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Abstract

The paper presents the diagrammatic calculus CL, which combines
features of tree, Euler-type, Venn-type diagrams and squares of opposi-
tion. In its basic form, ‘CL’ (= Cubus Logicus) organizes terms in the
form of a square or cube. By applying the arrows of the square of opposi-
tion to CL, judgments and inferences can be displayed. Thus CL offers on
the one hand an intuitive method to display ontologies and on the other
hand a diagrammatic tool to check inferences. The paper focuses mainly
on the adaptation of the square of opposition in CL and offers an algebraic
notation, which corresponds to the diagrammatic representation.
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1 Introduction

The expression ‘universal logic’ can mean a universal logical system or a gen-
eral theory of logic (Fu [3]). In the field of research which deals with the sec-
ond meaning, logicians interested in diagrammatic reasoning and esp. opposi-
tional geometry have for several years concentrated on the square of opposition
(Beziau, Basti [1]). The fact that the logical square has a close relationship
with other diagrams has been known at least since Thomson ([12], § 84) who
had explained the categorical propositions (a, e, i, o) by focusing on Euler
diagrams, and with the help of two further Euler diagrams he invented u- and
y-propositions. With these two propositions, the square of opposition could be
expanded into a logical hexagon and octagon (Moretti [7]).

A much older contribution to universal logic can be found in Johann Chris-
tian Lange’s book Inventum novum quadrati Logici Universalis, published in
the year 1714 [4]. Lange himself uses the term ‘Logica Universalis’ because he
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was searching for a universal diagram in order to unite the functions of Euler-
type circular diagrams, squares of oppositions, porphyrian tree diagrams, and
step diagrams in only one image. According to Lange, this universal diagram
should express the metaphors of containment, of opposition, of subordination
and of ascent and descent. This logic diagram is intended to illustrate not
only a universal logic, but also a rational form of representationalism. That
means that Lange wanted to represent and explain all functions of rationality
(starting from conceptual semantics, extending to sentence analysis, up to in-
ferentialism) by the intuition of only one universal diagram which was entitled
‘cubus logicus’.

Because Lange thus builds an entire system of logic using one diagram,
it is not possible to discuss the content and all aspects of the 170-page book
in this article. Although many important logicians such as Leibniz ([5], p.
405), Ploucquet ([9], p. 43), DeMorgan [2], Venn ([13], p. 501), Peirce ([8], p.
298 (4.353)), and Risse ([10], p. 51) were interested in Lange’s cubus logicus,
there is still no intensive and continuous research on Lange’s diagrams. This is
partly due to the fact that throughout his entire book, Lange refers only to the
illustration of one diagram, which can be interpreted in many different ways.

All of these are reasons which have led me to the decision not to discuss
Lange’s own book and the image of his universal diagram within it. Rather,
I would like to present a calculus that is based on Lange’s principles found in
the Inventum. I will adopt Lange’s basic form of the diagram, but I will go
on specify a concrete state of the diagram for each conceptual relationship, for
every logical judgment and all inferences which are discussed in what follows.
To avoid giving the impression that this calculus was my invention, I have
decided to name the calculus CL (in accordance with Lange’s expression “cubus
logicus”). And with the help of the references, historically interested readers
will soon be able to recognize the parallels between the Calculus CL presented
here and Lange’s Inventum.

In Section 2, I will restrict my explanation of the universal diagram to some
of its basic functions only. Sections 3 and 4 provide more details about the
functions which CL takes from the square of opposition. This means that in
the explanation of CL, I mainly limit myself to the aspect of opposition, which
is represented here in geometric forms. Even if the form of the logical square
is not always evident in CL, the diagrams can nevertheless be interpreted as
contributions to oppositional geometry. Finally, Section 5 gives some syllogisms
as examples in order to explain how CL is suitable for decision-making and
proofs.
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2 The basic diagram of the calculus CL

The basic diagram (Fig. 1) consists of a cube with 16 columns and 5 lines. The
rows symbolize the extension, the columns the subordination. Terms, classes
or concepts are identified by letters from A to t. The containment of a term is
symbolized by solid lines.

Figure 1:

The basic diagram can be interpreted in two ways: either as a porphyrian tree
diagram describing the subordination or as an Euler-type diagram (cf. Shin,
Moktefi [6]) representing the extension.

If the diagram is interpreted as a porphyrian tree diagram, one can say: A
is the uppermost genus. This can be seen in the fact that A occupies the top
row, above which there are no more rows. B to G are, on the one hand, genera
in relation to the species below them, and on the other, species in relation to
the genera which are superior to them. This is shown by the fact that there
is at least one row above and below them. H to P are the lowest species,
and Q to t are individuals. The individuals are recognizable by the fact that
Q to t occupy the lowest row under which there are no more rows. As far
as subordination is concerned, the higher the concept, the more concepts are
subordinate to it. A is above B and C. B is above D and E. D is above H and
J, etc.

With the help of dotted lines in the columns (Fig. 2) and the associated
width of the terms in a row, however, Euler-type relationships of containment
can also be depicted. The solid lines indicate what the term contains: A con-
tains everything, Q to t contain nothing, i.e., no other term. The dotted lines
indicate if and how one concept is contained in another: A is never contained
in another concept, whereas Q to t are, in any case, each contained in another.
One can imagine the dotted lines as auxiliary lines: The dotted columns are a
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reading aid to illustrate what is contained by any given term. For example, the
fact that Q is completely contained in H is indicated by continuing the solid
lines of the columns of Q as dotted lines in H. This makes the term H wider
than the term Q. And so the dotted lines in H show that Q and R are contained
completely in H and that H and J are contained entirely in D, and so on. A
contains B and C. Since B now contains D and E and since C also contains F
and G, A contains both D, E, and F, G. If we follow this rule, it becomes clear
why A contains all the individuals. Furthermore, the rule explains why Q to
t contain nothing, but all are contained by something else, and finally all are
contained in A. In terms of extension, the rule can be kept: the further a term
is, the more dotted columns it contains.

Figure 2:

By the eulerian extension, the porphyrian subordination can also be explained:
The fact that Q to t are individuals is recognizable by the fact that they occupy
only one column in the whole cube. The fact that A represents the top class
is shown by the fact that it contains all the columns. The fact that B to P
can function as both genera and species is apparent from the fact that they
are both containing and contained.

3 Introducing Oppositional Geometry in CL

In Section 2 it was shown that porphyrian tree diagrams, as well as some
Euler-type diagrams, can be depicted completely in CL. For the oppositional
geometry so far, several relations of opposition have already been shown in
Fig. 2. Following Lange ([4], § XLVII), these relations are called:

Contrary Opposition: Concepts in the same line are in a contrasting rela-
tionship. For example, the term B in relation to C, D in relation to E, F in
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relation to G, H in relation to J, and so on.

Privative Opposition: To each concept stand in a privative opposition those
terms which are mediated completely by vertical columns with the term. For
example, the terms Q, H, D, B, A stand in privative opposition.

Contradictory Opposition: Opposed to each concept, contradictory terms
are those which are not completely mediated by vertical columns with the con-
cept. For example, the terms A, D, E, H, J, K, L may be in contradictory
opposition to the term B. However, the diagram (Fig. 2) has several disad-
vantages. Porphyrian tree diagrams can be translated satisfactorily in CL,
but there are problems with Euler diagrams dealing with relative opposition.
For example, a-judgments (affirmative universal) such as “All D are B” can
be represented as shown in Fig. 3 by red columns. And if one can illustrate
a-judgments, one can also represent i-judgments (affirmative particular), for
example, “Some D are B”, shown in Fig. 4 (orange colored). But negative e-
and o-judgments are not apparent.

Figure 3:

At the suggestion of Johann Albrecht Bengel, Lange ([4], § XXVI) then came
to the idea of combining the diagram with the arrows of the logical square.
Yet with the help of the square of opposition, we are able to represent all four
categorical propositions in CL. The fletching of the arrow indicates the subject,
the arrowhead the predicate of a judgment (Fig. 5). The four arrow types can
be used to display all the categorical propositions such as in Euler diagrams:
1. vertical bottom-up (↑), 2. vertical top-down (↓), 3. transversal (↘, ↖, ↙,
↗), and 4. horizontal (→, ←).



522 J. Lemanski

Figure 4:

Figure 5:

Furthermore, from the possible combinations of arrows, two affirmative and two
negative quantifiers can be read which represent the four categorical proposi-
tions expressed in the traditional syllogism by the letters a, i, e, o:

affirmative

↑↑ (a-proposition) vertical I (completely subordinated): The relation-
ship between subject and predicate can be expressed completely by vertical
bottom-up arrows. If vertical bottom-up arrows go up to the predicate from
all columns of the subject, this means that the subject is completely contained
in the predicate, or that the subject is completely subordinated to the predi-
cate.

↑↓ (i-proposition) vertical II (partly superordinated or partly sub-
ordinated): The relationship between subject and predicate is either partial
expressed by vertical bottom-up arrows (↑) or wholly (↓↓) or partially (↓) by
vertical top-down arrows. If vertical bottom-up arrows from at least one col-
umn, but not from all columns, of the subject go to the predicate, this means
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that the subject is partially contained in the predicate, or the predicate is
partly superordinate to the subject. One or more vertical top-down arrows
means that the subject contains the predicate partially.

negative

→← (e-proposition) horizontal (completely contrary): The relationship
between subject and predicate can be expressed completely by a horizontal
arrow. If the horizontal arrow fills all the columns of a subject, it means
that the subject is completely contrary to the predicate. If the subject and the
predicate are on different rows, e-propositions can also expressed by transversal
arrows. In this case, the transversal arrow fills all columns of the subject.

↗↘ (o-judgment) transversal (coordinated, partly contrary or con-
tradictory): The relationship between subject and predicate part can be
expressed either by a short horizontal or by a transversal arrow. If a horizontal
arrow fills at least one, but not all, columns of a subject, this means that the
subject is partly contrary to the predicate. If a transversal arrow fills at least
one column of the subject, that means that the subject is contradictory to the
predicate.

The spelling of the judgments can be represented by the spelling using the
arrows. In the following the old scholastic quantifiers (a, i, e, o) are replaced
by the arrow quantifiers:

aFG ↑↑ FG Every F is G

iFG ↑↓ FG Some F is G

eFG →← FG No F is G

oFG ↗↘ FG Some F is not G

All categorical propositions can be represented in the diagram. For example:
↑↑DB (red), ↑↓DB (yellow), →←BC (blue), ↗↘BD (green) (Fig. 6).
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Figure 6:

In contrast to Euler diagrams, however, only true judgments can be depicted
in the CL diagram. Taking the above examples for the quantifiers, we can use
Fig. 6 in order to show that ↑↑FG, ↑↓FG and↗↘FG are false, since they cannot
be represented. On the other hand, →←FG can be represented and therefore
the proposition is true. This has advantages, particularly in material areas of
logic, in which work is already being done not with variables, but with concrete
ontologies. Supporters of Euler diagrams should not have a disadvantage using
the CL diagram, since all four types of judgments can be represented graph-
ically. Moreover, a criterion for decision-making is immediately given by the
fact that conceptual relations, judgments, and conclusions can be read directly
from the diagram.

4 Oppositional Judgments in CL

In the following, I will present oppositional judgments with the help of some
examples given by Lange ([4], § LXII). To do so I introduce the double turnstile,
which can be interpreted as a semantic consequence (such as in model theory
(cf. Smessaert and Demey [11])) or as a representationalistical symbol, meaning
“representable” (|=) or “non-representable” ( 6|=) in the diagrammatic sense:
Thus, “CL |= ↑↑BA” means “↑↑BA can be represented in CL”; in contrast,
“CL 6|= →←BA” means “→←BA cannot be represented in CL”. The question of
how BA can be represented in CLis decided by the arrow which can be drawn
between the subject B and the predicate A in CL.

Perfect contradictions are those in which two judgments cannot be repre-
sented at the same time.
We speak of
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CL-contrary if CL 6|= ↑↑AB and CL 6|= →←AB;

or if CL |= ↑↑DB and CL 6|= →←DB.

CL-contradictory if CL |= ↑↑BA and CL 6|= ↗↘BA;
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or if CL |= →←BC and CL 6|= ↑↓BC.

Imperfect contradictions are those in which two statements can be repre-
sented at the same time.

CL-subcontrary if CL |= ↑↓AB and CL |= ↗↘AB;

or if CL |= ↑↓DB and CL 6|= ↗↘DB.



Oppositional Geometry in the Diagrammatic Calculus CL 527

in CL-subalternation if CL 6|= ↑↑BC and CL 6|= ↑↓BC;

or if CL |= →←BC and CL |= ↗↘BC.

5 Some Examples of Syllogisms in CL

Finally, you can use the CL-diagram and the arrows to see whether a syllogism
is valid or not. If all three judgments of the syllogism can be represented in
the diagram, the inference is valid. If one of the premises or the conclusion
cannot be represented in CL, the inference is invalid.

For this purpose, I use the judgments of some valid and some invalid infer-
ences of the first figure, in order to illustrate the method of proof in CL. The
first premise is always given in blue, the second in green, and the conclusion in
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red. False judgments are given in black, simply to indicate the conflict between
what shall be represented and what is actually representable in CL. (As shown
above, false judgments cannot be represented in CL.)
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