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Abstract

Francisco Miré Quesada Cantuarias has enlighten several ‘philosophical
problems’ that appeared in Logic after the ‘mathematizing orgy’ that
happened in this field in the nineteenth and twentieth centuries. Here we
take his arguments as a motivation and show that similar problems can
be attributed to the empirical theories, mainly after the development of
Hilbert’s sixth mathematical problem.
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1 The Math Orgy in Logic

First of all, let me say that I prefer to write ‘Logic’, with an initial capital letter,
to name the discipline, while ‘logic’, in lower case, will designate a particular
logical system. I also consider a logic as a mechanism of inferences, usually
deductive, but I think we should also admit that inferences may be of other
nature, such as inductive or of other kinds. Thus, a logic is a mechanism of
inferences, while the discipline Logic is something rather different and should
not be associated (no more!) with the simple study of inferences or with
some ‘art of thinking’. Logic, today, is a vast field of knowledge whose topics
can be seen in the entry Mathematical Logic and Foundations of the MSC
Classification, involving fields that are far removed from the mere study of
inferences [2].
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The ‘mathematization’ in Logic, as far as historians tell us, was envisaged
by Leibniz, who had noticed that the logic of the Aristotelian tradition was not
suitable for schematizing most of the mathematical inferences. But the real
move started in the nineteenth century with Boole, De Morgan, Schréder, and
many others. De Morgan, for instance, argued that Aristotelian Logic (AL) was
not able to formalize a simple argument such as ‘A horse is an animal. Hence,
the head of horse is the head of an animal’ [30]. Several similar examples can
be shown, since AL does not deal with relations, which are essential in math-
ematics. The ‘Boolean tradition’ was concentrated in the algebraic aspects of
logic, and was developed in the twentieth century by people like Tarski and
Halmos.

But the real move toward mathematical methods started with Gottlob
Frege in 1879, when he presented in his Begriffsschrift [see 29] an axioma-
tization of what today we call second order logic; the Fregean tradition was a
move toward different bases, ideas, and methods. Anyway, these developments,
later pushed by Bertrand Russell, Alfred N. Whitehead, Giuseppe Peano, and
many others, brought what Francisco Miré Quesada called the ‘mathematizing
orgy’ [21, p. 13] in Logic.

Mir6 Quesada looked for a rationale in Logic [21]. By defending a ratio-
nalistic position regarding Logic, he looked for the relationships between logic
and reason. By acknowledging that it is common to regard Logic as the locus
classicus of rationality, the proliferation of different logics, especially heterodox
systems, poses a dilemma to the philosopher: can we justify rationality in the
face of possible different ‘logicalities’? Then he tries to find necessary and
sufficient conditions for ‘logicality’ in classical logic, and then in the heterodox
systems. His conclusion is that it is possible to find a certain unity in the logi-
cality of the different systems so that, although reason does not function in the
heterodox systems as in the classical case, being more flexible, the heterodox
ways of reasoning still maintain some of the ‘classical’ patterns, so that one
can detect an invariant core of principles that are preserved in all these ways
of reasoning [see also 1].

2 What about Empirical Theories?

These developments in Logic and in mathematics—for instance, in sedimenting
set theory and type theory as the loci where mathematics could be developed—
immediately suggested that a similar move could be made in the empirical
theories, where the use of mathematical resources was providential. We can
consider 1900 as a turning point, mainly due to Hilbert’s sixth problem of his
list of twenty-three mathematical problems devised to be pursued in the cen-
tury which was starting [3, pp. 1-34]. Specifically, the problem suggests the



THE ‘MATH ORGY’ AND THE PHILOSOPHY OF SCIENCE 289

axiomatization of the theories of the empirical sciences in the direction pointed
by those of mathematics (algebra, geometry, analysis, topology). During the
century, much was done in this direction, and we got axiomatized versions of
several theories, such as classical particle mechanics [19, 26|, continuum me-
chanics [22], the theory of evolution [17], learning [26], quantum mechanics [for
instance, 13], general relativity (GR) [4],! among others.

How can we see these developments? At a first glance, we can see them as an
attempt to pursue in the empirical sciences the notion of rigor achieved in math-
ematics when mathematicians like Bolzano, Cauchy, Weierstrass, Dedekind,
and many others started a movement termed (by historians) the Arithmetiza-
tion of Analysis, which brought us precise definitions of real numbers, mappings
(functions), the dependence of Analysis to Arithmetic, and so on [20, ch. 22].

But we should also consider the methodological aspects of the move men-
tioned above. According to A. I. Arruda, the Russian logician Nikolai A.
Vasiliev considered that a logical system has two parts: (1) Metalogic, con-
gregating a fixed and indispensable core of laws related to thought, and (2) a
cluster of laws that depend on the properties of the objects being analyzed [1].
We can say similar things of any well formulated (that is, at least axiomatized)
empirical theory, but with some adaptations. Firstly, instead of metalogic, we
prefer to speak of metaphysics, meaning a world-view that directs the core of
the investigations. In classical physics, for instance, the world is supposed to
be formed by individual substances that, although they can be aggregated to
form compounds, they can also be regarded as isolated individuals. Euclidean
geometry was also taken as the description of our surrounding reality, and clas-
sical logic (that is, Aristotelian logic) was once considered as copying the ways
of reasoning. All of this can be subsumed in a metaphysical account of reality.
The second part, of course, depends on the particular theory.

After the axiomatization of a theory, we can exchange part of the meta-
physics by a formal semantics, but the ‘mathematization’ and the development
of Logic has shown that such a formal semantics will depend on the metamath-
ematics we use to express it. We shall turn to this point soon.

3 The Consequences of the Math Orgy
in the Empirical Sciences
Anyway, the mathematical and logical analyses of scientific theories brought

consequences. Inspired by Mir6 Quesada, we can enlighten some (until then)
unsuspected implications, such as the following ones.

'Bunge’s was perhaps the first attempt to axiomatize GR. Currently, there are several
other axiomatizations that can be easily found through a web search.
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First, physical theories were almost always proposed with a purpose, namely,
the mathematical treatment of some part of reality. In logic terms, we could
say that they were born already interpreted. Our metaphysical credos, in the
sense delineated above, provide the main directions to (at least) the first in-
terpretation. Accordingly, classical particle mechanics, in the direction pointed
out by McKinsey, Sugar, and Suppes [19], aimed at to deal with systems of
‘particles’ without collision and deformation. These last notions required a
more sophisticated approach, developed in the sense of continuum mechanics
by Walter Noll, among others. But the axiomatization, due to abstraction,
makes the theory, or the axiomatized version of the theory, autonomous with
respect to the initial intensional model, since it can admit several other pos-
sible interpretations or ‘semantics’. In Hilbert’s terms, we go from a concrete
aziomatization to an abstract axiomatization [see also 15]. In principle, any
axiomatized theory admits infinitely many interpretations or models. However,
some theories are categorical, in the sense that all its models are isomorphic,
the models varying only with respect to the nature of the elements involved.
So, this is the first consequence of this math orgy: the realization that a theory
becomes free from its initial motivation and may admit different and alternative
models, not making reference to just one domain.

It was precisely the fact that a scientific theory may have several models
(as groups, vector spaces, etc. have in mathematics) what made possible the
development of the semantic approach to scientific theories, which, roughly
speaking, characterizes a theory as a class of models. As van Fraassen describes:

To present a theory is to specify a family of structures, its models;
and secondly, to specify certain parts of those models (the empir-
ical substructures) as candidates for the direct representation of
observable phenomena. The structures which can be described in
experimental and measurement reports we can call appearances:
the theory is empirically adequate if it has some model such that
all appearances are isomorphic to empirical substructures of that
model. [28, p. 64]

The place were these models are constructed, or at least assumed to exist, is
also a fundamental point in the researches in the philosophy of science, and
shall be considered below.

Second, the philosophical consequences of a theory having several different
models are huge. Today we tend to put aside the armchair metaphysics and
agree that, in order to know something about the world or at least of some
parcel of it, we need to look to our best scientific theories. This naturalism [23],
notwithstanding, needs to be seen with care. In fact, it has been stablished
beyond any doubt that, speaking generally, physics (by means of the physical
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theories) does not tell us how the world is. With a Kantian flavor, we can
say that reality, whatever it is, remains unknown; for some, it lies behind a
veil [9], while for others it simply cannot be know. I assume the latter position;
in simpler words, I assume our ability to know depends on the theories we
formulate.

Whatever point of view we adopt, though, we need to acknowledge that
we can associate mutually different and even incompatible interpretations to
the same physical theory. A case in point comes from orthodox quantum
mechanics, where the same formalism (say, via Hilbert spaces) is compatible
with (at least) two incompatible metaphysics, one which sees quantum basic
entities as individuals on a pair with their ‘classical’ counterparts, and another
which sees them as non-individuals, that is, as entities to which the standard
notion of identity does not apply.? The first one imposes some limitations on
the states the systems can be in, and this restriction to accessible states enables
us to keep assuming that quantum particles can be regarded as individuals [see
10, 16]. The non-individuals view, on the contrary, regards these entities as
devoid of individuality (and identity! [see 10, § 4.1.2]). More importantly, the
two approaches are possible with the same mathematical formalism, and we
cannot decide between them except by pragmatic criteria; we do not know
what elementary quantum systems are out of our theories.

Hence, the third consequence of this mathematization was that metaphysics
remains underdetermined by physics. The most we can do with our theories
is to use them in a pragmatic way, insofar as they produce the (to the mo-
ment) best results and, as van Fraassen uses to say, the theories “save the
appearances” [28].

A fourth interesting consequence, yet to be explored in full by philosophers,
would be the following one. Today, precisely due to the mathematization, in
particular, to independence proofs in set theory, we recognize that there are
different and non-equivalent mathematics.® Let me call ‘classical’ the mathe-
matics which can be developed in a ‘standard’ (‘Cantorian’) set theory such as
ZFC or NBG or even KM. This is essentially the mathematics you find in the
standard books. For instance, in constructing real numbers (say, by Dedekind
cuts), one relies on the axiom of completeness of the reals, which roughly says
that whatever non-empty set of real numbers with an upper bound has a supre-
mum, that is, an upper bound that is less than any other upper bound. The
rational line (that is, the line composed by rational numbers only) does not
have this property, being full of gaps that are fulfilled by irrational numbers. If
we reject such a non-constructive postulate, we will be confined to a different

2The whole discussion can be seen in [10].
3For a general reading, see [5].
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mathematics, say intuitionist mathematics or some other form of constructiv-
ity [see 6], or at least predicativity [31].

Fifth, there are mathematics, as that developed by Robert Solovay (also
known as ‘Solovay’s model’ for set theory) [25] where every set of real numbers
is Lebesgue-measurable, contrary to classical mathematics, where, with the
help of the full axiom of choice, we can prove that there are non-measurable
sets. Can this math be useful for some domain of the empirical sciences?

Sixth, in Solovay’s model, we also have that all linear operators over a
Hilbert space are bounded [18]. But the standard formulation of quantum
mechanics makes use of unbounded operators, e.g., those which express position
and momentum. Thus, we can ask whether it is possible to develop a quantum
theory in a framework such as Solovay’s, or (what would be the same) to
construct a model for QM in such a set theory. Of course, you can say this
is trivially answered, for we could say that this like asking if we can develop
the theory of linear spaces grounded only in the structure of groups. That
is, simply choosing the metamathematics that enables the construction of the
right model. But the situation is different; what we have learnt from the
‘mathematization’ was precisely that we need to look to the metamathematics,
something never dreamt before; i.e., we should not take the ‘mathematics we
need’ as granted from the start. We need to look at the concepts we use
and see if the metamathematics is consonant with them. In logical terms, the
semantics of a logical system should be consonant with the logic itself [7].

This idea applies also to the formulations of the theories of the empirical
sciences, and we can, at first glance, read ‘semantics’ as ‘interpretation’, al-
though formal semantics is an important topic in the philosophy of science as
well [see 8]. Or at least it should be so. For instance, it has been said that if we
adopt a metaphysics of non-individuals regarding the foundations of quantum
mechanics, we should also adopt a theory of quasi-sets for expressing such a
semantics [10, 16].

Finally, without the Axiom of Choice, we can construct set-theoretical mod-
els (Lauchli’s permutation models) [14] where linear spaces can lack basis or
have a basis of different cardinalities. Now imagine someone trying to develop
a version of quantum mechanics via Hilbert spaces in one of these models (or
in the corresponding set theory). It is essential for the quantum formalism that
the relevant Hilbert spaces do have bases and, of course, the different bases
should have the same cardinality, which by the way define the dimension of
the space. Of course, we could be in trouble in considering such a situation in
the metamathematics.

We see the metamathematics cannot be arbitrarily chosen, and the percep-
tion of this fact is a result of the math orgy.
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4 Conclusion

It is important to realize that it was not just the emphasis on axiomatization
(or formalization) what has brought such conclusions. Euclid’s geometry re-
mained ‘axiomatized’ (yet with well-known deficiencies) and truly about the
world until the raise of non-Euclidean geometries in the beginnings of the
nineteenth century. More was needed, the raise of abstract structures, which
may be said to be the characteristic ones of modern mathematics, presenting
structured domains which, although motivated by some particular field, could
be also applied to other different domains. The same happened with Logic;
different logical systems enable different interpretations.

Just an example: so called deontic logics formalize modal notions such as
‘obligatory’, ‘permitted’, ‘prohibited’, among others. The interesting fact is
that we can interpret these operators in at least two senses: the legal and
the moral ones. So, O A would say that A is obligatory in the moral sense,
while PjA says that A is permitted in the legal sense. Then we can discuss the
relationships among these notions, for instance, by postulating that O,A —
P;A and O;A — PnhA, the first one expressing what is called ‘Kant’s axiom’,
since it says that ‘moral duties are a part, or are included, in the domain
of liberty’ [24]. Mixed systems (paraconsistent deontic logics) can consider
deontic dilemmas, such as OA A O—A — OB, without trivialization, that is,
without turning obligatory every well-formed formula.

But with regard to the empirical sciences, the way is still being traced, al-
though it is currently considering the mathematics to be used in the metalevel.
Such metalevel, by the way, is where the models of the theories will be con-
structed, for instance, in the semantic approach [26, 28], or in the structural
ontological approaches [11].

Last but not least, it is necessary to mention category theory, which has
been looked as an alternative metamathematics for expressing also physical
theories [12], as well as the renewed versions of type theory, such as homotopy
type theory (HoTT), which is an expansion of Martin Lof’s intuitionistic type
theory, considered by many as a good way for computation [27].

Philosophically, we see that all these moves have a common core, despite
the differences in the ways of reasoning they presuppose. As Miré Quesada
would put it, they have invariants that enable us to say that all these different
approaches and theories bring us alternative but justified ways of being rational
about science and the scientific enterprise.
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