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Abstract

In this paper we consider the systems of weakening of intuitionistic
negation logic mZ, introduced in [37, 40], which are developed in the
spirit of da Costa’s approach. We take a particular attention on the
philosophical considerations of the paraconsistent mZ logic w.r.t. the
constructive semantics of the intuitionistic logic, and we show that mZ
is a subintuitionistic logic. Hence, we present the relationship between
intuitionistic and paraconsistent subintuitionistic negation used in mZ.

Then we present a significant number of examples for this subintu-
itionistic and paraconsistent mZ logics: Logic Programming with Fiting’s
fixpoint semantics for paraconsistent weakening of 3-valued Kleene’s and
4-valued Belnap’s logics. Moreover, we provide a canonical construction
of infinitary-valued mZ logics and, in particular, the paraconsistent weak-
ening of standard Zadeh’s fuzzy logic and of the Gödel-Dummet t-norm
intermediate logics.

Keywords: Da Costa paraconsistent logic, Intuitionistic logic, Majkić’s sys-
tems mZ.

Introduction

In what follows we will try to summarize, in a short introduction, the previous
historic approach to two important concepts in the logics: paraconsistency and
constructivism.

A paraconsistent logic is a logical system that attempts to deal with con-
tradictions in a discriminating way. Alternatively, paraconsistent logic is the
subfield of logic that is concerned with studying and developing paraconsistent
(or inconsistency-tolerant) systems of logic. Paraconsistent logics are propo-
sitionally weaker than classical logic; that is, they deem fewer propositional
inferences valid. The point is that a paraconsistent logic can never be a propo-
sitional extension of classical logic, that is, propositionally validate everything
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that classical logic does. In that sense, then, paraconsistent logic is more con-
servative or cautious than classical logic.

The interpretation of negation is different in intuitionist logic than in clas-
sical logic. In classical logic, the negation of a statement asserts that the
statement is false; to an intuitionist, it means the statement is refutable (e.g.,
that there is a counterexample). There is thus an asymmetry between a posi-
tive and negative statement in intuitionism. If a statement A is provable, then
it is certainly impossible to prove that there is no proof of A. But even if it
can be shown that no disproof of A is possible, we cannot conclude from this
absence that there is a proof of A. Thus A is a stronger statement than ¬¬A.

Intuitionistic logic allows A ∨ ¬A not to be equivalent to true, while para-
consistent logic allows A ∧ ¬A not to be equivalent to false. Thus it seems
natural to regard paraconsistent logic as the dual of intuitionistic logic. How-
ever, intuitionistic logic is a specific logical system whereas paraconsistent logic
encompasses a large class of systems. Accordingly to this historic approach,
the dual notion to paraconsistency is called paracompleteness, and the dual of
intuitionistic logic (a specific paracomplete logic) is a specific paraconsistent
system called anti-intuitionistic or dual-intuitionistic logic (sometimes referred
to as Brazilian logic, for historical reasons) [18, 14, 2, 32]. The duality between
the two systems is best seen within a sequent calculus framework.

The intuitionistic implication operator cannot be treated like “(¬CA∨B)”,
but as a modal formula 2(¬CA ∨ B) where ¬C is the classic negation and 2

universal modal S4 operator with reflexive and transitive accessibility relation
R in Kripke semantics. Dual-intuitionistic logic [17] contains a connective (
known as pseudo-difference which is the dual of intuitionistic implication. Very
loosely, A ( B can be read as “A but not B” and is equivalent to a modal
formula ♦(A ∧ ¬CB), where ♦ is the existential modal operator with inverse
accessibility relation R−1 in a Kripke-like semantics [7].

Dual of intuitionistic logic has been investigated to varying degrees of suc-
cess using algebraic, relational, axiomatic and sequent-based perspectives. The
concept of anti-intuitionism, proposed through the concept of a dual intuition-
istic logic, was already mentioned in the forties by K. Popper (without any
formalism), but he disapproved such a logic as “too weak to be useless”. In
fact K. Popper puts in the Logic of Scientific Discovery [21]:

“The falsifying mode of inference here referred to - the way in which the
falsification of conclusion entails the falsification of the system from which it
is derived - is the modus tolens of classic logic.”

Consequently, dual intuitionistic logic can be labelled as “falsification logic”.
In the falsification logic truth is essentially non constructive as opposed to fal-
sity that is conceived constructively. In intuitionistic logic, instead, falsity is
essentially non constructive as opposed to truth that is conceived construc-
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tively.
Thus, historically, the main research about the relationships between intu-

itionistic and paraconsistent logic was directed toward an exploration of their
dual and opposite properties instead of investigation of their possible common
properties. Such common properties are interesting in order to obtain the log-
ics that may have a reasonable balance of both opposite (dual) properties: the
logics where both, ¬(A ∧ ¬A) is not false and ¬(A ∨ ¬A) is not true.

This consideration was the basic motivation at the beginning of my investi-
gation of intuitionism and paraconsistency, in order to obtain an useful logic for
significant practical applications as well. In fact, after a meeting with Walter
Carnielli, M. Coniglio and J.Y. Béziau at IICAI-2007 (Pune, India), I decided
to dedicate much more time to these problems. My first result was the pub-
lication of an autoreferential semantics for modal logics based on a complete
distributive lattice [35]. In this research I dedicated the last section exclusively
to the paraconsistency of this new semantics w.r.t. the formal LFI system [32]
which I obtained in preprint personally from Walter.

My decisive advances in this direction of research was published in [37]
and then upgraded in [40] by considering the paraconsistent properties of mZn
logics. Consequently, in this paper, we will consider in a more detailed way,
the dual quasi-intuitionistic properties of this mZn logic.

There are different approaches to paraconsistent logics. The first one is
the non constructive approach, based on abstract logic (as LFI [32]), where
logic connectives and their particular semantics are not considered. The sec-
ond one is the constructive approach and is divided in two parts: an axiomatic
proof theoretic (in da Costa [8] and [1, 9, 10]), and a many-valued model the-
oretic [35] based on truth-functional valuations (that is, it satisfies the truth-
compositionality principle). The best scenario is when we obtain both, the
proof and the model theoretic definition, which are mutually sound and com-
plete.

One of the main founders with Stanislav Jaskowski [29], da Costa, built his
propositional paraconsistent system Cω in [8] by weakening the logic negation
operator ¬, in order to avoid the explosive inconsistency [32, 31] of the classic
propositional logic, where the ex falso quodlibet proof rule A, ¬A

B is valid. In
fact, in order to avoid this classic logic rule, he changed the semantics for the
negation operator, so that:

• NdC1: in these calculi the principle of non-contradiction, in the form
¬(A ∧ ¬A), should not be a generally valid schema, but if it does hold
for formula A, it is a well-behaved formula and is denoted by A◦;

• NdC2: from two contradictory formulae, A and ¬A, it would not in
general be possible to deduce an arbitrary formula B. That is, it does
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not hold the ex falso quodlibet proof rule A, ¬A
B ;

• NdC3: it should be simple to extend these calculi to corresponding pred-
icate calculi (with or without equality);

• NdC4: they should contain most parts of the schemata and rules of classi-
cal propositional calculus which do not interfere with the first conditions.

In fact, da Costa’s paraconsistent propositional logic is made up of the unique
Modus Ponens inferential rule (MP), A,A⇒ B ` B, and two axiom subsets.
But before stating them we need the following definition as it is done in da
Costa’s systems (c.f. [8, p.500]), which uses three binary connectives, ∧ for
conjunction, ∨ for disjunction and ⇒ for implication:

Definition 0.1 Let A be a formula and 1 ≤ n < ω. Then, we define A◦, An, A(n)

as follows:

A◦ =def ¬(A∧¬A), An =def A

n︷ ︸︸ ︷
◦◦· · ·◦, and A(n) =def A

1∧A2∧· · ·∧An.

The first one is for the positive propositional logic (without negation), com-
posed by the following eight axioms, borrowed from the classic propositional
logic of the Kleene L4 system, and also from the more general propositional
intuitionistic system (these two systems differ only regarding axioms with the
negation operator),

(IPC+) Positive Logic Axioms:
(1) A⇒ (B ⇒ A)
(2) (A⇒ B)⇒ ((A⇒ (B ⇒ C))⇒ (A⇒ C))
(3) A⇒ (B ⇒ (A ∧B))
(4) (A ∧B)⇒ A
(5) (A ∧B)⇒ B
(6) A⇒ (A ∨B)
(7) B ⇒ (A ∨B)
(8) (A⇒ C)⇒ ((B ⇒ C)⇒ ((A ∨B)⇒ C))

We change the original axioms for negation operator of the classic propositional
logic, by defining the semantics of negation operator by the following subset of
axioms:

(NLA) Logic Axioms for Negation:
(9) A ∨ ¬A
(10) ¬¬A⇒ A
(11) B(n) ⇒ ((A ⇒ B) ⇒ ((A ⇒ ¬B) ⇒ ¬A)) (Reductio relativization

axiom)
(12) (A(n) ∧B(n))⇒ ((A ∧B)(n) ∧ (A ∨B)(n) ∧ (A⇒ B)(n))
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It is easy to see that the axiom (11) relativizes the classic reductio axiom
(A ⇒ B) ⇒ ((A ⇒ ¬B) ⇒ ¬A) (which is equivalent to the contraposition
axiom (A⇒ ¬B)⇒ (B ⇒ ¬A) and the trivialization axiom ¬(A⇒ A)⇒ B),
only for propositions B such that B(n) is valid, and in this way avoids the
validity of the classic ex falso quodlibet proof rule. It provides a qualified form
of reduction, helping to prevent general validity of B(n) in the paraconsistent
logic Cn. The axiom (12) regulates only the propagation of n-consistency. It
is easy to verify that n-consistency also propagates through negation, that is,
A(n) ⇒ (¬A)(n) is provable in Cn. So that for any fixed n (from 0 to ω) we
obtain a particular da Costa paraconsistent logic Cn.

It is well known that the classic propositional logic based on the classic
2-valued complete distributive lattice (2,≤) with the set 2 = {0, 1} of truth
values, has a truth-compositional model theoretic semantics. For this da Costa
calculi is not given any truth-compositional model theoretic semantics instead.

Based on these observations, in [37] are explained some weak properties of
da Costa weakening for a negation operator and it was shown that negation
is not antitonic, differently from the negations in the classic and intuition-
istic propositional logics (that have the truth-compositional model theoretic
semantics).

The negation in the classic and intuitionistic logics are not paraconsistent
(see for example Proposition 30, pp 118, in [35]), so that basic idea in [37]
was to make a weakening of the intuitionistic negation by considering only its
general antitonic property. In fact, the formula (A ⇒ B) ⇒ (¬B ⇒ ¬A) is a
thesis in both classic and intuitionistic logics. Consequently, our idea was to
use da Costa weakening of the intuitionistic negation [37, 40], that is, to define
the system mZn for each n by adding the following axioms to the system IPC+:

(9b) (A⇒ B)⇒ (¬B ⇒ ¬A)
(10b) 1⇒ ¬0
(11b) A⇒ 1, 0⇒ A
(12b) (¬A ∧ ¬B)⇒ ¬(A ∨B)

After that was demonstrated in [40] that the axioms (11) and (12) are re-
dundant in mZn, in the sense that they can be proved by another axioms.
Moreover, the propagation axioms

A(n) ⇒ (¬A)(n)

can be fully proved in systems mZn and mCZn(obtained by adding the axiom
(13b) ¬(A ∧B)⇒ (¬A ∨ ¬B).

Remarks 0.2 : From the fact that mZn logic satisfy da Costa axioms for all
n ≥ 1, in what follows we will write simply mZ logic.
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The plan of this paper is as follows:
In Section 2 we present the semantics of modal additive negations based on
the Birkhoff’s polarity, that is, so called split negations, and demonstrate that
these negations satisfy the da Costa’s paraconsistent axiom system. In Sec-
tion 3 we analyze the principle of constructive negation and we show that the
a paraconsistent split negation, used in mZ system, is constructive as intu-
itionistic negation, which is a special case of a split (but non paraconsistent)
negation. Then, we present a class of paraconsistent Heyting algebras and
show that they do not satisfy the da Costa’s non-contradiction principle.

The main theoretical and philosophical results are presented in Section 4 by
demonstration that mZ system is a subintuitionistic constructive paraconsis-
tent logic and is provided the relationship between intuitionistic and this new
paraconsistent negation in mZ. The rest of this paper is dedicated to signifi-
cant applications of the subintuitionistic paraconsistent mZ logics. Section 5 is
dedicated to Logic Programming with Fitting’s fixpoint semantics (w.r.t. the
knowledge ordering) by using mZ logics with minimal cardinalities, obtained
by paraconsistent da Costa’s weakening of the 3-valued Kleene and 4-valued
bilattice-based Belnap’s logics. Finally, in Section 6 we present the canoni-
cal constructions of infinite-valued mZ logics. In particular, we present the
paraconsistent weakening of the classic simplest (Zadeh) fuzzy logic and of the
Gödel-Dummet t-norm intermediate logic.

1 Semantics of negation based on Bikhoff’s polarity

It was demonstrated in [37] (Proposition 3) that the positive fragment of mZ
system corresponds to the distributive lattices (X,≤) (the positive fragment
of the Heyting algebras), where the logic implication corresponds to the rel-
ative pseudocomplement and 0 and 1 are the bottom and top elements in X
respectively.

Now we may introduce a hierarchy of negation operators [35] for many-
valued logics based on complete lattices of truth values (X,≤), w.r.t their
homomorphic properties. The negation with the lowest requirements (anti-
tonic) denominated “general” negation can be defined in any complete lattice
( for example, see [37]):

Definition 1.1 Hierarchy of Negation operators: Let (X,≤,∧,∨) be a
complete lattice. Then we define the following hierarchy of negation operators
on it:
1. A general negation is a monotone mapping between posets (≤OP is inverse
of ≤),
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¬ : (X,≤)→ (X,≤)OP , such that {1} ⊆ {y = ¬x | x ∈ X}.
2. A split negation is a general negation extended into join-semilattice ho-
momorphism, ¬ : (X,≤,∨, 0)→ (X,≤,∨, 0)OP ,
with (X,≤,∨, 0)OP = (X,≤OP ,∨OP , 0OP ), ∨OP = ∧, 0OP = 1.
3. A constructive negation is a general negation extended into full lattice
homomorphism, ¬ : (X,≤,∧,∨)→ (X,≤,∧,∨)OP ,
with (X,≤,∧,∨)OP = (X,≤OP ,∧OP ,∨OP ), and ∧OP = ∨.
4. A De Morgan negation is a constructive negation when the lattice homomor-
phism is an involution (¬¬x = x).

The names given to these different kinds of negations follow from the fact that:
a split negation introduces the second right adjoint negation, a constructive
negation satisfies the constructive requirement (as in Heyting algebras) ¬¬x ≥
x, while De Morgan negation satisfies the well known De Morgan laws, as
follows:

Lemma 1.2 Negation properties: Let (X,≤) be a complete lattice.
Then the following properties for negation operators hold: for any x, y ∈ X,
1. for general negation: ¬(x ∨ y) ≤ ¬x ∧ ¬y, ¬(x ∧ y) ≥ ¬x ∨ ¬y,
with ¬0 = 1 .
2. for split negation: ¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) ≥ ¬x ∨ ¬y. It is an
additive modal operator with right adjoint (multiplicative) negation ∼ : (X,≤
)OP → (X,≤), and Galois connection ¬x ≤OP y iff x ≤ ∼y, such that
x ≤ ∼¬x and x ≤ ¬∼x.
3. for constructive negation: ¬(x ∨ y) = ¬x ∧ ¬y, ¬(x ∧ y) = ¬x ∨ ¬y. It
is a selfadjoint operator, ¬ = ∼, with x ≤ ¬¬x satisfying proto De Morgan
inequalities ¬(¬x ∨ ¬y) ≥ x ∧ y and ¬(¬x ∧ ¬y) ≥ x ∨ y.
4. for De Morgan negation (¬¬x = x): it satisfies also De Morgan laws
¬(¬x ∨ ¬y) = x ∧ y and ¬(¬x ∧ ¬y) = x ∨ y, and is contrapositive, i.e.,
x ≤ y iff ¬x ≥ ¬y.

Proof can be found in [35].

Remarks 1.3 We can see (as demonstrated in [37]) that the negation in the
system mZ without axiom (12b) is a particular case of general negation, that
the negation in the whole system mZ is a split negation, while the negation in
the system mCZ [37] is a constructive negation.

The Galois connections can be obtained from any binary relation based on a
set W [12] (Birkhoff polarity) in a canonical way:
If (W,R) is a set with a particular relation based on a set W, R ⊆ W ×W,
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with mappings λ : P(W) → P(W)OP , % : P(W)OP → P(W), where P is the
powerset operation, such that for subsets U, V ∈ P(W),

λU = {w ∈ W | ∀u ∈ U.((u,w) ∈ R)}, ρV = {w ∈ W | ∀v ∈ V.((w, v) ∈ R)}

where (P(W),⊆) is the powerset poset complete distributive lattice with bot-
tom element empty set ∅ and top element W, and P(W)OP its dual (with
⊆OP inverse of ⊆), then we have the induced Galois connection λ a ρ, i.e.,
λU ⊆OP V iff U ⊆ ρV .

It is easy to verify that λ and ρ are two antitonic set-based operators
which invert empty set ∅ into W, thus can be used as two set-based negation
operators. The negation as a modal operator has a long history [19].

Let us consider a case of complete distributive lattices used in Kripke se-
mantics for the intuitionistic propositional logic:

Definition 1.4 Let (W,v) be a poset. A subset S ⊆ W is said to be hereditary
if x ∈ S and x v x′ implies x′ ∈ S. We denote the subset of all hereditary
subsets of P(W) by HW so that (HW ,⊆,

⋂
,
⋃

) is a sublattice of the powerset
lattice (P(W),⊆,

⋂
,
⋃

), with bottom element (empty set) ∅ and top element W
in HW respectively.

We define also the algebraic implication operator ⇀ by the relative pseudo-
complement for sets, given by S ⇀ S′ =

⋃
{Z ∈ HW | Z

⋂
S ⊆ S′}.

The hereditary sets in HW are closed under arbitrary intersection and union, in
order to be closed also under a relative pseudocomplement operator ⇀ which
is expressed by using set union and intersection. As a result, we obtain the
positive fragment of the Heyting algebra (HW ,⊆,

⋂
,
⋃
,⇀).

We denote the class of such binary incompatibility relations R ⊆ W ×W
by R, which are also hereditary, that is,

if (u,w) ∈ R and (u,w) � (u′, w′) then (u′, w′) ∈ R,

where (u,w) � (u′, w′) iff u′ v u and w v w′, so that

v ◦R◦ v ⊆ R,

where ◦ is a composition of binary relations.
In this case of the Birkhoff’s polarity for any U ∈ HW we obtain [37] that

λU = {w ∈ W | ∀u ∈ U.((u,w) ∈ R)} ∈ HW , that is, HW is closed under
λ as well. Consequently, we obtain an extended positive fragment of Heyting
algebra with this antitonic negation operation λ, i.e., the algebra on hereditary
subsets (HW ,⊆,

⋂
,
⋃
,⇀, λ).

Analogously to demonstration given in [37], it is easy to see that, for any
given hereditary incompatibility relation R, the additive algebraic operator λ
can be used as a split negation for mZ logic.
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Corollary 1.5 [40] Each split negation (modal negation), based on the hered-
itary incompatible relation of Birkhoff’s polarity, satisfies the da Costa weak-
ening axioms (11) and (12).

It was shown [40] that this system mZ satisfies the Da Costa’s requirements,
NdC1,NdC2, NdC3 and NdC4 as well, because the positive fragment of this
logics is equal to the positive fragment of propositional logic, so that it is a
conservative extension of the positive propositional logic.

The mZ is many-valued propositional logics with a set B of logic truth
values, defined as follows:

Definition 1.6 The set of logic truth values B is defined by the (order pre-
serving) isomorphism is : (HW ,⊆,

⋂
,
⋃
,⇀, λ) → (B,≤,∧,∨,⇒,¬) such that

is(∅) = 0 and is(W) = 1.
Here ⇒ is the relative-pseudo complement (as in any Heyting algebra for

the intuitionistic implication) in the distributive complete lattice B and ¬ =
is ◦ λ ◦ is−1 : B −→ B.

Differently from the original da Costa weakening of the classical negation that
results in a non truth-functional logics, mZ is a system of many-valued truth-
functional logics.

2 The intuitionistic interpretation of negation and
logic constructivism

The fundamental characteristic of the IPC is that negation is a derived op-
eration from the constructive implication, that is ¬IA is defined by A ⇒ 0.
Thus, in order to analyze the intuitionistic negation ¬I we have to consider
the intuitionistic implication ⇒.

In Kolmogorov [4] he took care to lay down the meaning of constructive
implication:

“The meaning of the symbol A ⇒ B is exhausted by the fact that, once
convinced of the truth of A, we have to accept the truth of B too.”

From this point of view the ex falso (quodlibet) principle (EF) ¬A⇒ (A⇒
B) was questionable, to say the least. In fact he decided to reject it (in the
sense of paraconsistent logic). He argued that axiom now considered does not
have and cannot have any intuitive foundation, since it asserts something about
the consequence of something impossible. In 1932, Kolmogorov published [5] a
full version of this “problematic interpretation”, by considering a proposition
A as a problem and constructive truth of A comes to “we have a solution of
A”. Thus, a problem (proposition) A ⇒ B is formulated as “given a solution
of A, find solution of B”.
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The ex falso axiom ¬IA ⇒ (A ⇒ B) was accepted by Kolmogorov on the
strength of the following convention:

“As far as problem ¬IA⇒ (A⇒ B) is concerned, as soon as ¬IA is solved,
the solution of A is impossible, and the problem A⇒ B has no content. In what
follows, the proof that a problem is without content will always be considered
as its solution.”

Thus this convention about negation is highly non constructive. The mod-
ern formulation of intuitionistic implication appears first time in 1934 in Heyt-
ing [3], p.14:

“A proof of a proposition consists of the realization of the construction
demanded by it. A ⇒ B means the intension on a construction, which leads
from any proof of A to a proof of B.”

Kolmogorov never returned to intuitionistic logic and the matter of EF
rule, Heyting on the other hand returned to this principle in his intuitionism
where he recognized that in the case of a false antecedent the construction
interpretation is problematic:

“Now suppose that ¬IA is true, that is, we have deduced a contradiction
from supposition that A were carried out. Then, in a sense, this can be con-
sidered as a construction, which, joined to a prof of A (which can not exist)
leads to a proof of B. I shall interpret then implication in this wider sense.”

Thus Heyting’s justification of the intuitionistic negation is, albeit hesitant,
the standard argument of today.

We recall that the current intuitionistic meaning of logic connectives are as
follows:

• a proof of A ∧ B consists of a proof of A and a proof of B plus the
conclusion A ∧B, or in Kripke semantics, for any possible world x ∈ W,
M �x A ∧B iff M �x A and M �x B.

• a proof of A∨B consists of a proof of A or a proof of B plus the conclusion
A ∨B, or in Kripke semantics, for any possible world x ∈ W,
M �x A ∨B iff M �x A or M �x B.

• a proof of A⇒ B consists of a method (or algorithm) of converting any
proof of A into a proof of B, or in Kripke semantics, for any possible
world x ∈ W,
M �x A ⇒ B iff (∀y ∈ W)((x, y) ∈ R2 implies (M �y A implies
M �y B)),
where R2 is a reflexive and transitive relation, so that A ⇒ B is equiv-
alent to a modal formula 2(A ⇒C B) ≡ 2(¬CA ∨ B), where 2 is the
universal modal operator “necessary” of S4 modal logic and ⇒C ,¬C the
classical implication and negation respectively.
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Notice that ¬IA is obtained when B is the falsum 0, so that ¬IA ≡
2¬CA.

• no proof of 0 (falsum) exists, i.e., for each x ∈ W, M 2x 0, that is, “not
M �x 0”.

These considerations give more justifications in our attempt to modify this in-
tuitionistic unconstructive negation into another more constructive and para-
consistent as well.

Proposition 2.1 A paraconsistent negation in mZ logic is paraconsistently-
constructive, that is, ¬ = 2P¬c where ¬c is the classical negation and 2P is
new universal paraconsistent modal operator.

Proof. : Let us consider the Kripke semantics of the intuitionistic negation
¬IA (equivalent to A⇒ 0):
M �x ¬IA iff M �x A⇒ 0
iff ∀y((x, y) ∈ R2 implies (M �y A implies M �y 0)
iff ∀y((x, y) ∈ R2 implies ( not M �y A or M �y 0)
iff ∀y((x, y) ∈ R2 implies not M �y A)
iff M �x 2¬CA,

where ¬C is the classic negation and 2 is the universal modal “necessity”
(S4) operator, with the reflexive+transitive accessibility relation R2 between
theoretical constructions (from the Brower’s constructive point of view). So
that (x, y) ∈ R2 means that a theoretical construction (proof) y is a result of
positive development of a theoretical construction (proof) x.

Thus, from this constructive point of view, an informal Kripke semantics
is as follows:

“¬IA is proved in the framework x iff in the framework of every possible
construction y (which is the result of some development of the construction x)
A is not proved.”

The Kripke semantics for a paraconsistent negation ¬ in mZ logic, based
on an incompatibility relation R (from Birkhoff’s polarity), is defined by:
‖¬A‖ = λ(‖A‖) = {x ∈ W | ∀y ∈ ‖A‖.(y, x) ∈ R}, that is,
M �x ¬A iff ∀y(M �y A implies (y, x) ∈ R)
iff ∀y(notM �y A or (y, x) ∈ R)
iff ∀y((y, x) /∈ R implies not M �y A)
iff ∀y((x, y) ∈ R2P implies not M �y A)
iff M �x 2P¬CA,

where R2P = ((W×W)\R)−1 is the paraconsistently-constructive accessibility
relation for the universal paraconsistent modal operator 2P . �
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What we obtain for the mZ logic is that it is a bimodal logic with two universal
modal operators, the necessity universal modal operator 2 (with accessibility
binary relation equal to a poset (W,v)) used for the intuitionistic implication
⇒ equal to 2 ⇒C where ⇒C is standard (classical) implication, and the uni-
versal paraconsistent modal operator 2P (with the accessibility binary relation
R2P = ((W ×W)\R)−1 derived from the hereditary incompatibility relation
R ∈ R) used for the modal paraconsistent operator ¬ equal to 2P¬C where
¬C is classical negation.

Thus, here we will provide a slightly different Kripke semantics for the mZ
logic, w.r.t. that in [37], Definition 6, but compatible with that used in [40]:

Definition 2.2 We define the Kripke model M = (W,v,R, V ) for the mZ
logic, where (W,v) is a poset, R ∈ R is an hereditary incompatibility bi-
nary accessibility relation for weakened paraconsistent negation with R2P =
((W ×W)\R)−1, and a mapping V : (V ar

⋃
2) ×W → 2, such that for any

propositional letter p ∈ V ar, if w v w′ then V (p, w) ≤ V (p, w′), such that
∀w.(V (0, w) = 0 and V (1, w) = 1).

Then, for any world w ∈ W we define the satisfaction relation for any
propositional formula A, denoted by M |=w A, as follows:

1. M |=w p iff V (p, w) = 1, for any p ∈ V ar.
2. M |=w A ∧B iff M |=w A and M |=w B.
3. M |=w A ∨B iff M |=w A or M |=w B.
4. M |=w A⇒ B iff ∀y((w v y and M |=y A) implies M |=y B).
5. M |=w ¬A iff ∀y((w, y) ∈ R2P implies not M |=y A).

Let us show that the intuitionistic negation ¬I may be obtained as a special
case of the Birkhoff’s polarity as well (as is our paraconsistent negation).

Corollary 2.3 For the incompatibility relation defined by R = (W×W)\R−12 ,
where R2 is a reflexive and transitive accessibility relation of the intuitionistic
logic, from the Birkhoff’s polarity method we obtain exactly the intuitionistic
negation.

Proof. : We have that R2 = ((W ×W)\R)−1, and from Birkhoff’s polarity,
‖¬A‖ = λ(‖A‖) = {x ∈ W | ∀y ∈ ‖A‖.(y, x) ∈ R}, that is,
M �x ¬A iff ∀y(M �y A implies (y, x) ∈ R)
iff ∀y((x, y) ∈ R2 implies not M �y A) iff M �x 2¬CA
iff M �x ¬IA. �

Proposition 2.1 and Corollary 2.3 demonstrate the general constructive ap-
proach to the paraconsistent negations based on the construction of an incom-
patibility relation with Birkhoff’s polarity, and show that in this very general
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framework, the non-paraconsistent intuitionistic logic is only a special partic-
ular case.

3 Philosophical and structural considerations of mZ
logic

The recent history of the development of substructural relevant logics has an
important example of reduction of Classical Propositional Calculus (CPC) in
a number of its substructural logics, called intermediate propositional logics as
well.

In this framework of progressively weakening of CPC we obtained a lattice
of the intermediate logics, where the top element of this lattice was CPC and
the bottom element the Intuitionistic Propositional Calculus (IPC).

The fundamental distinguishing characteristic of intuitionism is its inter-
pretation of what it means for a mathematical statement to be true. In
Brouwer’s original intuitionism, the truth of a mathematical statement is a
subjective claim: a mathematical statement corresponds to a mental construc-
tion, and a mathematician can assert the truth of a statement only by verifying
the validity of that construction by intuition. To an intuitionist, the claim that
an object with certain properties exists is a claim that an object with those
properties can be constructed. Any mathematical object is considered to be a
product of a construction of a mind, and therefore, the existence of an object
is equivalent to the possibility of its construction. This contrasts with the clas-
sical approach, which states that the existence of an entity can be proved by
refuting its non-existence. For the intuitionist, this is not valid; the refutation
of the non-existence does not mean that it is possible to find a construction
for the putative object, as is required in order to assert its existence. As such,
intuitionism is a variety of mathematical constructivism; but it is not the only
kind. Regardless of how it is interpreted, intuitionism does not equate the truth
of a mathematical statement with its provability. However, because the intu-
itionistic notion of truth is more restrictive than that of classical mathematics,
the intuitionist must reject some assumptions of classical logic to ensure that
everything he/she proves is in fact intuitionistically true. This gives rise to
intuitionistic logic.

This “weakening” from CPC into IPC can be seen as weakening of the in-
terdependence of the basic for logic connectives: negation ¬ (unary operation)
and binary operations, conjunction ∧, disjunction ∨, and implication ⇒. In
order to distinguish these connectives (¬ and ⇒ only) in this hierarchy of dif-
ferent propositional logics, we will label them by a kind of logics: by a label
C for the CPC and label I for the IPC, while the logic connectives of mZ will
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remain unlabeled.
In fact, if we consider these three logics (the intermediate logics between

IPC and CPC are well understood and studied already), this weakening of logic
connectives can be summarized as follows:

• CPC: here we have only two independent operators: the negation ¬C and
one (usually taken implication) of the three binary operators. Another
two operators are only derived operators.

• IPC: here we have the three mutually independent operators, ∧,∨ and
⇒, while negation operator ¬I is a derived one such that ¬IA is logically
equivalent to the formula A ⇒ 0, where 0 is a contradiction (falsum)
constant.

• mZ: here we have generally all four operators mutually independent,
where the negation ¬ is obtained as a weakening of the intuitionistic
negation ¬I by preserving its two fundamental properties: antitonicity
and modal additivity.

This kind of weakening of the interdependence of the logic operators is a way
of obtaining more powerful and relevant logics, by progressively extending clas-
sical logic with more powerful semantics: IPC can be seen as a means of ex-
tending classical logic with constructive semantics, so that IPC ≺ CPC, where
� is the ordering in the current lattice of intermediate logics.

In what follows we will see that mZ logic can be seen as means of extending
IPC with paraconsistent semantics as well. Consequently, from the philosoph-
ical point of view, mZ logic will become a new bottom element of the lattice of
intermediate logics, that is mZ ≺ IPC. Consequently, mZ extends a construc-
tive logic IPC with da Costa paraconsistent semantics. In this hierarchy, we
obtain more and more relevant logics (where the number of derivable theorems
is progressively diminished), in the way that mZ is more relevant logic than
IPC, and IPC is more relevant logic than all intermediate logics, while CPC is
non relevant at all.

In this new point of view, the relationship between intuitionistic and para-
consistent logics is a new one and in apparent opposition with the previous
historical approach, where these two approaches are considered “dual”, and
are seen as two opposite extremes.

Theorem 3.1 All the negative axioms in mZ logic are theorems in IPC.
Consequently, mZ ≺ IPC is a strict constructive paraconsistent weakening of
the intuitionistic logic.
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Proof. 1. From definition of the intutitionistic negation, (A⇒ 0) ≡ ¬IA, it
holds that (A⇒ 0)⇒ ¬IA and by substituting A with 0 (denoted by A 7→ 0)
we obtain

1.1 (0⇒ 0)⇒ ¬I0,
1.2 A⇒ A, [theorem in IPC ]
1.3 0⇒ 0, [1.2, and substitution A 7→ 0]
1.4 ¬I0, [1.1, 1.3, (MP)]
1.5 ¬I0⇒ (1⇒ ¬I0), [axiom (1) IPC+, with A 7→ ¬I0, B 7→ 1]
(10.b) 1⇒ ¬I0, [1.4, 1.5, (MP)]
1.6 (1⇒ (A⇒ 1)), [axiom (1) IPC+, with A 7→ 1, B 7→ A]
1.7 theorem 1, [theorem in IPC]
(11.b) A⇒ 1, [1.6, 1.7, (MP)]

2. (11.b) 0⇒ A is an axiom in IPC.
3. Let us show that the weak contraposition (9.b), (A⇒ B)⇒ (¬IB ⇒ ¬IA),
is a theorem in IPC:
3.1. The formula (T2), (A ⇒ B) ⇒ ((B ⇒ C) ⇒ (A ⇒ C)), is a theorem in
IPC.
3.2. By substitution of C with 0 in (T2), we obtain (A ⇒ B) ⇒ ((B ⇒ 0) ⇒
(A ⇒ 0)), that is, from the fact that ¬IB in IPC is defined by B ⇒ 0, we
obtain that (9.b) is a theorem in IPC.
4. From the IPC+ theorem ((A ∨ B)⇒ C) ≡ ((A⇒ C) ∧ (B ⇒ C)), by sub-
stitution of C by 0 and by definition of intuitionistic negation ¬I , we obtain
¬I(A∨B) ≡ (¬IA∧¬IB) (modal additive property for intuitionistic negation),
thus the theorem:
(12.b) ¬I(A ∨B)⇒ (¬IA ∧ ¬IB). �

Notice that, as in mZ system, also in IPC, the intuitionistic negation ¬I is an
additive modal operator with Birkhoff’s polarity semantics given in Corollary
2.3.

Corollary 3.2 The relationship between the intuitionistic negation ¬I and the
weakened paraconsistent negation ¬ in mZ logic is: ¬I ≤ ¬.

Proof. The meaning of ¬I ≤ ¬ in the Heyting algebra ((B,≤),∧,∨,⇒),
extended by the modal paraconsistent negation ¬ : B → B, is expressed by
the sentence (∀x ∈ B)(¬Ix ≤ ¬x) or, equivalently in mZ logic, by the theorem
¬IA⇒ ¬A for any proposition A. By considering that ¬IA is a formula A⇒ 0,
it means that we have to show that a formula (A⇒ 0)⇒ ¬A is a theorem as
follows:

1 (A⇒ 1)⇒ ((A⇒ (1⇒ C))⇒ (A⇒ C)), [axiom (2) IPC+, where
B 7→ 1]
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2 (A⇒ (1⇒ C))⇒ (A⇒ C), [1, (11,b),(MP)]
3 ((1⇒ C)⇒ (1⇒ C))⇒ ((1⇒ C)⇒ C), [2, where A 7→ 1⇒ C]
4 (1⇒ C)⇒ C, [3, (1⇒ C)⇒ (1⇒ C), (MP)]
5 (1⇒ ¬A)⇒ ¬A, [4, where C 7→ ¬A)]
6 ¬A ≡ (1⇒ ¬A), [5, axiom (1) IPC+ with B 7→ 1]
7 (A⇒ 0)⇒ (¬0⇒ ¬A), [from axiom (9.b), where B 7→ 0]
8 (A⇒ 0)⇒ (1⇒ ¬A), [¬0 ≡ 1, from (10.b) and (11.b) with A 7→ ¬0]
9 (A⇒ 0)⇒ ¬A, [from 8 and 5)]

that is, ¬IA⇒ ¬A. �

Now we will show which axioms are necessary to add to mZ logic in order to
obtain the intuitionistic logic:

Proposition 3.3 The intuitionistic logic IPC is equal to

mZ + (¬A⇒ (A⇒ 0)).

Consequently, both formulae, A ∨ ¬A, ¬(A ∧ ¬A), excluded-middle and para-
consistent non-contradiction relatively, are not valid schemas in mZ logic.

Proof. The IPC is defined by eight positive axioms in IPC+, plus:

(11.b) 0⇒ A, falsity axiom, plus two axioms for the intuitionistic negation,
(N1) ¬A⇒ (A⇒ 0),
(N2) (A⇒ 0)⇒ ¬A.

Consequently, it is enough only to show that (A ⇒ 0) ⇒ ¬A is a theorem
in mZ.

From the weak contraposition axiom schemata (9.b) in the case when B is
substituted by 0, we obtain that (A ⇒ 0) ⇒ (¬0 ⇒ ¬A) and from the fact
that ¬0 ≡ 1 (from (11.b) when A is substituted by ¬0 and (10.b)), we obtain
(A⇒ 0)⇒ (1⇒ ¬A).

It is enough to show that (1 ⇒ ¬A) ≡ ¬A is a theorem in mZ, and it is
demonstrated in point 6 of the proof of Corollary 3.2.

Thus, we have that the non-contradiction schema is not a valid schema in
mZ (Lemma 3 in [40]). Moreover, if we denote the set of theorems of IPC by
LICP and the set of theorems of mZ by LmZn , from the fact that LmZn ⊂ LICP
and from the fact that the excluded-middle schema does not hold in IPC, i.e.,
A ∨ ¬A /∈ LICP , we also obtain A ∨ ¬A /∈ LmZn . �

Consequently, based on Theorem 3.1 and Proposition 3.3, we obtain that mZ
is a constructive logic as IPC (they have the same set of theorems for their
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positive fragment), but the set of theorems with negation operator ¬ in mZ
is a strict paraconsistent subset of theorems with intuitionistic negation ¬I in
IPC.

Consequently, mZ is a subintuitionistic logic. So, mZ is a more useful logic
than IPC, that is more relevant w.r.t. the IPC, because it avoids explosive
inconsistency. From the point of da Costa paraconsistency of the mZ logic,
it was demonstrated in [40] (Theorem 11) that the da Costa axioms (11) and
(12) are theorems in mZ, so that in mZ all hierarchy of da Costa’s systems are
present in this single mZ logic: thus mZ is by itself da Costa paraconsistent
and its axioms implicitly cover the da Costa’s reductio relativization property
(and its propagation) and combines it with the constructive property of the
intuitionistic logics.

These results demonstrate that the paraconsistency is not simply dual to
the constructivism, as was historically supposed and investigated. In fact,
mZ combines both constructive and paraconsistent properties, where both
excluded-middle and the non-contradiction schemas are not valid.

We have demonstrated that the paraconsistency is based on a very construc-
tive approach, and we will show it in the rest of this paper by the construction
of incompatibility relations for the paraconsistent negations: we will present a
number of useful subintuitionistic mZ logics for practical applications as well.

4 Paraconsistent Logic Programming

In what follows we will present a number of examples of many-valued logics
that are members of the mZ system. In particulary, we will examine the logics
with a minimal cardinality (three and four-valued logics) and their applications
in Paraconsistent Logic Programming. Because of that, we will shortly intro-
duce the concepts of the 4-valued bilattices and fixpoint semantics for logic
programs.

So far, research in many-valued logic programming has proceeded along
different directions: Signed logics [16, 6] and Annotated logic programming
[13, 25, 26] which can be embedded into the first, Bilattice-based logics [24, 22],
and Quantitative rule-sets [11]. Earlier studies of these approaches quickly
identified various distinctions between these frameworks. For example, one of
the key insights behind bilattices was the interplay between the truth values
assigned to sentences and the (non classic) notion of implication in the language
under considerations. Thus, rules (implications) had weights (or truth values)
associated with them as a whole. The problem was to study how truth values
should propagate “across” implications. Annotated logics, on the other hand,
appeared to associate truth values with each component of an implication
rather than the implication as a whole. Roughly, based on the way in which
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uncertainty is associated with facts and rules of a program, these frameworks
can be classified into implication based (IB) and annotation based (AB).

In the IB approach a rule is of the form A←α B1, . . . , Bn , which says that
the certainty associated with the implication is α. Computationally, given an
assignment I of logical values to the Bis, the logical value of A is computed by
taking the “conjunction” of logical values I(Bi) and then somehow “propagat-
ing” it to the rule head A.

In the AB approach a rule is of the form A : f(β1, . . . , βn) ← B1 :
β1, . . . , Bn : βn , which asserts “the certainty of the atom A is a least (or
is in) f(β1, . . . , βn), whenever the certainty of the atom Bi is at least (or is
in) βi, 1 ≤ i ≤ n”, where f is an n-ary computable function and βi is either
constant or a variable ranging over many-valued logic values. The comparison
in [30] shows:

1- while the way implication is treated on the AB approach is closer to the
classical logic, the way rules are fired in the IB approach has definite intuitive
appeal.

2- the AB approach is strictly more expressive than IB. The down side
is that query processing in the AB approach is more complicated, e.g. the
fixpoint operator is not continuous in general, while it is in the IB approaches.

From the above points discussed in [30], it is believed that IB approach is
easier to use and is more amenable for efficient implementations.

The other problem is that the Fitting fixpoint semantics for IB logic pro-
grams, based exclusively on a bilattice-algebra operators, suffer two drawbacks:

• The lack of the notion of tautology (bilattice negation operator is an
epistemic negation) leads to difficulties in defining proof procedures and
to the need for additional complex truth-related notions as “formula clo-
sure” [30];

• There is an unpleasant asymmetry in the semantics of implication (which
is strictly 2-valued) w.r.t. all other bilattice operators (which produce any
truth value from the bilattice) - it is a sign that strict bilattice language
is not enough expressive for logic programming and we need some reacher
(different) syntax for logical programming.

Both of these two drawbacks now can be avoided by using many-valued para-
consistent mZ logics, with a complete distributive lattice Bn of n ≥ 3 logic truth
values, such that {0, 1} ⊆ Bn are the bottom and the top values respectively:

• The mZ logics have a well defined axiomatization and the notion of tau-
tology, and the proof structures (the subset of designated elements in
their matrix is a singleton {1}).
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• The logic implication is a intuitionistic one (relative-pseudocomplement)
that is many-valued as conjunction and disjunction operators and satisfy
a good constructive property, that is, for α, β ∈ Bn we have that (α ⇐
β) = 1 if α ≥ β.

Consequently, if β is the logic value of a body of one logic program clause,
with α derived logic value of the head of this clause, then the satisfaction
of this clause is satisfied if α ≥ β. Thus, it express the principle of
propagation of truth in logic programming clauses [33, 34, 38, 36] and the
symbol ← from the body into the head of a logic rule corresponds to the
intuitionistic implication of the mZ system.

In [27], Belnap introduced a logic intended to deal in a useful way with incon-
sistent or incomplete information. It is the simplest example of a non-trivial
bilattice and it illustrates many of the basic ideas concerning them. We de-
note the four logic values as B4 = {0, 12 , 1,>}, where 1 is true, 0 is false, > is
inconsistent (both true and false) or possible, and 1

2 is unknown.
As Belnap observed, these values can be given two natural orders: truth

order, ≤, and knowledge order, ≤k, such that 0 ≤ > ≤ 1, 0 ≤ 1
2 ≤ 1, and

1
2 ≤k 0 ≤k >, 1

2 ≤k 1 ≤k >.

Meet and join operators under ≤ are denoted ∧ and ∨; they are natural
generalizations of the usual conjunction and disjunction notions. Meet and join
under ≤k are denoted ⊗ (consensus, because it produces the most information
that two truth values can agree on) and ⊕ (gullibility, it accepts anything it’s
told). We have that:

0⊗ 1 =
1

2
, 0⊕ 1 = >, > ∧ 1

2
= 0 and > ∨ 1

2
= 1.
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There is an epistemic notion of truth negation, denoted by ∼, (reverses the
truth ≤ ordering, while preserving the knowledge ≤k ordering): switching 0
and 1, leaving 1

2 and >. A more general information about bilattices may be
found in [22]. The Belnap’s 4-valued bilattice is infinitary distributive.

A (ordinary) Herbrand interpretation is a many-valued mapping I : HP →
B4. If P is a many-valued logic program with the Herbrand base HP then
the ordering relations and operations in a bilattice B4 are propagated to the
function space BHP

4 , that is the set of all Herbrand interpretations (functions)
I : HP → B4.

Definition 4.1 Ordering relations are defined on the function space BHP
4 point-

wise, as follows: for any two Herbrand interpretations I, I ′ ∈ BHP
4 ,

1. I ≤ I ′ if I(A) ≤ I ′(A) for all A ∈ HP .
2. I ≤k I ′ if I(A) ≤k I ′(A) for all A ∈ HP .
3. ¬I, such that (¬I)(A) = ¬(I(A)).

This interpretation can be inductively extended into the map I∗ to all ground
formulae in the standard truth-functional way, for any two ground formulae
(that is, without free variables) φ and ψ:

• I∗(φ) = I(φ) for any ground atom (considered as a proposition in mZn
as well) φ ∈ HP ;

• I∗(φ� ψ) = I∗(φ)� I∗(ψ) for � ∈ {∧,∨,⇒};

• I∗(¬φ) = ¬(I∗(φ));

It is straightforward [22] that this makes the function space BHP
4 a complete

infinitary distributive bilattice.

Definition 4.2 [22] Let P be a logic program, with P ∗ the set of all ground
instances of members of P and a valuation I : HP → B4. We define the
monotonic in ≤k immediate consequence operator ΦP : BHP

4 → BHP
4 such that

for each A ∈ HP ,
1. if A is not the head of any member of P ∗, ΦP (I)(A) = 0,
2. otherwise ΦP (I)(A) =

∨
{I∗(B) | A← B is in P ∗}.

Fitting [22] has demonstrated that ΦP is monotonic w.r.t. knowledge ≤k
ordering and that the Knaster-Tarski theorem gives the smallest fixed point,
which corresponds to the 4-valued stable models of the logic programs.

It is interesting to consider the minimal cardinality for such one many-
valued logic of the system mZn:
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Lemma 4.3 In the mZ calculus, the minimal cardinality is represented by the
3-valued logic B3 = {0, 12 , 1} (a Belnap’s sublattice obtained by elimination of
the value >) but with negation different from the well-known 3-valued Kleene
logic.

We obtain a weakening of the Kleene-negation by the fact that, instead of
¬1 = 0, we have that ¬1 = 1

2 . It can be used for logic programming with
Fitting’s knowledge fixpoint-semantics in Definition 4.2.

Proof. Let us consider W = {2, 3} with v equal to inverse of the ordering of
numbers and HW = {∅, {2}, {2, 3}} with the unique atom {2} and with the iso-
morphism is : (HW ,⊆,

⋂
,
⋃
,⇀, λ)→ (B3,≤,∧,∨,⇒,¬) in Definition 1.6 such

that is(∅) = 0, is(W) = 1 and is({2}) = 1
2 (unknown value), and hereditary

relation
R = {(2, 2), (3, 2)} ∈ R.

It is easy to verify that λ(W) = {2} 6= ∅ (i.e., from the algebra isomorphisms is,
¬1 = 1

2 6= 0) and that for V = {2}, λ(V
⋂
λ(V )) = {2} 6=W (i.e.,¬(12 ∧ ¬

1
2) =

1
2 6= 1), so that the principle of non-contradiction is valid.

It is different from the Kleene logic where ¬1 = 0, while in our 3-valued
paraconsistent mZ logic we have by the weakening of negation that ¬1 = 1

2
(i.e., ¬1 = ¬1

2 = 1
2 ,¬0 = 1), but ¬ is monotonic w.r.t. the knowledge ordering

≤k so that this logic can be used for logic programming with Fitting’s fixpoint-
semantics and stable models. �

Note that this paraconsistent 3-valued logic satisfy all axioms of the mCZ logics
as well.

Let us show that in mZ system there is a Belnap’s bilattice based logic
with weakened negation that is monotonic w.r.t the knowledge ordering ≤k.
Consequently, we can use this 4-valued paraconsistent mZ logic for a logic
programming, as explained above for the standard bilattice negation ∼.

Lemma 4.4 In the mZ calculus, the bilattice based logic is represented by the
4-valued Belnap’s bilattice B4 = {0, 12 , 1,>}, but with negation ¬ different from
the original bilattice negation ∼. We obtain a weakening of the negation ∼ by
the fact that, instead of ∼ 1 = 0 and ∼ > = >, we define ¬1 = 1

2 and ¬> = 1
respectively.

This paraconsistent bilattice-based mZ logic with weakened negation ¬ can
be used for a logic programming with Fiting’s fixpoint-semantics and stable
models, in the same way as the Belnap’s logic with the standard negation ∼.

Proof. Let us consider the poset W = {a, b}, with a v a and b v b, and
the set of hereditary subsets HW = {∅, {a}, {b}, {a, b}}, with the isomorphism
is : (HW ,⊆,

⋂
,
⋃
,⇀, λ) → (B4,≤,∧,∨,⇒,¬) where 0 = is(∅) corresponds to
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the false value, 1 = is(W) to the true value, is({a}) = >, is({b}) = 1
2 to the

unknown value, and hereditary relation R = {(a, a), (b, b), (a, b)} ∈ R.
It is easy to verify that λ(W) = {b} 6= ∅ and for V = {b}, λ(V

⋂
λ(V )) =

{b} 6=W, so that the principle of non-contradiction is valid.
We have that λ({b}) = {b} and λ({a}) = {a, b}.
Consequently, we obtain that ¬1 = ¬1

2 = 1
2 and ¬0 = 1 and ¬> = 1.

Consequently, it is easy to verify that the obtained weakened negation ¬ is
monotonic w.r.t. the knowledge ordering ≤k and we are able to use the fix-
point semantics in Definition 4.2 for the logic programs. �

Note that if we omit the 4-th value > from the paraconsistent Belnap’s logic in
Lemma 4.4, that is, replace it by 1

2 , we obtain, as reduction, the paraconsistent
Kleene’s logic in Lemma 4.3, as it may be seen from their truth-value tables:

IPC mZ

0 1 1

1
2 > 1

2

1 0 1
2

> 1
2 1

7→

IPC mZ

0 1 1

1
2

1
2

1
2

1 0 1
2

5 Family of (in)finitary canonical constructions

Notice that the example in Lemma 4.3 may be generalized to all sublattices
(HW ,⊆,

⋂
,
⋃

) (of the powerset lattice (P(W),⊆,
⋂
,
⋃

)) of all hereditary sub-
sets of the total ordering (W,v), by defining an antitonic negation operator
such that:

λ(∅) =W and λ(W) is equal to a singleton set ∗ (it is an atom in HW ).

That is, ¬0 = 1 and ¬1 = a ∈ B has a fixed value a = is(∗) > 0, where, from
Definition 1.6, is : (HW ,⊆,

⋂
,
⋃
,⇀, λ)→ (B,≤,∧,∨,⇒,¬) is the isomorphism

such that is(∅) = 0 and is(W) = 1. Thus, we need a many-valued framework.
For a poset (W,v) and an element x ∈ W, we denote the downward closed

subset {y ∈ W | y v x} by ↓ x, and the upward closed subset {y ∈ W | x v y}
by ↑ x.

It is interesting to show how we are able to make a canonical construction
of any n-valued logic (n ≥ 4) that is a member of the mZ system, useful for
practical applications.
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Example 5.1 Let us consider, for example, the following construction (infi-
nite as well):

Lemma 5.2 Let us define W = {2, 3, 4, . . . , n}, where n ≥ 4 can be finite or
infinite (n = ∞), with v equal to the inverse of the ordering of numbers and
hence W =↑ n and ↑ 2 = {2}. Then we define the set of hereditary subsets:
HW = {∅, ↑ 2, ↑ 3, ↑ 4, . . . ,W} and the hereditary relation R =

⋃
j∈W(Bj,1 ×

Bj,2) ∈ R, where Bj,1 =↑ j ∈ HW , Bj,2 =↑ (n− j + 2) ∈ HW .
The algebra of hereditary subsets (HW ,⊆,

⋂
,
⋃
,⇀, λ) is an algebraic rep-

resentation of the paraconsistent n-valued mZ logic.

Proof. We have that λ(∅) = W, while for each V =↑ j ∈ HW (i.e., V 6= ∅),
λ(V ) =↑ (n− j + 2) ∈ HW .

We can define the n-valued lattice (Bn,≤,∧,∨, 0, 1) = {0, 1
n−1 , . . . ,

1
2 , 1},

where ∧ (meet) and ∨ (join) are the functions min and max respectively, for
this n-valued mZ logic with the isomorphisms is : HW → Bn such that is(∅) = 0
and is(↑ k) = 1

n−k+1 for k = 2, . . . , n, and hence is(W) = is(↑ n) = 1.
Consequently, we have that λ(W) = λ(↑ n) =↑ 2 = {2} 6= ∅ (we recall that

↑ 2 = {2} is the atom in the complete distributive lattice (HW ,⊆)), so that
¬1 = is ◦ λ ◦ is−1(1) = is(λ(W)) = is(↑ 2) = 1

n−1 6= 0 which satisfies the fact
that we eliminated the axiom ¬1⇒ 0 (and theorem ¬1 = 0) from our system
mZ.

Hence, for paraconsistent negation we have ¬ 1
k = 1

n−k and ¬¬ identity, for

k = 1, 2, . . . , n− 1 (however, with ¬¬0 = 1
n−1 6= 0).

Moreover, for each V =↑ j ∈ HW , for 3 ≤ j ≤ n− 1,

λ(V
⋂
λ(V )) = λ(↑ j

⋂
↑ (n− j + 2)) = λ(↑ min(j, n− j + 2)) 6=W,

(i.e., ¬( 1
n−j+1 ∧ ¬

1
n−j+1) = ¬(min{ 1

n−j+1 ,
1
j−1}) = max{ 1

n−j+1 ,
1
j−1} 6= 1)

so that for each proposition A whose “logic value” is a V 6= ∅ and V 6= W
(set of possible worlds in W in the Kripke-like semantics where A is true) we
have that ¬(A∧¬A) is not true, and the schema ¬(A∧¬A) is not valid in this
n-valued logic.

Notice that the 3-valued logic of the Lemma 4.3 is not obtained by a canon-
ical construction. In fact, in the canonical solution above we would obtain the
different incompatibility hereditary relation R = {(2, 2), (3, 2), (2, 3)}, but in
this case ¬(A ∧ ¬A) would be valid, thus NdC1 not satisfied. �

However, in what follows we will use another more general canonical construc-
tion. The approach used in the example above is a particular application
(for complete distributive lattices of total orderings) of the autoreferential one
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[35, 38], based on the observation that the set of “logic values” in HW is a
complete distributive lattice. Thus, the construction of the incompatibility
relation is fundamentally autoreferential (w.r.t. the set of logic values of a
many-valued logic). Consequently, this approach can be used to model any
desired split negation (antitonic and additive-modal unary operator), as we
can see in the following example.

In what follows we will use the method of autoreferential semantics for rep-
resentation of many-valued algebras [35] corresponding to a number of different
logics as examples in this section. So, from [35] for any (also non totally or-
dered as that in Lemma 5.2 of a canonical construction) complete distributive
bounded latice of truth-values (B,≤,∧,∨, 0, 1), there is the 0-Lifted Birkhoff
isomorphism with its set-based lattice representation:

↓+: (B,≤,∧,∨) ' (B+,⊆,
⋂
,
⋃

)

where byW ⊂ B we denote the subset of join-irreducible elements (with bottom
element 0 /∈ W because it is not join-ireducible) in the complete distributive
lattice of truth values (B,≤,∧,∨), and we define B̂ =def W

⋃
{0}, so that we

define the hereditary subset by

↓+ x = {y ∈ B | y ≤ x}
⋂
B̂

with the set of all downward closed hereditary subsets B+ = {↓+ a |a ∈ B } ⊆
P(B), so that ↓+

∨
= idB+ : B+ → B+ and

∨
↓+= idB : B → B. Thus, the

operator ↓+ is the inverse of the supremum operation
∨

: B+ → B.
The Heyting’s and multi-modal extensions (nor example, for modal para-

consistent negation operators in our case) of these complete distributive latices
are provided in [35], with their representation by the isomorphism between
many-valued Heyting algebra of truth-values in B (with implication defined as
pseudocomplement x ⇀ y =

∨
{z ∈ B | z∧x ≤ y} and negation by ¬x = x ⇀ 0)

and its set-based representation algebra:

↓+: (B,≤,∧,∨,¬,⇒, 0, 1) ' (B+,⊆,∩,∪, ¬̂,⇀, {0}, B̂) (1)

where the set-based implication operator is defined by

(↓+ x) ⇀ (↓+ y) = ↓+ (x⇒ y)

Thus, what we need is only to replace the intuitionistic negation used in
Heyting algebras by their paraconsistent weakening (substitute ¬̂ by λ in
the isomorphism above), and hence to find the incompatibility relation R
used in Birkhoff’s polarity for the split negation λ, in order to preserve this
representation-isomorphism above, and to obtain that the set-based algebra in
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(1) be just the algebra on hereditary subsets (HW ,⊆,
⋂
,
⋃
,�, λ) as provided

by Definition 1.6.
However, the bottom element of HW is the empty set ∅ while the bottom

element of B+ is the singleton set {0}, and hence here we need a different
representation from that in (1). So, we define this autoreferential semantics
for the (inverse w.r.t isomorphism in (1)) isomorphism in Definition 1.6:

Definition 5.3 The autoreferential semantics for the required isomorphism in
Definition 1.6 is specified as follows:

1. The set of possible worlds W is just the set of join-irreducible elements
in the lattice of truth-values B;

2. The set of hereditary subsets of join-irreducible elements

HW =def {↓+0 x | x ∈ B̂ =W ∪ {0}} (2)

where ↓+0 x =def (↓+ x)\{0}, and \ is the set-substraction operation.

3. For each hereditary subset S ∈ HW , we define the isomorphism in Defi-
nition 1.6 by

is(S) =def

∨̂
S (3)

where
∨̂
S =def

∨
{S ∪ {0}}, in order to obtain the inverse isomorphism

is−1 =↓+0 .

That is, we obtain the isomorphism

↓+0 : (B,≤,∧,∨,⇒,¬, 0, 1) ' (HW ,⊆,∩,∪,⇀, λ, ∅,W) (4)

and hence, by this homomorphisam, ↓+0 ¬ = λ ↓+0 , i.e., λ =↓+0 ¬
∨̂

: HW →
HW .

Notice that the example in Lemma 4.3 may be generalized to all sublattices
(HW ,⊆,

⋂
,
⋃

) (of the powerset lattice (P(W),⊆,
⋂
,
⋃

)) of all hereditary sub-
sets of the ordering (W,v), by defining an antitonic negation operator such
that:

λ(∅) =W and λ(W) is equal to a singleton set ∗ (it is an atom in HW )

That is, ¬0 = 1 and ¬1 = a ∈ X has a fixed value a = is(∗) > 0, where, from
Definition 1.6, is : (HW ,⊆,

⋂
,
⋃
,⇀, λ)→ (B,≤,∧,∨,⇒,¬) is the isomorphism

such that is(∅) = 0 and is(W) = 1. Thus, we need a many-valued framework.
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The approach used in this canonical construction is a particular application
(for complete distributive bounded lattices (B,≤,∧,∨, 0, 1)) of the autoreferen-
tial one [35, 38], based on the observation that HW is a complete distributive
lattice. Thus, the construction of the incompatibility relation is fundamen-
tally autoreferential (w.r.t. the set of logic values of a many-valued logic).
Consequently, this approach can be used to model any desired split negation
(antitonic and additive-modal unary operator):

Proposition 5.4 For a given negation (antitonic additive modal operator) ¬,
we are able to define the hereditary-incompatibility relation by

R =
⋃
a∈W

(↓+0 a)× (↓+0 ¬a) (5)

in order to define the split negation λ which satisfies the autoreferential seman-
tics isomorphism (4),

↓+0 : (B,≤,∧,∨,⇒,¬, 0, 1) ' (HW ,⊆,∩,∪,⇀, λ, ∅,W)

that is, the condition

λ =↓+0 ¬
∨̂

: HW → HW (6)

Proof. For the case when S = ∅ ∈ we obtain the banal result that λ∅ =
W ∈ HW , so that we are interested only for non-empty hereditary subsets of
join-irreducible elements from (2), S =↓+0 x ∈ HW for some x ∈ B, and hence
we have that

λS =def {y ∈ B | ∀u ∈ S.(u, y) ∈ R}
= {y ∈ B | ∀u ∈ (↓+0 x).(u, y) ∈ R}
⊇ (↓+0 ¬x) from (5) and x ∈ W.

Let us show that we obtain strictly the result λS = (↓+0 ¬x), that is, that
we have no any contribution to λS of another components (↓+0 a)×(↓+0 ¬a) ⊂ R
in (5). In order to give such a contribution to λS, from definition of λ we must
have that S ⊂ (↓+0 a) and from the fact that S = (↓+0 a) it is possible only
if x < a, that is ¬x ≥ ¬a and hence (↓+0 ¬x) ⊇ (↓+0 ¬a). Consequently, any
y ∈ (↓+0 ¬a) is already in (↓+0 ¬x) as well, and we can not have any new
contribution to λS, that is, we obtain the strict result that for each x ∈ B

(↓+0 ¬x) = λS = λ(↓+0 x)

and hence we obtain that ↓+0 ¬ = λ ↓+0 , so that λ = λ(↓+0
∨̂

) = (↓+ ¬)
∨̂

.
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This completes the proof. �

This proposition is very useful because it offers a method for transformation
of any many-valued logic based on Heyting algebras (thus with intuitionistic
implication) into da Costa paraconsistent mZ logic by simply weakening the
negation operation (as we will see in what follows in a number of examples) and
to offer a Kripke semantics for them (in that case we see this paraconsistent
logic as a bimodal two-valued logic).

Let us consider the previous examples of mZ logic for 3-valued and 4-valued
logics by using the autoreferential semantics:

• Da Costa paraconsistent Kleene logic in Lemma 4.3. The set of join-
irreducible elements isW = {12 , 1} with v equal to inverse truth-ordering

≤−1 and B̂ = W
⋃
{0} = {0, 12 , 1} = B3, and hence from (2), HW =

{∅, {12},W} with the isomorphism

is : (HW ,⊆,
⋂
,
⋃
,⇀, λ)→ (B3,≤,∧,∨,⇒,¬)

in Definition 1.6 such that is(∅) = 0, is(W) = 1 and is({12}) = 1
2 (un-

known value), and hereditary relation, from (5), R = {(12 ,
1
2), (1, 12)} ∈ R

for the split negation λ.

It is easy to verify that λ(W) = {12} 6= ∅ (i.e., from the algebra isomor-
phisms is, ¬1 = 1

2 6= 0) and that for V = {12}, λ(V
⋂
λ(V )) = {12} 6=W

(i.e.,¬(12 ∧ ¬
1
2) = 1

2 6= 1), so that the principle of non-contradiction is
valid.

It is different from the Kleene logic where ¬1 = 0, while in our 3-valued
paraconsistent mZ logic we have by the weakening of negation that ¬1 =
1
2 (i.e., ¬1 = ¬1

2 = 1
2 ,¬0 = 1).

• Da Costa paraconsistent Belnap bilattice logic in Lemma 4.4. The set of
join-irreducible elements is W = {12 ,>} with v equal to inverse truth-

ordering≤−1 and B̂ =W
⋃
{0}, and hence from (2),HW = {∅, {>}, {12},W},

with the isomorphism

is : (HW ,⊆,
⋂
,
⋃
,⇀, λ)→ (B4,≤,∧,∨,⇒,¬)

where 0 = is(∅) corresponds to the false value, 1 = is(W) to the true
value, is({>}) = >, is({12}) = 1

2 to the unknown value, and hereditary
relation,from (5), R = {(>,>), (12 ,

1
2), (>, 12)} ∈ R.

It is easy to verify that λ(W) = {12} 6= ∅ and for V = {12}, λ(V
⋂
λ(V )) =

{12} 6=W, so that the principle of non-contradiction is valid.
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We have that λ({12}) = {12} and λ({>}) =W = {12 ,>}.
Consequently, we obtain that ¬1 = ¬1

2 = 1
2 and ¬0 = 1 and ¬> = 1.

Based on these two examples and on the autoreferential semantics [35, 38], used
for a construction of (W,v) and incompatibility relation in (5), we are able
to modify any existing many-valued logic, based on the complete distributive
lattice of truth values, by weakening its negation and by using the intuitionistic
implication (that is, the pseudocomplement of the complete distributive lattice
of truth values in B), in order to obtain a mZ paraconsistent logic. Now we
will apply this method to an important infinitary many valued logic: Zadeh’s
Fuzzy logic.

5.1 Da Costa paraconsistent Zadeh-fuzzy logic

Let us consider the original set of Zadeh fuzzy operators on the closed interval
[0, 1] of reals, with negation ¬, conjunction ∧ and disjunction ∨, defined as
follows:

1. ¬x = 1− x;

2. x ∧ y = min(x, y);

3. x ∨ y = max(x, y);

so that the conjunction and disjunction are the meet and join operators of the
complete distributive lattice ([0, 1],≤).

The closed interval of reals [0, 1] is totally ordered, i.e., a complete dis-
tributive lattice, so that we can enrich the original fuzzy logic with an intu-
itionistic implication (as in t-norm logics), that is with a relative pseudocom-
plement. Thus, for any x, y ∈ [0, 1] we define x ⇒ y by

∨
{z|x ∧ z ≤ y} =

max{z|min(x, z) ≤ y}.
It is easy to verify that the fuzzy logic is not da Costa paraconsistent,

because of the fact that ¬1 = 0. In the standard fuzzy logic, the sentences
are considered true if their truth value x satisfy 0 < ε1 ≤ x ≤ 1 for a prefixed
value ε1, so that the set of designated truth values is D = [ε1, 1] (each sentence
with the truth value in D is considered as a true sentence).

Consequently, as in the case of the 3-valued Kleene logic and 4-valued
Belnap’s bilattice logic, we need to change the original negation, where ¬x =
1 − x, in the way that ¬1 = ε0 > 0, where ε0 > 0 is a prefixed positive
infinitesimal value. In this way, with this very slightly changed fuzzy logic, we
obtain a paraconsistent fuzzy mZ logic.

We recall that in any many-valued mZ logic the set of designated elements is
exactly the singleton {1} (this fact comes out from the Kripke-like semantics of
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the mZ system, where a sentence (proposition) is true only and only if it is true
in all possible worlds in W), thus the set of truth values in the paraconsistent
fuzzy logic that is a member of mZ has to be changed from [0, 1] to the set D
of designated elements in the fuzzy logic, as follows:

Lemma 5.5 Let us consider a fuzzy logic with a matrix defined by a set of
designated elements D = [ε1, 1], with 0.5 < ε1 ≤ 1, and let us fix an infinites-
imal positive value ε0 such that 0 < ε0 << ε1. Then we define the totally
ordered lattice of logic truth values by (B,≤,∧,∨) = {0}

⋃
[ε0, 1]. We define

the intuitionistic implication ⇒ by the relative-pseudocomplement in B, and
the negation operator for any x ∈ B,

¬x = ε0 ∨ (1− x) = max(ε0, 1− x).

Then, the logic (B,≤,∧,∨,⇒,¬) is a paraconsistent mZ fuzzy logic.

Proof. First of all let us show that ¬ is an antitonic additive operator, thus
a split negation that can be modeled by Birkhoff’s polarity and its incompati-
bility relation.

In fact, for any two x, y ∈ B if x ≥ y then ¬x = max(ε0, 1 − x) ≤
max(ε0, 1 − y) = ¬y. Thus, it is antitonic. The antitonicity is preserved
in the cases when ¬x = 1 as well. Let us show that it is also additive:
1. For the bottom element 0 ∈ B we have that ¬0 = max(ε0, 1) = 1.
2. For x, y ∈ B, ¬(x ∨ y) = ¬(max(x, y)) = max(ε0, 1 − max(x, y)) =
max(ε0,min(1−x, 1−y)) = max(ε0, (1−x)∧(1−y)) = ε0∨((1−x)∧(1−y)) =
(ε0 ∨ (1− x)) ∧ (ε0 ∨ (1− x)) = ¬x ∧ ¬y.

Thus, ¬ is an additive antitonic operation, and, consequently, it is a split
negation.

Let us define the hereditary incompatible relation for this split negation.
The subset of join-irreducible elements of B is the complete distributive lattice
(W,v) = B̂ = [ε0, 1], where we chose v to be inverse of ≤ in B.

Consequently, the set of all hereditary subsets of the complete distributive
lattice W is HW = {↓+0 x | x ∈ W

⋃
{0}} = {[ε0, x] | x ∈ W = [ε0, 1]}, where

[ε0, ε0] = {ε0}, so that there is the isomorphism is : (HW ,⊆) → (B,≤) such
that is(∅} = 0 and for any x ∈ W, is(↓+0 x) = x.

Thus, based on (5),

R =
⋃

x∈[ε0,1]

[ε0, x]× [ε0,max(ε0, 1− x)].

Consequently, for each x ∈ W, λ([ε0, x]) = [ε0,max(ε0, 1 − x)], and it corre-
sponds to ¬x = max(ε0, 1− x).
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Thus, this is a well defined paraconsistent fuzzy logic which belongs to the
mZ logics. �

It is easy to verify, that in the limit case to the set of designated elements
D = {1}, that is when ε1 = 1, we obtain that ¬x ∈ D (that is, it is true) if
and only if x = 0.

Notice that for each max{ε0, 1−ε1} < x < ε1, we have that ¬(x∧¬x) /∈ D
(that is, it is not true) which satisfies the principle of non-contradiction Nd1
of da Costa negation weakening (consider, for example, the limit case when
ε1 = 1).

5.2 Paraconsistent subintuitionistic Gödel-Dummett logic

T-norm fuzzy logics are a family of non-classical logics [28], informally delim-
ited by having a semantics which takes the real unit closed interval [0, 1] for
the system of truth values and functions called t-norms for permissible inter-
pretations of conjunction.

Gödel-Dummett logic (the logic of the minimum t-norm) was implicit in
Gödel’s 1932 proof of infinite-valuedness of intuitionistic logic [20]. Later (1959)
it was explicitly studied by Dummett who proved a completeness theorem for
the logic [23].

Definition 5.6 Gödel-Dummett logics, LCn = (Bn,∧,∨,⇒,¬, 0, 1), where for
finite n ≥ 2, Bn = {0, 1

n−1 , . . . ,
n−2
n−1 , 1} and for infinite n, B∞ = [0, 1] (closed

interval of reals) are both total orders, where ∧,∨ are the meet and join opera-
tors of these distributive complete lattices and ⇒,¬ are defined as in the IPC.
Thus, they are intermediate logics, that is, IPC + ((A⇒ B) ∨ (B ⇒ A)).

From the fact that this (added to IPC) axiom (A ⇒ B) ∨ (B ⇒ A) does not
contain negation symbols, we conclude that the logic obtained by the addi-
tion of this axiom to mZ axiom system would not change the paraconsistent
weakening of the intuitionistic negation. Consequently, we are able to make
the paraconsistent weakening of Gödel–Dummett logic in the same way as for
IPC.

Lemma 5.7 The paraconsistent Gödel-Dummett logic is obtained by adding
the axiom (A⇒ B) ∨ (B ⇒ A) to mZ system .

In this case we do not change Bn and we define B∞ = {0}
⋃

[a, 1] for an
enough big value n >> 2 and atom a = 1

n−1 , and the paraconsistent negation
for any x in Bn:

¬x = 1 if x = 0; a otherwise.
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Proof. It is easy to verify that ¬ is an antitonic operator. Let us show that
it is an additive modal operator as well:

1. ¬0 = 1.
2. Let us show that for each x, y ∈ Bn, ¬(x ∨ y) = ¬x ∧ ¬y:

2.1 when x = 0 (or y = 0), we have ¬(0 ∨ y) = ¬y = 1 ∧ ¬y = ¬0 ∧ ¬y.
2.2 when both x and y are different from 0: ¬(x∨y) = a = a∧a = ¬x∧¬y. �

Notice that W = B̂n = Bn\{0}, so that the incompatibility relation is based
on (5)

R =
⋃
x∈W(↓+0 x)× (↓+0 ¬x))

=
⋃
x∈W(↓+0 x)× { 1

n−1},

so that λ(↓+0 x) = { 1
n−1} for each x ∈ W.

It is easy to verify that ¬I � ¬, as demonstrated by Corollary 3.2 for the mZ
logic, and ¬I 6= ¬. It is interesting to note that ¬x 6= ¬Ix =def (x⇒ a) = 1
if x ∈ {0, a}; a otherwise.

Both formulae, A ∨ ¬A and ¬(A ∧ ¬A), are not theorems. In fact for each
x ∈ Bn such that x 6= 0, we have that ¬(x ∧ ¬x) = a < 1, and for every
x /∈ {0, 1},¬x ∨ x = x < 1. Notice that by the paraconsistent weakening of
the minimal cardinality Gödel-Dummett logic (when n = 3), we obtain the
paraconsistent Kleene logic in Lemma 4.3.

6 Conclusion

In this paper we analyzed the principle of constructive negation and we have
shown that the a paraconsistent split negation used in mZ system is a construc-
tive as well as an intuitionistic negation (which is a special case of a split but
non paraconsistent negation). The main theoretical and philosophical results
are obtained by demonstrating that mZ system is a subintuitionistic construc-
tive paraconsistent logic and then we presented the strict relationship between
intuitionistic and new paraconsistent negation in mZ.

The significant part of this paper is dedicated to a number of applications of
these subintuitionistic paraconsistent mZ logics. In particular, we paid special
attention to Logic Programming with Fitting’s fixpoint semantics (w.r.t. the
knowledge ordering) by using mZ logics with minimal cardinalities, obtained
by paraconsistent da Costa’s weakening of the 3-valued Kleene and 4-valued
bilattice-based Belnap’s logics.

Moreover, we defined the canonical constructions of infinite-valued mZ log-
ics and paraconsistent weakening of the classic (Zadeh) fuzzy logic and of the
Gödel-Dummet t-norm intermediate logic.



152 Z. Majkić

The Kripke-style semantics for these paraconsistent negations are defined
as modal additive negations: they are a conservative extension of the pos-
itive fragment of Kripke semantics for intuitionistic propositional logic [37],
where only the satisfaction for negation operator is changed by adopting an
incompatibility accessibility relation for this modal operator which comes from
Birkhoff’s polarity theory based on a Galois connection for negation operator.

Future work: With this paper I finished my research, published in last decade
[37, 15, 39, 40], in weakening of negation of paraconsistent da Costa system.

However, this work opens another interesting directions of research for this
subintuitionistc logic. For example, it is well known that Cartesian Closed
Categories (CCC) are models for the typed lambda-calculus. By enriching
CCCs with finite coproducts (for logic disjunction) and by classifier subobjects,
we obtain the topoi as models for the intuitionistic logic (or, equivalently,
Heyting algebras). Thus, another interesting investigation may be to consider
which kind of enrichment of topos is needed in order to obtain a categorial
model for this system of paraconsistent but still constructive logics mZ.
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