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Abstract

In this paper, we study the congruences, prime filters and prime ideals
of horizontal sums of bounded lattices, then, through a construction based
on horizontal sums and without enforcing the Continuum Hypothesis,
we modify an example from [5] into a solution to the problem we have
proposed in the same article: finding a lattice with the cardinalities of the
sets of filters, ideals and congruences pairwise distinct.
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Introduction

In [5], we have proposed the following problem: finding lattices with the car-
dinalities of the sets of congruences, filters and ideals pairwise distinct, or
disproving their existence. In this paper, by using horizontal sums, we are
modifying an example from [5] of a lattice with the set of the filters count-
able and the set of the ideals uncountable into a simple lattice with the same
numbers of filters and ideals. To cancel the congruences of this lattice, we are
using a construction inspired by the method of constructing simple orthomod-
ular lattices through horizontal sums from the proof of [3, Proposition 5.11].
Our method involves the use of multiple horizontal sums to turn arbitrary
bounded lattices into simple bounded lattices.

We are also studying the effect of the basic horizontal sum construction on
congruences and prime filters and ideals of bounded lattices, then apply it to a
lattice with the set of the filters countable and the set of the ideals uncountable
which can be turned into a simple lattice through a single horizontal sum. Note
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that, while many of the results on cardinalities from [5] only hold under the
Generalized Continuum Hypothesis, all results obtained in the present paper
are valid without enforcing the Continuum Hypothesis.

1 Preliminaries

Throughout this paper, whenever there is no danger of confusion, we designate
algebras by their underlying sets. N will denote the set of the natural numbers,
N∗ = N\{0} and P will be the set of the prime natural numbers. For any sets M
and N , we denote by MqN the disjoint union of M and N , by P(M) the set of
the subsets of M and by |M | the cardinality of M . Also, for any cardinality κ,
we denote by Pκ(M) = {S ∈ P(M) | |S| = κ}, P<κ(M) = {S ∈ P(M) | |S| <
κ} and P≤κ(M) = {S ∈ P(M) | |S| ≤ κ}; note that, if 0 < κ ≤ |M |, then

|Pκ(M)| = |M |κ, so |M |κ−1 ≤ |P<κ(M)| =
∑

0≤ι<κ
|M |ι ≤ κ · |M |κ and |M |κ =

|Pκ(M)| ≤ |P≤κ(M)| = |Pκ(M)|+ |P<κ(M)| ≤ (κ+ 1) · |M |κ, hence, if |M | is
infinite and 0 < κ ≤ |M |, then |Pκ(M)| = |P<κ(M)| = |P≤κ(M)| = |M |κ.

For any nonempty set M , (Eq(M),∨,∩,⊆,∆M ,∇M ) and (Part(M),∨,∧,≤
, {{x} | x ∈M}, {M}) will be the bounded lattices of the equivalences and the
partitions ofM , respectively, and eq : Part(M)→ Eq(M) shall be the canonical
lattice isomorphism. If n ∈ N∗ and π = {M1, . . . ,Mn} ∈ Part(M), then the
equivalence eq({M1, . . . ,Mn}) will be denoted, simply, by eq(M1, . . . ,Mn).

Let L be a lattice. Then ≺ will denote the cover relation in L. Mi(L)
and Ji(L) will denote the sets of the meet–irreducible and the join–irreducible
elements of L, respectively. For any U ⊆ L and any a, b ∈ L, [U)L and (U ]L
shall be the filter, respectively the ideal of L generated by U , and we use the
common notations [a)L = [{a})L, (a]L = ({a}]L and [a, b]L = [a)L∩ (b]L. If the
index L is omitted, then the interval [a, b] is considered in the lattice N with
the natural order.

Con(L), Filt(L), PFilt(L), Id(L) and PId(L) shall be the lattices of the
congruences, filters, principal filters, ideals and principal ideals of L, respec-
tively. Recall that the prime congruences of L are the prime elements of the
lattice Con(L), so all maximal congruences of L are prime congruences. We
denote by Max(L), Spec(L), SpecFilt(L) and SpecId(L) the sets of the maximal
congruences, prime congruences, prime filters and prime ideals of L, respec-
tively. Recall that each class of a congruence of L is a convex sublattice of L,
thus it is the intersection of a filter and an ideal of L. If L is a bounded lattice,
then we denote by Con01(L) the set of the congruences of L whose classes of 0
and 1 are singletons: Con01(L) = {θ ∈ Con(L) | 0/θ = {0}, 1/θ = {1}}.

For any n ∈ N∗, Ln shall be the n–element chain. We use the common
notations M3 for the diamond and N5 for the pentagon. For any lattices K
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and L, the notation K ∼= L will specify the fact that K and L are isomorphic.
We abbreviate by DCC the descending chain condition.

Recall that the ordinal sum of a lattice (L,≤L, 1L) with last element and a
lattice (M,≤M , 0M ) with first element is the lattice denoted by L⊕M obtained
by identifying 1L = 0M and glueing L and M at this single common point.
More precisely, we let ε = eq({{1L, 0M}} ∪ {{x} | x ∈ (L \ {1L}) q (M \
{1M})}) ∈ Eq(L q M) and consider the set L ⊕ M = (L q M)/ε. Since
ε ∩ L2 = ∆L ∈ Con(L) and ε ∩M2 = ∆M ∈ Con(M), we may identify L with
L/ε ∼= L and M with M/ε ∼= M by identifying x with x/ε for all x ∈ L qM .
Now we define the lattice order ≤L⊕M=≤L ∪ ≤M on L ⊕ M . Clearly, the
ordinal sum of bounded lattices is associative.

r 1L = 0M'$&%
L

M

L⊕M :

r
r'
&
$
%

�
�
�
�A B

1A = 1B

0A = 0B

A�B :

Recall that the horizontal sum of two nontrivial bounded lattices (A,≤A,
0A, 1A) and (B,≤B, 0B, 1B) is the nontrivial bounded lattice denoted A � B
and obtained by glueing A and B at their first elements and at their last el-
ements. We can generalize this construction to an arbitrary nonempty family
((Ai,≤Ai ,0Ai , 1Ai))i∈I of nontrivial bounded lattices. For the precise defini-
tion, we let ξ = eq({{0Ai | i ∈ I}, {1Ai | i ∈ I}} ∪ {{x} | x ∈ qi∈I(Ai \
{0Ai , 1Ai})}) ∈ Eq(qi∈IAi) and consider the set �i∈IAi = (qi∈IAi)/ξ. Since,
for every i ∈ I, ξ ∩ A2

i = ∆Ai ∈ Con(Ai), we may identify each Ai with
Ai/ξ ∼= Ai by identifying x with x/ξ for all x ∈ qi∈IAi. Now we define the

lattice order ≤�i∈IAi=
⋃
i∈I
≤Ai on �i∈IAi; the lattice (�i∈IAi,≤�i∈IAi) has

the first element 0 = 0�i∈IAi = 0Aj and the last element 1 = 1�i∈IAi =
1Aj for every j ∈ I. If αi ∈ Eq(Ai) \ {∇Ai} for all i ∈ I, then we de-

note by �i∈Iαi = eq(
⋃
i∈I

(Ai/αi \ {0Ai/αi, 1
Ai/αi}) ∪ {

⋃
i∈I

0Ai/αi,
⋃
i∈I

1Ai/αi}) ∈

Eq(�i∈IAi) \ {∇�i∈IAi}; so �i∈Iαi is the equivalence on �i∈IAi whose classes

are: x/(�i∈Iαi) =

{
x/αi, x ∈ Ai \ {0, 1} for some i ∈ I,⋃
i∈I x/αi, x ∈ {0, 1}.

Note that L2�

B = B and ∆L2 � β = β for any nontrivial bounded lattice B and any
β ∈ Con(B)\{∇B}. Clearly, the horizontal sum of nontrivial bounded lattices
is commutative and associative, and so is the operation � on proper equiva-
lences on the underlying sets of those lattices.
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2 Some Introductory Remarks

Let L be a lattice. Then |L| = |PFilt(L)| = |PId(L)| ≤ |Filt(L)|, |Id(L)| ≤
|P(L)| = 2|L|, while |Con(L)| ≤ |Eq(L)| = |Part(L)| ≤ |{π ∈ P(P(L)) | |π| ≤
|L|}| = |P≤|L|(P(L))| ≤ (|L|+ 1) · (2|L|)|L| = (|L|+ 1) · (2|L|·|L|).

If all filters of L are principal, then |Filt(L)| = |L|, and the same holds for
ideals, but the converses of these implications do not hold, as shown by a set
of examples in [5, Remarks 5.2 and 5.3].

If L is finite, then all its filters and ideals are principal, so |Filt(L)| =
|Id(L)| = |L|, while, if L is infinite, then, by the above, |L| ≤ |Filt(L)|, |Id(L)| ≤
2|L| and |Con(L)| ≤ 2|L|. Therefore a lattice L with |Con(L)|, |Filt(L)| and
|Id(L)| pairwise distinct has to be infinite and, if we enforce the Generalized
Continuum Hypothesis, then we must have |Con(L)| < |L| and {|Filt(L)|,
|Id(L)|} = {|L|, 2|L|}, so L has to have strictly less congruences than elements
and either as many filters as elements and as many ideals as subsets or vice–
versa.

Let F be a filter of L. Then F is principal iff it has a minimum, case in
which F = [min(F ))L. L \F is an ideal of F iff F is prime. The duals of these
hold for ideals. The map P 7→ L \ P is a bijection between SpecFilt(L) and
SpecId(L) and, for any prime filter P of L, eq(P,L \ P ) ∈ Max(L) ⊆ Spec(L),
hence, for any nonempty family (Pi)i∈I of prime filters of L, if we denote by

θ =
⋂
i∈I

eq(Pi, L \ Pi), then θ is a congruence of L such that L/θ is a bounded

lattice, with the filter
⋂
i∈I

Pi as top element and the ideal
⋂
i∈I

(L \Pi) as bottom

element. Therefore L has at least as many congruences as intersections of prime
filters and at least as many congruences as intersections of prime ideals. In the
particular case when L is distributive, L has at least as many congruences
as filters and at least as many congruences as ideals, so, if L is an infinite
distributive lattice, then |L| ≤ |Filt(L)|, |Id(L)| ≤ |Con(L)| ≤ 2|L|, hence the
cardinalities |Filt(L)|, |Id(L)| and |Con(L)| can not be pairwise distinct under
the Generalized Continuum Hypothesis.

Since Con(L) is a complete sublattice of Eq(L) [4, Corollary 2, p. 51], for
any nonempty family (πi)i∈I ⊆ Part(L), if eq(πi) ∈ Con(L) for all i ∈ I, then

eq(
∨
i∈I

πi) =
∨
i∈I

eq(πi), eq(
∧
i∈I

πi) =
⋂
i∈I

eq(πi) ∈ Con(L). If S is a nonempty

subset of L such that S ∈ πi for all i ∈ I, then S ∈
∨
i∈I

πi and S ∈
∧
i∈I

πi; also,

if ν, ρ, π ∈ Part(L) are such that ν ≤ ρ ≤ π, S ∈ ν and S ∈ π, then S ∈ ρ.
Hence, for any nonempty family (Sj)j∈J of pairwise disjoint nonempty subsets
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of L, {θ ∈ Con(L) | (∀ j ∈ J)(Sj ∈ L/θ)} =
⋂
j∈J
{θ ∈ Con(L) | Sj ∈ L/θ} is a

complete convex sublattice of Con(L), so it is a bounded lattice. In particular,
if L is a bounded lattice, then Con01(L) = {θ ∈ Con(L) | {0}, {1} ∈ L/θ} is
a complete convex sublattice of Con(L) which obviously contains ∆L, hence
Con01(L) is a principal ideal of Con(L) generated by the largest congruence µ
of L with the classes of 0 and 1 singletons.

3 Horizontal Sums Cancel Congruences, Prime Fil-
ters and Prime Ideals, While Leaving Filters and
Ideals in Place

Throughout this section, L, A and B shall be nontrivial bounded lattices.
We will sometimes use the remarks in this paper without referencing them.

Remark 3.1 For any proper filter P of L, the following are equivalent:

1. P is a prime filter of L;

2. L \ P is an ideal of L;

3. L \ P is a prime ideal of L;

4. eq(P,L \ P ) is a congruence of L;

5. eq(P,L \ P ) is a maximal congruence of L.

Indeed, (4) and (5) are clearly equivalent, and so are (1), (2) and (3). It
is straightforward that (1) and (3) imply (4). If eq(P,L \ P ) ∈ Con(L), then
L \ P = 0/eq(P,L \ P ) ∈ Id(L), so (4) implies (5).

Note, also, from the above, that, for any congruence θ of L, since 0/θ ∈
Filt(L) and 1/θ ∈ Id(L), we have: |L/θ| = 2 iff θ = eq(0/θ, 1/θ) 6= ∇L
iff θ 6= ∇L and 0/θ ∪ 1/θ = L, which implies that 0/θ ∈ SpecFilt(L) and
1/θ ∈ SpecId(L).

Lemma 3.2 1. 0 ∈ Mi(L) iff L \ {0} ∈ Filt(L) iff L \ {0} ∈ SpecFilt(L)
iff {0} ∈ SpecId(L) iff eq({0}, L \ {0}) ∈ Con(L) iff eq({0}, L \ {0}) ∈
Max(L), and dually for 1.

2. If |L| > 2, then: 0 ∈ Mi(L) and 1 ∈ Ji(L) iff L \ {0, 1} is a convex
sublattice of L iff eq({0}, L \ {0, 1}, {1}) ∈ Con(L).



110 C. Mureşan

Proof. (1) L \ {0} is closed w.r.t. upper bounds and, for all x, y ∈ L, if
x ∨ y ∈ L \ {0}, then x ∈ L \ {0} or y ∈ L \ {0}. Clearly, L \ {0} is closed
w.r.t. meets iff 0 ∈ Mi(L). Hence the first two equivalences hold. The rest of
the equivalences follow from Remark 3.1.
(2) By (1), if 0 ∈ Mi(L) and 1 ∈ Ji(L), then eq({0}, L \ {0}), eq(L \ {1}, {1}) ∈
Con(L), thus eq({0}, L \ {0, 1}, {1}) = eq({{0}, L \ {0}} ∧ {L \ {1}, {1}}) =
eq({0}, L\{0})∩eq(L\{1}, {1}) ∈ Con(L), which in turn implies that L\{0, 1}
is a convex sublattice of L. On the other hand, if L \ {0, 1} is a sublattice of
L, then it is closed w.r.t. meets, so 0 ∈ Mi(L), and w.r.t. joins, so 1 ∈ Ji(L).�

Note that, if |L| > 2, then eq({0}, L\{0, 1}, {1}) is not a prime congruence
of L, because, according to Lemma 3.2, eq({0}, L \ {0, 1}, {1}) = eq({0}, L \
{0}) ∩ eq(L \ {1}, {1}) is a congruence of L exactly when eq({0}, L \ {0}) )
eq({0}, L\{0, 1}, {1}) and eq(L\{1}, {1}) ) eq({0}, L\{0, 1}, {1}) are congru-
ences of L. Let us also notice that, if |L| > 2, then each member of Con01(L)
has at least three distinct classes.

Remark 3.3 If there exist a ∈ A \ {0, 1} and b ∈ B \ {0, 1}, then [{a, b}) =
A�B = ({a, b}], hence, regardless of the cardinalities of A and B:

• Filt(A�B) = (Filt(A) \ {A})∪ (Filt(B) \ {B})∪ {A�B} = ((Filt(A)∪
Filt(B)) \ {A,B}) ∪ {A � B}, and similarly for ideals, therefore, since
Filt(A) ∩ Filt(B) = {{1}} and dually for ideals, we have:

• |Filt(A � B)| = |Filt(A)| + |Filt(B)| − 2 and |Id(A � B)| = |Id(A)| +
|Id(B)| − 2.

Proposition 3.4 If |A| > 2 and |B| > 2, then SpecFilt(A�B) ⊆ {A\{0}, B \
{0}}, SpecId(A�B) ⊆ {A \ {1}, B \ {1}} and the following are equivalent:

• 0 ∈ Mi(A) and 1 ∈ Ji(B);

• A \ {0} ∈ SpecFilt(A�B);

• B \ {1} ∈ SpecId(A�B);

• eq(A \ {0}, B \ {1}) ∈ Con(A�B);

• eq(A \ {0}, B \ {1}) ∈ Max(A�B).

Proof. Let P ∈ Filt(A � B) \ {A � B} = (Filt(A) \ {A}) ∪ (Filt(B) \ {B})
by Remark 3.3. Assume, for instance, that P ∈ Filt(A) \ {A}. Then P ∈
SpecFilt(A�B) iff all the following hold:



Cancelling Congruences, While Keeping Filters and Ideals 111

• P ∈ SpecFilt(A);

• for all x, y ∈ B, x ∨ y ∈ P ∩ B = {1} implies x ∈ P ∩ B = {1} or
y ∈ P ∩ B = {1}, which is equivalent to 1 ∈ Ji(B), which in turn is
equivalent to B \ {1} ∈ SpecId(B) by Lemma 3.2, (1);

• for all a ∈ A \ {0, 1} and all b ∈ B \ {0, 1}, if a ∨ b ∈ P , then a ∈ P or
b ∈ P , so that a ∈ P since b ∈ B \A, which is equivalent to A\{0, 1} ⊆ P
and thus to A\{0} ⊆ P since P is a filter of A, which in turn is equivalent
to P = A \ {0} since P is a proper filter.

Therefore P ∈ SpecFilt(A�B) iff 1 ∈ Ji(B) and P = A \ {0} ∈ SpecFilt(A)
iff P = A\{0} and 0 ∈ Mi(A) and 1 ∈ Ji(B), again by Lemma 3.2, (1). Dually,
a proper ideal Q of A�B is prime iff Q = B\{1} and 0 ∈ Mi(A) and 1 ∈ Ji(B).
From the above, the fact that B \ {1} = (A�B) \ (A \ {0}) and Remark 3.1,
we obtain the equivalences in the enunciation.

Similarly, if P ∈ Filt(B) \ {B}, then P = B \ {0}, hence SpecFilt(A�B) ⊆
{A \ {0}, B \ {0}}. Dually, SpecId(A�B) ⊆ {A \ {1}, B \ {1}}. �

Remark 3.5 For any θ ∈ Con(A� B), we have: θ ∩ A2 ∈ Con(A), θ ∩ B2 ∈
Con(B) and: θ = ∇A�B iff (0, 1) ∈ θ iff (0, 1) ∈ θ ∩ A2 iff (0, 1) ∈ θ ∩ B2 iff
θ∩A2 = ∇A iff θ∩B2 = ∇B, and, if θ 6= ∇A�B, then θ = (θ∩A2)� (θ∩B2).

Lemma 3.6 Con01(A � B) = {α � β | α ∈ Con01(A), β ∈ Con01(B)} ∼=
Con01(A)× Con01(B).

Proof. By Remark 3.5, the fact that Con01(A) ⊆ Con(A) \ {∇A} and the
same for B and A � B, and the definition of the horizontal sum of proper
congruences, according to which 0/(α � β) = 0/α ∪ 0/β and 1/(α � β) =
1/α ∪ 1/β for all α ∈ Con(A) \ {∇A} and all β ∈ Con(B) \ {∇B}, we get
that Con01(A� B) = {α� β | α ∈ Con01(A), β ∈ Con01(B)}, hence, the map
(α, β) 7→ α� β from Con01(A)× Con01(B) to Con01(A�B) is surjective. By
Remark 3.5, (α�β)∩A2 = α and (α�β)∩B2 = β for all α ∈ Con(A) \ {∇A}
and all β ∈ Con(B) \ {∇B}, so this map is also injective, and it is clearly
order–preserving, therefore it is a lattice isomorphism. �

Proposition 3.7 If |A| > 2 and |B| > 2, then:

1. Con(A�B) = Con01(A�B) ∪ {∇A�B} ∼= (Con01(A)× Con01(B))⊕L2
iff eq(A\{0}, B \{1}), eq(A\{1}, B \{0}) /∈ Con(A�B) iff A�B has no
two–class congruences iff SpecFilt(A � B) = ∅ iff SpecId(A � B) = ∅ iff

the following conditions are fulfilled:

{
0 /∈ Mi(A) or 1 /∈ Ji(B), and

0 /∈ Mi(B) or 1 /∈ Ji(A);
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2. Con(A�B) = Con01(A�B)∪{eq(A\{0}, B\{1}),∇A�B} ∼= (Con01(A)×
Con01(B))⊕L3 iff eq(A\{0}, B \{1}) ∈ Con(A�B) and eq(A\{1}, B \
{0}) /∈ Con(A�B) iff eq(A\{0}, B\{1}) is the unique two–class congru-
ence of A�B iff SpecFilt(A�B) = {A\{0}} iff SpecId(A�B) = {B\{1}}

iff the following conditions are fulfilled:

{
0 ∈ Mi(A) and 1 ∈ Ji(B), but

0 /∈ Mi(B) or 1 /∈ Ji(A);

and dually for the case when eq(A \ {1}, B \ {0}) is the unique two–class
congruence of A�B;

3. Con(A � B) = Con01(A � B) ∪ {eq(A \ {0}, B \ {1}), eq(A \ {1}, B \
{0}),∇A�B} ∼= (Con01(A)×Con01(B))⊕L22 iff eq(A\{0}, B\{1}), eq(A\
{1}, B \ {0}) ∈ Con(A�B) iff A�B has two two–class congruences iff
SpecFilt(A�B) = {A\{0}, B\{0}} iff SpecId(A�B) = {A\{1}, B\{1}}
iff 0 ∈ Mi(A) ∩Mi(B) and 1 ∈ Ji(A) ∩ Ji(B).

Proof. Of course, Con01(A � B) ∪ {∇A�B} ⊆ Con(A � B). Now let θ ∈
Con(A � B) \ (Con01(A � B) ∪ {∇A�B}), α = θ ∩ A2 ∈ Con(A) \ {∇A} and
β = θ ∩ B2 ∈ Con(B) \ {∇B}. Then θ = α � β, so that 0/θ = 0/α ∪ 0/β and
1/θ = 1/α ∪ 1/β. By the choice of θ, we have 0/θ ) {0} or 1/θ ) {1}, hence
0/α ) {0} or 0/β ) {0} or 1/α ) {1} or 1/β ) {1}.

Assume, for instance, that 0/α ) {0}, so that there exists an a ∈ A \ {0}
with (0, a) ∈ α ⊆ θ. Since θ 6= ∇A�B, we have a 6= 1. Let b ∈ B \ {0} and c ∈
A\{1}, arbitrary. Then (b, 1) = (0∨ b, a∨ b) ∈ θ, thus (0, c) = (c∧ b, c∧1) ∈ θ.
Hence B \ {0} ⊆ 1/θ and A \ {1} ⊆ 0/θ, therefore ∇A�B ⊇ θ ⊇ eq(A \ {1}, B \
{0}) ∈ Max(A�B) (see Remark 3.1), hence θ = eq(A \ {1}, B \ {0}). Dually,
if 1/β ) {1}, then we also get θ = eq(A \ {1}, B \ {0}).

Similarly, 0/β ) {0} iff 1/α ) {1} iff θ = eq(A \ {0}, B \ {1}).
Therefore Con(A�B) ⊆ Con01(A�B)∪{eq(A\{0}, B\{1}), eq(A\{1}, B\

{0}),∇A�B}, and we get the four cases in the enunciation, with the form of
the prime spectra of filters and ideals of L following from Remark 3.1, the
conditions on the meet–irreducibility of 0 and the join–irreducibility of 1 being
inferred from Proposition 3.4 and the shape of the lattice Con(A � B) being
given by Lemma 3.6 and the fact that Con01(A�B) is a bounded lattice. �

Corollary 3.8 If |A| > 2, |B| > 2 and µ = max(Con01(A�B)), then:

• Con(A�B) = Con01(A�B)∪[µ)Con(A�B) = Con01(A�B)⊕[µ)Con(A�B) =
(µ]Con(A�B) ∪ [µ)Con(A�B) = (µ]Con(A�B) ⊕ [µ)Con(A�B)

∼= (Con01(A) ×
Con01(B))⊕ [µ)Con(A�B);
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• Spec(A�B) = Con(A�B)\ (Con01(A�B)∪{∇A�B}) = {θ ∈ Con(A�
B) | |(A � B)/θ| = 2} = [µ)Con(A�B) \ {∇A�B} = {eq(A \ {0}, B \
{1}), eq(A \ {1}, B \ {0})} ∩ Con(A�B);

• [µ)Con(A�B) = ({eq(A\{0}, B\{1}), eq(A\{1}, B\{0})}∩Con(A�B))∪
{µ,∇A�B} and it is isomorphic to L2, L3 or L22, depending on whether
A�B has zero, one or two two–class congruences.

Corollary 3.9 If |A| > 2 and |B| > 2, then A � B is subdirectly irreducible
iff one of the following conditions is satisfied:

• Con01(A) = {∆A}, Con01(B) = {∆B} and A� B has at most one two–
class congruence;

• Con01(A) = {∆A} and Con01(B) has a single atom, or vice–versa.

Corollary 3.10 Let (Ai)i∈I be a nonempty family of nontrivial bounded lat-
tices and H = �i∈IAi. Then:

1. Con01(H) = {�i∈Iαi | (∀ i ∈ I) (αi ∈ Con01(Ai))} ∼=
∏
i∈I

Con01(Ai);

2. if there exist at least three distinct elements i, j, k ∈ I with |Ai|, |Aj |, |Ak|
> 2, then SpecFilt(H) = SpecId(H) = ∅, H has no two–class congruences,

Con(H) = Con01(H) ∪ {∇H} ∼= (
∏
i∈I

Con01(Ai)) ⊕ L2 and we have the

following equivalence: H is subdirectly irreducible iff, for some u ∈ I,
Con01(At) has no atoms for all t ∈ I \ {u} and Con01(Au) has at most
one atom.

Proof. (1) By an analogous argument to that of Lemma 3.6.
(2) By (1), Proposition 3.7.(1) and the fact that 0 is meet–reducible and 1 is
join–reducible in Ai �Aj and |�t∈I\{i,j} At| > 2. �

4 Using Multiple Horizontal Sums to Cancel All
But the First and the Last Congruence, and the
Application

For the following to hold, we do not need to enforce the Continuum Hypothesis.
Let us see a stronger construction than the horizontal sum of a bounded lattice
L with another bounded lattice, construction that always turns L into a simple
bounded lattice.
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Remark 4.1 Let (L,≤) be a lattice and [a, b]L be an interval of L with |[a, b]L|
> 2, which means that a, b ∈ L are such that a < b and a ⊀ b, and let
(Ma,b,≤a,b, 0a,b, 1a,b) be a bounded lattice with |Ma,b| > 2. Denote by N the
lattice obtained from L by replacing [a, b]L with [a, b]L �Ma,b, that is: N =
(Lq(Ma,b\{0a,b, 1a,b}),≤ ∪ ≤a,b ∪{(x, u), (u, y) | u ∈Ma,b, x ∈ (a]L, y ∈ [b)L}).

Since [a, b]N = [a, b]L � Ma,b is a sublattice of N , for any θ ∈ Con(N),
we have θ ∩ ([a, b]N )2 ∈ Con([a, b]N ) = Con([a, b]L �Ma,b), which fulfills the
properties in Section 3.

Filt(N) = {F ∈ Filt(L) | a /∈ F}∪{Fq(Ma,b\{0a,b, 1a,b}) | F ∈ Filt(L), a ∈
F} ∪ {[b)L q (G \ {0a,b, 1a,b}) | G ∈ Filt(Ma,b)}, hence |Filt(N)| = |Filt(L)|+
|Filt(Ma,b) \ {{1a,b},Ma,b}| = |Filt(L)|+ |Filt(Ma,b)| − 2.

Similarly, Id(N) = {I ∈ Id(L) | b /∈ I} ∪ {I q (Ma,b \ {0a,b, 1a,b}) | I ∈
Id(L), b ∈ I} ∪ {(a]L q (J \ {0a,b, 1a,b}) | J ∈ Id(Ma,b)}, hence |Id(N)| =
|Id(L)|+ |Id(Ma,b) \ {{0a,b},Ma,b}| = |Id(L)|+ |Id(Ma,b)| − 2.

Throughout the rest of this section, (L,≤, 0, 1) shall be a nontrivial bounded
lattice. Let us apply the construction in Remark 4.1 to all intervals of L having
cardinality at least 3, with Ma,b replaced with L22. So let us denote by D(L) the
bounded lattice obtained from L in the following way: replace each interval I
of L with |I| > 2 by I �L22. In detail, the construction of D(L) can be written
like this: consider a bijection from the set {[a, b]L | a, b ∈ L, a < b, a ⊀ b} of
the intervals of L having at least three elements to a set M of pairwise disjoint
two–element sets, which associates to each such interval [a, b]L a two–element
set {la,b, ra,b} ∈ L. Let D(L) = (L qM = L q {la,b, ra,b | a, b ∈ L, a < b, a ⊀
b},≤ ∪∆M ∪ {(x, la,b), (la,b, y), (x, ra,b), (ra,b, y) | a, b ∈ L, a < b, a ⊀ b, x ∈
(a]L ∪ {lu,v, ru,v | u, v ∈ L, u < v ≤ a, u ⊀ v}, y ∈ [b)L ∪ {cu,v | u, v ∈ L, b ≤
u < v, u ⊀ v}}, 0, 1). We shall denote the order of D(L) by ≤, as well.

Example 4.2 Here is the construction above applied to the lattices L3 =
{0,m, 1}, L4 = {0, a, b, 1} and L22 ⊕ L2 = {0, x, y, z, 1}:
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Remark 4.3 By Remark 4.1:
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• |Filt(D(L))| = |Filt(L)| + (|Filt(L22)| − 2) · |{(a, b) | a, b ∈ L, a < b, a ⊀
b}| = |Filt(L)|+ 2 · |{(a, b) | a, b ∈ L, a < b, a ⊀ b}|;

• |Id(D(L))| = |Id(L)|+ (|Id(L22)| − 2) · |{(a, b) | a, b ∈ L, a < b, a ⊀ b}| =
|Id(L)|+ 2 · |{(a, b) | a, b ∈ L, a < b, a ⊀ b}|.

Theorem 4.4 The lattice D(L) is simple.

Proof. If |L| = 2, then D(L) = L, so Con(D(L)) = Con(L) = {∆L,∇L},
and, of course, ∆L 6= ∇L, since |L| > 1.

Now assume that |L| > 2, and let θ ∈ Con(D(L)) such that θ 6= ∆D(L),
so that, for some x ∈ L, |x/θ| ≥ 2, thus there exist u, v ∈ x/θ with u 6= v.
Denote y = u ∧ v ∈ x/θ and z = u ∨ v ∈ x/θ, so that y < z and (y, z) ∈ θ.
Let us analyse the following cases, of y and z belonging to L or to D(L) \L =
{la,b, ra,b | a, b ∈ L, a < b, a ⊀ b}.

Case 1: y, z ∈ L. If y = 0 and z = 1, then (0, 1) ∈ θ, thus θ = ∇L.
If y = 0 and z 6= 1, then S = {0, l0,1, z, r0,1, 1} ∼= M3 is a sublattice of L,
thus θ ∩ S2 ∈ Con(S), so θ ∩ S2 = ∇S since (0, z) ∈ θ ∩ S2, hence (0, 1) ∈
θ ∩ S2 ⊆ θ, therefore θ = ∇D(L). Analogously, if y 6= 0 and z = 1, then
θ = ∇L. Finally, if y 6= 0 and z 6= 1, then T = {0, l0,z, y, r0,z, z} ∼= M3 and
U = {y, ly,1, z, ry,1, 1} ∼= M3 are sublattices of L, thus θ ∩ T 2 ∈ Con(T ) and
θ ∩U2 ∈ Con(U), so θ ∩ T 2 = ∇T and θ ∩U2 = ∇U since (y, z) ∈ θ ∩ T 2 ∩U2,
therefore (0, y) ∈ θ ∩ T 2 and (z, 1) ∈ θ ∩U2, hence (0, y), (y, z), (z, 1) ∈ θ, thus
(0, 1) ∈ θ, therefore θ = ∇D(L).

Case 2: y ∈ L and z ∈ D(L) \ L, say, for instance, z = la,b for some
a, b ∈ L with a < b and a ⊀ b, so that there exists a c ∈ [a, b]L \ {a, b}. Then
y ≤ a < z, thus, since the subset y/θ = z/θ of D(L) is convex, it follows that
(a, z) ∈ θ. Also, V = {a, z = la,b, c, ra,b, b} ∼= M3 is a sublattice of D(L), thus
θ∩V 2 ∈ Con(V ), so θ∩V 2 = ∇V since (a, z) ∈ θ∩V 2, hence (a, b) ∈ θ∩V 2 ⊆ θ,
therefore θ = ∇D(L) by case 1.

Case 3: y ∈ D(L) \ L and z ∈ L, say, for instance, y = la,b for some
a, b ∈ L with a < b and a ⊀ b, so that there exists a c ∈ [a, b]L \ {a, b}. Then
y < b ≤ z, thus, since the subset y/θ = z/θ of D(L) is convex, it follows
that (y, b) ∈ θ. Also, W = {a, y = la,b, c, ra,b, b} ∼= M3 is a sublattice of
D(L), thus θ ∩W 2 ∈ Con(W ), so θ ∩W 2 = ∇W since (y, b) ∈ θ ∩W 2, hence
(a, b) ∈ θ ∩W 2 ⊆ θ, therefore θ = ∇D(L) by case 1.

Case 4: y, z ∈ D(L) \ L, say y = la,b and z = lc,d for some a, b, c, d ∈ L
with a < b, c < d, a ⊀ b and c ⊀ d, so that a < y < b ≤ c < z < d, thus
(c, z) ∈ θ since the subset y/θ = z/θ of D(L) is convex, therefore θ = ∇D(L)

by case 2.
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Hence Con(D(L)) = {∆D(L),∇D(L)}. Of course, ∆D(L) 6= ∇D(L), since
|D(L)| ≥ |L| > 2. �

Example 4.5 Let us consider the bounded lattice N = (N, lcm, gcd, |, 1, 0),
which is complete and completely distributive, which can be easily shown by us-
ing the complete distributivity of the chain (N,≤) and the prime decompositions
of the natural numbers. The distributivity of N ensures us that |Con(N )| ≥
max{|Filt(N )|, |Id(N )|}. As shown in [5, Example 4.4], |Filt(N )| = |N| = ℵ0
and |Id(N )| = |P(N)| = 2ℵ0 > ℵ0 = |Filt(N )|. Indeed, Filt(N ) = PFilt(N ),
because N = [0)N , {1} = [1)N and, if we denote, for any n ∈ N∗ and any p ∈ P,
by ep(n) = max{k ∈ N | pk |n} and we take an F ∈ Filt(N ) \ {{1},N}, then,

by the well ordering of (N,≤), there exists
∧

(F ) =
∏
p∈P

pmin{ep(n) | n∈F} ∈ N∗,

so that there are only finitely many p ∈ P with min{ep(n) | n ∈ F} 6= 0, say
p1 < p2 < . . . < pk, for some k ∈ N, are such that {p1, p2, . . . , pk} = {p ∈
P | min{ep(n) | n ∈ F} 6= 0}, and there exist n1, n2, . . . , nk ∈ F , not nec-
essarily distinct, such that, for all i ∈ [1, k], epi(ni) = min{epi(n) | n ∈ F},
hence

∧
(F ) = lcm{n1, n2, . . . , nk} ∈ F , thus

∧
(F ) = min(F ), hence F =

[min(F ))N ∈ PFilt(N ). The argument for Filt(N ) = PFilt(N ) in [5] was
shorter, but this one is more natural. Now, for any P ⊆ P, (P ]N = {n ∈
N | (∃ k ∈ N∗) (∃ p1, p2, . . . , pk ∈ P ) (n | lcm{p1, p2, . . . , pk} = p1 ·p2 · . . . ·pk)} =
{n ∈ N | (∃ k ∈ N∗) (∃ p1, p2, . . . , pk ∈ P ) (∃ e1, e2, . . . , ek ∈ N∗) (n = pe11 · p

e2
2 ·

. . . ·pekk )}, thus (P ]N /∈ PId(N ) if |P | = ℵ0, and, for any P,Q ⊆ P with P 6= Q,
(P ]N 6= (Q]N , hence |Id(N )| ≥ |P(P)| = |P(N)|, thus |Id(N )| = |P(N)| = 2ℵ0.
Hence 2ℵ0 ≤ |Con(N )| ≤ 2ℵ0, therefore |Con(N )| = 2ℵ0.

If we denote by H = N �L22, then, according to Proposition 3.7, since 0 is
meet–reducible and 1 is join–reducible in L22, Con(H) = Con01(H) ∪ {∇H} ∼=
(Con01(N )×Con01(L22))⊕L2 = (Con01(N )× {∆L22})⊕L2

∼= Con01(N )⊕L2.

Unfortunately, |Con01(N )| = |Con(N )| = 2ℵ0. Indeed, let µ = eq({{1}, {0}} ∪
{{

∏
p∈P

pnp | (∀ p ∈ P ) (np ∈ N∗)} | P ⊂ P, |P | < ℵ0}). It is immediate that µ is

a congruence of N . Let us prove that Con01(N ) = (µ]Con(N ). For each n ∈ N,
let us denote by Pn = {p ∈ P | p|n}, so that P1 = ∅, P0 = P, for all a, b ∈ N,
Pgcd{a,b} = Pa∩Pb and Plcm{a,b} = Pa∪Pb, and µ = {(u, v) | u, v ∈ N, Pu = Pv}.
Let θ ∈ Con(N ) such that 1/θ = {1}. Let x, y ∈ N∗, such that (x, y) ∈ θ and
assume by absurdum that Px 6= Py, say Py \ Px 6= ∅. Since x, y ∈ N∗, Px
and Py are finite nonempty subsets of P. Let z ∈ N such that Pz = Py \ Px,
thus Pgcd{x,z} = Px ∩ Pz = Px ∩ (Py \ Px) = ∅ and Pgcd{y,z} = Py ∩ Pz =
Py ∩ (Py \ Px) = Py \ Px 6= ∅, hence gcd{x, z} = 1 and gcd{y, z} 6= 1, but
gcd{y, z}/θ = gcd{x, z}/θ = 1/θ, which is a contradiction to 1/θ = {1}.



Cancelling Congruences, While Keeping Filters and Ideals 117

Therefore Px = Py, so (x, y) ∈ µ, hence θ ⊆ µ. Since 1/µ = {1}, it follows
that µ = max{α ∈ Con(N ) | 1/α = {1}}. But we also have 0/µ = {0}, hence
µ = max(Con01(N )) and thus {α ∈ Con(N ) | 1/α = {1}} = Con01(N ) =
(µ]Con(N ). For instance, given any n ∈ N∗ and any P ⊆ P with |P | < ℵ0,

θn,P = eq({{1}, {0}} ∪ {{
∏
p∈Q

pnp | (∀ p ∈ Q) (np ∈ N∗)} | Q ⊂ P, |Q| < ℵ0, Q 6=

P} ∪ {{
∏
p∈P

pnp | (∀ p ∈ Q) (np ∈ [1, n])}, {
∏
p∈Q

pnp} | Q ⊂ P, |Q| < ℵ0, Q 6=

P, (∀ p ∈ Q) (np ∈ N∗)}) ∈ (µ]Con(N ). Therefore |Con(H)| = |Con01(H)| =
|Con01(N )| = |(µ]Con(N )| ≥ |{θn,P | P ⊆ P, |P | < ℵ0}| = |{P ⊆ P | |P | <
ℵ0}| = 2ℵ0, hence |Con(H)| = 2ℵ0.

So the construction of the horizontal sum H = N � L22 does not cancel
enough congruences of N . We need the stronger construction D(N ) introduced
above.

By Theorem 4.4, the lattice D(N ) is simple. Clearly, the intervals of N
having alt least three elements are [n, 0]N and [n, kn]N , with n ∈ N∗ and k ∈ N,
k ≥ 2. Let us denote the set of these intervals by IN . We can write IN
in this way: IN = {[n, kn]N | n ∈ N∗, k ∈ N \ {1}}, so IN is in bijection
to N∗ × (N \ {1}), thus |IN | = |N∗| · |N \ {1}| = ℵ0 · ℵ0 = ℵ0. By Remark
4.3, it follows that |Filt(D(N ))| = |Filt(N )| + 2 · |IN | = ℵ0 + ℵ0 = ℵ0 and
|Id(D(N ))| = |Id(N )| + 2 · |IN | = 2ℵ0 + ℵ0 = 2ℵ0. Therefore |Con(D(N ))|,
|Filt(D(N ))| and |Id(D(N ))| are pairwise distinct, more precisely D(N ) is a
simple bounded lattice, Filt(D(N )) is countable and Id(D(N )) is uncountable.

Example 4.6 (due to Gábor Czédli) We can modify Example 4.5 such that
the resulting lattice can have all its congruences, excepting the smallest and the
greatest, cancelled by the simple construction of its horizontal sum with the
four–element Boolean algebra. Moreover, we can let this lattice have any infi-
nite cardinality.

Let us denote by (pn)n∈N the sequence of the prime natural numbers, by

(PN ,≤) =
∏
n∈N

(N,≤), where the last ≤ is the natural order on N, and by QN =

(PN q{1},≤ ∪{(x,1) | x ∈ PN q{1}}). Clearly, SN = {(xn)n∈N ∈ PN | |{n ∈
N | xn 6= 0}| < ℵ0} q {1} is a bounded sublattice of QN and ϕ : SN → N ,

defined by ϕ(1) = 0 and ϕ((xn)n∈N) =
∏
n∈N

pxnn for all (xn)n∈N ∈ PN , is a

lattice isomorphism between SN and the lattice N in Example 4.5. Now, if we
replace, in the direct product PN above, the chain (N,≤) by 0–regular lattices
with the DCC, then an analogous construction to the above shall produce a
bounded lattice whose horizontal sum with L22 is simple. Moreover, we can let
this lattice have any infinite cardinality. Let us see this general construction.
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Let κ be an arbitrary infinite cardinality, M be a set with |M | = κ and
(Ai)i∈M be a family of lattices with the DCC, hence with smallest elements,
having |Ai| ≤ κ and the property that {α ∈ Con(Ai) | 0Ai/α = {0Ai}} = ∆Ai

for all i ∈ M . Consider the lattice P =
∏
i∈M

Ai with smallest element 0 =

(0Ai)i∈M , the bounded lattice Q = (P q {1},≤P ∪{(x,1) | x ∈ P q {1}}) and
the bounded sublattice S = {(xi)i∈M ∈ P | |{i ∈ M | xi 6= 0}| < ℵ0} q {1} of
Q.

If we denote, for all n ∈ N, by Sn = {(xi)i∈M ∈ P | |{i ∈M | xi 6= 0Ai}| =
n}, then, for all n ∈ N, since, for all i ∈ M , |Pn(Ai)| ≤ |Pn(M)| = |M | = κ,

it follows that |Sn| = κ. Therefore, since S =
⋃
n∈N

Sn (and the Sn are pairwise

disjoint), we have |S| = |N| · κ = ℵ0 · κ = κ.
Now, for all T ∈ P<κ(M), let ST = {(xi)i∈M ∈ P | {i ∈ M | xi 6=

0Ai} ⊆ T}. Clearly, if T,U ∈ P<κ(M) with T 6= U , then ST 6= SU , thus
|{ST | T ∈ P<κ(M)}| = |P<κ(M)| = |M |κ = κκ = 2κ. It is immediate that,
for all T ∈ P<κ(M), ST ∈ Id(S), hence 2κ ≤ |Id(S)| ≤ |P(S)| = 2κ, hence
|Id(S)| = 2κ > κ.

Now let us prove that all filters of S are principal. Let F ∈ Filt(S)\{[1)S},
f = (fi)i∈M ∈ P ∩ F = F \ {1} and Nf = {i ∈ M | fi 6= 0Ai}, so that
|Nf | < ℵ0 by the definition of S. If 0 ∈ F , then F = [0)S. Now assume that

0 /∈ F , so that f 6= 0 and thus Nf 6= ∅. Let pNf
: P →

∏
i∈Nf

Ai be the canonical

projection: pNf
((xi)i∈M ) = (xj)j∈Nf

for all (xi)i∈M ∈ P . It is straightforward

that pNf
|(f ]S : (f ]S →

∏
i∈Nf

Ai is an injection, hence (f ]S ∼= pNf
((f ]S), which

is a sublattice of the finite direct product
∏
i∈Nf

Ai, hence it has the DCC. Thus

the bounded lattice (f ]S has the DCC, hence the set {f ∧ g | g ∈ F} ⊆ (f ]S has
minimal elements; let g∗ ∈ F such that f∗ = f ∧ g∗ ∈ (f ]S ⊆ F is a minimal
element of this set. Since f∗ ∈ F ∈ Filt(S), we have [f∗)S ⊆ F . Assume
by absurdum that F * [f∗)S, so that there exists an h ∈ F with f∗ � h, thus
f∗ 6= f∗∧h and hence f∗ > f∗∧h = f∧g∗∧h, which contradicts the minimality
of f∗ since g∗ ∧ h ∈ F . Therefore F ⊆ [f∗)S, hence F = [f∗)S ∈ PFilt(S),
thus Filt(S) = PFilt(S) and hence |Filt(S)| = |S| = κ.

For any θ ∈ Con(S) and any i ∈ M , denote by pri(θ) = {(a, b) ∈ A2
i |

(∃ ((xi)i∈M , (yi)i∈M ) ∈ θ ∩ P 2) (xi = a, yi = b)} ∈ Con(Ai). Now let θ ∈
Con01(S). Then, for all i ∈ M , 0Ai/pri(θ) = {0Ai}, so that pri(θ) = ∆Ai.
Since P ∩ S = S \ {1} is a sublattice of S, θ ∩ (S \ {1})2 ∈ Con(S \ {1}), and,

clearly, θ∩ (S \ {1})2 ⊆
∏
i∈M

pri(θ) =
∏
i∈M

∆Ai = ∆P , therefore θ∩ (S \ {1})2 =
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∆S\{1}. But 1/θ = {1}, hence x/θ = {x} for all x ∈ (S \ {1})∪ {1} = S, that
is θ = ∆S. Therefore Con01(S) = {∆S}.

If we denote by H = S � L22, then, since 0 is meet–reducible and 1 is
join–reducible in L22, by Proposition 3.7 it follows that Con(H) = Con01(H) ∪
{∇H} ∼= (Con01(S)×Con01(L22))⊕L2 = ({∆S}×{∆L22})⊕L2

∼= L1⊕L2 ∼= L2,

so the bounded lattice H is simple. By Remark 3.3, |Filt(H)| = |Filt(S)| =
κ and |Id(H)| = |Id(S)| = 2κ. Hence |Con(H)|, |Filt(H)| and |Id(H)| are
pairwise distinct.
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