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Abstract

The aim of this paper is to study aristotelian relation in an extension
of Propositional Dynamic Logic, the logic PDLQ+(¬). The main result of
our study is the production of a geometrical opposition structure called
hypercube of Dynamic Opposition, this structure is very useful to study
negation of atomic programs and dynamic modalities.
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Introduction

The motivation of this paper is to study certain oppositional structures in
the fusion logic PDLQ+(¬), whose fragments are Dimiter Vakarelov’s Logic of
Dynamic Modalities [20], and Propositional Dynamic Logic with negation of
atomic programs of Karsten Lutz and Dirk Walter.

The main results of our studies are the following: 1) In each fragment of
this fusion logic there are certain opposition structures similar to those studied
in basic modal logics, only in PDL(¬) there is some variation with respect
to to the opposition octagon. 2) The opposition unrelated or disparatae is
present in some new ways in the structure that we will study in depth. 3) It
is possible to sketch a propositional negation corresponding to the negation
of atomic programs, which turns out to be precisely a ngation that forms
subalternations.

The relevance of our study is twofold. On the one hand, it offers results for
the dynamic logician in search of new applications of the logic that we study
here. On the other hand, for the oppositional theorist, our study implies a
new application of the theory. Other works related to this study are those that
present, on the one hand, hypercubes ([10], [11], [5]) to analyze the opposition,
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and applications of the theory of oppositions in PDL [8]. The first part presents
a basic system PDL. The second part contains a presentation of the key
concepts in opposition theory and some partial results. Part three contains
the development of our study, the main results and the relations with some
future prospects.

1 Basic Notions on Propositional Dynamic Logics

In this section we will briefly explain the basic elements of PDL. In the first
part the main elements of dynamic languages are presented, consequently we
will see how to interpret these languages. Finally, some properties and some
definitions are introduced. Lets start by defining the language LPDL.

Definition 1.1 (Alphabet) The alphabet of LPDL is the collection A = Φ ∪
Π∪C∪K∪P , where Φ = {A,B, ...} is a denumerable infinite collection of propo-
sitional signs, Π = {π1, π2, ...} is a denumerable collection of atomic program
signs, C = {¬,∧,∨,⊃,≡} is a collection of connectives, K = {; , ◦, ?,∪,∩, ∗}
is a collection of program constructors and P = {(, ), 〈, 〉, [, ]} is a collection of
auxiliar signs.

Auxiliary signs (round brackets) are required to produce complex formulas,
but also to produce modal operators related to programs (square and angle
brackets). Now we will see how to produce formulas from the alphabet.

Definition 1.2 (π-Grammar) ∀π ∈ Π, ∀ϕ ∈ Φ, ∀k ∈ K, the following
production rule determines the collection of complex programs Πcom:
π ::= π1;π2 | ϕ? | π1 ∪ π2 | π1 ∩ π2 | π∗1

Definition 1.3 (ϕ-Grammar) ∀π ∈ Πcom, ∀ϕ ∈ Φ, the following production
rule determines the language LPDL

1:
ϕ ::= ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ ⊃ ψ | ϕ ≡ ψ | [π]ϕ | 〈π〉ϕ

With these syntactical elements present we can continue with semantics
and valuation conditions.

Definition 1.4 (Semantics) PDL semantcs is defined by models of the form
M = 〈L, I,R, V, v〉, where L is a PDL language, I is a collection of indexes,
R = {Rπ ⊆ I × I|π ∈ Π} is a collection of relations relative to a program,
V = {⊥,>} is a partially ordered collection of truth values, and v : L×I −→ V
is a map called PDL-valuation.

1When the context be clear we will omit the subscript.
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Definition 1.5 (Valuation conditions) The following are the conditions for
logical connectives and PDL operators. Consider a semantics for PDL, the
valuation mapping can be extended as follows:

Rϕ? := {(i, i) ∈ I2 : vi(ϕ) = >}
Rπ1∪π2 := Rπ1 ∪Rπ2
Rπ1∩π2 := Rπ1 ∩Rπ2
Rπ1;π2 := Rπ1 ◦Rπ2
Rπ∗ := (Rπ)∗

vi(¬ϕ) = > iff vi(ϕ) = ⊥
vi(ϕ ∧ ψ) = inf(vi(ϕ), vi(ψ))
vi(ϕ ∨ ψ) = sup(vi(ϕ), vi(ψ))
vi([π]ϕ) = inf{vj(ϕ) : Rπij}
vi(〈π〉ϕ) = sup{vj(ϕ) : Rπij}

These are the conditions for logical connectives and operators of PDL. Due
to the fact that conditional is material it can be defined in terms of conjunction
or disjunction, alternatively biconditional in terms of conditional and conjunc-
tion: (ϕ ⊃ ψ) =df ¬(ϕ ∧ ¬ψ) y (ϕ ≡ ψ) =df ((ϕ ⊃ ψ) ∧ (ψ ⊃ ϕ)). Now we will
continue with the last definitions of this part.

Definition 1.6 (Logical consequence) We say that a formula ϕ ∈ L is a
logical consequence of a collection of formulas Γ (and we write Γ  ϕ), if and
only if ∀β ∈ Γ, vi(β) ≤ vi(ϕ). A Propositional Dynamic Logic, therefore, will
be a pair PDL = 〈L,PDL〉

2 Basic Notions on Oppositions Theory

2.1 Aristotelian Relations

In this paper we will use the concept of “opposition” to refer to any of the
following four relations: contradiction, contrariety, subcontracting and subal-
ternation. The usual definition of oppositional relations is the informal one,
which dates back to Aristotle himself. In the known literature we can find
many of them, according to the orientation and application (See for example
[2], [9], [13], [15], [16], [17], [18], [19]). In [19] are given three definitions of
Aristotelian opposition relations: informal, model-theoretic and abstract. Let
us proceed in this order:

Definition 2.1 (OP1) Let ϕ,ψ ∈ LPDL we say that:
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C) ϕ and ψ are contradictories, if and only if, ϕ and ψ can not be neither
simultaneously true, nor simultaneous false.

CA) ϕ and ψ are contraries, if and only if, ϕ and ψ can not be true simul-
taneously, but are false together.

SC) ϕ and ψ are subcontraries, if and only if, ϕ and ψ can not be false
simultaneously, but are true together.

SA) ϕ and ψ are subalterns, if and only if, if ϕ is true, ψ must be true.

This definition of oppositional relations despite being intuitive enough to
understand the use of each of the concepts involved, has several shortcomings
identified in [19]. A more specific definition (model-theoretic one) could be the
one presented in the cited text that goes as follows.

Definition 2.2 (OP2) Let S = 〈L,〉 a logical system with Boolean operators
∧,∨,¬, and a model-theoretic relation , we have that ∀ϕ,ψ ∈ L:

C) S  ¬(ϕ ∧ ψ) & S  (ϕ ∨ ψ)
CA) S  ¬(ϕ ∧ ψ) & S 1 (ϕ ∨ ψ)
SC) S 1 ¬(ϕ ∧ ψ) & S  (ϕ ∨ ψ)
SA) S  ¬(ϕ ∧ ¬ψ) & S 1 (ϕ ∨ ¬ψ)

These definitions have a greater degree of abstraction than the previous
ones, the reference to specific logical systems is clear. Therefore, it is possible
to overcome difficulties that the first definition could imply. For example, in
the first characterization of the oppositions, one speaks of opposition in an un-
restricted way, understanding that the concepts are applied in a global sense.
In the second characterization we can talk about of oppositions in a local way
in the following sense. Suppose we have two systems S1 and S2, a pair of
formulas can be S1-contraries and simultaneously S2-contradictory, because S1
and S2 do not share specific characteristics (different semantics, different kinds
of truth values, different inference rules, etc.). This is important since, it al-
lows us to report different phenomena if we intend to work with a collection
of logical systems, something that the first characterization does not allow us.
Despite maintaining certain advantages, this last characterization has certain
limitations. As we saw, the oppositions are satisfied only between formulas of
a logical system, if we intend to account for these relationships in other types
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of entities, such as concepts, collections, and even relationships, the scope of
the characterization is limited. In this sense, we will formulate a final charac-
terization that can be adapted to this claim, which will not be especially useful
when analyzing whether it is possible to obtain oppositions between dynamic
operators.

Definition 2.3 (OP3) Let B = 〈B,∧B,∨B,¬B,>B,⊥B〉 a Boolean algebra,∀x, y ∈
B:

C) x ∧B y = ⊥B & x ∨B y = >B
CA) x ∧B y = ⊥B & x ∨B y 6= >B
SC) x ∧B y 6= ⊥B & x ∨B y = >B
SA) x ∧B y = x & x ∨B y 6= y

This characterization is more abstract, although the previous one is more
useful when considering specific logical systems. In the following, we will use
the model-theoretic one to show the main properties of the opposition struc-
tures that we present.

2.2 Basic Modal Opposition Structures and some results: Squares,
Hexagons and Octagons

In this part we will present the main results in modal logics, without going into
so many details and only explaining what will be required for our analysis. In
the first part the modal square is presented followed by its two main extensions:
the Hexagons of Sherwood-Czezowski and of Sessmat-Blnché. Finally we will
talk about the Octagon of oppositions and the cube.

The basic idea behind the creation of the square of oppositions is to graphi-
cally represent the previously defined relations. Since we will analyze formulas
of dynamic logics, here we present the main results in modal logics that will
later be used to elaborate the Hypercube.

Figure 1 shows two ways to extend the square of oppositions following two
different orientations. On the one hand, if we intend to include singular expres-
sions, the alternative is to follow the technique of William of Sherwood and
Tadeuz Czezowski by adding two formulas without an operator (null modalities
[13, p. 175] and [6, p. 11]). The other alternative is to take a hexagon in which
the idea of analyzing everything in triads is present, like Robert Blanché and
Augustin Sesmat[13, p. 139]. Both extensions converge to a greater diagram,
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an octagon of modal formulas [13, p. 175] that is shown below and all the
remaining oppositions are presented in the following corollary.

Figure 1: Modal square, Sherwood-Czezowski Hexagon (Hexagon 1) and
Sesmat-Blanché Hexagon (Hexagon 2)

Corollary 2.4 From Definitions 1.6 and 2.2 the following are valid:2

Square relations
1.  ¬(�A ∧ ¬�A) &  �A ∨ ¬�A (Contradiction 1)
2.  ¬(♦A ∧ ¬♦A) &  ♦A ∨ ¬♦A (Contradiction 2)
3.  ¬(�A ∧ ¬♦A) & 1 �A ∨ ¬♦A (Contrariety)
4. 1 ¬(♦A ∧ ¬�A) &  ♦A ∨ ¬�A (Subcontrariety)
5.  ¬(�A ∧ ¬♦A) & 1 �A ∨ ¬♦A (Subalternation 1)
6.  ¬(¬♦A ∧�A) & 1 ¬♦A ∨�A (Subalternation 2)

2We omit subalternation relations in hexagons because they are equivalent to contrariety
relation. This fact can be seen as a kind of indication of subalternation is an opposition
relation.
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Hexagon 1 relations
7.  ¬(A ∧ ¬A) &  A ∨ ¬A (Contradiction 3)
8.  ¬(�A ∧ ¬A) & 1 �A ∨ ¬A (Contrariety 2)
9.  ¬(¬♦A ∧A) & 1 ¬♦A ∨A (Contrariety 3)
10. 1 ¬(♦A ∧ ¬A) &  ♦A ∨ ¬A (Subcontrariety 2)
11. 1 ¬(¬�A ∧A) &  ¬�A ∨A (Subcontrariety 3)
Hexagon 2 relations
12.  ¬((♦A ∧ ¬�A) ∧ (�A ∨ ¬♦A)) &  (♦A ∧ ¬�A) ∨ (�A ∨ ¬♦A) (Con-
tradiction 4)
13.  ¬((♦A ∧ ¬�A) ∧�A) & 1 (♦A ∧ ¬�A) ∨�A) (Contrariety 4)
14.  ¬((♦A ∧ ¬�A) ∧ ¬♦A) & 1 (♦A ∧ ¬�A) ∨ ¬♦A) (Contrariety 5)
15. 1 ¬((�A ∨ ¬♦A) ∧ ♦A) &  (�A ∨ ¬♦A) ∨ ♦A) (Subcontrariety 4)
16. 1 ¬((�A ∨ ¬♦A) ∧ ¬�A) &  (�A ∨ ¬♦A) ∨ ¬�A) (Subcontrariety 5)
Unrelated square
17. 1 ¬((�A ∨ ¬♦A) ∧A) 1 (�A ∨ ¬♦A) ∨A)
18. 1 ¬((�A ∨ ¬♦A) ∧ ¬A) 1 (�A ∨ ¬♦A) ∨ ¬A)
19. 1 ¬((♦A ∧ ¬�A) ∧A) 1 (�A ∨ ¬♦A) ∨A)
20. 1 ¬((♦A ∧ ¬�A) ∧ ¬A) 1 (�A ∨ ¬♦A) ∨ ¬A)

Figure 2: Modal Octagon

This octagon (Figure 2) joins both hexagons and shows the remaining rela-
tions3. An interesting feature of this diagram is that there is a central square

3We can refer to Beziau and Moretti’s work with its extensions, stellar dodecahedron and
Moretti’s and Smesaert’s logical cuboctahedron. Both are more complex logical structures of
oppositions related with this octagon.
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which connects formulas without an oppositional relation. Later on we will
speculate a bit about this and we will analyze more cases. This octagon can be
taken as an extension of the square directly, but it is not the only alternative
to extending the square to an octagon, as we can see with the work of Campos-
Beńıtez [7] on the octagons of John Buridan and the systems of C. I. Lewis. To
finalize this section we present the aforementioned diagram in Figure 3, with
its respective relations4.

Figure 3: Modal Octagon Buridan’s version

Corollary 2.5 From Definitions 1.6 and 2.2 the following are valid:

Contradictories
1)  ¬(�(A ∧B) ∧ ¬�(A ∧B)) &  �(A ∧B) ∨ ¬�(A ∧B)
2)  ¬(�(A ∨B) ∧ ¬�(A ∨B)) &  �(A ∨B) ∨ ¬�(A ∨B)
3)  ¬(♦(A ∧B) ∧ ¬♦(A ∧B)) &  ♦(A ∧B) ∨ ¬♦(A ∧B)
4)  ¬(♦(A ∨B) ∧ ¬♦(A ∨B)) &  ♦(A ∨B) ∨ ¬♦(A ∨B)
Contraries
5)  ¬(�(A ∧B) ∧ ¬♦(A ∨B)) & 1 �(A ∧B) ∨ ¬♦(A ∨B))
6)  ¬(�(A ∧B) ∧ ¬♦(A ∧B)) & 1 �(A ∧B) ∨ ¬♦(A ∧B))
7)  ¬(¬♦(A ∨B) ∧�(A ∨B)) & 1 ¬♦(A ∨B) ∧�(A ∨B)
8)  ¬(�(A ∨B) ∧ ¬♦(A ∧B)) & 1 �(A ∨B) ∨ ¬♦(A ∧B))
9)  ¬(�(A ∧B) ∧ ¬�(A ∨B)) & 1 �(A ∧B) ∨ ¬�(A ∨B))
10)  ¬(¬♦(A ∨B) ∧ ♦(A ∨B)) & 1 ¬♦(A ∨B) ∧ ♦(A ∨B)
Subcontraries
11) 1 ¬(♦(A ∨B) ∧ ¬�(A ∧B)) &  ♦(A ∨B) ∨ ¬�(A ∧B)

4For simplicity we present the octagon in a propositional version.
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12) 1 ¬(♦(A ∨B) ∧ ¬�(A ∨B)) &  ♦(A ∨B) ∨ ¬�(A ∨B)
13) 1 ¬(¬�(A ∧B) ∧ ♦(A ∧B)) &  ¬�(A ∧B) ∨ ♦(A ∧B)
14) 1 ¬(♦(A ∧B) ∧ ¬�(A ∨B)) &  ♦(A ∧B) ∨ ¬�(A ∨B)
15) 1 ¬(¬�(A ∧B) ∧�(A ∨B)) &  ¬�(A ∧B) ∨�(A ∨B)
16) 1 ¬(♦(A ∨B) ∧ ¬♦(A ∧B)) &  ♦(A ∨B) ∨ ¬♦(A ∧B)
Unrelated
17) 1 ¬(�(A ∨B) ∧ ¬♦(A ∧B)) & 1 �(A ∨B) ∨ ¬♦(A ∧B)
18) 1 ¬(�(A ∨B) ∧ ♦(A ∧B)) & 1 �(A ∨B) ∨ ♦(A ∧B)
19) 1 ¬(¬♦(A ∧B) ∧ ¬�(A ∨B)) & 1 ¬♦(A ∧B) ∨ ¬�(A ∨B)
20) 1 ¬(¬�(A ∨B) ∧ ♦(A ∧B)) & 1 ¬�(A ∨B) ∨ ♦(A ∧B)

It is possible to use a cube as a visual resource to represent the same
relations of the octagon, although it is still debated whether such a structure
exists as a direct extension of the square [3]. In this work we will use cubes and
octagons, independently of the considerations related to the debate between
the existence or non-existence of the cube of oppositions, keeping the idea that
when we manipulate cubes we are manipulating octagons in three-dimensional
form. The above is due to something very simple. Our analysis in this paper
ends with an opposition structure of 16 vertices, if such vertices are ordered
in a plane generating a hexadecagon, the lines that represent the relations will
saturate the structure and can create noise. We consider it useful to use the
third axis to debug some of this noise. In the end, what remains is to decide
between which structure best represents the intentions in each case (something
that is outside our objectives), a hexadecagon or an hypercube; but, if we do
not commit ourselves to the debate, we can use both.

3 The Hypercube of Dynamic Oppositions

In this section we will present two extensions of the basic system defined above.
Two new operators are presented that give rise to two extended PDL logics,
in which opposition octagons with specific characteristics can be produced.
As we will see, an octagon is an instance of Buridan’s Octagon, while the
other is neither modal nor Buridan one. In this last part we will explore the
characteristics of both, and the function of the second with respect to the
general structure produced in this part, i.e. the Hypercube.

3.1 Extending PDL with [Π]∀ and [π]

We will start with Dimiter Vararelov’s work “Dynamic Modalities”, in which
certain operators are presented that are susceptible of comparison with modal-
ities analyzed by Buridan [7]. Vakarelov’s orientation is different from ours,
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but what we will say is consequence of his definitions. We will continue with an
extension of PDL called Propositional Dynamic Logic with Negation of Atomic
Programs (henceforth PDL(¬)), which is due to Karsten Lutz and Dirk Wal-
ter. One of the questions that the authors leave aside, in our view, is in what
sense the operator generated by a negated atomic program can be taken as
a negation of formulas? In other words, if [π] is a modal operator, in what
sense can it be used as a formula negation? In both logics we will analyze the
opposition relations and compare the results obtained, ending with the union
of both extensions.

3.1.1 Vakarelov’s Dynamic Modalities: The meaning of [Π]∀ and
[Π]∃

Dimiter Vakarelov presents a logic called Logic of Dyamic Modalities (in the
following LDM), with some operators with the following intuitive meaning [20,
p. 387]:

1. �∀ always necessary, necessary in all situations,

2. �∃ sometimes necessary, necessary in some situations,

3. ♦∀ always possibly, possibly in all situations, and

4. ♦∃ sometimes possibly, possibly in some situations.

He offers two formal interpretations for these operators, the relevant to us
is the one that uses models of dynamic logic. Let us begin extending the col-
lection of signs of PDL with the quantifiers ∀ and ∃, to generate the four new
operators:

1. [Π]∀, always after all program from Π,

2. [Π]∃, always after some program from Π,

3. 〈Π〉∀, sometimes after all program from Π,

4. 〈Π〉∃, sometimes after some program from Π.

Semantics is the same as in 1.4. Our interpretation of operators is deter-
mined by the following definition:
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Definition 3.1 (PDLQ-valuation conditions) The following are the con-
ditions for logical connectives and PDLQ operators. Consider a semantics for
PDL, the valuation mapping can be extended as follows:

vi(¬ϕ) = > iff vi(ϕ) = ⊥
vi(ϕ ∧ ψ) = inf(vi(ϕ), vi(ψ))
vi(ϕ ∨ ψ) = sup(vi(ϕ), vi(ψ))
vi([π]ϕ) = inf{vj(ϕ) : Rπij}
vi(〈π〉ϕ) = sup{vj(ϕ) : Rπij}
vi([Π]∀ϕ) = inf{inf{vj(ϕ) : Rπij} : π ∈ Π}
vi([Π]∃ϕ) = sup{inf{vj(ϕ) : Rπij} : π ∈ Π}
vi(〈Π〉∀ϕ) = inf{sup{vj(ϕ) : Rπij} : π ∈ Π}
vi(〈Π〉∃ϕ) = sup{sup{vj(ϕ) : Rπij} : π ∈ Π}

There are several properties that we can highlight that Vakarelov mentions
in his work. First of all Vakarelov [20, 389] highlights the fact that the modal-
ities [Π]∀ and [Π]∃ can be taken as primitives and define the others as duals as
follows:
〈Π〉∃A =def ¬[Π]∀¬A
〈Π〉∀A =def ¬[Π]∃¬A

On the other hand, because [Π]∀ is a normal modality [20, Lemma 1.1],
when proposing its axiomatic system, consider the following formulas:
[Π]∀(A ⊃ B) ⊃ ([Π]∀A ⊃ [Π]∀B) (K Axiom)
[Π]∀(A ⊃ B) ⊃ ([Π]∃A ⊃ [Π]∃B) (Mono [Π]∃)
[Π]∀A ⊃ [Π]∃A (Cond)

In addition he adds necessitation rule and modus ponens due to the same
fact. In addition to the monotonicity rule, Vakarelov includes four alternative
monotonicity rules for each operator: (A ⊃ B)  ([Π]∀A ⊃ [Π]∀B)
(A ⊃ B)  ([Π]∃A ⊃ [Π]∃B)
(A ⊃ B)  (〈Π〉∀A ⊃ [Π]∀B)
(A ⊃ B)  (〈Π〉∃A ⊃ [Π]∃B)

Finally, we can highlight that the modalities [Π]∃ and 〈Π〉∀ are not normal
modalities, therefore with these modalities modus ponens and K axiom are not
valid. Finally the following two are taken as theorems:
[Π]∃>
[Π]∀A ∧ [Π]∃B ⊃ [Π]∃(A ∧B)
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3.1.2 Lutz and Walter’s negation of atomic programs: The meaning
of [π]

In PDL with negation of atomic programs Karsten Lutz and Dirk Walter
present the logic PDL(¬), motivated by the logic of negation of programs
PDL¬. The latter, as they report in their article, has the main disadvantage
of being undecidable. In the first part of his article they present three examples
of the use of this logic: the use of the negation of programs to express the inter-
section, the use of negation to express the universal modality �U 5, and the use
of program negation to express the window operator �a to express sufficency
rather than necessity. Taking advantage of the second issue, we will analyze the
operators with negation of programs in an oppositional context. The proposal
of Lutz and Walter is to locate a decidable fragment of PDL¬ that satisfies
the three mentioned characteristics, this is how they present PDL(¬) as the
indicated logic.

The first ingredient we require to present PDL(¬) is the sign of negation of
atomic programs, which we add to the K collection of program constructors.
This sign allows to expand the π-Grammar with a clause to obtain only nega-
tion of atomic programs6. Finally the semantics is the same as in Definition
1.4 and 1.5 but adding the following condition for the negation of programs:

Rπ : = I2\Rπ

Definitions of logical consequence and validity are the same as in Definition
1.6. The aspect that we wish to highlight is that the operators of Vakarelov
can be defined in this logic as shown below:

([π]A ∧ [π]A) =def [Π]∀A
([π]A ∨ [π]A) =def [Π]∃A
(〈π〉A ∧ 〈π〉A) =def 〈Π〉∀A
(〈π〉A ∨ 〈π〉A) =def 〈Π〉∃A

The link with these formulas and Buridan’s octagon is evident, in the fol-
lowing section are analyzed two cubes of opposition to finalize with the analysis
of the Hypercube.

3.2 Opposition in PDLQ+(¬): From squares to cubes

We will begin by briefly describing a logic that can be presented as the fusion
of PDLQ and PDL(¬). The definitions 1.1 - 1.4 are adapted including the

5In our case corresponds to the operator �∀ of Vakarelov.
6Lutz and Walter defines this in Definition 1
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operators of dynamic modalities and negation of atomic programs. The only
definition that suffers the most relevant modification is the following:

Definition 3.2 (PDLQ+(¬)-valuation conditions) The following are the
conditions for logical connectives and PDLQ and PDL(¬) operators. Con-
sider a semantics for PDL, the valuation mapping can be extended as follows:

Rϕ? := {(i, i) ∈ I2 : vi(ϕ) = >}
Rπ1∪π2 := Rπ1 ∪Rπ2
Rπ1∩π2 := Rπ1 ∩Rπ2
Rπ1;π2 := Rπ1 ◦Rπ2
Rπ : = I2\Rπ
Rπ∗ := (Rπ)∗

vi(¬ϕ) = > iff vi(ϕ) = ⊥
vi(ϕ ∧ ψ) = inf(vi(ϕ), vi(ψ))
vi(ϕ ∨ ψ) = sup(vi(ϕ), vi(ψ))
vi([π]ϕ) = inf{vj(ϕ) : Rπij}
vi(〈π〉ϕ) = sup{vj(ϕ) : Rπij}
vi([Π]∀ϕ) = inf{inf{vj(ϕ) : Rπij} : π ∈ Π}
vi([Π]∃ϕ) = sup{inf{vj(ϕ) : Rπij} : π ∈ Π}
vi(〈Π〉∀ϕ) = inf{sup{vj(ϕ) : Rπij} : π ∈ Π}
vi(〈Π〉∃ϕ) = sup{sup{vj(ϕ) : Rπij} : π ∈ Π}

Definition 1.6 remains unaltered, therefore PDL¬+Q = 〈LPDL,〉.

3.2.1 V-Cube of dynamic modalities

In this part we present the opposition relations in Vakarelov’s logic of dynamic
modalities. Returning to the results presented in section 2.2, we can start with
some assumptions. First, considering that both PDLQ and PDL(¬) are a kind
of modal logics, a plausible assumption is that in both the opposition relations
are met and therefore structures opposition are just as in that section 2.2.
In that sense, let’s start with the square and the hexagons in each structure.
Second, considering that there are only two normal modalities in PDLQ, it is
possible that there are variations between the octagons outlined above and the
octagon presented in this part. Finally, as visual appeal we present octagons
in its three dimensional form as cubes of opposition, assuming that simply is
an alternative presentation.

We will start with the square of oppositions. Because there are four opera-
tors, the first difficulty is determining how to present the square, in case there
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is such a square. We can consider several alternatives if we take theorems in
section 3.1.1, the axiom that interests us is the following:

 [Π]∀A ⊃ [Π]∃A

Due to the fact that conditional is material this formula can be rewritten
as subalternation relation as follows:

 ¬([Π]∀A ∧ ¬[Π]∃A) & 1 [Π]A ∨ ¬[Π]∃A

From this relation, by Equipollence Rule [21, p. 498], we can construct
the square diagram from the remaining relations. If we consider the remaining
operators, we obtain five squares of oppositions, as shown in Figure 4:

Figure 4: Five squares of opposition in PDL[Q]

These five squares can be classified with reference to the operators used
in each figure. On the one hand we have a classic square (Fig. 4.1), this
structure contains only normal modalities [20, Lemma 1.1]. Consequently we
have two squares that satisfy “modal uniformity” i. e., they contain only modal
operators of a single type. In this case we have a square of necessity (Fig. 4, 4)
and one of possibility (Fig. 4, 3). The remaining squares satisfy something that
we will call “quantificational uniformity” i. e., all modal operators contain one
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type of quantifiers. In that sense, we have a universal square (Fig. 4, 2) and
an existential square (Fig. 4, 5). Classical square does not satisfy uniformity
neither with respect to the modality nor with respect to the quantification,
therefore, we consider that it is “quantificational and modal hybrid”. This is
not the only square that satisfies this property. The last square that serves to
connect these five, is in addition to hybrid, the square of the “unrelated”.

Figure 5: Octagon of oppositions Buridan style PDLQ

In Figure 5 we can see the octagon formed by the union of the six squares,
while in Fig. 6 the same formulas are shown in another three-dimensional
configuration, a cube of oppositions. The octagon is analogous to Buridan’s
octagons, and satisfies the same conditions as these. As in Buridan’s octagon,
in this octagon, the unrelated square serves as a link between all contradictory
formulas. As in the Corollary 2.5, the same relations are satisfied in this
octagon, but in this case it is necessary to make some important modifications
that are presented in the following Corollary:
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Figure 6: Cube of oppositions in PDLQ

Corollary 3.3 From Definitions 1.6 and 2.2 the following are valid:

Contradictories
1)  ¬([Π]∀A ∧ ¬[Π]∀A) &  [Π]∀A ∨ ¬[Π]∀A
2)  ¬([Π]∃A ∧ ¬[Π]∃A) &  [Π]∃A ∨ ¬[Π]∃A
3)  ¬(〈Π〉∀A ∧ ¬〈Π〉∀A) &  〈Π〉∀A ∨ ¬〈Π〉∀A
4)  ¬(〈Π〉∃A ∧ ¬〈Π〉∃A) &  〈Π〉∃A ∨ ¬〈Π〉∃A
Contraries
5)  ¬([Π]∀A ∧ ¬〈Π〉∃A) & 1 [Π]∀A ∨ 〈Π〉∃A
6)  ¬([Π]∀A ∧ ¬〈Π〉∀A) & 1 [Π]∀A ∨ 〈Π〉∀A
7)  ¬(¬〈Π〉∃A ∧ [Π]∃A) & 1 ¬〈Π〉∃A ∧ [Π]∃A
8)  ¬([Π]∃A ∧ ¬〈Π〉∀A) & 1 [Π]∃A ∨ ¬〈Π〉∀A
9)  ¬([Π]∀A ∧ ¬[Π]∃A) & 1 [Π]∀A ∨ ¬[Π]∃A
10)  ¬(¬〈Π〉∀A) ∧ 〈Π〉∃A & 1 ¬〈Π〉∀A ∧ 〈Π〉∃A
Subcontraries
11) 1 ¬(〈Π〉∃A ∧ ¬[Π]∀A) &  〈Π〉∃A ∨ ¬[Π]∀A
12) 1 ¬(〈Π〉∃A ∧ ¬[Π]∃A) &  〈Π〉∃A ∨ ¬[Π]∃A
13) 1 ¬(¬[Π]∀A ∧ 〈Π〉∀A) &  ¬[Π]∀A ∨ 〈Π〉∃A
14) 1 ¬(〈Π〉∀A ∧ ¬[Π]∃A) &  〈Π〉∀A ∨ ¬[Π]∃A
15) 1 ¬(¬[Π]∀A ∧ [Π]∃A) &  ¬[Π]∀A ∨ [Π]∃A
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16) 1 ¬(〈Π〉∃A ∧ ¬〈Π〉∀A) &  〈Π〉∃A ∨ ¬〈Π〉∀A
Unrelated
17) 1 ¬([Π]∃A ∧ ¬〈Π〉∀A) & 1 [Π]∃A ∨ ¬〈Π〉∀A
18) 1 ¬([Π]∃A ∧ 〈Π〉∀A) & 1 [Π]∃A ∨ 〈Π〉∀A
19) 1 ¬(¬〈Π〉∀A ∧ ¬[Π]∃A) & 1 ¬〈Π〉∀A ∨ ¬[Π]∃A
20) 1 ¬(¬[Π]∃A ∧ 〈Π〉∀A) & 1 ¬[Π]∃A ∨ 〈Π〉∀A

3.2.2 LW-Cube of negation of atomic programs

To conclude this section we present some opposition structures in PDL(¬).
The basic dynamic square is only an interpretation of the basic modal square
with the language of PDL(¬). In that case the only possible squares are the
aforementioned and the square of program negations, both presented in Fig. 7.

Figure 7: Squares of opposition in PDL(¬)

Because they are the only opposition squares the only way to produce an
octagon is from a link between the formulas [π]A and [π]A. As we saw in 3.1.2
the dynamic modalities can be defined with this language. The problem is
that there is no opposition relationship between the formulas, but it is possible
to produce an octagon with both as shown in Fig. 8 and Fig. 9. The key
is found in the function that meets the square of the unrelated formulas in
the octagon. The main characteristic of this square is to link contradictory
formulas by means of the composition of two unrelated relations, that is, if the
pairs ϕ, ψ and ψ, ρ are unrelated, then, the pair ϕ, ρ is a pair of contradictory
formulas. The same is preserved for each pair of formulas of the unrelated
square. Something similar happens in this case, the main difference is that the
composition of two unrelated relations can produce a pair of formulas of any of
the four types of oppositions. In this sense, the unrelated relationship serves
as a link between formulas with complementary modalities. This property
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becomes more important when joining both cubes.

Figure 8: Octagon of opposition PDL(¬)

In the previous case the composition of unrelated only works between for-
mulas of the unrelated square, in this case any formula of the octagon can be
taken and the composition of two Unrelated produces an oppositional relation.
In that sense, unrelated continues to fulfill the function of linking between the
opposite formulas, as well as in Buridan’s octagon. The main difference is
the lack of proportion between the relationships and the predominance of the
unrelated. Finally we present the list of relations satisfied in this structure.
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Figure 9: Cube of opposition PDL(¬)

Corollary 3.4 From Definitions 1.6 and 2.2 the following are valid:

Contradictories
1)  ¬([π]A ∧ ¬[π]A) &  [π]A ∨ ¬[π]A
2)  ¬([π]A ∧ ¬[π]A) &  [π]A ∨ ¬[π]A
3)  ¬(¬〈π〉A ∧ 〈π〉A) &  ¬〈π〉A ∨ 〈π〉A
4)  ¬(¬〈π〉A ∧ 〈π〉A) &  ¬〈π〉A ∨ 〈π〉A
Contraries
5)  ¬([π]A ∧ ¬〈π〉A) & 1 [π]A ∨ ¬〈π〉A
6)  ¬([π]A ∧ ¬〈π〉A) & 1 [π]A ∨ ¬〈π〉A
Subcontraries
7) 1 ¬(〈π〉A ∧ ¬[π]A) &  〈π〉A ∨ ¬[π]A
8) 1 ¬(〈π〉A ∧ ¬[π]A) &  〈π〉A ∨ ¬[π]A
Unrelated
9) 1 ¬([π]A ∧ [π]A) & 1 [π]A ∨ [π]A
10) 1 ¬([π]A ∧ 〈π〉A) & 1 [π]A ∨ 〈π〉A
11) 1 ¬([π]A ∧ ¬[π]A) & 1 [π]A ∨ ¬[π]A
12) 1 ¬([π]A ∧ ¬〈π〉A) & 1 [π]A ∨ ¬〈π〉A
13) 1 ¬(¬〈π〉A ∧ [π]A) & 1 ¬〈π〉A ∨ [π]A
14) 1 ¬(¬〈π〉A ∧ 〈π〉A) & ¬ 1 〈π〉A ∨ 〈π〉A
15) 1 ¬(¬〈π〉A ∧ ¬[π]A) & 1 ¬〈π〉A ∨ ¬[π]A
16) 1 ¬(¬〈π〉A ∧ ¬〈π〉A) & 1 ¬〈π〉A ∨ ¬〈π〉A
17) 1 ¬(〈π〉A ∧ [π]A) & 1 〈π〉A ∨ [π]A
18) 1 ¬(〈π〉A ∧ 〈π〉A) & 1 〈π〉A ∨ 〈π〉A
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19) 1 ¬(〈π〉A ∧ ¬[π]A) & 1 〈π〉A ∨ ¬[π]A
20) 1 ¬(〈π〉A ∧ ¬〈π〉A) & 1 〈π〉A ∨ ¬〈π〉A
21) 1 ¬(¬[π]A ∧ [π]A) & 1 ¬[π]A ∨ [π]A
22) 1 ¬(¬[π]A ∧ 〈π〉A) & 1 ¬[π]A ∨ 〈π〉A
23) 1 ¬(¬[π]A ∧ ¬[π]A) & 1 ¬[π]A ∨ ¬[π]A
34) 1 ¬(¬[π]A ∧ ¬〈π〉A) & 1 ¬[π]A ∨ ¬〈π〉A

To finish the work now let’s see how both cubes can join to build a Hy-
percube in which the PDL(¬) cube satisfies a function similar to the square of
unrelated formulas.

3.3 Hypercube of Dynamic Oppositions: V+LW

Figure 10 presents a structure resulting from the union of the cubes presented
previously. This structure of oppositions can be presented as a hexadecagon, as
in Figure 11. We only present some results and some reflexions about this union
of structures in the final remarks. In specific, we will talk about what type
of opposition produces the operator [π]. The list of relations is extended with
the relation presented in Corollary 3.5, in which is evident the predominance
of contrariety and subcontrariety.
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Figure 10: Hypercube of opposition in PDL(¬)+Q

Corollary 3.5 All the relations from Corollary 3.3 and 3.4 are valid, and from
Definitions 1.6 and 2.2 the following are valid:
Contraries
1)  ¬([Π]∀A ∧ ¬[π1]A) & 1 [Π]∀A ∨ ¬[π1]A
2)  ¬([Π]∀A ∧ ¬[π1]A) & 1 [Π]∀A ∨ ¬[π1]A
3)  ¬([Π]∀A ∧ ¬〈π1〉A) & 1 [Π]∀A ∨ ¬〈π1〉A
4)  ¬([Π]∀A ∧ ¬〈π1〉A) & 1 [Π]∀A ∨ ¬〈π1〉A
5)  ¬([Π]∃A ∧ ¬〈π1〉A) & 1 [Π]∃A ∨ ¬〈π1〉A
6)  ¬([Π]∃A ∧ ¬〈π1〉A) & 1 [Π]∃A ∨ ¬〈π1〉A
7)  ¬(〈Π〉∀A ∧ ¬〈π1〉A) & 1 〈Π〉∀A ∨ ¬〈π1〉A
8)  ¬(〈Π〉∀A ∧ ¬〈π1〉A) & 1 〈Π〉∀A ∨ ¬〈π1〉A
9)  ¬(¬〈Π〉∃A ∧ 〈π1〉A) & 1 ¬〈Π〉∃A ∨ 〈π1〉A
10)  ¬(¬〈Π〉∃A ∧ 〈π1〉A) & 1 ¬〈Π〉∃A ∨ 〈π1〉A
11)  ¬(¬〈Π〉∃A ∧ [π1]A) & 1 ¬〈Π〉∃A ∨ [π1]A
12)  ¬(¬〈Π〉∃A ∧ [π1]A) & 1 ¬〈Π〉∃A ∨ [π1]A
13)  ¬(¬〈Π〉∀A ∧ [π1]A) & 1 ¬〈Π〉∀A ∨ [π1]A
14)  ¬(¬〈Π〉∀A ∧ [π1]A) & 1 ¬〈Π〉∀A ∨ [π1]A
15)  ¬(¬[Π]∃A ∧ [π1]A) & 1 ¬[Π]∃A ∨ [π1]A
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16)  ¬(¬[Π]∃A ∧ [π1]A) & 1 ¬[Π]∃A ∨ [π1]A
Subcontraries
17) 1 ¬([Π]∃A ∧ ¬[π1]A) &  [Π]∃A ∨ ¬[π1]A
18) 1 ¬([Π]∃A ∧ ¬[π1]A) &  [Π]∃A ∨ ¬[π1]A
19) 1 ¬(〈Π〉∀A ∧ ¬[π1]A) &  〈Π〉∀A ∨ ¬[π1]A
20) 1 ¬(〈Π〉∀A ∧ ¬[π1]A) &  〈Π〉∀A ∨ ¬[π1]A
21) 1 ¬(〈Π〉∃A ∧ ¬〈π1〉A) &  〈Π〉∃A ∨ ¬〈π1〉A
22) 1 ¬(〈Π〉∃A ∧ ¬〈π1〉A) &  〈Π〉∃A ∨ ¬〈π1〉A
23) 1 ¬(〈Π〉∃A ∧ ¬[π1]A) &  〈Π〉∃A ∨ ¬[π1]A
24) 1 ¬(〈Π〉∃A ∧ ¬[π1]A) &  〈Π〉∃A ∨ ¬[π1]A
25) 1 ¬(¬〈Π〉∀A ∧ 〈π1〉A) &  ¬〈Π〉∀A ∨ 〈π1〉A
26) 1 ¬(¬〈Π〉∀A ∧ 〈π1〉A) &  ¬〈Π〉∀A ∨ 〈π1〉A
27) 1 ¬(¬[Π]∃A ∧ 〈π1〉A) &  ¬[Π]∃A ∨ 〈π1〉A
28) 1 ¬(¬[Π]∃A ∧ 〈π1〉A) &  ¬[Π]∀A ∨ 〈π1〉A
29) 1 ¬(¬[Π]∃A ∧ [π1]A) &  ¬[Π]∃A ∨ [π1]A
30) 1 ¬(¬[Π]∃A ∧ [π1]A) &  ¬[Π]∀A ∨ [π1]A
31) 1 ¬(¬[Π]∃A ∧ 〈π1〉A) &  ¬[Π]∃A ∨ [π1]A
32) 1 ¬(¬[Π]∃A ∧ 〈π1〉A) &  ¬[Π]∀A ∨ 〈π1〉A
Unrelated
33) 1 ¬([Π]∃A ∧ 〈π1〉A) & 1 [Π]∃A ∨ 〈π1〉A
34) 1 ¬([Π]∃A ∧ 〈π1〉A) & 1 [Π]∃A ∨ 〈π1〉A
35) 1 ¬(〈Π〉∀A ∧ [π1]A) & 1 〈Π〉∀A ∨ [π1]A
36) 1 ¬(〈Π〉∀A ∧ [π1]A) & 1 〈Π〉∀A ∨ [π1]A
37) 1 ¬(¬〈Π〉∀A ∧ ¬[π1]A) & 1 ¬〈Π〉∀A ∨ ¬[π1]A
38) 1 ¬(¬〈Π〉∀A ∧ ¬[π1]A) & 1 ¬〈Π〉∀A ∨ ¬[π1]A
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Figure 11: Hexadecagon of opposition in PDL(¬)+Q (2D Hypercube)

4 Final remarks

The final question related with the concept of negation and its relations with
opposition is what kind of negation could be [π] operator? To solve this prob-
lem consider the following hypothesis:

(Forming operator hypothesis) Let be ϕ ∈ LPDL, its program negation pro-
duces a formula [π]ϕ with some opposition relation, in case that [π] can be an
opposition forming operator.

What remains is to find what is the relation between [π]ϕ and ϕ. This
relation is absent in the Hypercube, but there is no problem to finding it. The
possible candidates are subalternation and superalternation, if they are, this
means that the strong operator of program negation is a subaltern operator
and the weak operator of program negation is a superalternation operator. We
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consider that this is so, since the following formulas are valid in PDLQ+(¬)7:
 ([π]A ⊃ A)
 (A ⊃ 〈π〉A)

Due to the fact that conditional is material, we may conclude that between
[π]A and subalternation relation holds and between A and 〈π〉A superalter-
nation relation holds, therefore, negation of atomic programs is a subalterna-
tion/superalternation forming opposition.
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sition, Birkhäuser, Basel, 2012.

[5] Bjørdal, F. Cubes and hypercubes of opposition, with ethical ruminations
on inviolability. Logical Universalis, 10, 373–376, 2016.

[6] W.A. Carnielli and C. Pizzi. Modalities and Multimodalities, vol. 12 Logic,
Epistemology, and the Unity of Science. Springer-Verlag, 2008.
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