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Abstract

This paper presents a sound, complete, and decidable analytic tableau sys-
tem for the logic of evidence and truth LETF, introduced in Rodrigues,
Bueno-Soler, and Carnielli [19]. LETp is an extension of the logic of first-
degree entailment (FDE), also known as Belnap-Dunn logic. FDE is a
widely studied four-valued paraconsistent logic, with applications in com-
puter science and in the algebra of processes. LETEr extends FFDE in a
very natural way, by adding a classicality operator o, which recovers clas-
sical logic for propositions in its scope, and a non-classicality operator e,
dual of o.
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1 Introduction

The aim of this paper is to present an analytic tableau system for the logic
LETE, which is a member of a family of logics called logics of evidence and
truth (LETs) [6, 19]. The motivation for LETSs is the idea that, in real-life
reasoning, we deal with positive and negative evidence, and such evidence can
be conclusive or non-conclusive. LFETs thus combine two different notions of
logical consequence in the same formal system: one preserves truth (classical
consequence), the other preserves evidence—hence, the name ‘logics of evidence
and truth’. Evidence is thought of as a notion weaker than truth, in the sense
that there may be evidence for a proposition A even in the case A is not
true. Positive and negative evidence, respectively evidence for truth and for
falsity, are independent and non-complementary, and negative evidence for A
is identified with positive evidence for —=A. LETSs are paraconsistent, since it
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may be that there is conflicting non-conclusive evidence for a proposition A,
and paracomplete, since it may happen that there is no evidence at all for A.!

The logic LETF, introduced in [19], is an extension of the logic of first-
degree entailment (FDE), also called Belnap-Dunn logic [2, 10, 16]. LETF is
equipped with a classicality operator o and a non-classicality operator e which
is the dual of o. The deductive behavior of o and e is given by the following
inferences:

oA,e A+ B,

According to the intended interpretation in terms of evidence, items (1) and
(2) together mean that either there is or there is not conclusive evidence for
A. Ttems (3) and (4), as in any LET, recover classical negation for propo-
sitions in the scope of o, and (5) and (6) are dual, respectively, of (3) and
(4). Due to items (3) and (4), LETF is a logic of formal inconsistency and
undeterminedness [cf. 8, 14].

LETE, as LETSs in general, can also be interpreted in terms of informa-
tion, which may be unreliable or reliable, the latter being subjected to classical
logic [see 19, sec. 2.2.1]. In this case, oA means that the information about
A, positive or negative, is reliable. In [1], Kripke models for LETy have been
proposed. These models intend to represent a database that receives infor-
mation as time passes, and such information can be positive, negative, unre-
liable, or reliable. This idea fits the interpretation of Belnap-Dunn logic as
an information-based logic, but adds to the four scenarios expressed by it two
new scenarios: reliable information (i) for the truth and (ii) for the falsity of
a given proposition. FDE was probably the first logic to be applied in com-
puter science and, more recently, in description logics and in the algebra of
processes [see e.g. 3, 11, 17, 20]. An extension of FDFE such as LETF has an
ample range of possible applications, especially in Bayesian decision procedures
under uncertainty [cf. 4].

This paper extends the investigation on LETE carried out in [1, 19]. It
has been remarked in [19, sect. 3.2] that LETF is decidable, but a detailed
algorithm has not been presented. Our main aim here is to present a sound,

' A more detailed account of the notion of evidence that underlies the intended interpre-
tation of LETs can be found in [18].
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complete, and decidable tableaux system for LETr.? The tableaux to be
proposed are analytic because the formulas yielded by the application of a rule
to a formula F' are always less complex than F, and counterexamples can be
obtained from open branches of terminated tableaux.

The remainder of this paper is structured as follows. Section 2 presents
the valuation semantics of LETE, and section 3, the corresponding tableau
system. In section 4 we prove the soundness and completeness of the LETr-
tableau system with respect to the semantics of section 2, and also that the
analytic tableau system provides a decision procedure for LETr. Finally, in
section 5, some examples of LETr-tableaux are given and commented.

2 Valuation Semantics for LETy

The language £ of LETF is composed of denumerably many sentential letters
p1,P2, ..., the unary connectives o, e, and —, the binary connectives A and
V, and parentheses. The set of formulas of £, which is also denoted by L,
is inductively defined in the usual way. Roman capitals A, B,C,... will be
used as metavariables for the formulas of £, and Greek capitals I',; A, X, ... as
metavariables for sets of formulas L.

In [19], a natural deduction system was presented for LET together with
the following sound and complete semantics.

Definition 1. [Valuation semantics for LETp|

A valuation semantics for LETF is a collection of LETEr-valuations defined
as follows. A function v : £ — {0,1} is a LETr-valuation if it satisfies the
following clauses:

)
)
v3) v(~(AAB)) =1iff v(wA)=1orv(-B)=1
) v(=(AV B))=1iff v(~A)=1and v(—-B) =1
vh) v(A) =1iff v(—==A) =1
v6) If v(cA) =1, then v(A) =1 if and only if v(-A) =0,

Definition 2. We say that a formula A is a semantical consequence of T,
I' F A, if and only if, for every valuation v, if v(B) = 1 for all B € T', then
v(A) = 1.

2 Analytic tableaux for some logics of formal inconsistency have already been proposed
in [5] and [7, sec. 3.5].
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The semantics above is non-deterministic in the sense that the semantic
value of complex formulas is not always functionally determined by its parts,
as the following non-deterministic matrix (also called quasi-matrix) shows.>

Example 3. (i) opEpV —p,
(ii) p Vv —p ¥ op,
(iii) ¥ op V —op.

P 0 1
—p 0 1 0 1
pV —p 0 1 1 1

op 0 0 1 0 1
—op 0 1 0 1 0 1 0 1 0 1 0 1
V1 | V2 | V3 | Vg | VU5 | Vg | U7 | US| V9 | V10 | V11 | V12

Tt (W N

There is no valuation v such that v(op) =1 and v(pV —p) = 0, so (i) holds.
Valuation v3 provides a counterexample to both (ii) and (iii). Note that lines
2, 4, and 5 bifurcate: line 2 because p and —p are completely independent of
each order, line 4 because there are no sufficient conditions for v(cA) = 1, and
line 5 for the same reason as line 2. Indeed, a feature of LETp (as well as of
some LFIs) is that when oA (eA) occurs in the scope of =, unless coA (ceA)
holds, the value of —0A (—eA) is not functionally determined by the value of
oA (eA). The negation in these formulas is still a weak negation.

3 An Analytic Tableau System for LETR

Given the semantics above, we shall prove in section 4 that the following tableau
rules constitute a sound, complete, and decidable proof system for LETFE.
We will consider informally here the usual notions related to tableaux: trees,
branches, nodes, etc. The labels 0 and 1 refer to metamathematical markers,
intuitively related to the semantic values 0 and 1.

Definition 4. [Tableau rules for LETp|

Rule 1 Rule 2

1(A A B) 0(A A B)
1(A) T
1(B) 0(4) 0B

30n non-deterministic valuation semantics, see Loparic [12, 13].
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Rule 3 Rule 4
1(—=(A A B)) 0(=(A AN B))
/\ O(ﬁA)
1(=A) 1(~B) 0(=5)
Rule 5 Rule 6
1(AV B) 0(AV B)
T 0(A)
1(A) 1(B) 0(B)
Rule 7 Rule 8
1(=(AV B)) 0(—(AV B))
1(—A) /\
10B) 0(~4)  0(~B)
Rule 9 Rule 10
1(—=—A) 0(——A)
1(A) 0(4)
Rule 11
1(cA)
/\
1(A) 0(A4)
0(—A) 1(=A4)
Rule 12 Rule 13
1(eA) 0(eA)
0(cA) 1(cA)

329

There is no need for a rule for 0(cA). Such a rule, call it R, would conclude
1(eA) from 0(cA). Besides yielding a loop with Rule 12, it can be shown that
R is not necessary at all. Suppose the application of R to 0(cA) yielded a
closed branch b such that both 1(eA) and 0(eA) occur in b. But in this case, it
would be enough to apply Rule 13 to 0(eA), obtaining a branch & containing

1(cA) and 0(cA), and V' would be a closed branch.
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Concerning Rule 11, recall that the symbol o in LETE expresses classical-
ity, i.e., a formula oA implies that A behave classically. The classical behavior
of A is recovered by recovering classical negation for A: either A, or —A holds,
and not both. This is precisely what Rule 11 does. The semantic clause for
oA has only a necessary condition for v(cA) = 1, and the absence of a rule for
0(oA) mimics this fact.

Moreover, note that there are no tableau rules for —oA and —eA. As
remarked in Example 3 above, the value of —0A (—eA) is not functionally
determined by the value of 0A (eA), except when ooA (ceA) holds. This is
illustrated by the fact that in LETr neither F oAV —0A, nor cA,—~cA+ B
hold (we will see the respective tableaux in section 5 below).

Definition 5. [LETF tableaux]

1. We define a tableau for a set A of signed formulas as a tree whose first
node contains all the signed formulas in A, and whose subsequent nodes
are obtained by applications of the tableau rules given in Definition 4.

2. A tableau branch is closed if it contains a pair of signed formulas 1(F")
and O(F'). If a branch is not closed, we say it is open. A tableau is closed
if all its branches are closed.

3. When no rule can be applied to any open branch, the tableau is termi-
nated. Every closed tableau is also a terminated tableau.

4. A closed tableau is pruned if all formulas in A that have not been used
in its branches are deleted.

5. A formula A has a proof from premisses I', denoted I' - A, if there is a
closed tableau for the set {1(B): B € '} U{0(A)}. I can be empty, and
in this case a proof of - A reduces to a tableau for the singleton {0(A)}.

Theorem 6. [Compacteness of tableau proofs]
'EAiff Tyt A, for Ty C I, Ty finite.

Proof. First, note that a pruned closed tableau is finite, since any tableau is
a finite collection of branches and every closed branch is finite. So, after a
pruning procedure, only a finite subset I'y C T has been used (that is, the
pruning procedure deletes any possibly infinite collection of sentences of I' not
used in the process of tableau closure). O

An analytic tableau is a procedure of reductio ad absurdum whose aim
is to obtain a closed tableau, and thus proving I' = A. A closed tableau is
a halting condition of a decision procedure, and in the case of LETr this
halting condition is always obtained, since every LETr-tableau terminates
(cf. Theorem 8 below). If the tableau is open, an open branch gives a valuation
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that is a counterexample for I' - A. We will see that L ETp-tableaux constitute
an elegant decision procedure for LETE.

4 Soundness and Completeness

In this section we prove soundness, completeness, and decidability of LETg-
tableaux. We start by defining the complexity C of a formula in the language

Definition 7. [Complexity]

The complexity of a formula F' of the language of LETF is given by the map
C : F — N, such that:

L. C(p) = 0;

2. C(—A) =C(A) + 1;

3. C(AxB) =C(A)+C(B)+1, for x € {A,V};
4. C(cA) =C(A) +2;

5. C(eA) =C(A) + 3.

4.1 Soundness

Theorem 8. [Termination)]

Every LETpr-tableau terminates: after a finite number of steps no more rules
can be applied.

Proof. The result follows from the fact that each rule results in formulas with
less complexity or formulas to which no rule can be applied. O

Definition 9. [LETp-satisfiable branch]

A branch b is LETg-satisfiable if there is a LETp-valuation v such that for
every formula that occurs in b:

1. If 1(F) is in b, then v(F) = 1,
2. If O(F) is in b, then v(F') = 0.

In this case, we say that the valuation v satisfies the branch b.

Clearly, if a branch is closed, it cannot be satisfiable, because there is no
valuation such that v(F) =1 and v(F') = 0. It is worth noting that a LETk-
satisfiable branch, as expected, differs from a satisfiable branch in classical
logic. A LETp-branch b may be satisfiable even if 1(F) and 1(—F), as well
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as O(F) and 0(—F), are both in b. The condition for a branch b of a LETp-
tableau to be closed (cf. Definition 5 item 2) is that for some F', 1(F") and 0(F)
are in b. Moreover, although there is no LETr-valuation such that v(F) = 1,
v(=F) =1, and v(oF') = 1, and no open terminated branch b can be such that
1(F), 1(=F), and 1(oF) are all in b, we do not need to add the latter as a
condition for a closed branch. If 1(oF') is in b, Rule 11 must be applied, and
b will bifurcate into two branches: ¥, with 1(F) and 0(—F), and b”, with 0(F)
and 1(—F). If 1(F) and 1(—F) are both in b, then both branches ¢’ and b” are
closed.

Lemma 10. [Satisfiable branches]

(i) If a non-branching rule is applied to a L ETp-satisfiable branch, the result
is another L ETp-satisfiable branch.

(ii) If a branching rule is applied to a LETp-satisfiable branch, at least one
of the resulting branches is also a L ETr-satisfiable branch.

Proof.
To prove (i), we have to show that every non-branching rule applied to a
satisfiable branch results in another satisfiable branch.

For Rule 1, suppose b is a satisfiable branch containing 1(A A B). Therefore,
by Definition 9, there is a valuation v such that v satisfies b and v(AA B) = 1.
Now, applying Rule 1 to b yields a branch & such that 1(A) and 1(B), as
well as 1(A A B), are in b'. By Definition 1, since v(A A B) = 1, we have
that v(A) = 1 and v(B) = 1. Therefore, b is a satisfiable branch. Analogous
reasoning applies to Rule 4, Rule 6, Rule 7, Rule 9, and Rule 10.

For Rule 12, suppose b is a satisfiable branch containing 1(eA). By Definition
9, there is a valuation v such that v(eA) = 1, and by Definition 1, v(cA) = 0.
An application of Rule 12 yields a branch 4" such that 0(cA) is in ¥, and v
satisfies b’. Analogous reasoning applies to Rule 13.

To prove (ii), we must show that every branching rule applied to a satisfiable
branch results in at least one satisfiable branch.

For Rule 2. Suppose b is a satisfiable branch containing 0(A A B). Thus there
is a valuation v such that v satisfies b and either v(A) = 0 or v(B) = 0. An
application of Rule 2 yields two branches: b and b”, such that 0(A) occurs in
b and 0(B) in b”. Therefore, either v satisfies b’ or v satisfies b”. Analogous
reasoning applies to Rule 3, Rule 5, and Rule 8. For Rule 11, suppose
b is a satisfiable branch containing 1(cA). Thus there is a valuation v, such
that v satisfies b and v(0cA) = 1. Then by Definition 1 either v(A) = 1 and
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v(=A) = 0, or v(A) = 0 and v(—~A) = 1. Now, if we apply Rule 11 to b,
we get two branches: b with 1(A) and 0(—A), and b” with 0(A) and 1(—A).
Therefore, either v satisfies b, or v satisfies b”. O

Theorem 11. [Soundness]

IfT'+ A, then I' F A.

Proof. Assume I' F A and suppose for reductio that I' # A. Let b be the first
node of the tableau for I' - A, with every formula F' from I' labeled with 1
(1(Fy), 1(Fy), etc.) and 0(A). It follows from I' ¥ A that there is a LETp-
valuation v such that for every formula F' from I', v(F) = 1, and v(4) =
0. Therefore, by Definition 9, b is satisfiable. But from Lemma 10 we have
that if any rule is applied to b, at least one of the resulting branches will be
satisfiable. Hence, after a finite number of rule applications, the tableau for
I' - A terminates with (at least) one satisfiable branch . There is thus a
valuation v such that for every formula F that occurs in ¥/, if 1(F) is in ¥/,
v(F) =1, and if O(F) is in ¥/, v(F) = 0, and b’ cannot contain any formula
F such that 1(F) and O(F) are both in & — otherwise, v/ would not be a
valuation. But then, o’ is an open branch, and I' ¥ A, which contradicts the
initial assumption. Therefore, I' E A. O

4.2 Completeness

In order to prove completeness of L ETgp-tableaux with respect to the valuation
semantics of LETr, we show the contrapositive: if I' ¥ A, then ' ¥ A. ' ¥ A
just in case there is an open branch in the tableau. Let b be this open branch.
We have to show that there is a valuation v induced by b such that for every
formula F' from ', v(F) = 1, and v(A) = 0. We therefore begin by defining a
valuation induced by an open branch.

Definition 12. [Semi-valuation induced by an open branch]

Let a literal be a propositional letter or the negation of a propositional letter.
Let b be an open branch of a terminated tableau. The semi-valuation s induced
by b is such that:

For every literal [ such that 1(]) is in b, s(I) = 1,
For every literal [ such that 1(/) is not in b, s(I) = 0;
If 1(cA) is in b, then s(cA) =1 and s(eA) = 0;

If 1(0A) is not in b, then s(cA) =0 and s(eA) = 1;
s(—0A) =1 if, and only if, 1(—0A) is in b;

s(—eA) =1 if, and only if, 1(—eA) is in b.

SR
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As remarked in Example 3, the semantic values of —0A and —eA are not
functionally determined by the values of oA and eA. It is for this reason that
the items 5 and 6 in Definition 13 above have to be explicitly given.

Lemma 13. [Valuation induced by an open branch]

Let b be an open branch of a terminated tableau. Then, there exists a valuation
v induced by b such that for every formula F"

(i) If 1(F) is in b, v(F)

L,
(ii) If O(F) is in b, v(F') = 0.

Proof. The proof is by induction on the complexity of F' (Definition 7).
(1) If F is a literal, oA, @A, —0A, or —eA, define v(F') = s(F).

(2) F=ANB.

(2.1) If 1(A A B) is in b, since the tableau is terminated, Rule 1 has been
applied, therefore 1(A) is in b and 1(B) is in b. By inductive hypothesis,
v(A) =1 and v(B) = 1. We then define v(A A B) = 1.

(2.2) If 0(A A B) is in b, Rule 2 was applied and the tableau bifurcated into
two branches: b’ and b”. In b, we have 0(A), and in b”, 0(B). Since b is an
open branch of a terminated tableau, we have two (non-excluding) options: (i)
1(A) is not in b; (ii) 1(B) is not in b. In the case (i), V' is an open branch, and
by inductive hypothesis, v(A) = 0. In the case (ii), b” is an open branch, and
by inductive hypothesis, v(B) = 0. In both cases define v(A A B) = 0.

The valuation v defined in (2.1) and (2.2) clearly satisfies Definition 1.

(3) F=-(ANAB,).

(3.1) If 1(=(AAB)) is in b, since the tableau is terminated, Rule 3 was applied
and the tableau bifurcated into two branches: b’ and b”. In ¥/, we have 1(=A4),
and in b” 1(—=B). Since the b is an open branch of a terminated tableau, we
have two (non-excluding) options: (i) 0(—A) is not in b, (ii) 0(—B) is not in b.
If (i), &’ is an open branch and, by inductive hypothesis, v(=A) = 1. Define
v(=(A A B)) = 1. If (ii), " is an open branch and, by inductive hypothesis,
v(—=B) = 1. Define v(=(A A B)) = 1.

(3.2) If 0(=(A A B)) is in b, then, since the tableau is terminated, Rule 4 was
applied, therefore 0(—A) is in b and 0(—B) is in b. But since the tableau is
open, 1(—A) is not in b and 1(—B) is not in b. Then, by inductive hypothesis,
v(=A) =0 and v(=B) = 0. Define v(-(A A B)) = 0.
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The valuation v defined in (3.1) and (3.2) satisfies Definition 1.
The cases (4) F'= AV B and (5) F' = =(AV B) are left to the reader.

(6) F = ——A.

If 1(——A) is in b, by Rule 9, 1(A) is also in b. By inductive hypothesis,
v(A) =1, and we define v(-—A) = 1. By analogous reasoning if 0(—=—A) in b,
we define v(——A4) = 0.

The valuation v so defined satisfies Definition 1.

We have just shown that the valuation v defined above satisfies clauses (v1) to
(v5) of Definition 1. It remains to be shown that v also satisfies clauses (v6)
and (v7).

(7) F = oA.

(7.1) If 1(0A) is in b, then by item (1) above, v(0cA) =1 and v(eA) = 0. As the
tableau is terminated, Rule 11 was applied and the tableau bifurcated into
two branches: & and b” such that (i) 1(A) and 0(=A) occur in ¥, and (ii) 0(A)
and 1(—A) occur in b”. If ¥’ is open, then by inductive hypothesis v(A) = 1
and v(—A) = 0, and if b” is open, then by inductive hypothesis v(A) = 0 and
v(—=A) = 1. So, v satisfies Definition 1 (clause (v6)).

(7.2) If 0(cA) is in b, then, as b is open, 1(cA) is not in b, and by item (1)
above, v(cA) =0 and v(eA) = 1.

(8) F =eA.

(8.1) If 1(eA) is in b, then, as the tableau is terminated, Rule 12 was applied
and 0(cA) is in b. Since the tableau is open, 1(cA) is not in b. By item (1)
above, v(eA) =1 and v(cA) = 0.

(8.2) If 0(eA) is in b, then, as the tableau is terminated, 1(cA) is in b. By item
(1) above, v(eA) =1 and v(cA) = 0.

(9) F = —0A.

If 1(—0A) is in b, v(—0A) = 1 by definition. If 1(—0A) is not in b, v(—cA) =0

by definition. Analogous reasoning applies to F' = —eA.

Therefore, v as defined is a legitimate LETp-valuation. O

Theorem 14. [Completeness|
IfT"'E A, then I' - A.
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Proof. We prove the contrapositive: if I' ¥ A, then I' # A. Suppose I' ¥ A.
Thus there is a terminated LETr-tableau with at least one open branch b such
that 0(A) is in b and for every formula F' from I, 1(F) is in b. By Lemma 13,
there is a LETp-valuation v induced by b such that if 1(F") is in b, v(F) = 1,
and if O(F') is in b, v(F') = 0. Therefore, there is a LETp-valuation v such that
v(A) = 0, and for every formula F from I', v(F') = 1. Therefore, I ¥ A. O

Clearly, the tableau system for LETF introduced here is equivalent to the
natural deduction formulation presented in [19]. Indeed, Theorem 14 shows
that the tableau system for LETE is semantically characterized by the same
valuation semantics (Definition 4.2) that characterizes the natural deduction
rules for the version of LETF introduced in [19].

4.3 Decidability

Definition 15. [Generalized subformulal
1. If B is a subformula of A (in the usual sense) and A # B, then B is an
immediate subformula of A.

2. If B is an immediate subformula of A, then B is a generalized subformula
of A.

—A and —B are generalized subformulas of both —=(AA B) and =(AV B).
—A is a generalized subformula of oA.
oA is a generalized subformula of e A.

A ol

If C is a generalized subformula of B and B is an generalized subformula
of A, then C is a generalized subformula of A.

As a consequence of the definition above, both A and —A are generalized
subformulas of oA and e A, since oA is a generalized subformula of e A. Besides,
in view of the Definition 15, it is easy to see that if B is a generalized subformula
of A, then C(B) < C(A).

Theorem 16. [Decidability]
LETp-tableaux provide a decision procedure for LETf.

Proof. Clearly, every term occurring in a LETp-tableau of ' F A consists
of signed formulas of I' U {A} (in the first node) and of signed generalized
subformulas of 'U{A} (in the subsequent nodes), and each tableau rule yields
generalized subformulas of the formula to which the rule is applied. Since the
complexity of formulas occurring in the tableau is monotonically decreasing by
applications of rules, all tableau branches are either closed or reach formulas of
less complexity for which there is no rule to be applied, namely, a literal (with
label 0 or 1), oA (with label 0), =0A or —eA (with label 0 or 1). Therefore
LETg-tableaux provide a decision procedure for LET. ]
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5 Some Examples of LETr-Tableaux

In this section, we give some examples of tableaux that illustrate properties of
LETR.

Example 17. [Bottom particle]

A bottom particle can be defined in LETEF as p A —p A op, and clearly, | - B,
for any B.

—

pA-p)ANoplq

L. U(pA—p)Aop))
2. 0(q)
3. 1(p A —p) Rule 1in 1
4. 1(op) Rule 1in 1
5. 1(p) Rule 1 in 3
6. 1(—p) Rule 1 in 3
T
7. 1(p) 0(p) Rule 11, 4
8. 0(—p) 1(—p) Rule 11, 4
& &
6,8 5,7

Every LFI has a bottom particle, since in every LFI a bottom particle can be
defined as above. This is because the principle of gentle explosion (item (3)
page 326) is an essential feature of LFIs.

Example 18. [Recovering modus ponens]
As expected, disjunctive syllogism does not hold in LETr, and so modus po-
nens, since the natural way of defining A — B in LETF is as ~AV B.

P, PV q¥q

1 1(p)

2 1(=pVq)

3 0(q)

4. 1(—p) 1(q) Rule 5 in 2
®
3, 4

The open branch gives a counterexample: v(p) = v(—p) = 1 and v(q) = 0. For
classical p modus ponens is recovered, as we see below [cf. 19, Fact 32].
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op,p,~pVqkq

1. 1(op)
2. 1(p)
4. 0(q)
5. 1(—p) 1(q) Rule 5 in 3
6. 1(p) 0(p) ® Rule 11 in 1
7. 0(—p) 1(—p) 4,5 Rule 11 in 1
& &
5,7 2,6

Example 19. [Proofs by cases]

Excluded middle does not hold in LET, so the usual form of proof by cases
does not obtain. But LETr allows other forms of proof by cases, e.g., from
FopVepand FpV —pV ep.

FopVep
1. O(op V ep)
2. 0(op) Rule 6 in 1
3. 0(ep) Rule 6 in 1
4. 1(op) Rule 13 in 3
&
2, 4

The operators e and o work as if @A were a classical negation of oA, and vice-
versa. Indeed, oA, eA F B prohibits that cA and eA hold together, on pain of
triviality. Note, however, that oA V =0 A is not valid, as we see below.

¥ opV —op

1. 0(op V —op)

2. 0(op) Rule 6 in 1
3. 0(—op) Rule 6 in 1

Formulas op and —op are independent of each other, as we have seen in the
quasi-matrice of Example 3.

The Example 19 above indicates that —op and ep are not equivalent, as we
see below.
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Example 20.
—op F ep
1 1(—op)
: 0(ep)
3. 1(op) Rule 13 in 2
4. 1(p) 0(p) Rule 11 in 3
5. 0(—p) 1(—p) Rule 11 in 3

The proof of ep ¥ —op is left to the reader. In LETE, negation of classicality
does not entail classicality because the negation — is still a weak negation.
The same applies to op and —ep, which are not equivalent. As far as we know,
classical negation cannot be defined in LETE [cf. 19, footnote 15]).

Example 21. [On ‘quasi-negations’ in LETF]
Two unary connectives that are (in some sense) negations can be defined in
LETF.

(1) ~A:=0AN—A,
(2) ~A:=eAV A4

We have that explosion holds for ~ and excluded middle for =, i.e.,

(3) A,~AF B,
(4) F AV =A,

as well as the following dual inferences,

(5) ~AF —A,
(6) ~AF ~A.

On the other hand, neither double negation nor de Morgan hold for ~ and ~
in LETF. For this reason, we think these connectives should rather be called
‘quasi-negations’. We prove below p ¥ ~~p and ~(pV q) ¥ ~p A ~q, and leave
to the reader the other invalid inferences with ~ and =.

4The connectives ~ and ~ are called, respectively, supplementing and complementing
negation [cf. 19, Def. 33].
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p
1
2.
3.
4
S

© N o

11.
12.

13.
14.
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V¥ e(epV —p) V —(epV —p)

1(p)

O(e(ep V —p) V —(ep V —p))
O(e(ep V —p))
0(—(ep vV —p))
1(o(ep V —p))

/\
0(-ep) 0(==p)
/\ :

L(epV=p)  O(epV —p)
0(=(epV =p)) 1(=(epV —p))

Rule 6 in 2
Rule 6 in 2
Rule 13 in 3

Rule 6 in 4

Rule 11 in 5
Rule 11 in 5

Rule 5 in 8

Rule 8 in 9
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o(pVq) A=(pVgq)¥ (opA=p) A (og A —q)

1e(pVg)A=(pVq))
0((op A =p) A (og A —q))

S Tt W

=

10.
11.
12.
13.

14.

15.

L(e(pVq))
1(=(pVq))
1(—p)
1(—q)
/\
1(pVaq) 0(p V q)
0(=(pVva) 1=(pVg)
TN
0(-p)  0(—q)
® ® 0(p)
> 6 0(q)
1(=p)
1(—q)
/\
0(op A —p) 0(oq A —q)
P P
O(ep)  O(=p)  O(cq)  0(—gq)
® ®
12 13

Rule 1in 1
Rule 1in 1
Rule 7 in 4
Rule 7 in 4

Rule 11 in 3
Rule 11 in 3

Rule 8 in 8
Rule 6 in 7
Rule 6 in 7
Rule 7in 8
Rule 7 in 8

Rule 2 in 2

Rule 2 in 14

A central point of the intended interpretation of LET'Ss is that there may be
scenarios in which there is evidence for exactly one among A and —A, but such
evidence is still not conclusive. In this case, AV—A holds, as well =(AA—A), but
oA does not hold. Indeed, in a scenario such that A holds but —=A does not hold,
the evidence for A may be non-conclusive, and so A cannot be taken as true
and is not subjected to classical logic. This idea is expressed in the semantics
by means of clause (v6), which states only a necessary condition for ocA. The
same idea could be expressed equivalently, with e, by the contrapositive of
clause (v6) — indeed, when both A and —A hold, as well as when neither holds,
e A holds. The behavior of o and e is illustrated by Example 22 below.
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Example 22. [On the behavior of o and e|

p,pep
1 1(p)
2 1(=p)
3 0(ep)
4 1(op) Rule 13 in 3
5 1(p) 0(p) Rule 11 in 4
6 0(—p) 1(—p) Rule 11 in 4
& b2y
2,6 1,5
p¥ pA-p
1 1(ep)
2 0(p A —p)
3 0(op) Rule 12 in 1
4. 0(p) 0(—p) Rule 2 in 2

Proofs of op FpV —p and p V —p ¥ op are left to the reader.

Example 23. [Propagation of classicality]

The operator o does not propagate over more complex formulas, that is, 0 A, 0B
does not imply o—A, o(A A B), or o(AV B). We illustrate this fact showing
that op, oq ¥ o(p A q).

op,oq ¥ o(p A q)

1. 1(op)
1(eg)
3 O(o(p A q))
/\
4. 1(—p) 0(—p) Rule 11 in 1
5. 0(p) 1(p) Rule 11in 1

6. 1(—q) 0(—q) 1(—q) 0(—q) Rule 11 in 2
7. 0(q) 1(q) 0(q) 1(q) Rule 11 in 2
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Notice, however, that the set {op,oq,p A q,—(p A q)} is not satisfiable. Indeed,
although in LETF o does not propagate over =, A, and V, if opy, ..., op, hold,
then all formulas formed with {p1,...,p,} over {—, A, V} behave classically, as
has been shown in [19, Fact 31].

6 Final Remarks

Analytic tableaux constitute a decision procedure for LETE that, we think, is
at least more elegant than quasi-matrices. However, besides issues of elegance,
it is reasonable to conjecture that LETgr-tableaux are in fact more efficient
than the quasi-matrices.

Although it is well known that analytic tableaux (at least for standard
logics) may require super-exponential time and are subject to other issues in
complexity [9, 15], such intractability obstacles are not immediately general-
izable for non-classical cases. Moreover, in some cases modifications of the
tableau method can render certain classes tractable. Non-deterministic ma-
trices, like the ones yielded by the semantics of LETyp presented in [19], are
certainly less efficient in space than classical truth-tables, but at first sight
this does not occur with respect to LETpr-tableaux when compared to classi-
cal tableaux. In the case of LETF, the examples of Section 5 suggest that,
at least locally, for some classes of formulas, tableaux are indeed better than
quasi-matrices. For this reason, whether or not the results of [9, 15] apply to
LETF is a question that deserves to be further investigated.

Considering its potential applications in automated reasoning and artificial
intelligence, LETE deserves in-depth investigations. This paper is one more
step in this direction.
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