonstrating the non-uniqueness of the
duality relations.

Each vertex of the two collapsed duality squares in Figure 4(b-c) can be
seen to contain two fomulas which may be (syntactically) distinct but are
nevertheless logically equivalent. A collapsed duality square can thus be seen
as consisting of two such pairs of equivalent formulas. The collapsed square
in Figure 4(b) contains two self-dual pairs of equivalent formulas (henceforth
abbreviated as sdps), whereas the one in Figure 4(c) contains two self-internal
pairs of equivalent formulas (henceforth abbreviated as sips). More technically,
{α,dual(α)} is an sdp iff α ≡ dual(α) and {α, ineg(α)} is an sip iff α ≡
ineg(α). Furthermore, if a formula is self-dual, its negation is self-dual as well,
and the same holds for self-internal formulas. Hence, if {α, β} is an sdp, then
{¬α,¬β} is an sdp as well, and similarly, if {α, β} is an sip, then {¬α,¬β} is
an sip as well. In other words, a collapsed duality square by definition consists
of two sdps or two sips. Visually speaking, the two sdps constitute the loops
in Figure 4(b), whereas the two sips constitute the loops in Figure 4(c), and we
will refer to these two types of collapsed squares informally as self-dual squares
and a self-internal squares respectively.

From the group-theoretical perspective introduced in Subsection 2.2, the
collapsed duality squares in Figures 4(b-c) no longer correspond to the Klein
four group V4. As is shown in the Cayley tables below, with operators that
are their own duals, dual = id, and eneg = ineg, and hence V4 collapses
into a group that is isomorphic to Z2. And analogously, with operators that
are their own internal negations, ineg = id, and eneg = dual, and thus V4

again collapses into a group that is isomorphic to Z2.
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◦ 0 1

0 0 1
1 1 0

◦ id/dual eneg/ineg

id/dual id/dual eneg/ineg
eneg/ineg eneg/ineg id/dual

◦ id/ineg eneg/dual

id/ineg id/ineg eneg/dual
eneg/dual eneg/dual id/ineg

3 Duality Patterns in 2-PCD-Fragments

This section presents the typology of duality patterns exhibited by fragments
consisting of 2 pairs of contradictory formulas (pcds). Duality squares are no
longer seen as generated by a single operator or formula, but on the basis of
a pcd (Subsection 3.1). The first subfamily of 2-pcd-fragments yields con-
stellations of two classical duality squares (Subsection 3.2). With the second
subfamily, the duality configurations combine one classical and one collapsed
square (Subsection 3.3), whereas with the third, two collapsed duality squares
are integrated (Subsection 3.4). The overview of duality patterns draws a
careful distinction between classical, degenerate and collapsed squares (Sub-
section 3.5).

3.1 Duality Squares Generated by PCDs

As was described in Subsection 2.2, the standard way to generate and study du-
ality patterns is to start from one operator O, and then to define the set of four
operators δ(O) as {id(O),eneg(O), ineg(O),dual(O)}. The methodology
adopted in the present paper, however, is to start off from fragments F of four
non-equivalent formulas, and to see whether or not the Klein group is at work
in F . The fragments to be considered all meet the requirement of being closed
under negation, which means they consist of two pairs of contradictory formulas
(henceforth abbreviated as pcds). The α-pcd πα and the β-pcd πβ are defined
as πα := {α,¬α} and πβ := {β,¬β} respectively. A four-formula fragment F
is then seen as the union of two pcds, i.e. F = πα ∪ πβ = {α,¬α, β,¬β}.

The main justification for this restriction to negation-closed fragments is
that the Aristotelian relation of contradiction (cd) corresponds with the duality
relation of external negation (eneg). As was argued in Subsection 2.4, cd and
eneg are the only relations that the Aristotelian and duality sets really have
in common without any further complications. Hence, the combination of cd
and eneg counts as a good ‘common core’ to use as the basis for a typology of
duality patterns which does justice to the (dis)similarities with the Aristotelian
relations. Furthermore, remember from Figure 3 in Subsection 2.3 that, both
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with the Aristotelian square and with the duality square, it is the cd resp. eneg
relation that ‘survives’ when going from the classical to the degenerate cases.
However, in view of the existence of the collapsed duality squares — which have
no counterpart whatsoever among the Aristotelian relations —, the degenerate
duality squares need to be further analysed and subclassified.

The general procedure for establishing such a typology of duality pat-
terns in the next subsections consists of three steps. First of all, in order
to emphasise the crucial role of the two individual pcds πα and πβ consti-
tuting the fragment F , we define a new function δ∗. Unlike the original δ,
this new δ∗ takes a pcd as its input and yields the (possibly collapsed) du-
ality square that can be generated by that pcd as its output:19 δ∗(πα) :=
{id(α),eneg(α), ineg(α),dual(α)}, and δ∗(πβ) := {id(β),eneg(β), ineg(β),
dual(β)}. In a second move, these two ‘intermediate’ duality squares are
superimposed, yielding the extended fragment F∗ which consists of eight for-
mulas:

F∗ := δ∗(πα) ∪ δ∗(πβ)

= {id(α),eneg(α), ineg(α),dual(α), id(β),eneg(β), ineg(β),dual(β)}.

As a third step, the overall duality constellation of the extended fragment F∗
— including the possible collapses/equivalences — allows one to determine the
duality pattern of the original fragment F .

3.2 2-PCD-Fragments Generating two Classical Duality Squares

In order to apply the general three-step procedure introduced above, we con-
sider the fragment F in Figure 5(a), where the formula at the top left ver-
tex is α = 2p and the formula at the bottom left vertex is β = ¬2¬p.
Hence, the α-pcd is the ‘descending’ diagonal from top left to bottom right,
whereas the β-pcd is the ‘ascending’ diagonal from bottom left to top right,
i.e. πα = {2p,¬2p} and πβ = {¬2¬p,2¬p}. Next, two intermediate duality
squares are generated by applying the δ∗ function independently to the two
pcds of the fragment F , yielding δ∗(πα) and δ∗(πβ) in Figure 5(b) and (c)
respectively. Note, first of all, that in both cases, an extra pcd is added as
the light-grey diagonal, which is orthogonal to the original black diagonals for
πα and πβ respectively. Furthermore, the resulting duality configuration is
classical in both cases: the duality relations of ineg and dual hold along the
respective ‘horizontal’ and ‘vertical’ edges of both intermediate duality squares
in Figures 5(b) and (c). In a final move, δ∗(πα) and δ∗(πβ) are superimposed,

19Note that δ agrees with δ∗, in the sense that δ∗(πα) = δ(α) = δ(¬α) (also recall Foot-
note 9).
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which results in the octagonal representation in Figure 5(d) for the extended
fragment F∗. This octagon reveals four pairs of equivalent formulas (indicated
with the grey bars) and hence collapses into a square. In other words, the
extended fragment F∗ does not contain eight distinct formulas but instead col-
lapses to a four-formula fragment identical to the original fragment F . If we
now focus on the two pcds constituting the original fragment F inside the ex-
tended fragment F∗, we observe that the duality diagram for F in Figure 5(a)
contains the duality relations of ineg and dual along its horizontal and ver-
tical edges, and hence is classified as a classical duality square. Furthermore,
this classical duality pattern will be called clcl1, since it is built from two
classical duality squares for δ∗(πα) and δ∗(πβ).

Figure 5: Example of the classical (clcl1) duality pattern: (a) classical square
for the fragment F , (b) classical square for δ∗(πα), (c) classical square for
δ∗(πβ), (d) octagon for the fragment F∗.

The second major duality pattern — illustrated in Figure 6 — closely re-
sembles the first one, in that the two intermediate duality squares are again
both classical. The fragment F in Figure 6(a) consists of πα = {p∧ q,¬p∨¬q}
and πβ = {¬p ∨ q, p ∧ ¬q}. The two duality squares for δ∗(πα) and δ∗(πβ),
which are shown in Figures 6(b-c), are both classical and hence, this duality
pattern will be called clcl2. Unlike the situation in Figures 5(b-c), however,
the square for δ∗(πα) turns out to be different from that for δ∗(πβ). Super-
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imposing δ∗(πα) and δ∗(πβ) yields the octagon for the extended fragment F∗
in Figure 6(d). As there are no logical equivalences among the eight formulas
of F∗, nothing can be collapsed. Again focusing on the two pcds constitut-
ing the original fragment F , the four formulas turn out not to stand in any
other (non-id) duality relation whatsoever — apart from the eneg diagonals.
Therefore, the conclusion is that, even though, underlyingly, it gives rise to
two independent classical duality squares — as revealed in the octagon for the
fragment F∗ — the original fragment F itself constitutes a degenerate duality
pattern: the duality diagram for F in Figure 6(a) contains no duality relations
along the edges of the square.

Figure 6: Example of the simple degenerate (clcl2) duality pattern: (a) de-
generate square for the fragment F , (b) classical square for δ∗(πα), (c) classical
square for δ∗(πβ), (d) octagon for the fragment F∗.

If we now compare the overall clcl1 and clcl2 duality patterns in Fig-
ures 5 and 6 respectively, we first of all observe a fundamental similarity in that
both consist of two pcds that generate two individual classical duality squares
for δ∗(πα) and δ∗(πβ) (as is reflected in their clcl naming). The major dif-
ference, however, resides in the interaction between these two intermediate
squares within the extended fragment F∗. In the octagon in Figure 5(d) the
eight formulas are pairwise identical, whereas Figure 6(d) contains no equiv-
alences/identities. For the original fragment F itself, the former constellation
yields the classical clcl1 duality square in Figure 5(a), whereas the latter
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yields the simple degenerate clcl2 duality square in Figure 6(a).

3.3 2-PCD-Fragments Generating
one Classical and one Collapsed Duality Square

With the first subfamily of duality patterns introduced in the previous subsec-
tion, the intermediate squares for δ∗(πα) and δ∗(πβ) were both classical. We
now turn to a second subfamily, in which one intermediate square is still a
classical duality square, but the other is a collapsed duality square.20

Figure 7: Example of the partially self-dual degenerate (sdcl) duality pattern:
(a) degenerate square for the fragment F , (b) self-dual collapsed square for
δ∗(πα), (c) classical square for δ∗(πβ), (d) octagon for the fragment F∗.

Consider the fragment F in Figure 7(a), consisting of πα = {p,¬p} and
πβ = {¬2¬p,2¬p}. Notice that πβ in Figure 7 is identical to the second
pcd in Figure 5, and hence the intermediate square in Figure 7(c) is the same
classical duality square as in Figure 5(c). However, a new situation arises with
the intermediate square for δ∗(πα) in Figure 7(b). With the so-called ‘bare
modalities’ p and ¬p in LD, eneg(p) = ineg(p) and eneg(¬p) = ineg(¬p),
and hence dual(p) = (eneg ◦ ineg)(p) = id(p) and dual(¬p) = id(¬p). In

20In the concrete examples in the present subsection, the square generated by πα is collapsed
and that generated by πβ is classical. Needless to say, the roles of πα and πβ can be switched
around without loss of generality.
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other words, the bare modalities p and ¬p are self-dual. So the grey diagonal
which is added orthogonally to πα in Figure 7(b) introduces the pcd {¬¬p,¬p},
whose formulas are pairwise equivalent to those of πα. More in particular,
both {p,¬¬p} and {¬p,¬p} are sdps — self-dual pairs of equivalent formulas
(see Subsection 2.4) — and the grey bars indicate that these two sdps will
collapse. In Figure 7(d), δ∗(πα) and δ∗(πβ) are superimposed to yield an
octagon for the extended fragment F∗. This octagon reveals two equivalences
so that F∗ no longer contains eight distinct formulas — as was the case in
Figure 6(d) — but instead reduces to a six-formula fragment. As a consequence,
the original fragment F itself constitutes a degenerate duality pattern: its
duality diagram in Figure 7(a) contains no duality relations along the edges of
the square. Nevertheless, it does contain two dual loops for the vertices of πα
— corresponding to the two underlying sdps in Figure 7(b) — and an extra
ineg relation for the diagonal of πα itself. Because of this combination of a
self-dual and a classical square, this duality pattern will be called sdcl, and
will be referred to as a partially self-dual degenerate duality square.21

The fourth duality pattern — illustrated in Figure 8 — closely resembles
the third one, in that one intermediate duality square is classical, whereas
the other is collapsed. Consider the fragment F in Figure 8(a), consisting of
πα = {p ↔ q,¬(p ↔ q)} and πβ = {¬p ∨ q, p ∧ ¬q}. Notice that the interme-
diate square for δ∗(πβ) in Figure 8(c) is the same classical duality square as
that in Figure 6(c). Again, however, the intermediate square for δ∗(πα) in Fig-
ure 8(b) constitutes a collapsed duality square. The grey diagonal introduces
the pcd {¬p ↔ ¬q,¬(¬p ↔ ¬q)}, whose formulas are pairwise equivalent (in
CPL) to those of πα: (p ↔ q) ≡ (¬p ↔ ¬q) and ¬(p ↔ q) ≡ ¬(¬p ↔ ¬q).
Hence, both {(p ↔ q), (¬p ↔ ¬q)} and {¬(p ↔ q),¬(¬p ↔ ¬q)} are sips —
self-internal pairs of equivalent formulas (see Subsection 2.4)22 — as indicated
by the grey bars. In Figure 8(d), the octagon for the extended fragment F∗ is
generated by superimposing δ∗(πα) and δ∗(πβ). As was the case in Figure 7(d),
the two equivalences trigger a reduction of F∗ from an eight-formula fragment
to a six-formula fragment.23 Hence, the original fragment F itself constitutes
a degenerate duality pattern: its duality diagram in Figure 8(a) contains no
duality relations along the edges of the square. Nevertheless, it does contain
two ineg loops for the vertices of πα — corresponding to the two underlying
sips in Figure 8(b) — and an extra dual relation for the diagonal of πα it-

21Switching around πα and πβ yields the completely analogous partially self-dual degenerate
clsd duality pattern.

22In other words, ineg(p↔ q) = id(p↔ q) and ineg(¬(p↔ q)) = id(¬(p↔ q)) and hence
eneg((¬)(p↔ q)) = dual((¬)(p↔ q)).

23In the terminology of [41, p. 180], such six-formula fragments yield the so-called ‘shield
and spear’ constellation for the duality hexagon, as opposed to the ‘star’ constellation for the
Aristotelian hexagon.
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self. Because of this combination of a self-internal and a classical square, this
partially self-internal degenerate duality pattern will be called sicl.24

Figure 8: Example of the partially self-internal degenerate (sicl) duality pat-
tern: (a) degenerate square for the fragment F , (b) self-internal collapsed
square for δ∗(πα), (c) classical square for δ∗(πβ), (d) octagon for the fragment
F∗.

When we compare the two duality patterns introduced in this subsection,
the similarities are predominant. Both with the sdcl pattern in Figure 7 and
with the sicl pattern in Figure 8, (1) the intermediate duality square for δ∗(πα)
is collapsed, (2) the intermediate duality square for δ∗(πβ) is classical, (3) the
extended fragment F∗ in the octagon consists of six non-equivalent formulas,
and (4) the original fragment F yields a degenerate duality square. The crucial
difference between the two duality patterns then concerns the ‘driving force’
behind the collapse of the intermediate square for δ∗(πα). With the partially
self-dual degenerate sdcl pattern, the square in Figure 7(b) collapses along its
‘vertical’ dual edges, yielding a πα-pcd in Figure 7(a) with dual loops for
the two underlying sdps and an extra diagonal for ineg. With the partially
self-internal degenerate sicl pattern, by contrast, the square in Figure 8(b)
collapses along its ‘horizontal’ ineg edges, yielding a πα-pcd in Figure 8(a)
with ineg loops for the two underlying sips and an extra diagonal for dual.

When we compare the sdcl and sicl patterns with the clcl1 and clcl2

24Switching around πα and πβ again yields the completely analogous partially self-internal
degenerate clsi duality pattern.
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patterns introduced in Subsection 3.2, the major differences concern the na-
ture of the original fragment F and the extended fragment F∗. As for F∗, the
octagons in Figures 7(d) and 8(d) — with their six non-equivalent formulas
and two equivalence pairs — can be seen to occupy an intermediate position
between the clcl1 octagon in Figure 5(d) — with its four non-equivalent for-
mulas and four equivalence pairs — on the one hand, and the clcl2 octagon
in Figure 6(d) — with its eight non-equivalent formulas — on the other hand.
As for the original fragment F , the sdcl and sicl patterns at first sight resem-
ble the clcl2 pattern in that — in the absence of any duality relations along
their edges — all three of them constitute a degenerate duality square. Never-
theless, the former two patterns manifestly reveal a much greater complexity
w.r.t. the duality relations, by virtue of the non-trivial, i.e. non-id, loops and
the two coinciding duality relations along the diagonal of their πα pcds. In
other words, unlike the Aristotelian relations — which basically have one sub-
type of degenerate square (see Subsection 2.3) — the duality relations have so
far been shown to give rise to at least three subtypes of degenerate squares:
(1) the simple degenerate clcl2 square, (2) the partially self-dual degenerate
sdcl square and (3) the partially self-internal degenerate sicl square.

3.4 2-PCD-Fragments Generating
two Collapsed Duality Squares

Two subfamilies of duality patterns have been discussed so far: with the first
subfamily — patterns clcl1 and clcl2 in Subsection 3.2 —, the intermediate
squares generated for δ∗(πα) and δ∗(πβ) are both classical, whereas with the
second subfamily — patterns sdcl and sicl in Subsection 3.3 —, one interme-
diate square is classical but the other is collapsed. We now turn to a third and
final subfamily, consisting of three duality patterns in which both intermediate
duality squares are collapsed.
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Figure 9: Example of the mixed self-internal/self-dual degenerate (sisd) du-
ality pattern: (a) degenerate square for the fragment F , (b) self-internal col-
lapsed square for δ∗(πα), (c) self-dual collapsed square for δ∗(πβ), (d) octagon
for the fragment F∗.

The duality pattern illustrated in Figure 9 contains both a self-internal
collapsed square and a self-dual collapsed square. Consider the fragment F
in Figure 9(a), consisting of πα = {3p ∧ 3¬p,2p ∨ 2¬p} and πβ = {p,¬p}.
First of all, the grey diagonal in the intermediate square for δ∗(πα) in Fig-
ure 9(b) introduces the additional pcd {3¬p ∧3p,2¬p ∨ 2p}, whose formu-
las are pairwise (and trivially) equivalent to those of πα. In particular, both
{3p ∧ 3¬p,3¬p ∧ 3p} and {2p ∨ 2¬p,2¬p ∨ 2p} are sips, as indicated by
the grey bars.25 Notice that this self-internal collapsed square for δ∗(πα) is
perfectly analogous to the one for the formula p↔ q from LCPL in Figure 8(b).
Secondly, the intermediate square for δ∗(πβ) in Figure 9(c) is the same self-
dual collapsed square (up to rotation) as that in Figure 7(b). And finally,
the octagon for the extended fragment F∗ in Figure 9(d) superimposes δ∗(πα)
and δ∗(πβ). Combining the two pairs of equivalences — coming from each of
the intermediate squares independently — triggers a reduction of F∗ from an
eight-formula fragment to a four-formula fragment. Hence, the original frag-
ment F itself constitutes a degenerate duality pattern, as shown in Figure 9(a).
Nevertheless, it yields an intricate overall duality constellation — even more so

25In other words, ineg(3p ∧3¬p) = id(3p ∧3¬p) and ineg(2p ∨ 2¬p) = id(2p ∨ 2¬p),
and hence eneg(3p ∧3¬p) = dual(3p ∧3¬p) and eneg(2p ∨ 2¬p) = dual(2p ∨ 2¬p).
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than the sdcl and sicl patterns from the previous subsection — since it not
only contains two ineg loops (for the two underlying sips) and an extra dual
relation for the pcd πα, but also — conversely — two dual loops (for the two
underlying sdps) and an extra ineg relation for the pcd πβ. Hence, it will be
called a mixed self-internal/self-dual degenerate sisd duality pattern.26

As was the case with the sisd pattern, the intermediate squares of the
duality pattern illustrated in Figure 10, are both collapsed. However, since the
fragment F consists of πα = {p,¬p} and πβ = {q,¬q}, the collapsed duality
squares for δ∗(πα) in Figure 10(b) and for δ∗(πβ) in Figure 10(c) are both self-
dual, i.e. involving two sdps each. The superimposition of δ∗(πα) and δ∗(πβ)
in the octagon for F∗ in Figure 10(d) again involves four equivalence pairs,
reducing F∗ from an eight- to a four-formula fragment. Hence, F once again
yields a degenerate duality square in Figure 10(a). The resulting overall duality
constellation is equally complex as that of the sisd pattern in Figure 9(a), but
more symmetrical in the sense that all four loops concern the same dual
relation — corresponding to the four underlying sdps — and the extra ineg
relation holds for both πα and πβ. Hence, it will be called a fully self-dual
degenerate sdsd duality pattern.

Also with the final member of the third subfamily — illustrated in Figure 11
— the collapsed duality squares for δ∗(πα) and δ∗(πβ) are both of the same
subtype. However, unlike the two self-dual squares with the sdsd pattern, the
intermediate squares in Figures 11(b) and 11(c) are both self-internal. Consider
the fragment F in Figure 11(a), consisting of πα = {more than 80% or less
than 20% of the A’s are B, at most 80% but at least 20% of the A’s are B}
and πβ = {at least 80% or at most 20% of the A’s are B, less than 80% but
more than 20% of the A’s are B}. These formulas are taken from the realm of
proportional quantification in natural language.27 Within the formal-semantic
framework of Generalized Quantifier Theory [2], such formulas are considered
to be of the general form Q(A,B), where Q is a (potentially complex) quantifier
(such as some, all, or more than 80% or less than 20% ), A is the subject noun
(such as children) and B is the verbal predicate (such as are asleep). With
formulas of the form Q(A,B), the internal negation is taken to operate on the
verbal predicate argument only, i.e. ineg(Q(A,B)) := Q(A,¬B). The simple
proportional quantifiers more than 80% and less than 20% can then be shown
to be one another’s ineg, and the same holds for at least 80% and at most
20% :

26Switching around πα and πβ again yields the completely analogous mixed self-
internal/self-dual degenerate sdsi duality pattern.

27In mathematical notation, more than corresponds to >, less than corresponds to <, at
least corresponds to ≥ (i.e. more than or equal), and at most corresponds to ≤ (i.e. less than
or equal).
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Figure 10: Example of the fully self-dual degenerate (sdsd) duality pattern:
(a) degenerate square for the fragment F , (b) self-dual collapsed square for
δ∗(πα), (c) self-dual collapsed square for δ∗(πβ), (d) octagon for the fragment
F∗.

ineg(more than 80%(A,B)) ≡ more than 80%(A,¬B)
≡ less than 20%(A,B)

ineg(at least 80%(A,B)) ≡ at least 80%(A,¬B)
≡ at most 20%(A,B)

In other words, more than 80% of the children are awake (i.e. not asleep) is
equivalent to less than 20% of the children are asleep and vice versa. Similarly,
at least 80% of the children are awake is equivalent to at most 20% of the
children are asleep. If we now consider complex proportional quantifiers —
which are Boolean combinations of the simple proportional quantifiers above,
such as more than 80% or less than 20% — we can observe the following
equivalences:

ineg[(more than 80% or less than 20%)(A,B)]
≡ (more than 80% or less than 20%)(A,¬B) (1)
≡ more than 80%(A,¬B) or less than 20%(A,¬B) (2)
≡ less than 20%(A,B) or more than 80%(A,B) (3)
≡ more than 80%(A,B) or less than 20%(A,B) (4)
≡ (more than 80% or less than 20%)(A,B) (5)
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Step 1 is an application of the ineg function (as defined above), and steps 2
and 5 translate the disjunction between the level of the quantifiers and the level
of the propositions, i.e. (Q1 ∨ Q2)(A,B) ≡ Q1(A,B) ∨ Q2(A,B). Step 3 then
reflects the key property, described above, that the two simple proportional
quantifiers involved are one another’s ineg. This sequence of equivalences
demonstrates that more than 80% or less than 20% of the A’s are B — the
disjunctive α-formula from πα in Figure 11(a) — is its own internal negation.
A completely analogous sequence can be given to show that the conjunctive
¬α-formula from πα, namely at most 80% but at least 20% of the A’s are B, is
its own ineg as well. The general principle underlying these equivalences can
be stated as follows: “A disjunction/conjunction as a whole is its own internal
negation iff the two disjuncts/conjuncts are one another’s internal negation”.28

Furthermore, and again completely analogously, both formulas constituting πβ
in Figure 11(a) — namely at least 80% or at most 20% of the A’s are B and
less than 80% but more than 20% of the A’s are B — turn out to be their own
ineg.

28Note that this general formulation also accounts for the self-internal nature of the con-
junctive formula 3p ∧3¬p and the disjunctive formula 2p ∨ 2¬p in Figure 9.
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Having thus established the properties of the four proportional formulas in
πα and πβ in full detail, we can now (re)turn to the intermediate duality squares
for δ∗(πα) and δ∗(πβ) in Figure 11(b) and in Figure 11(c) respectively, and
observe that both squares are indeed self-internal collapsed duality squares,
i.e. they each involve two sips. As a consequence, the superimposition of δ∗(πα)
and δ∗(πβ) in the octagon for F∗ in Figure 11(d) again involves four equivalence
pairs, reducing F∗ from an eight- to a four-formula fragment. Hence, F once
again yields a degenerate duality square in Figure 11(a). The resulting overall
constellation is equally symmetrical as that of the sdsd pattern in Figure 10(a),
the only differences being that all four loops now concern the ineg relation —
corresponding to the four underlying sips — and that the extra relation holding
for both πα and πβ is that of dual. Hence, it will be called a fully self-internal
degenerate sisi duality pattern.

If we now compare the sisd, sdsd and sisi patterns constituting the third
subfamily, the similarities again prevail. With all three of them, (1) the in-
termediate δ∗(πα) and δ∗(πβ) both yield collapsed duality squares, (2) the
extended fragment F∗ has four equivalence pairs and thus collapses from an
eight-formula to a four-formula fragment, and (3) the original fragment F
yields a degenerate duality square with four non-trivial (non-id) loops on the
vertices and two diagonals with double duality relations. The crucial difference
between the three duality patterns then once again concerns the nature of the
collapse of the intermediate squares for δ∗(πα) and δ∗(πβ). Pattern sisd in
Figure 9 combines a ‘horizontal’ ineg collapse for two sips with a ‘vertical’
dual collapse for two sdps; pattern sdsd in Figure 10 consists of two vertical
dual collapses with four sdps; and pattern sisi in Figure 11 is the result of
two horizontal ineg collapses with four sips. The overall conclusion is that —
in addition to the three subtypes of degenerate duality squares characterised at
the end of the previous subsection (i.e. simple, partially self-dual and partially
self-internal) — the present subsection has introduced three more subtypes,
namely (1) the mixed self-internal/self-dual sisd pattern, (2) the fully self-dual
sdsd pattern, and (3) the fully self-internal sisi pattern.

3.5 Overview of Duality Patterns for 2-PCD-Fragments

The initial trigger for the proposed analysis of duality patterns was the obser-
vation in Subsection 2.3 that — for four-formula fragments consisting of two
pcds — both the Aristotelian relations and the duality relations yield classical
and degenerate square constellations. In spite of this fundamental similarity,
however, the situation turns out to be much more complex in the case of the
duality relations, since these may also give rise to collapsed constellations (see
Subsection 2.4), which have no counterpart among the Aristotelian relations.
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Table 1: Typology of Duality Patterns for the 2-pcd-fragment F in terms of
the numbers of (i) self-dual pairs (sdp), (ii) self-internal pairs (sip), and (iii)
non-equivalent formulas in fragment F∗

pattern sdp sip F∗ fragment F
clcl1 0 0 4 classical
clcl2 0 0 8 simple degenerate

sdcl 2 0 6 partially self-dual degenerate
sicl 0 2 6 partially self-internal degenerate

sisd 2 2 4 mixed self-internal/self-dual degenerate
sdsd 4 0 4 fully self-dual degenerate
sisi 0 4 4 fully self-internal degenerate

As was described in full detail above, the general procedure for establishing
the typology of duality patterns consists of three steps: (i) the two individ-
ual pcds πα and πβ, constituting the fragment F , yield the respective duality
squares for δ∗(πα) and δ∗(πβ); (ii) these two intermediate duality squares are
superimposed, yielding the extended fragment F∗, consisting of eight formu-
las; and (iii) the overall duality constellation of F∗ — including the possible
collapses/equivalences — allows one to determine the duality pattern of the
original fragment F . The resulting typology consists of seven major types,
namely one classical and six degenerate duality patterns.

At this point it is important to stress the precise relation between these
seven patterns on the one hand, and the underlying tripartition into classical,
collapsed and degenerate constellations on the other hand. Remember that a
constellation is (1) classical if all pairs of formulas stand in exactly one duality
relation, that it is (2) collapsed if all pairs of formulas stand in two duality
relations simultaneously, and that it is (3) degenerate if at least one pair of
formulas stands in no duality relation whatsoever. By definition of δ∗, the
intermediate squares for δ∗(πα) and δ∗(πβ) can only be classical or collapsed
(and never degenerate). By contrast, when assigning the duality pattern to F
on the basis of F∗, the result is either classical or degenerate: although it may
contain one or even two collapsed squares, it can never be collapsed as a whole
itself (because F is assumed to contain four non-equivalent formulas). In Ta-
ble 1, the general procedure for distinguishing duality patterns is summarised,
with the second and third columns characterising step one — the intermedi-
ate squares for δ∗(πα) and δ∗(πβ) —, the fourth column corresponding to step
two — the superposition in fragment F∗ — and the fifth column yielding the
resulting subtype for the fragment F in step three.
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Starting off with the characterisation of the intermediate squares in the
second and third columns of Table 1, we first of all observe that the central
subdivision into three subfamilies of duality patterns crucially relies on the
number of collapsed squares involved. Remember that duality squares collapse
when a formula and its ineg — or a formula and its dual — turn out to be
logically equivalent to one another, thus rendering both formulas self-internal or
self-dual respectively. Hence, if an intermediate square is collapsed, it consists
of two pairs of equivalent formulas: either two sdps (self-dual pairs), or else
two sips (self-internal pairs). With the clcl1 and clcl2 patterns in the first
subfamily of Table 1, neither of the two intermediate squares contains any sdps
or sips, i.e. they are both classical. With the sdcl and sicl patterns in the
second subfamily, the intermediate square for δ∗(πα) is collapsed — containing
two sdps or two sips respectively — but the one for δ∗(πβ) is classical.29 With
the three patterns in the third subfamily, the intermediate squares are both
collapsed: the sisd pattern has two pairs of each subtype of sdps and sips,
whereas the sdsd and sisi patterns have four pairs of the same subtype.

If we now turn to the fourth column of Table 1, the number of non-
equivalent formulas in the extended fragment F∗ exhibits a nice correlation
with the number of sdps and sips from the previous two columns, at least
for the six degenerate patterns. Being defined as the union of δ∗(πα) and
δ∗(πβ), fragment F∗ contains eight formulas. With the clcl2 pattern, neither
δ∗(πα) nor δ∗(πβ) contains any sdps or sips, and therefore all eight of the for-
mulas in fragment F∗ are non-equivalent. With the sdcl and sicl patterns,
by contrast, the two equivalence pairs in δ∗(πα) yield six non-equivalent for-
mulas for F∗. And finally, with the sisd, sdsd and sisi patterns, combining
two equivalence pairs in δ∗(πα) with two equivalence pairs in δ∗(πβ) results in
four non-equivalent formulas for F∗. In other words, with the six subtypes
of degenerate duality patterns, the numbers of sdps, sips and non-equivalent
F∗-formulas in the columns two through four in Table 1 systematically add
up to eight. However, such a correlation does not hold for the clcl1 pattern:
it has no sdps or sips and nevertheless only contains four non-equivalent F∗-
formulas, which is due to the fact that the four equivalence pairs involved have
nothing to do with formulas being self-dual or self-internal.

Thirdly and finally, the terminology adopted in the right-most column of
Table 1 for the six subtypes of degenerate duality patterns, reveals an inverse
correlation between the number of non-equivalent F∗-formulas and the com-
plexity of the duality constellation for the original fragment F : as the number
of non-equivalent formulas decreases, the complexity of the degenerate duality
pattern increases. With the simple degenerate clcl2 pattern, the eight non-

29Remember that the mirror-image constellation — with δ∗(πα) classical and δ∗(πβ) col-
lapsed — is perfectly equivalent. We return to this issue in our discussion of Table 2.
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equivalent formulas in F∗ only yield two duality relations in F , namely the
two eneg relations of the diagonals.30 With the second subfamily, the num-
ber of non-equivalent F∗-formulas decreases to six, but the number of duality
relations in F increases to five: in addition to the two eneg diagonals, the πα-
pcd gets two extra ‘loop’ relations on its vertices and one extra relation on its
diagonal. The difference between the partially self-dual sdcl pattern and the
partially self-internal sicl pattern is determined by which duality relation goes
onto the two loops. With the third subfamily, the number of non-equivalent
F∗-formulas again decreases — from six to four —, but the number of dual-
ity relations in F increases from five to eight : in addition to the two eneg
diagonals, both the πα- and the πβ-pcd get two extra ‘loop’ relations on their
vertices and one extra relation on their diagonal. The difference between the
mixed self-internal/self-dual sisd pattern, the fully self-dual sdsd pattern and
the fully self-internal sisi pattern is based on whether or not the πα- and πβ-
pcds have the same duality relations on their loops. It is interesting to observe
that — from the point of view of the complexity of the overall duality con-
stellations — the classical duality square in the clcl1 pattern, with its six
duality relations (two for the diagonals and four along the edges), occupies an
intermediate position between the five relations of the partially self-dual/self-
internal sdcl and sicl patterns on the one hand, and the eight relations of the
mixed/fully self-dual/self-internal sisd, sdsd and sisi patterns on the other
hand.

The above discussion of the seven duality patterns in Table 1 perfectly
corresponds to the three steps in the general procedure going from δ∗(πα) and
δ∗(πβ) to the extended fragment F∗ and back to the original fragment F . One
aspect of this procedure, however, has remained somewhat underrated so far,
namely the individual role of δ∗(πα) and δ∗(πβ). Therefore, Table 2 classifies
the seven duality patterns by drawing the distinction between the classical
square, the self-dual collapse and the self-internal collapse independently for
δ∗(πα) on the horizontal axis and for δ∗(πβ) on the vertical axis. The octagonal
constellations for the fragment F∗ are presented in their full generality, i.e. not
with the concrete formulas decorating the vertices of Figures 5 to 11, but with
a general πα = {α,eneg(α)} and πβ = {β,eneg(β)} constituting the core for
the fragment F (represented with the black diagonals).

30We will ignore the ‘trivial’ id-relation for the sake of convenience.
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Starting with the cell at the top left of Table 2, we observe that an identical
input — namely a classical square for both δ∗(πα) and δ∗(πβ) — yields two
radically different output scenarios: the classical square of the clcl1 pattern
collapses the two intermediate squares onto one another, whereas the simple
degenerate square of the clcl2 pattern contains no equivalence pairs whatso-
ever. Notice, however, that the four equivalence pairs of the clcl1 pattern
are fundamentally different from the four equivalence pairs in the sisd, sdsd
and sisi patterns: in the latter cases, all four equivalences are situated within
δ∗(πα) or δ∗(πβ) separately, i.e. collapsing the intermediate squares along their
ineg or dual edges, whereas, in the former case, all four equivalences hold
across δ∗(πα) and δ∗(πβ).

The remaining two patterns on the top row of Table 2 combine a collapsed
square for δ∗(πα) with a classical square for δ∗(πβ): with the partially self-dual
sdcl pattern, the two sdps are located along the ‘vertical’ dual edges and
will thus yield dual loops and an extra diagonal for ineg in the fragment F ,
whereas with the partially self-internal sicl pattern, the two sips are situated
along the ‘horizontal’ ineg edges, yielding ineg loops and an extra diagonal
for dual in the fragment F .

Turning to the third subfamily at the bottom right of Table 2, we arrive at
the duality patterns with four equivalence pairs. The mixed self-internal/self-
dual sisd pattern combines two horizontal sips — and two ineg loops in F—
with two vertical sdps — and two dual loops in F . With the fully self-
dual sdsd pattern, all four equivalence pairs are located along the vertical
dual edges — yielding four dual loops and two extra ineg diagonals in F—
, whereas with the fully self-internal sisi pattern, all four equivalence pairs
concern the horizontal ineg edges — generating four ineg loops and two extra
dual diagonals in F .

Overlooking Table 2 as a whole, a clear axis of symmetry emerges along the
diagonal from top left to bottom right. The clcl1/2, sdsd and sisi patterns
— which are all located on this diagonal — are ‘symmetric’ constellations
in that the subtype of δ∗(πα) — classical, self-dual collapsed or self-internal
collapsed — is identical to that of δ∗(πβ). The sdcl, sicl and sisd patterns
in the top right part of the table are less symmetrical, but they all have their
mirror-image counterpart in the clsd, clsi and sdsi patterns in the bottom
left part of the table. Although we did not provide any explicit examples of the
latter three patterns above, they can straighforwardly be obtained by switching
around πα and πβ.
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4 Duality Patterns and Bitstring Length

This section investigates the relation between the seven duality patterns dis-
tinguished in the previous section and the type of decorations involved. In
logical geometry, the formulas constituting the 2-pcd-fragments frequently get
assigned a semantic representation in terms of bitstrings. We start off by
briefly introducing the notion of bitstring and by presenting the general strat-
egy for looking at duality relations in terms of operations on bitstrings (Sub-
section 4.1). Secondly, we compare the two well-known Boolean algebras B3

and B4, which consist of (formulas that can be represented by) bitstrings of
length 3 and 4 respectively (Subsection 4.2). Then we briefly compare more
complex structures with (formulas that can be represented by) bitstrings of
length 5 and 6 (Subsection 4.3). The overview reveals the crucial role of the
distinction between odd and even bitstring lengths (Subsection 4.4).

4.1 The Duality Relations in Finite Boolean Algebras

Bitstrings are sequences of bits (0/1) that encode the denotations of formulas
or expressions from logical systems (e.g. classical propositional logic, first-order
logic, modal logic and public announcement logic) or lexical fields (e.g. com-
parative quantification, subjective quantification, color terms and set inclusion
relations), where each bit position concerns a component in a partition of logical
space. For a given logical system S and a finite fragment of the language of S,
i.e. F = {ϕ1, . . . , ϕm} ⊆ LS, the partition of S induced by F , denoted as ΠS(F),
is defined as the set of anchor formulas α ≡ ±ϕ1 ∧ · · · ∧ ±ϕm ∈ LS (where
+ϕ = ϕ and −ϕ = ¬ϕ), which are S-consistent. For every formula ϕ ∈ B(F)
— the Boolean closure of the fragment F — the bitstring βFS (ϕ) ∈ {0, 1}n is
defined as follows:31

for each bit position 1 ≤ i ≤ n : [βFS (ϕ)]i :=

{
1 if |=S αi → ϕ,

0 if |=S αi → ¬ϕ.

In other words, a formula ϕ gets a value 1 for the i-th position of its bitstring
iff it is entailed by the corresponding anchor formula αi. In the next subsec-
tions, various examples will be presented of logical systems and their respective
partitions. For the sake of convenience, we will often omit the reference to the
logical system S or the fragment F , and simply write β(ϕ) = b if the formula ϕ
is encoded by the bitstring b. Individual (values for) bit positions will then be

31A more detailed description of the mathematically precise technique for assigning bit-
strings to formulas on the basis of partitions induced by arbitrary logical fragments is pre-
sented in [12]. The logical, diagrammatic and cognitive effectiveness of the earlier, informal
bitstring approach is discussed in [45].
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denoted using indices: bi is the (value for) the i-th bit position in the bitstring
b.

We can now define two basic operations on bitstrings of arbitrary length,
namely the switch-operation and the flip-operation, as follows:

switch(b1, b2, . . . , bn) := (¬b1,¬b2, , . . . ,¬bn)
flip(b1, b2, . . . , bn) := (bn, . . . , b2, b1)

The switch-operation switches each individual bit to its opposite value —
for example, switch(11010) = 00101 — whereas, with the flip-operation,
each bit value is maintained but the left-to-right linear ordering of the bits
is reversed — for example, flip(11010) = 01011. These two operations may
interact with each other, and the order in which they are applied, is irrelevant:

switch(flip(b1, b2, . . . , bn)) = switch(bn, . . . , b2, b1)
= (¬bn, . . . ,¬b2,¬b1)
= flip(¬b1,¬b2, . . . ,¬bn)
= flip(switch(b1, b2, . . . , bn))

For example, switch(flip(11010)) = switch(01011) = 10100, i.e. the linear
ordering of the bits has been reversed and all bit values have been switched.32

In all the examples that will be considered in the next subsections, the
switch- and flip-operations on bitstrings turn out to correlate straightfor-
wardly with the duality operations of eneg and ineg respectively:

β(eneg(ϕ)) = switch(β(ϕ))
β(ineg(ϕ)) = flip(β(ϕ))

Hence, computing the bitstring for an externally negated formula boils down
to switching the bitstring of the original formula, and similarly, computing the
bitstring for an internally negated formula boils down to flipping the bitstring
of the original formula. Given the definition of the dual operation as the
composition of eneg and ineg, it follows that assigning a bitstring to the
dual of a formula is equivalent to the combined application of switch and
flip to that formula’s original bitstring: β(dual(ϕ)) = β(eneg(ineg(ϕ))) =
switch(β(ineg(ϕ))) = switch(flip(β(ϕ))).

Remember from the previous section that formulas which are their own
ineg or dual played an important role in establishing the typology of duality
patterns. With the self-internal formulas, we observe that if ϕ ≡ ineg(ϕ)

32Notice, furthermore, that if switch(flip(b)) = c then switch(b) = flip(c) and
flip(b) = switch(c): e.g. given that switch(flip(11010)) = 10100, we get switch(11010)
= flip(10100) = 00101 and flip(11010) = switch(10100) = 01011.
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Table 3: Types of Contingent pcds in arbitrary finite Boolean algebras.

si sd cl total

Bn, n is even: 2m−2
2 = 2m

2 = (2n−1 − 1)− (2m−1 − 1)− 2m−1 = 2n−2
2 =

n = 2m 2m−1 − 1 2m−1 2n−1 − 2m 2n−1 − 1

Bn, n is odd: 2m+1−2
2 = (2n−1 − 1)− (2m − 1)− 0 = 2n−2

2 =

n = 2m+ 1 2m − 1 0 2n−1 − 2m 2n−1 − 1

then β(ϕ) = β(ineg(ϕ)) = flip(β(ϕ)). In other words, if a formula is self-
internal, the flip-operation has no effect on its bitstring — (β(ϕ)1, . . . , β(ϕ)n)
= (β(ϕ)n, . . . , β(ϕ)1) — which means that this bitstring is symmetrical, i.e. for
1 ≤ i ≤ n: β(ϕ)i = β(ϕ)n+1−i. Notice that the latter holds for bitstrings
with an even length — e.g. flip(001100) = 001100 — as well as for those with
an odd length — e.g. flip(01110) = 01110. With the self-dual formulas, on
the other hand, we observe that if ϕ ≡ dual(ϕ) then β(ϕ) = β(dual(ϕ)) =
switch(flip(β(ϕ))). In other words, if a formula is self-dual, the combina-
tion of the switch- and flip-operations has no effect on its bitstring. This
is equivalent to saying that the two operations have the same effect on this
bitstring — i.e. switch(β(ϕ)) = flip(β(ϕ)). This is the case, for instance,
for the bitstring 110100, since switch(110100) = flip(110100) = 001011. No-
tice that, in order for a formula to be self-dual, its bitstring must have the
same number of bit positions with value 1 as with value 0 — and hence have
an even bitstring length n — and furthermore satisfy the constraint that for
1 ≤ i ≤ n: β(ϕ)i = ¬β(ϕ)n+1−i. To prove this more formally, suppose —
towards a contradiction — that a formula ϕ is self-dual, and the length n of its
bitstring β(ϕ) is odd. Then for its middle bit position m := n+1

2 ∈ N, it holds
that n + 1 − m = m. Since ϕ is self-dual, i.e. ϕ ≡ dual(ϕ), it follows that
β(ϕ) = β(dual(ϕ)) = switch(flip(β(ϕ))), and hence β(ϕ)i = ¬β(ϕ)n+1−i
for 1 ≤ i ≤ n. In particular, it holds that β(ϕ)m = ¬β(ϕ)n+1−m = ¬β(ϕ)m,
and hence, 0 = 1, contradiction. Remember, finally, from Subsection 2.4, that
no formula can be its own eneg, on pain of inconsistency. Perfectly analo-
gously, it is impossible for the switch-operation to leave the original bitstring
unchanged: β(ϕ) 6= β(eneg(ϕ)) = switch(β(ϕ)), since otherwise we would
have β(ϕ)i = ¬β(ϕ)i, and hence 0 = 1, for every bit position 1 ≤ i ≤ n.

The distinction between bitstrings of even and odd length also plays an
important role in calculating the number of contingent si/sd/cl pcds. First
of all, if the bitstring length is even, say n = 2m, determining a bitstring that
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Table 4: Types of Contingent pcds in some small Boolean algebras.

si sd cl total

B3 1 0 2 3
B4 1 2 4 7
B5 3 0 12 15
B6 3 4 24 31

is its own ineg boils down to determining the values of its first m bit positions.
There are thus 2m such bitstrings, of which 2m−2 are contingent, yielding 2m−2

2
contingent si pcds. By contrast, if the bitstring length is odd, say n = 2m+ 1,
determining a bitstring that is its own ineg boils down to determining the
values of its first m + 1 bit positions — viz. the first m positions plus the
middle position. There are thus 2m+1 − 2 contingent such bitstrings, yielding
2m+1−2

2 contingent si pcds. Furthermore, if n is even, analogous considerations
show that there are 2m bitstrings that are their own dual — all of which are
contingent — yielding 2m

2 contingent sd pcds. By contrast, if n is odd, there
are no contingent sd pcds (cf. supra). Finally, in both cases, the number
of cl pcds is computed by subtracting the numbers of si and sd pcds from
the total number of pcd. These calculations are summarised in Table 3, and
the concrete numbers of si, sd and cl pcds for n ∈ {3, 4, 5, 6} are shown in
Table 4.

4.2 Bitstrings of Length 3 and 4

Starting off with the Boolean algebra B3, Table 5 illustrates how the 23 = 8
bitstrings of length 3 can serve as the denotations of 8 formulas from various
systems of modal logic (e.g. the system D) and from Generalised Quantifier
Theory (GQT). Bitstrings belong to different levels according to the number
of bits that have value 1. Hence, B3 consists of three level 1 (L1) bitstrings,
three level 2 (L2) bitstrings, one L0 and one L3 bitstring, where the latter two
are standardly disregarded for being non-contingent (resp. contradictory and
tautological).

The set of anchor formulas constituting the partition of D in Table 5 consists
of α1 = 2p, α2 = ¬2p ∧ 3p and α3 = ¬3p. Given the definition of the β-
function in the previous subsection, β(3p) = 110, for instance, since 3p is
entailed by α1 and α2 but not by α3.

33

33Completely analogously, the partition for GQT in Table 5 consists of α1 = all(A,B), α2 =
some but not all(A,B) and α3 = no(A,B). Hence, β(no or all(A,B)) = 101, for instance, since
no or all(A,B) is entailed by α1 and α3 but not by α2.
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Table 5: Bitstrings of length 3 for the 8 formulas of the modal logic D and
Generalised Quantifier Theory (GQT).

D GQT β(ϕ) β(¬ϕ) GQT D

2p all(A,B) 100 011 not all(A,B) ¬2p
¬2p ∧3p some but not all(A,B) 010 101 all or no(A,B) 2p ∨ ¬3p
¬3p no(A,B) 001 110 some(A,B) 3p

2p ∧ ¬2p all and not all(A,B) 000 111 some or no(A,B) 3p ∨ ¬3p

If we now turn to the typology of duality patterns in B3, we first of all
generalise the notion of pcd from the level of formulas in a concrete language
to the level of bitstrings. In other words, the pcd {2p,¬2p} is seen as one
instantiation of the abstract pcd {100, 011}. The 23 − 2 = 6 contingent bit-
strings in B3 thus give rise to 3 pcds: {100, 011}, {010, 101} and {001, 110}.
Each of these can then be characterised as classical (cl), self-dual (sd) or
self-internal (si);34 cf. Table 4. The {010, 101} pcd counts as si, since the
flip-operation has no effect on either of these symmetric bitstrings: flip(010)
= 010 and flip(101) = 101.35 A pcd classifies as sd iff the effect of switch
and flip is the same. However, as was demonstrated at the end of the previ-
ous subsection, for a bitstring to be sd, it must have an even bitstring length,
which is obviously never the case in B3, i.e. in this Boolean algebra there are
no sd pcds. If a pcd is neither sd nor si, it belongs to the default, classical
type cl. To sum up, B3 has one pcd of type si, viz. {010, 101}, and two pcds
of type cl, viz. {100, 011} and {001, 110}. As illustrated in the table below,
determining the duality patterns for 2-pcd-fragments is now a matter of basic
combinatorics: 3 pcds give rise to the 3×2

2 = 3 squares in the bottom left
triangle, one of which is a clcl1 pattern, and two of which are sicl:36

B3 {100, 011} (cl) {001, 110} (cl) {010, 101} (si)

{100, 011} (cl)

{001, 110} (cl) clcl1

{010, 101} (si) sicl sicl

As for the Boolean algebra B4, Table 6 illustrates how the 24 = 16 bitstrings

34Remember from Subsection 2.4 that, when a formula is self-dual or self-internal, the same
holds for its negation.

35In terms of formulas, this corresponds to ineg(¬2p∧3p) = ¬2¬p∧3¬p ≡ 3p∧¬2p ≡
¬2p ∧3p and ineg(2p ∨ ¬3p) = 2¬p ∨ ¬3¬p ≡ ¬3p ∨ 2p ≡ 2p ∨ ¬3p.

36The cells on the diagonal of this table remain empty, because a square consists of two
distinct pcds. Furthermore, we only need to consider one half of the table, because the ‘order’
in which two pcds are combined with each other is irrelevant.
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of length 4 can serve as the denotations of 16 formulas of the logical systems
D and CPL. In both cases, the partition consists of the four L1 formulas
α1, α2, α3, α4, in terms of which the β-function can assign values to each of the
four bits.37

Table 6: Bitstrings of length 4 for the 16 formulas of D and CPL.

D CPL β(ϕ) β(¬ϕ) CPL D

2p p ∧ q 1000 0111 ¬(p ∧ q) ¬2p
p ∧ ¬2p ¬(p→ q) 0100 1011 p→ q ¬p ∨2p
¬p ∧3p ¬(p← q) 0010 1101 p← q p ∨ ¬3p
¬3p ¬(p ∨ q) 0001 1110 p ∨ q 3p
p p 1100 0011 ¬p ¬p

2p ∨ (¬p ∧3p) q 1010 0101 ¬q ¬2p ∧ (p ∨ ¬3p)
2p ∨ ¬3p p↔ q 1001 0110 ¬(p↔ q) ¬2p ∧3p
2p ∧ ¬2p p ∧ ¬p 0000 1111 p ∨ ¬p 2p ∨ ¬2p

In B4, the 24 − 2 = 14 contingent bitstrings give rise to 7 pcds, one of
which consists of two symmetric bitstrings, i.e. {0110, 1001}, and is hence si:
flip(0110) = 0110 and flip(1001) = 1001.38 Furthermore, the even bitstring
length in B4 yields two pcds that are sd, namely {1100, 0011} and {1010, 0101}:
switch(1100) = flip(1100) = 0011, and similarly, switch(1010) = flip(1010)
= 0101.39 The remaining four pcds in B4 are of the default type cl; cf. Table 4.
The table below shows the duality patterns for the 2-pcd-fragments in B4.

{1000, {0100, {0010, {0001, {1100, {1010, {1001,
B4 0111} 1011} 1101} 1110} 0011} 0101} 0110}

(cl) (cl) (cl) (cl) (sd) (sd) (si)

{1000, 0111} (cl)

{0100, 1011} (cl) clcl2

{0010, 1101} (cl) clcl2 clcl1

{0001, 1110} (cl) clcl1 clcl2 clcl2

{1100, 0011} (sd) sdcl sdcl sdcl sdcl

{1010, 0101} (sd) sdcl sdcl sdcl sdcl sdsd

{1001, 0110} (si) sicl sicl sicl sicl sisd sisd

37Reformulating the partition {α1, α2, α3, α4} for CPL as {p ∧ q, p ∧ ¬q,¬p ∧ q,¬p ∧ ¬q}
more straightforwardly reflects the fact that each of the four bit positions corresponds to one
row in the classical truth table for a binary connective in CPL.

38In terms of CPL-formulas, this corresponds to ineg(p ↔ q) = ¬p ↔ ¬q ≡ p ↔ q and
ineg(¬(p↔ q)) = ¬(¬p↔ ¬q) ≡ ¬(p↔ q).

39Again in terms of CPL-formulas, these two sd pcds correspond to the four sdps {p,¬¬p},
{¬p,¬p}, {q,¬¬q} and {¬q,¬q} in the self-dual collapsed squares in Figure 10(b-c).



Duality Patterns in 2-pcd Fragments 263

We again do some easy combinatorial calculations. The 7 contingent pcds
of B4 give rise to 7×6

2 = 21 squares, as shown in the bottom left triangle of the
table above. Given that there are 4 pcds of type cl, there are 4×3

2 = 6 possible
ways to choose two of them to yield a clcl square. Two of these squares
are of the classical, clcl1 type, namely the combination of {1000, 0111} and
{0001, 1110} on the one hand, and that of {0100, 1011} and {0010, 1101} on
the other. Two bitstring pcds {b,¬b} and {b′,¬b′} yield a clcl1 square iff
flip(b) ∈ {b′,¬b′}.40 For the two pcds in the first clcl1 square, we get
flip(1000) = 0001, and for those in the second square flip(0100) = 0010. The
remaining four squares are then of the simple degenerate, clcl2 type. The
numbers for the next three duality patterns are obtained by simply multiplying
the numbers of component pcd types: 2 sd×4 cl = 8 sdcl, 1 si×4 cl = 4 sicl
and 1 si × 2 sd = 2 sisd. There being only 2 pcds of the sd type, there is
obviously only one way to build an sdsd pattern. Finally, and again obviously,
the sisi pattern is excluded in principle in B4, since there is only one si pcd
to begin with.

4.3 Bitstrings of Length 5 and 6

In Subsection 3.4, we introduced natural language formulas expressing the no-
tion of ‘proportionality’. The Boolean algebra B5 provides us with bitstrings
of length 5, which turns out to be the minimal length required for the deno-
tations of such proportional formulas, since the latter concern a partition of
logical space in terms of the five anchor formulas αi below:

α1 = More than 80% of the A’s are B
α2 = Exactly 80% of the A’s are B
α3 = Less than 80% but more than 20% of the A’s are B
α4 = Exactly 20% of the A’s are B
α5 = Less than 20% of the A’s are B

We will not list all 25 = 32 formulas involved, but briefly illustrate how the
β-function uses α1, . . . , α5 to assign values to each of the five bits in the case
of the four conjunctive and disjunctive formulas from πα and πβ in Figure 11:

β(More than 80% or less than 20% of the A’s are B) = 10001
β(At most 80% but at least 20% of the A’s are B) = 01110
β(At least 80% or at most 20% of the A’s are B) = 11011
β(Less than 80% but more than 20% of the A’s are B) = 00100

40Furthermore, in such a clcl1 constellation, it can easily be shown that flip(¬b) ∈
{b′,¬b′}\{flip(b)}.
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In Subsection 3.4, all four of these complex formulas were shown to be
their own inegs, and indeed all of their respective bitstrings are symmetri-
cal as well: flip(10001) = 10001, flip(01110) = 01110, flip(11011) = 11011
and flip(00100) = 00100. In addition to these four, B5 has two more (con-
tingent) symmetric bitstrings, namely 01010 and 10101: flip(01010) = 01010
and flip(10101) = 10101. In B5, the 25−2 = 30 contingent bitstrings give rise
to 15 pcds. Furthermore, since the bitstring length in B5 is odd, pcds of type
sd are excluded in principle, and hence the 15 pcds are either of type cl or
of type si. The six symmetric bitstrings mentioned above, yield three pcds of
type si — viz. {00100, 11011}, {01010, 10101} and {10001, 01110} — and the
remaining 12 pcds are of the default type cl; cf. Table 4.

In order to establish the distribution of the duality patterns in B5, we again
do some basic combinatorial calculations. The 15 contingent pcds of B4 give
rise to 15×14

2 = 105 squares. Since there are no pcds of type sd, 3 out of the
7 duality patterns are not instantiated, namely sdcl, sisd and sdsd. Given
that there are 12 pcds of type cl, there are 12×11

2 = 66 possible ways to choose
two of them to yield a clcl square. These 66 squares then need to be further
subdivided into the clcl1 and clcl2 types. Remember that two bitstring
pcds {b,¬b} and {b′,¬b′} yield a clcl1 square iff flip(b) ∈ {b′,¬b′}. The 12
cl pcds turn out to combine pairwise into the 6 classical clcl1 squares below,
where flip(b) is systematically placed right below the bitstring b:41

{10000, 01111} {01000, 10111} {11000, 00111}
{00001, 11110} {00010, 11101} {00011, 11100}
{01100, 10011} {10100, 01011} {10010, 01101}
{00110, 11001} {00101, 11010} {01001, 10110}

Secondly, the remaining 66− 6 = 60 squares are of the simple degenerate,
clcl2 type. Thirdly, for the sicl pattern, we simply multiply the numbers of
component pcd types: 3 si × 12 cl = 36 sicl. And fourthly, with 3 pcds of
type si, there are 3×2

2 = 3 possible ways of choosing two of them to yield an
sisi pattern. So, to sum up, the 105 duality patterns for 2-pcd-fragments in
B5 are subdivided as follows: 6 are of type clcl1, 60 of type clcl2, 36 of type
sicl, and 3 of type sisi.

Turning to the algebra B6, we will refrain from providing a detailed set
of formulas whose denotation can be characterised in terms of a β-function
using a partition of six anchor formulas α. Nevertheless, Demey and Smes-
saert [12, Subsection 5.2] demonstrate that bitstrings of length six are required
to capture the semantics of formulas involving multiple quantifiers, such as

41Notice that adding up the 6 symmetric bitstrings mentioned before, with the 24 bitstrings
in these 6 clcl1 squares yields the complete set of 32− 2 = 30 contingent bitstrings of B5.
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∀x
(

human(x)→ ∀y
(
(donkey(y) ∧ own(x, y))→ run(y)

))
, which already show

up in the works of the medieval philosopher John Buridan [20, 36] in sentences
of the form “of every human, every donkey runs”.42

In B6, the 26 − 2 = 62 contingent bitstrings give rise to 31 pcds. Three
of them are of type si, since they consist of symmetric bitstrings, i.e. {100001,
011110}, {010010, 101101} and {001100, 110011}: e.g. with the first pcd, we
get flip(100001) = 100001 and flip(011110) = 011110.43 Furthermore, the
even bitstring length in B6 yields four pcds that are sd, viz. {111000, 000111},
{110100, 001011}, {101010, 010101} and {011001, 100110}: taking the first two
of these pcds by way of example, we get switch(111000) = flip(111000) =
000111, and switch(110100) = flip(110100) = 001011. Subtracting the 3 si
pcds and the 4 sd pcds from the total set of 31 leaves us with 24 pcds of
the default cl type; cf. Table 4. Based on the by now familiar combinatorial
and logical considerations, the table below shows how the total number of
31×30

2 = 465 squares are distributed across the seven duality patterns in B6:

clcl 276 = 24 cl×23 cl
2 sicl 72 = 3 si× 24 cl

clcl1 12 = 24 cl
2 sisd 12 = 3 si× 4 sd

clcl2 264 = 276 clcl− 12 clcl1 sdsd 6 = 4 sd×3 sd
2

sdcl 96 = 4 sd× 24 cl sisi 3 = 3 si×2 si
2

4.4 Overview of Duality Patterns and Bitstring Length

In the previous two subsections, the distribution of the seven duality patterns
from Section 3 was considered in function of bitstring lengths of three through
six, i.e. in the Boolean algebras B3 through B6. The numerical results we have
obtained, are summarised in Table 7 below. Although a clear increase emerges
from the two patterns in B3 to the full range of seven patterns in B6, the
increase is not strictly monotone, in that B4 has six patterns, whereas with
B5, the number of patterns drops back to four. As was demonstrated above,
the crucial distinction involved is that between bitstrings with an even length
and those with an odd length. The latter cannot yield any self-dual pcds in
principle, and hence the three duality patterns that make use of such sd pcds
— viz. sdcl, sisd and sdsd — are excluded in principle as well. This accounts

42Such formulas typically occur in sets of eight, thus yielding octagonal Aristotelian dia-
grams [20, 36]. The so-called ‘Buridan octagon’ and its internal structure have been analysed
in great detail in logical geometry [12, 42, 44].

43Notice that these 6 symmetric bitstrings of B6 correspond one-to-one to those listed above
for B5, in the sense that the single central bit position b3 of B5 is ‘split up’ into the two central
bit positions b3b4 — with identical bit values — of B6.
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for all the absent types in the case of B5 and for three out of the five zeroes on
the first row for B3 in Table 7.

Table 7: The Correlation between Duality patterns and Bitstring Length.

clcl1 clcl2 sdcl sicl sisd sdsd sisi

B3 1 0 0 2 0 0 0 3
B4 2 4 8 4 2 1 0 21
B5 6 60 0 36 0 0 3 105
B6 12 264 96 72 12 6 3 465

The two zeroes for B3 and B4 in the column of the sisi pattern are straight-
forwardly explained by the fact that both algebras only contain one single pcd
of type si, which is obviously insufficient to yield an sisi pattern. And finally,
the absence of any clcl2 patterns with B3 can be accounted for in two ways.
On the one hand, there are only two pcds of type cl available, and these
necessarily ‘click together’ into a clcl1 pattern. On the other hand, in or-
der to yield a clcl2 pattern — with two non-collapsing intermediate squares
for δ∗(πα) and δ∗(πβ) — one needs eight non-equivalent, contingent formulas,
whereas B3 only contains 23− 2 = 6 such formulas. Summing up the situation
for B3, the five absent types need to be accounted for in terms of three differ-
ent properties. First, the absence of the three patterns involving self-duality
— sdcl, sisd and sdsd — is due to its odd bitstring length, a property which
it has in common with B5. Second, the absence of the sisi pattern relates
to there being only one si pcd, a property which it has in common with B4.
And finally, the absence of the clcl2 pattern — a property which B3 does
not share with any of the other algebras — is caused by its own small size,
i.e. the presence of only two cl pcds. Notice, to conclude, that although six
of the seven duality patterns from Section 3 were illustrated using bitstrings
of length four, and the seventh pattern with bitstrings of length five, it takes
bitstrings of length six in order for all seven of the patterns to be instantiated
simultaneously.

5 Conclusion and Prospects

The central aim of this paper has been to establish a typology of duality pat-
terns exhibited by fragments of four formulas which are closed under negation,
i.e. which consist of two pairs of contradictory formulas (pcds). Section 2
stressed the need to draw a clear conceptual distinction between duality rela-
tions such as internal and external negation on the one hand, and Aristotelian
relations such as contradiction and (sub)contrariety on the other. Although
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both sets of relations give rise to so-called classical and degenerate squares, the
absence of irreflexivity may yield so-called collapsed squares with the duality
relations but not with the Aristotelian ones.

Section 3 established the typology of duality patterns, which were computed
in three steps. First of all, each of the pcds in the four-formula fragment F gen-
erates its own intermediate duality square — one for δ∗(πα) and one for δ∗(πβ)
—, which may be either classical or collapsed. Secondly, these two interme-
diate squares are superimposed onto one another, resulting in an extended,
eight-formula fragment F∗. The latter then determines the classification of the
original fragment F as either a classical or a degenerate duality square. Among
the degenerate duality patterns, six subtypes were distinguished: the simple
degenerate pattern clcl2, the two partially self-dual/-internal patterns sdcl
and sicl, and the three fully self-dual/-internal patterns sisd, sdsd and sisi.

Section 4 then investigated the relation between the seven duality patterns
emerging from the typology and the complexity of the semantic representation
assigned to the four formulas in the fragment, as expressed in terms of the
length of the bitstring encodings. The Boolean algebras with an odd bitstring
length, namely B3 and B5, are systematically lacking the three duality patterns
involving self-duality, namely sdcl, sisd and sdsd. Furthermore, with B3 and
B4 the sisi pattern is missing, because they only contain a single si pcd. It is
only when we get to bitstrings of length six (i.e. to B6), that all seven of the
duality patterns turn out to be instantiated simultaneously.

A first topic for further investigation is still situated on the level of 2-pcd-
fragments, and concerns the interaction between the seven-way typology of
duality patterns established in the present paper, and the two-way distinction
in the realm of the Aristotelian patterns between the classical and the degen-
erate square. In theory, this cross-cutting of both partitions should lead to
7 × 2 = 14 joint (duality/Aristotelian) types, but it remains to be explored
how many of these are actually possible, and if so, what bitstring length is
required. Secondly, in terms of generalising the typology of duality patterns
to fragments of more than four formulas, the next natural step is not so much
3-pcd-fragments but rather 4-pcd-fragments. Sets of eight formulas have been
shown to give rise to much richer duality constellations — the so-called ‘du-
ality cubes’ [7, 10] — which either involve an intermediate mneg-operator in
between eneg and ineg, or else involve two internal negations ineg1 and
ineg2 instead of just one. That this track is likely to lead to a much more
complex typology, may be inferred from the fact that, when we move from
2-pcd-fragments to 4-pcd-fragments in the domain of Aristotelian diagrams,
we jump from just two types of squares to eighteen types of octagons.
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[21] D. Jaspers. Operators in the Lexicon. On the Negative Logic of Natural
Language. LOT Publications, Utrecht, 2005.

[22] W. Johnson. Logic. Part I. Cambridge University Press, Cambridge, 1921.

[23] F. A. Kabakov, A. S. Parkhomenko, M. I. Voitsekhovskii, and T. S. Fo-
fanova. Duality principle. In Encyclopedia of Mathematics. Springer, 2014.

[24] J. N. Keynes. Studies and Exercises in Formal Logic. MacMillan, London,
1884.

[25] G. Klima, editor. John Buridan, Summulae de Dialectica. Yale University
Press, New Haven, CT, 2001.

[26] E. König. Concessive relations as the dual of causal relations. In D. Zaef-
ferer, editor, Semantic Universals and Universal Semantics, volume 12 of
Groningen-Amsterdam Studies in Semantics, pages 190–209. Foris, Berlin,
1991.

[27] N. Kretzmann. William of Sherwood’s Introduction to Logic. Minnesota
Archive Editions, Minneapolis, MN, 1966.



270 H. Smessaert and L. Demey
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