A Simplified Completeness Proof for the Paraconsistent Logic C_{1}

Verónica Quiroga and Víctor Fernández

Abstract

This paper develops a new completeness proof of da Costa's paraconsistent $\operatorname{logic} C_{1}$, w.r.t. the class of F_{1}-structures, whose original definition is indebted to M. Fidel in [7]. The novelty of the proof here presented is grounded on the fact that such class can be characterized in a simpler way (cf. [11]), together with a simpler reformulation of the F_{1}-valuations involved in Fidel's original result. By the way, it is shown that the proof of decidability of C_{1} can be also simplified. Moreover, this new demonstration shows the evident connection between the canonical F_{1}-structure and the quasi-matrix semantics, originally proposed in [6].

Keywords: Paraconsistent Logics, F-structures, Quasi-matrix Semantics.

1 Introduction and preliminaries

One of the first semantics for the paraconsistent calculi C_{n}, with $1 \leq n \leq \omega$ (see [5]), was provided by M. Fidel by means of the (today called) F-structures, in [7]. Briefly, this kind of semantics, which will be presented later, consists of a class of algebraic-relational structures together with a family of non homomorphical interpretation functions. So, for every C_{n}-calculus (which is defined determining a consequence relation $\vdash_{C_{n}}$), its respective class \mathbb{F}_{n} of F_{n}-structures determines a relation $\models_{C_{n}}$ in such a way that $\Gamma \vdash_{C_{n}} \alpha$ iff $\Gamma \models_{C_{n}} \alpha$, for every $\Gamma \cup\{\alpha\} \subseteq F m$. Moreover, the class \mathbb{F}_{n} determines the decidability of every C_{n}-calculus (actually, this is the main result of such paper).

However, it is not so easy to work with F_{n}-structures in a general way, due to the complexity of its definition. An alternative, simpler characterization of F_{1}-structures was provided in [11], as a (partial) solution to this operative problem. So, it is natural (taking into account this new characterization) to simplify the definition of the F_{1}-bivaluations involved in the relation $=_{C_{n}}$. Therefore, using this alternative definition, the completeness proof relating
$\vdash_{C_{1}}$ with $\models_{C_{1}}$ can be formulated in a very simple way. This paper shows such simplifications, indeed. Moreover, it will easily obtained the decidability of C_{1} based on F_{1}-structures, by means of the canonical F_{1}-structure $\left\langle B_{2}, \overline{\mathfrak{f}}\right\rangle$, to be defined later. In addition, it will be discussed the following point: it is well-known that another semantics for the C_{n}-calculi was presented in [6] by means of the so-called quasi-matrices (determining the relations $=_{Q_{n}}$). So, we will show additionally that, in the case of the quasi-matrix for C_{1}, it can be understood as the own canonical F_{1}-structure $\left\langle B_{2}, \overline{\mathfrak{f}}\right\rangle$, explained in a different way. Actually, this result will follow easily from the simplified semantics for C_{1}. Finally, we will discuss briefly the relations of F_{1}-structures (such as they are presented here) with respect to previous works.

The formalism used in this paper will be as simple as possible. We will fix the set $F m$ of formulas as the least set containing a countable set Var of atomic formulas, and being closed by the applications of the connectives $\neg, \&, \vee$ and \supset (with the usual arities) and with the help of parenteheses behaving as punctuation symbols. Recall here that $F m$ can be understood as the absolutely free algebra generated by the set of operations $\{\neg, \vee, \&, \supset\}$ over Var. Some other standard definitions and notions from algebraic logic (such as homomorphism, quotient algebras, products, projections, subalgebras, Boolean algebras and so on) will be used, following the formalism of [1] or [13]. In this context, greek (capital) letters are metavariables over (sets of) formulas, meanwhile Roman letters will be used to denote elements/sets of the involved algebras. If necessary, some additional notions will be added along this paper.

$2 \quad F_{n}$-structures: a brief overview

The starting point of our paper will be the definition of the C_{n}-logics, by means of a Hilbert-style axiomatization (even when we will work specifically with C_{1}). For that, recall the following well-known abbreviations:

$$
\begin{gathered}
\alpha^{\circ}:=\neg(\alpha \& \neg \alpha) \\
\alpha^{(1)}:=\alpha^{\circ} \\
\alpha^{(n)}:=\alpha^{(n-1)} \&\left(\alpha^{(n-1)}\right)^{\circ}
\end{gathered}
$$

Definition 2.1 Let n be a natural number. The $\operatorname{logic} C_{\boldsymbol{n}}$ is given by means of a Hilbert-style axiomatics (defining the relation $\vdash_{n} \subseteq \wp(F m) \times F m$ as usual), such as it was presented in [5].

```
A1) \(\alpha \supset(\beta \supset \alpha)\)
A2) \(\quad(\alpha \supset \beta) \supset((\alpha \supset(\beta \supset \gamma)) \supset(\alpha \supset \gamma))\)
A3) \(\quad(\alpha \supset \gamma) \supset((\beta \supset \gamma) \supset(\alpha \vee \beta \supset \gamma))\)
A4) \(\alpha \& \beta \supset \alpha\)
A5) \(\alpha \& \beta \supset \beta\)
A6) \(\quad \alpha \supset(\beta \supset \alpha \& \beta)\)
A7) \(\quad \alpha \supset \alpha \vee \beta\)
A8) \(\beta \supset \alpha \vee \beta\)
A9) \(\alpha \vee \neg \alpha\)
A10) \(\neg \neg \alpha \supset \alpha\).
A11) \(\beta^{(n)} \supset((\alpha \supset \beta) \supset((\alpha \supset \neg \beta) \supset \neg \alpha))\)
A12) \(\alpha^{(n)} \& \beta^{(n)} \supset(\alpha \& \beta)^{(n)}\),
A13) \(\alpha^{(n)} \& \beta^{(n)} \supset(\alpha \vee \beta)^{(n)}\)
A14) \(\alpha^{(n)} \& \beta^{(n)} \supset(\alpha \supset \beta)^{(n)}\).
```

The only rule of inference used here is Modus Ponens: $\frac{\alpha \supset \beta, \alpha}{\beta}$.
Remark 2.2 In the case of the logic C_{1}, the axioms $\left.\left.A 11\right)-A 14\right)$ are simply:

$$
\begin{array}{llll}
\text { A11) } & \beta^{\circ} \supset((\alpha \supset \beta) \supset((\alpha \supset \neg \beta) \supset \neg \alpha)) & \text { A13) } & \alpha^{\circ} \& \beta^{\circ} \supset(\alpha \vee \beta)^{\circ} \\
\text { A12) } & \alpha^{\circ} \& \beta^{\circ} \supset(\alpha \& \beta)^{\circ} & A 14) & \alpha^{\circ} \& \beta^{\circ} \supset(\alpha \supset \beta)^{\circ} .
\end{array}
$$

The following result lists some well-known properties of $\vdash_{C_{n}}$ (and, in particular, of $\vdash_{C_{1}}$) that will be used along this paper. We omit their proof, since they are already known in the specialized literature.

Proposition 2.3 For every $1 \leq n \leq \omega$ and $\Gamma \cup\{\alpha, \beta\} \subseteq F m$, the relation $\vdash_{C_{n}}$ verifies:
(1) (Syntactic Deduction Theorem): $\Gamma, \alpha \vdash_{C_{n}} \beta$ iff $\Gamma \vdash_{C_{n}} \alpha \supset \beta$.
(2) $\vdash_{C_{n}} \alpha \supset \alpha$
(3) $\alpha \supset \beta, \beta \supset \gamma \vdash_{C_{n}} \alpha \supset \gamma$
(4) For every connective $\# \in\{\vee, \&\}$, if $\Gamma \vdash_{C_{n}} \alpha \supset \gamma$ and $\Gamma \vdash_{C_{n}} \beta \supset \delta$, then $\Gamma \vdash_{C_{n}} \alpha \# \beta \supset \gamma \# \delta$.
(5) If $\Gamma \vdash_{C_{n}} \alpha \supset \beta$ and $\Gamma \vdash_{C_{n}} \gamma \supset \delta$, then $\Gamma \vdash_{C_{n}}(\beta \supset \gamma) \supset(\alpha \supset \delta)$.
(6) $\Gamma, \alpha^{\circ}, \alpha, \neg \alpha \vdash_{C_{n}} \beta$.
(7) $\vdash_{C_{n}} \alpha^{\circ} \vee \alpha$
(8) $\neg\left(\alpha^{\circ} \& \neg \alpha\right) \vdash_{C_{n}} \alpha$

With respect to the semantics for the C_{n}-logics, it was defined in [7] a model for them, by means of the class \mathbb{F}_{n} of F_{n}-structures, as we said. We will recall the basics about these semantics. For that, let us fix some algebraic notation: every Boolean algebra will be denoted usually as an algebra $\mathbf{L}=(L, \vee, \wedge, \rightarrow,-, 0,1)$, carrying this simbology the usual meaning. To avoid
unnecessary notation, often we will denote every Boolean algebra \mathbf{L} simply by L (its support). All the operations in Boolean algebras will be indexed when necessary.

Definition 2.4 An \boldsymbol{F}-structure for $\boldsymbol{C}_{\boldsymbol{n}}$ (or, simply, an F_{n}-structure) is a system:

$$
\left\langle L,\left\{N_{x}\right\}_{x \in L},\left\{N_{x}^{(n)}\right\}_{x \in L}\right\rangle
$$

being L a bounded classical implicative lattice ${ }^{1}$ of the form $(L, \vee, \wedge, \neg, \rightarrow, 0,1)$, and the families $\left\{N_{x}\right\}_{x \in L}$ and $\left\{N_{x}^{(n)}\right\}_{x \in L}$ verify:
(F-1) For every $x \in L, \emptyset \neq N_{x} \subseteq L$ and:
(a) If $x^{\prime} \in N_{x}$, then $x \vee x^{\prime}=1$.
(b) For every $x^{\prime} \in N_{x}$ exists $x^{\prime \prime} \in N_{x^{\prime}}$, such that $x^{\prime \prime} \leq x$.
(F-2) $\left\{N_{x}^{(n)}\right\}_{x \in L}$ is a family of non-void subsets of L.
(F-3) If $x^{\prime} \in N_{x}$ and $y^{\prime} \in N_{y}$, then exists $(x \wedge y)^{\prime} \in N_{x \wedge y}$ such that $(x \wedge y)^{\prime} \leq$ $x^{\prime} \vee y^{\prime}$.
(F-4) If $x^{(n)} \in N_{x}^{(n)}$ and $y^{(n)} \in N_{y}^{(n)}$, then exist $(x \vee y)^{(n)}$ in $N_{x \vee y}^{(n)}$ and $(x \rightarrow y)^{(n)}$ in $N_{(x \rightarrow y)}^{(n)}$, such that $x^{(n)} \wedge y^{(n)} \leq(x \vee y)^{(n)}$ and $x^{(n)} \wedge y^{(n)} \leq(x \rightarrow y)^{(n)}$.
(F-5) For every $x^{(n)} \in N_{x}^{(n)}$ exist $x^{\prime} \in N_{x}, x^{\prime \prime} \in N_{x^{\prime}}, x^{1} \in N_{x \wedge x^{\prime}},\left(x^{1}\right)^{\prime} \in N_{x^{1}}$, $\left(x^{1}\right)^{\prime \prime} \in N_{\left(x^{1}\right)^{\prime}}, x^{2} \in N_{x^{1} \wedge\left(x^{1}\right)^{\prime}},\left(x^{2}\right)^{\prime} \in N_{x^{2}},\left(x^{2}\right)^{\prime \prime} \in N_{\left(x^{2}\right)^{\prime}}, \ldots, x^{n} \in$ $N_{x^{n-1} \wedge\left(x^{n-1}\right)^{\prime}}$, such that:
(a) $\left(x^{k}\right)^{\prime \prime} \leq x^{k}\left(\right.$ with $\left.k=0, \ldots, n-1 ; x^{0}=x\right) ;^{2}$
(b) $x^{k} \leq\left(x^{k-1}\right)^{\prime} \vee\left(x^{k-1}\right)^{\prime \prime}($ with $k=1, \ldots, n)$;
(c) $\left(x^{k}\right)^{\prime} \leq x^{k-1} \wedge\left(x^{k-1}\right)^{\prime}($ with $k=1, \ldots, n-1)$;
(d) $x^{(n)}=x^{1} \wedge x^{2} \wedge \cdots \wedge x^{n}$;
(e) $x \wedge x^{\prime} \wedge x^{(n)}=0$.
(F-6) For every $x^{\prime} \in N_{x}$, there are $x^{(n)} \in N_{x}^{(n)}, x^{\prime \prime} \in N_{x^{\prime}}, x^{1} \in N_{x \wedge x^{\prime}},\left(x^{1}\right)^{\prime} \in$ $N_{x^{1}},\left(x^{1}\right)^{\prime \prime} \in N_{\left(x^{1}\right)^{\prime}}, x^{2} \in N_{x^{1} \wedge\left(x^{1}\right)^{\prime}, \ldots,}, x^{n} \in N_{x^{n-1} \wedge\left(x^{n-1}\right)^{\prime}}$, such that conditions (F-5) (a)-(e) are satisfied.

[^0]Remarks 2.5 The previous definition is textually transcribed from [7]. Note that in item (c) of condition (F-5) there is some misunderstanding with the superscripts: we suppose here that this item means, simply, that $\left(x^{1}\right)^{\prime} \leq x \wedge x^{\prime}$ (since $x^{0}=x$, as it was already remarked). Therefore, it would be necessary to ask for the existence of $\left(x^{1}\right)^{\prime} \in N_{x^{1}}$, additionally. It is possible to prove (see [11] and [10]) that this element always exists, anyway. This fact will justify the "missing" of (c) (for the case of C_{1}) in the next definition, as we shall see.

On the other hand, in [7] there is not formulated any condition similar to the given one in Definition 2.4 (F-4), for the case of \wedge. Anyway, in [10] it is shown that (at least when $n=1$) the function \wedge verifies such kind of properties, indeed. By the way, it should be remarked that this is not an obvious result.

Turning back to Definition 2.4, it can be defined (taking into account the previous remarks):

Definition 2.6 An $\boldsymbol{F}_{\mathbf{1}}$-structure is a system $\left\langle L,\left\{N_{x}\right\}_{x \in L},\left\{N_{x}^{\circ}\right\}_{x \in L}\right\rangle$ such that:
(F-1) For every $x \in L, \emptyset \neq N_{x} \subseteq L$ and:
(a) If $x^{\prime} \in N_{x}$, then $x \vee x^{\prime}=1$.
(b) For every $x^{\prime} \in N_{x}$ exists $x^{\prime \prime} \in N_{x^{\prime}}$, such that $x^{\prime \prime} \leq x$.
(F-2) $\left\{N_{x}^{\circ}\right\}_{x \in L}$ is a family of non-void subsets of L.
(F-3) For every $x, y \in L$, and for every $x^{\prime} \in N_{x}, y^{\prime} \in N_{y}$, there is $(x \wedge y)^{\prime} \in N_{x \wedge y}$ such that $(x \wedge y)^{\prime} \leq x^{\prime} \vee y^{\prime}$.
(F-4) For every $x, y \in L$, if $x^{\circ} \in N_{x}^{\circ}$ and $y^{\circ} \in N_{y}^{\circ}$, then there are $(x \vee y)^{\circ}$ in $N_{x \vee y}^{\circ}$ and $(x \rightarrow y)^{\circ}$ in $N_{(x \rightarrow y)}^{\circ}$, satisfying $x^{\circ} \wedge y^{\circ} \leq(x \vee y)^{\circ}$ and $x^{\circ} \wedge y^{\circ} \leq(x \rightarrow y)^{\circ}$.
(F-5) For every $x \in L$ and $x^{\circ} \in N_{x}^{\circ}$ there are $x^{\prime} \in N_{x}, x^{\prime \prime} \in N_{x^{\prime}}$ and $x^{1} \in N_{x \wedge x^{\prime}}$ such that:
(a) $x^{\prime \prime} \leq x$;
(b) $x^{1} \leq x^{\prime} \vee x^{\prime \prime}$
(c) $x^{\circ}=x^{1}$;
(d) $x \wedge x^{\prime} \wedge x^{\circ}=0$.
(F-6) For every $x \in L, x^{\prime} \in N_{x}$, there are $x^{\circ} \in N_{x}^{\circ}, x^{\prime \prime} \in N_{x^{\prime}}$ and $x^{1} \in N_{x \wedge x^{\prime}}$ satisfying conditions (a)-(d) of (F-5).

Remark 2.7 The previous formalism can be cleaned-up as follows: for every $x \in L$, let us define $\uparrow x(\downarrow x)$ as being the up-set (down-set) generated for x. In addition, let us define the para-annihilator of x^{3} in the following way: $x^{\top}:=\{y \in L: x \vee y=1\}$. Using this notions, an F_{1}-structure can be understood as a system $\langle L, \mathfrak{f}, \mathfrak{F}\rangle$ such that:
(f-1) \mathfrak{f} is a function $(\mathfrak{f}: L \rightarrow \wp(L) \backslash\{\emptyset\})$, verifying:
(a) $\mathfrak{f}(x) \subseteq x^{\top}$;
(b) $\mathfrak{f}(y) \cap \downarrow x \neq \emptyset$ (for every $y \in \mathfrak{f}(x)$).
$(f-2) \mathfrak{F}$ is a function $(\mathfrak{F}: L \rightarrow \wp(L) \backslash\{\emptyset\})$.
(f-3) For every $x, y \in L$, for every $z \in \mathfrak{f}(x)$, for every $w \in \mathfrak{f}(y)$, it holds that $\mathfrak{f}(x \wedge y) \cap \downarrow(z \vee w) \neq \emptyset$.
(f-4) For every $x, y \in L$, for every $z \in \mathfrak{F}(x)$, for every $w \in \mathfrak{F}(y)$, it is satisfied:
(a) $\mathfrak{F}(x \vee y) \cap \uparrow(z \wedge w) \neq \emptyset$.
(b) $\mathfrak{F}(x \rightarrow y) \cap \uparrow(z \wedge w) \neq \emptyset$.
(f-5) For every $x \in L$ and $z \in \mathfrak{F}(x)$, there are $y \in \mathfrak{f}(x), u \in \mathfrak{f}(y)$ and $v \in \mathfrak{f}(z)$, verifying:
(a) $u \leq x$;
(b) $z \leq y \vee u$;
(c) $v \leq x \wedge y$;
(d) $z \in f(x \wedge y)$;
(e) $x \wedge y \wedge z=0$.
(f-6) For every $x \in L$, for every $y \in \mathfrak{f}(x)$, there are $z \in \mathfrak{F}(x), u \in \mathfrak{f}(y), v \in \mathfrak{f}(z)$, such that conditions (a)-(e) are satisfied.

The main result of [11] establishes that the function \mathfrak{F} can be defined in terms of \mathfrak{f} (in Fidel's formalism, this means that the families $N_{x}^{(1)}=N_{x}^{\circ}$ are obtained from the families N_{x}). Moreover:

[^1]Theorem 2.8 ([11], Theorems 3.7 and 3.8) Let $\langle L, \mathfrak{f}, \mathfrak{F}\rangle$ be an F_{1}-structure. Then:

1) for every $x \in L, \mathfrak{F}(x):=\{-x \vee-a: a \in \mathfrak{f}(x)\}$, for every $x \in L$.
2) Every F_{1}-structure is, simply, a pair $\langle L, \mathfrak{f}\rangle$ verifying:
($\mathrm{F}_{1}-1$) L is a Boolean algebra.
$\left(\mathrm{F}_{1}-2\right) \mathfrak{f}: L \rightarrow \wp(L)$ verifies, for every $x \in L,-x \in \mathfrak{f}(x) \subseteq x^{\top}$.
The previous result is essential: the characterization of F_{1}-structures presented in it will be the standard one to be used along this paper. Some illustrative examples of F_{1}-structures following this presentation of F_{1}-structures are shown in the sequel. First of all, the canonical F_{1}-structure (which will be used later) is presented as follows:

Definition 2.9 The canonical $\boldsymbol{F}_{\mathbf{1}}$-structure is $\left\langle B_{2}, \overline{\mathfrak{f}}\right\rangle$, being B_{2} the standard two-valued Boolean algebra with support $\{0,1\}, \overline{\mathfrak{f}}(0)=\{1\}$ and $\overline{\mathfrak{f}}(1)=$ $\{0,1\}$ (by the way: $\overline{\mathfrak{F}}(0)=\overline{\mathfrak{F}}(1)=\{1\}$).

Besides that, other examples of non-canonical F_{1}-structures are the following:

Example 2.10 Let B_{4} the "Boolean algebra with support set $B_{4}=\{a, b, 0,1\}$ (see Figure 1).

Figure 1: Hasse's Diagram of B_{4}
If we define $f: B_{4} \rightarrow \wp\left(B_{4}\right)$ as follows: $\mathfrak{f}(0)=\{1\} ; \mathfrak{f}(a)=\{b\} ; \mathfrak{f}(b)=\{a, 1\}$ and $\mathfrak{f}(1)=\{0, a\}$, then $\left\langle B_{4}, \mathfrak{f}\right\rangle$ is an F_{1}-structure.

We shall see other interesting examples of F_{1}-structures along this paper. We will conclude this section enumerating some basic properties of the F_{1} structures, to be used later. Their proof is very easy.

Proposition 2.11 For every F_{1}-structure $\langle L, \mathfrak{f}\rangle$, for every $x, y \in L$, the following properties are valid:
(1) If $a \in \mathfrak{f}(x)$, then $-x \leq a$.
(2) If $a \in \mathfrak{f}(x)$, then $\mathfrak{f}(a) \cap \downarrow x \neq \emptyset$.
(3) If $z \in \mathfrak{f}(x)$ and $w \in \mathfrak{f}(y)$, then $\mathfrak{f}(x \wedge y) \cap \downarrow(z \vee w) \neq \emptyset$.
(4) If $0 \in \mathfrak{f}(x)$, then $x=1$.
(5) If $x=0$, then $\mathfrak{f}(x)=\{1\}$.

3 Simplification of C_{1}-Completeness

Despite their algebraic-relational properties, let us recall that F_{1}-structures were defined with the aim of giving a Completeness Theorem for C_{n} (and for C_{1}, in particular). For that, M. Fidel defines in [7] some functions that interpret the formulas of $F m$ in F_{1}-structures. We will proceed in the same way (but taking into account the new definition of F_{1}-structures, cf. Theorem 2.8). This will allow us to obtain the simplified Completeness Theorem. This process will be developed in the sequel.

Definition 3.1 Let $\langle L, \mathfrak{f}\rangle$ be an F_{1}-structure. An F_{1}-valuation into $\langle L, \mathfrak{f}\rangle$ is a map $v: F m \rightarrow L$, verifying:
(a) v behaves homomorphically w. r. t. $\vee, \&$ and \supset. That is, $v(\alpha \vee \beta)=$ $v(\alpha) \vee v(\beta) ; v(\alpha \& \beta)=v(\alpha) \wedge v(\beta)$ and $v(\alpha \supset \beta)=-v(\alpha) \vee v(\beta)=v(\alpha) \rightarrow v(\beta)$.
(b) $v\left(\alpha^{\circ}\right) \wedge v(\alpha) \wedge v(\neg \alpha)=0$
(c) With respect to \neg, v verifies (for every $\alpha \in F m$):
(c.1) $v(\neg \alpha) \in \mathfrak{f}(v(\alpha))$
(c.2) $-v(\neg \neg \alpha) \in \mathfrak{f}(v(\alpha))$
(d) Finally, v verifies $-v\left(\beta^{\circ}\right) \vee-v\left(\gamma^{\circ}\right) \in \mathfrak{f}\left(v\left(\alpha^{\circ}\right)\right)$, for every α of the form $\beta \vee \gamma$, or $\beta \& \gamma$, or $\beta \supset \gamma$.

If there is no risk of confussion, the F_{1}-valuations into $\langle L, \mathfrak{f}\rangle$ will be mentioned as F_{1}-valuations into L, or even as L-valuations, simply. It is easy to see that, given an arbitrary F_{1}-structure $\langle L, \mathfrak{f}\rangle$, any standard Boolean homomorphism $h: F m \rightarrow L$ is, obviously, a F_{1}-valuation into L (which verifies, aditionally, $v(\neg \alpha)=-v(\alpha)$ for every $\alpha \in F m)$. We shall see other (specific) F_{1}-valuations in the next two examples. For that, let us use the following notation: $\neg^{k} \alpha$ denotes $\underbrace{\neg \neg \ldots \neg}_{k \text { times }} \alpha$, being k a natural number. In addition, the set of literals of $F m$ is the set Lit: $=\left\{\neg^{k} p: p \in \operatorname{Var}\right.$, with $\left.0 \leq k \leq 1\right\}$. Besides, the notion of Boolean extension deserves to be highlighted:

Definition 3.2 For every Boolean algebra L, every subset $A \subseteq F m$, every map $h: A \rightarrow L$ and every map $w: \operatorname{Var} \rightarrow L$, the Boolean extension
determined by $\mathbb{A}:=(A, w, h)$ is the function $v_{\mathbb{A}}: F m \rightarrow B_{2}$ recursively defined in this way:
(1) Given $\alpha \in$ Var: if $\alpha \in A$, then $v_{\mathbb{A}}(\alpha):=h(\alpha)$. If not, then $v_{\mathbb{A}}(\alpha):=w(\alpha)$.
(2) If $\alpha=\neg \beta$. Then: if $\alpha \in A, v_{\mathbb{A}}(\alpha):=h(\alpha)$. If not, $v_{\mathbb{A}}(\alpha):=v_{\mathbb{A}}(\neg \beta):=-v_{\mathbb{A}}(\beta)$.
(3) If $\alpha=\beta \# \gamma$, with $\# \in\{\vee, \&, \supset\}$: if $\alpha \in A, v_{\mathbb{A}}(\alpha):=h(\alpha)$. Otherwise, $v_{\mathbb{A}}(\alpha)$ behaves homomorphically. That is, $v_{\mathbb{A}}(\beta \vee \gamma):=v_{\mathbb{A}}(\beta) \vee v_{\mathbb{A}}(\gamma)$ (and in a similar way when $\#$ is \& or $\supset)$.

It is obvious that $v_{\mathbb{A}}$ is a well-defined map that extends h, but it does not extend w. Besides that, the expression "Boolean extension" comes from the fact that $v_{\mathbb{A}}$ behaves as a Boolean homomorphism "outside A ". This notion will help us to give the following examples:

Example 3.3 Let $\langle L, \mathfrak{f}\rangle$ be any F_{1}-structure such that $1 \in \mathfrak{f}(1)$ and $A:=$ Lit. We define the map $h_{1}: A \rightarrow L$ as $h_{1}(\alpha)=1$ for every $\alpha \in A$. For every function $w: F m \rightarrow L^{4}$, the Boolean extension $v_{\mathbb{B}}$ is an F_{1}-valuation into L, with $\mathbb{B}:=\left(A, w, h_{1}\right)$. In fact:
Condition (a) of Def. 3.1 is verified from (3). In addition, given $\alpha \in F m$, applying (2) and (4), we get $v_{\mathbb{B}}\left(\alpha^{\circ}\right)=v_{\mathbb{B}}(\neg(\alpha \& \neg \alpha))=-v_{\mathbb{B}}(\alpha \& \neg \alpha)=$ $-v_{\mathbb{B}}(\alpha) \vee-v_{\mathbb{B}}(\neg \alpha)$. From this, consider the following cases: If $\alpha \in \operatorname{Var}$, then $v_{\mathbb{B}}\left(\alpha^{\circ}\right)=-h_{1}(\alpha) \vee-h_{1}(\neg \alpha)=0$. Otherwise, $\alpha \notin \operatorname{Var}$ (and then $\neg \alpha \notin \operatorname{Lit}$), so, in this case, $v_{\mathbb{B}}(\neg \alpha)=-v_{\mathbb{B}}(\alpha)$. Moreover, $v_{\mathbb{B}}\left(\alpha^{\circ}\right)=-v_{\mathbb{B}}(\alpha) \vee--v_{\mathbb{B}}(\alpha)$ $=-v_{\mathbb{B}}(\alpha) \vee v_{\mathbb{B}}(\alpha)=1$. From all these results, we have: if $\alpha \in V a r$, then $v_{\mathbb{B}}\left(\alpha^{\circ}\right) \wedge v_{\mathbb{B}}(\alpha) \wedge v_{\mathbb{B}}(\neg \alpha)=0 \wedge v_{\mathbb{B}}(\alpha) \wedge v_{\mathbb{B}}(\neg \alpha)=0$. On the other hand, if $\alpha \notin \operatorname{Var}$, then $v_{\mathbb{B}}\left(\alpha^{\circ}\right) \wedge v_{\mathbb{B}}(\alpha) \wedge v_{\mathbb{B}}(\neg \alpha)=1 \wedge v_{\mathbb{B}}(\alpha) \wedge-v_{\mathbb{B}}(\alpha)=0$. From all this, (b) is satisfied.
Condition (c) can be verified in a similar way, as follows: if $\alpha \in V a r$, then $v_{\mathbb{B}}(\alpha)=v_{\mathbb{B}}(\neg \alpha)=1$, and $v_{\mathbb{B}}(\neg \neg \alpha)=0$. Moreover, $-v_{\mathbb{B}}(\neg \neg \alpha)=1$, too. Thus, $\left\{v_{\mathbb{B}}(\neg \alpha),-v_{\mathbb{B}}(\neg \neg \alpha)\right\}=\{1\} \subseteq \mathfrak{f}\left(v_{\mathbb{B}}(\alpha)\right)$, by hypothesis. On the other hand, if $\alpha \notin \operatorname{Var}$, then we have $v_{\mathbb{B}}(\neg \alpha)=-v_{\mathbb{B}}(\neg \neg \alpha)=-v_{\mathbb{B}}(\alpha) \in \mathfrak{f}\left(v_{\mathbb{B}}(\alpha)\right)$, from condition ($\mathrm{F}_{1}-2$) of Theorem 2.8. Note finally that, for every $\alpha \in F m$ it holds:

$$
v_{\mathbb{B}}\left(\alpha^{\circ}\right)= \begin{cases}0 & \text { if } \alpha \in \operatorname{Var} \tag{*}\\ 1 & \text { otherwise }\end{cases}
$$

In particular, for every $\alpha=\beta \# \gamma, v_{\mathbb{B}}\left(\alpha^{\circ}\right)=1$. From this, Theorem $2.8\left(\mathrm{~F}_{1}-2\right)$ and hypothesis, we have $\{0,1\} \subseteq \mathfrak{f}\left(v_{\mathbb{B}}\left(\alpha^{\circ}\right)\right)$. Besides that, $(*)$ implies additionally that $-v_{\mathbb{B}}\left(\beta^{\circ}\right) \vee-v_{\mathbb{B}}\left(\gamma^{\circ}\right) \subseteq\{0,1\}$, always. Thus, condition (d) of Definition 3.1 is valid, too.

[^2]Note that the F_{1}-valuation of the previous example verifies a special condition: for every $\alpha \in F m$, the value $v_{\mathbb{B}}\left(\alpha^{\circ}\right)$ only can be 0 or 1 . This property is not valid in general terms, neither for every F_{1}-structure nor for every F_{1}-valuation. The following example shows such a kind of a "not so good" $F_{1 \text {-valuation: }}$

Example 3.4 Let $\left\langle B_{4}, \mathfrak{f}\right\rangle$ be the F_{1}-structure given in Example 2.10, $A:=$ Lit and the function $h_{2}: A \rightarrow B_{4}$ by: for every $\alpha \in A, h_{2}(\alpha):=\left\{\begin{array}{l}1 \text { if } \alpha \in \operatorname{Var} \\ a \text { if } \alpha \notin \operatorname{Var}\end{array}\right.$. It can be proved (proceeding as in Example 3.3) that if $\mathbb{C}:=\left(A, w, h_{2}\right)$, then the Boolean extension $v_{\mathbb{C}}$ is an F_{1}-valuation, too (for any map $w: \operatorname{Var} \rightarrow B_{4}$). By the way, it is easy to check that, for every $\alpha \in \operatorname{Var}, v_{\mathbb{C}}\left(\alpha^{\circ}\right)=b$ (and, if $\alpha \notin \operatorname{Var}$, then $\left.v_{\mathbb{C}}\left(\alpha^{\circ}\right)=1\right)$, as it was claimed above.

Some basic properties of the F_{1}-valuations, to be used along this paper, are:

Proposition 3.5 Every F_{1}-valuation v on an arbitrary F_{1}-structure $\langle L, \mathfrak{f}\rangle$ verifies (for every $\alpha \in F m$):
(1) $v\left(\alpha^{\circ}\right)=-v(\alpha) \vee-v(\neg \alpha)$
(2) $v(\alpha) \vee v\left(\alpha^{\circ}\right)=1$
(3) $v(\alpha) \vee v(\neg \alpha)=1$
(4) $v(\neg \neg \alpha) \leq v(\alpha)$
(5) $v(\neg \alpha) \vee v(\neg \neg \alpha)=1$
(6) $v(\alpha)=-v\left(\alpha^{\circ}\right) \vee-v(\neg \alpha)$
(7) $v(\alpha \& \beta)=1$ if, and only if, $v(\alpha)=1$ and $v(\beta)=1$.
(8) If $v(\alpha)=0$, then $v(\neg \alpha)=v\left(\alpha^{\circ}\right)=1$ and $v(\neg \neg \alpha)=0$.
(9) If $v(\alpha)=1$, then $v\left(\alpha^{\circ}\right)=-v(\neg \alpha)$.
(10) If $v(\neg \alpha)=0$, then $v(\alpha)=v(\neg \neg \alpha)=1$
(11) If $v(\neg \alpha)=1$, then $-v(\alpha)=v\left(\alpha^{\circ}\right)$.
(12) If $v\left(\alpha^{\circ}\right)=0$, then $v(\alpha)=v(\neg \alpha)=1$.
(13) If $v\left(\alpha^{\circ}\right)=1$, then $-v(\alpha)=v(\neg \alpha)$.
(14) If $v(\neg \neg \alpha)=1$, then $v(\alpha)=1$ and $v\left(\alpha^{\circ}\right)=v\left((\neg \alpha)^{\circ}\right)$.
(15) If $v\left(\beta^{\circ}\right)=v(\alpha \supset \beta)=v(\alpha \supset \neg \beta)=1$, then $v(\alpha)=0$.
(16) If $v\left(\alpha^{\circ}\right)=v\left(\beta^{\circ}\right)=1$, then $v\left(\gamma^{\circ}\right)=1$, for every $\gamma=\alpha \# \beta$
(with $\# \in\{\vee, \&, \supset\})$.
(17) If $v(\alpha)=v(\beta)=0$ and $\gamma=\alpha \# \beta$ (with $\# \in\{\vee, \&, \supset\}$), then $v\left(\gamma^{\circ}\right)=1$.

Proof. First of all, let $\langle L, \mathfrak{f}\rangle$ be an F_{1}-structure, v an F_{1}-valuation into L, and $\alpha \in F m$: from $(\mathbf{c}), v\left(\alpha^{\circ}\right)=v(\neg(\alpha \& \neg \alpha)) \in \mathfrak{f}(v(\alpha \& \neg \alpha)) \subseteq v(\alpha \& \neg \alpha)^{\top}$ (recalling Theorem 2.8). Hence, considering (a), $1=v\left(\alpha^{\circ}\right) \vee v(\alpha \& \neg \alpha)=$ $v\left(\alpha^{\circ}\right) \vee(v(\alpha) \wedge v(\neg \alpha))(*)$. Now, since L is a Boolean algebra and taking into
account (b), we have $v\left(\alpha^{\circ}\right)=-(v(\alpha) \wedge v(\neg \alpha))=-v(\alpha) \vee-v(\neg \alpha)$. Moreover, since $v(\alpha) \wedge v(\neg \alpha) \leq v(\alpha)$, from $(*)$ we have $v(\alpha) \vee v\left(\alpha^{\circ}\right)=1$. Thus, (1) and (2) are satisfied. Besides, from (c) we have $v(\neg \alpha) \in \mathfrak{f}(v(\alpha)) ;-v(\neg \neg \alpha) \in \mathfrak{f}(v(\alpha))$. So, by Theorem 2.8, it holds $v(\alpha) \vee v(\neg \alpha)=1$. In addition, from Prop. $2.11(1)$, it holds $-v(\alpha) \leq-v(\neg \neg \alpha)$. So, (3) and (4) are valid, too. Property (5) is also valid, since $v(\neg \neg \alpha) \in \mathfrak{f}(v(\neg \alpha)) \subseteq v(\neg \alpha)^{\top}$. With respect to (6), let us note that (from (2) and (3)) $v(\alpha) \vee\left(v\left(\alpha^{\circ}\right) \wedge v(\neg \alpha)\right)=1$. This fact, together with (b), implies $v(\alpha)=-\left(v\left(\alpha^{\circ}\right) \wedge v(\neg \alpha)\right)=-v\left(\alpha^{\circ}\right) \vee-v(\neg \alpha)$. Note that (7) is trivial from Definition 3.1. Supposing now that $v(\alpha)=0$, we have $v\left(\alpha^{\circ}\right) \wedge v(\neg \alpha)=-v(\alpha)=1$, from (6). So, $v(\neg \alpha)=v\left(\alpha^{\circ}\right)=1$. And, since $-v(\neg \neg \alpha) \in \mathfrak{f}(v(\alpha))=\{1\}$ (by Prop. 2.11(5)), we have that $v(\neg \neg \alpha)=0$. So, (8) is valid. To prove (9), suppose that $v(\alpha)=1$ and apply (1). For (10): if $v(\neg \alpha)=0$, then (by (6) again), $v(\alpha)=1$. So, from (8) and (9), v($\neg \neg \alpha)$ $=v\left(\alpha^{\circ}\right)=1$. Now, supposing $v(\neg \alpha)=1$ and applying (6) one more time, (11) is proved. Suppose now that $v\left(\alpha^{\circ}\right)=v(\neg(\alpha \& \neg \alpha))=0$. From (10), it holds $v(\alpha \& \neg \alpha)=1$, and then $v(\alpha)=v(\neg \alpha)=1$ (by (7)). Thus, (12) holds, too. Item (13) is valid supposing $v\left(\alpha^{\circ}\right)=1$ and applying (6). To prove (14), if $v(\neg \neg \alpha)=1$, then $0=-v(\neg \neg \alpha) \in \mathfrak{f}(v(\alpha))$, from by Definition 3.1(c.2). But this only can be valid if $v(\alpha)=1$ (Prop. 2.11(4)). From this, (9) and (11), we have $v\left(\alpha^{\circ}\right)=-v(\neg \alpha)=v\left((\neg \alpha)^{\circ}\right)$, as it is expected. To prove (15), let us suppose that $v\left(\beta^{\circ}\right)=v(\alpha \supset \beta)=v(\alpha \supset \neg \beta)=1$. From this and Definition 3.1(a) are valid: $-v(\alpha) \vee v(\beta)=1(*)$ and $-v(\alpha) \vee v(\neg \beta)=1(* *)$. Now, from (13) and $(* *)$, it holds $-v(\alpha) \vee-v(\beta)=1$. This and $(*)$ together imply $-v(\alpha)=1$. That is, $v(\alpha)=0$. To prove (16), suppose $v\left(\alpha^{\circ}\right)=v\left(\beta^{\circ}\right)=1$ and $\gamma=\alpha \# \beta$, with $\# \in\{\vee, \wedge, \supset\}$. Since $-v\left(\alpha^{\circ}\right) \vee-\left(\beta^{\circ}\right) \in \mathfrak{f}\left(v\left(\gamma^{\circ}\right)\right.$) (by Def. $3.1(\mathbf{d}))$, we have $0 \in \mathfrak{f}\left(v\left(\gamma^{\circ}\right)\right)$ and so, $v\left(\gamma^{\circ}\right)=1$ from Prop. 2.11(4). Suppose now that $v(\alpha)=v(\beta)=0$, and let γ be as in the previous item. From (8) and (16), we have $v\left(\gamma^{\circ}\right)=1$. Therefore, it holds (17). This concludes the proof.

Turning back to completeness, the F_{1}-structures together with its F_{1}-valuations define several consequence relations on $F m$:

Definition 3.6 For every arbitrary F_{1}-structure $\langle L, \mathfrak{f}\rangle$, the consequence relation $\models_{\mathbb{F}_{1}}^{\langle L, f\rangle}$ is defined in the following way: $\Gamma \models_{\mathbb{F}_{1}}^{\langle L, f\rangle} \alpha$ iff, for every L valuation $v: F m \rightarrow L, v(\Gamma) \subseteq\left\{1_{L}\right\}$ implies $v(\alpha)=1_{L}$ (if there is no risk of confussion, the relation $\models_{\mathbb{F}_{1}}^{\langle L, f\rangle}$ will be indicated as $\models_{\mathbb{F}_{1}}^{L}$). In addition, the consequence relation $\models_{\mathbb{F}_{1}}$ determined by the class \mathbb{F}_{1} is defined as usual: $\Gamma \models_{\mathbb{F}_{1}} \alpha$ iff $\Gamma \models \models_{\mathbb{F}_{1}}^{L} \alpha$ for every F_{1}-structure $\langle L, \mathfrak{f}\rangle$.

It is easy to see that $\models_{\mathbb{F}_{1}}$ is a Tarskian consequence relation (cf. the formalization of [2]). That is, it satisfies extensiveness, idempotency and monotonicity. Moreover, it verifies:

Proposition 3.7 For every F_{1}-valuation v on $\langle L, \mathfrak{f}\rangle, v(\alpha)=1$ and $v(\alpha \supset \beta)$ $=1$, implies $v(\beta)=1$.

Theorem 3.8 [Semantic Deduction Theorem] For every $\Gamma \cup\{\alpha, \beta\} \subseteq F m$, $\Gamma \cup\{\alpha\} \models_{\mathbb{F}_{1}} \beta$ iff $\Gamma \models_{\mathbb{F}_{1}} \alpha \supset \beta$.

Both results are valid because the F_{1}-valuations are homomorphic w.r.t. \supset, and L is a Boolean algebra.

We will prove soundness, now. For that, we need this result, previously:
Proposition 3.9 For every C_{1}-axiom α, for every F_{1}-valuation $v: F m \rightarrow L$ (with $\langle L, \mathfrak{f}\rangle$ an arbitrary F_{1}-structure), it holds that $v(\alpha)=1$.

Proof. Taking into account that v is homomorphic w.r.t. $\vee, \&$ and \supset, we have that $v(\alpha)=1$, for every instance α of axioms $A 1)-A 8$) of Def. 2.1. Suppose now that α is an instance of $A 9$) (that is, $\alpha=\beta \vee \neg \beta$). From Def. 3.1(c.1) and Theorem 2.8, we have $v(\neg \beta) \in \mathfrak{f}(v(\beta)) \subseteq v(\beta)^{\top}$. Thus, $v(\alpha)=v(\beta \vee \neg \beta)=$ $v(\beta) \vee v(\neg \beta)=1$. In addition, if α is an instance of $A 10$) (i.e. $\alpha=\neg \neg \beta \supset \beta$) we have that $v(\neg \neg \beta \supset \beta)=-v(\neg \neg \beta) \vee v(\beta)=1$, by Def. 3.1(c.2) and Theorem 2.8 again. Consider now when $\alpha:=\beta^{\circ} \supset((\gamma \supset \beta) \supset((\gamma \supset \neg \beta) \supset \neg \gamma))$ (that is, α is an instance of $A 11)$). Applying (a) and (b) now, and recalling that L is a Boolean algebra, we have $v(\alpha)=\left(\left(-v\left(\beta^{\circ}\right) \vee v(\gamma)\right) \wedge-v\left(\beta^{\circ} \& \beta \& \neg \beta\right)\right) \vee v(\neg \gamma)$ $=\left(\left(-v\left(\beta^{\circ}\right) \vee v(\gamma)\right) \wedge 1\right) \vee v(\neg \gamma)=-v\left(\beta^{\circ}\right) \vee v(\gamma) \vee v(\neg \gamma)=1$ (from Prop. $3.5(3))$.

Finally, consider α as being an instance of the C_{1}-axioms of the form A12)-A14) (which have the common structure $\alpha:=\left(\beta^{\circ} \& \gamma^{\circ}\right) \supset(\beta \# \gamma)^{\circ}$, with $\# \in\{\vee, \&, \supset\})$. Since L is a Boolean algebra, and applying Def. 3.1((a) and $(\mathbf{d}))$, and Theorem 2.8, it results: $-v\left(\beta^{\circ} \& \gamma^{\circ}\right)=-\left[v\left(\beta^{\circ}\right) \wedge v\left(\gamma^{\circ}\right)\right]=$ $=-v\left(\beta^{\circ}\right) \vee-v\left(\gamma^{\circ}\right) \in \mathfrak{f}\left(v\left((\beta \# \gamma)^{\circ}\right)\right) \subseteq\left(v\left((\beta \# \gamma)^{\circ}\right)\right)^{\top}$. From all this, $1=$ $-v\left(\beta^{\circ} \& \gamma^{\circ}\right) \vee v\left((\beta \# \gamma)^{\circ}\right)=v\left(\left(\beta^{\circ} \& \gamma^{\circ}\right) \supset(\beta \# \gamma)^{\circ}\right)$. The analysis of these last axioms concludes the proof.

Theorem 3.10 For every $\alpha \in F m, \Gamma \vdash \vdash_{C_{1}} \alpha$ implies $\Gamma \models_{\mathbb{F}_{1}} \alpha$.
Proof. First of all, it can be proved a weak version of this result (specifically, $\vdash_{C_{1}} \alpha$ implies $\models_{F_{1}} \alpha$), applying Propositions 3.9 and 3.7. From this, apply finitariness of $\vdash_{C_{1}}$, Propositions $2.3(1)$ and 3.8 , and monotonicity of $\models_{\mathbb{F}_{1}}$.

With respect to completeness, it will be proved by means of an "algebraicrelational" adaptation of the well-known Lindenbaum-Tarski process. For that, we will need the following definitions:

Definition 3.11 Given the F_{1}-structures $\left\langle L_{i}, \mathfrak{f}_{i}\right\rangle(i=1,2)$, and $h: L_{1} \rightarrow L_{2}$, we say that:

- h is an F_{1}-homomorphism if it satisfies:
- h is a Boolean homomorphism.
- For every $x \in L_{1}, h\left(\mathfrak{f}_{1}(x)\right) \subseteq \mathfrak{f}_{2}(h(x))$.
- h is an F_{1}-bimorphism if, in addition, $h\left(\mathfrak{f}_{1}(x)\right)=\mathfrak{f}_{2}(h(x))$ (for every $\left.x \in L_{1}\right)$.
- Finally, h is called an F_{1}-isomorphism iff it is a bijective bimorphism.

Referring to the previous definitions, this easy result (which is presented without proof) will be very useful later.

Proposition 3.12 Let $\langle L, \mathfrak{f}\rangle$ be an F_{1}-structure. If, for every Boolean isomorphism $h: L \rightarrow L^{\prime}$, we define the map $\mathfrak{f}^{\prime}: L^{\prime} \rightarrow \wp\left(L^{\prime}\right)$ by: $\mathfrak{f}^{\prime}(h(x)):=h(\mathfrak{f}(x))$, then the system $\left\langle L^{\prime}, f^{\prime}\right\rangle$ is an F_{1}-structure which is isomorphic (in the sense of Def. 3.11) to $\langle L, \mathfrak{f}\rangle$.

In addition, we have this obvious result:
Proposition 3.13 If $\left\langle L_{1}, \mathfrak{f}_{1}\right\rangle$ and $\left\langle L_{2}, \mathfrak{f}_{2}\right\rangle$ are F_{1}-isomorphic, Then $\Gamma \models_{\mathbb{F}_{1}}^{L_{1}} \alpha$ iff $\Gamma \models_{\mathbb{F}_{1}}^{L_{2}} \alpha$.

Besides that, the equivalence relation that will determine the Lindenbaumstructure is the same as the one used in Classical Logic (from now on we will be focused on non-trivial theories Γ; that is, sets Γ whose set of C_{1}-consequences is different from the own set $F m$):

Proposition 3.14 For every $\Gamma \subseteq F m$, the relation $\simeq_{\Gamma} \subseteq F m \times F m$ defined by:

$$
\alpha \simeq_{\Gamma} \beta \text { iff } \Gamma \vdash_{C_{1}} \alpha \supset \beta \text { and } \Gamma \vdash_{C_{1}} \beta \supset \alpha
$$

is an equivalence relation. In addition, it is compatible with respect to \vee, \& and \supset.

Proof. Use results (2), (3), (4) and (5) of Proposition 2.3.
notation 3.15 When $\Gamma=\emptyset$ we will denote \simeq_{Γ} simply by \simeq. The equivalence class of any formula $\alpha \in F m$ will be denoted by $\|\alpha\|_{\Gamma}$. In addition, the quotient set determined by \simeq_{Γ} will be denoted by $F m / \simeq_{\Gamma}$.

Let us note that \simeq_{Γ} is not compatible with \neg, in general terms. For instance (taking $\Gamma=\emptyset$ and $\alpha \in \operatorname{Var}$) it is obvious that $\alpha \simeq \alpha \vee \alpha$, because we are dealing with formulas without negation. Now, considering the F_{1}-valuation of

Example 3.3 it is easy to see that $\models_{\mathbb{F}_{1}} \neg \alpha \supset \neg(\alpha \vee \alpha)$. So, by soundness, $\forall_{C_{1}} \neg \alpha \supset \neg(\alpha \vee \alpha)$. Therefore, $\neg \alpha \nsim \neg(\alpha \vee \alpha)$, if $\alpha \in \operatorname{Var}$.

Besides that, defining naturally (by Prop. 3.14) the operations \vee, \wedge and \rightarrow, we have that we can define an order relation in $F m / \simeq_{\Gamma}$:

Proposition 3.16 For every $\Gamma \subseteq F m$, the relation \leq_{Γ} defined on $F m / \simeq_{\Gamma}$ as follows: $\|\alpha\|_{\Gamma} \leq_{\Gamma}\|\beta\|_{\Gamma}$ iff $\|\alpha\|_{\Gamma} \wedge\|\beta\|_{\Gamma}=\|\alpha\|_{\Gamma}\left(\right.$ iff $\|\alpha\|_{\Gamma} \vee\|\beta\|_{\Gamma}=\|\beta\|_{\Gamma}$) is a partial order. Moreover, \leq_{Γ} can be defined in an alternative way by:

$$
\|\alpha\|_{\Gamma} \leq_{\Gamma}\|\beta\|_{\Gamma} \text { iff } \Gamma \vdash_{C_{1}} \alpha \supset \beta
$$

Finally, with this definition, $\left(F m / \simeq_{\Gamma}, \vee, \wedge, \rightarrow, 1_{\Gamma}\right)$ is a classical implicative lattice (CIL) with greatest element $1_{\Gamma}(c f .[4])^{5}$, where 1_{Γ} (the greatest element of $F m / \simeq_{\Gamma}$) verifies: $1_{\Gamma}=\|\alpha\|$ iff $\Gamma \vdash_{C_{1}} \alpha$.

Proof. It is a straightforward adaptation of the "weak version" (when $\Gamma=$ $\emptyset)$, proved in [7].

In the next result, we will show that $F m / \simeq_{\Gamma}$ can be "extended" to a Boolean algebra, in a non-standard way:

Lemma 3.17 Let $F m / \simeq_{\Gamma}$, with Γ non-trivial. If we define the element $0_{\Gamma}:=$ $\left\|\alpha \& \alpha^{\circ} \& \neg \alpha\right\|_{\Gamma}$ (being $\alpha \in F m$), and the map $-: F m / \simeq_{\Gamma} \longrightarrow F m / \simeq_{\Gamma}$ by: $-\|\alpha\|_{\Gamma}:=\left\|\alpha^{\circ} \& \neg \alpha\right\|_{\Gamma}$, then $\left(F m / \simeq_{\Gamma}, \vee, \wedge,-, 0_{\Gamma}, 1_{\Gamma}\right)$ is a Boolean algebra.

Proof. From Proposition 3.16, We only need to prove that:
(a) 0_{Γ} is a well-defined 0 -ary operation, and it is the first element of $F m / \simeq_{\Gamma}$: indeed, for every $\alpha, \beta \in F m, \alpha \& \alpha^{\circ} \& \neg \alpha \simeq_{\Gamma} \beta \& \beta^{\circ} \& \neg \beta$, by Prop. 2.3(6). In addition, for any $\alpha \in F m, 0_{\Gamma}=\|\alpha\|_{\Gamma} \wedge\left\|\alpha^{\circ}\right\|_{\Gamma} \wedge \neg\|\alpha\|_{\Gamma} \leq\|\beta\|_{\Gamma}$.
(b) The map - is well defined: suppose $\|\alpha\|_{\Gamma}=\|\beta\|_{\Gamma}$: from (a), $\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}$ $=0_{\Gamma} \vee\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}\left(\|\alpha\|_{\Gamma} \wedge\left\|\alpha^{\circ} \& \neg \alpha\right\|_{\Gamma}\right) \vee\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}=\left(\|\beta\|_{\Gamma} \wedge\left\|\alpha^{\circ} \& \neg \alpha\right\|_{\Gamma}\right) \vee$ $\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}$. Since $\|\beta\|_{\Gamma} \vee\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}=\left(\|\beta\|_{\Gamma} \vee\left\|\beta^{\circ}\right\|_{\Gamma}\right) \wedge\left(\|\beta\|_{\Gamma} \vee\|\neg \beta\|_{\Gamma}\right)=1_{\Gamma}$ (by Prop. 2.3(7) and $A 9$), we have $\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}=1_{\Gamma} \wedge\left(\left\|\alpha^{\circ} \& \neg \alpha\right\|_{\Gamma} \vee\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}\right)$ $=\left\|\alpha^{\circ} \& \neg \alpha\right\|_{\Gamma} \vee\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}$, which implies $\left\|\alpha^{\circ} \& \neg \alpha\right\|_{\Gamma} \leq\left\|\beta^{\circ} \& \neg \beta\right\|_{\Gamma}$. The other inequality is similar.
(c) For every $\alpha \in F m,\|\alpha\|_{\Gamma} \vee-\|\alpha\|_{\Gamma}=1_{\Gamma}$: given α, we have $\left\|\alpha \vee \alpha^{\circ}\right\|=1_{\Gamma}$ and $\|\alpha \vee \neg \alpha\|_{\Gamma}=1_{\Gamma}$, by A9) and Prop. 2.3(7). Hence ${ }^{6}$, $\|\alpha\|_{\Gamma} \vee-\|\alpha\|_{\Gamma}=$ $\|\alpha\|_{\Gamma} \vee\left(\left\|\alpha^{\circ}\right\|_{\Gamma} \wedge\|\neg \alpha\|_{\Gamma}\right)=1_{\Gamma}$.

[^3](d) For every $\alpha \in F m,\|\alpha\|_{\Gamma} \wedge-\|\alpha\|_{\Gamma}=0_{\Gamma}$. It is obvious, from the Definition of 0_{Γ} and of $-\|\alpha\|_{\Gamma}$. This concludes the proof.

Corollary 3.18 For every $\alpha, \beta \in F m / \simeq_{\Gamma}$, it holds:
(1) $\|\alpha\|_{\Gamma} \rightarrow\|\beta\|_{\Gamma}=-\|\alpha\|_{\Gamma} \vee\|\beta\|_{\Gamma}$.
(2) $-\|\alpha\|_{\Gamma}=\|\alpha\|_{\Gamma} \rightarrow 0_{\Gamma}$.

The following additional property of $F m / \simeq_{\Gamma}$ will be useful along all this paper:

Proposition 3.19 For every set $\Gamma \cup\{\alpha\} \subseteq F m / \simeq_{\Gamma},-\left\|\alpha^{\circ}\right\|_{\Gamma}=\|\alpha \& \neg \alpha\|_{\Gamma}$.
Proof. Consider $\Gamma \cup\{\alpha\} \subseteq F m$: since $\neg\left(\alpha^{\circ}\right)=\neg \neg(\alpha \& \neg \alpha) \vdash_{C_{1}} \alpha \& \neg \alpha$ (by A10) of Def. 2.1), we have $\alpha^{\circ} \vee \neg \alpha^{\circ} \vdash_{C_{1}} \alpha^{\circ} \vee(\alpha \& \neg \alpha)$, applying Prop. 2.3(4). Therefore, $1_{\Gamma}=\left\|\alpha^{\circ} \vee(\alpha \& \neg \alpha)\right\|_{\Gamma}=\left\|\alpha^{\circ}\right\|_{\Gamma} \vee\|\alpha \& \neg \alpha\|_{\Gamma}$. Moreover, 0_{Γ} $=\left\|\alpha \& \alpha^{\circ} \& \neg \alpha\right\|_{\Gamma}=\left\|\alpha^{\circ}\right\|_{\Gamma} \wedge\|\alpha \& \neg \alpha\|_{\Gamma}$. So, $-\left\|\alpha^{\circ}\right\|_{\Gamma}=\|\alpha \& \neg \alpha\|_{\Gamma}$, again by uniqueness of the Boolean complements.

Definition 3.20 The F_{1}-Lindenbaum structure relative to $\Gamma(\Gamma \subseteq F m)$ is the system $\mathbb{L}_{\Gamma}:=\left\langle F m / \simeq_{\Gamma}, \mathfrak{f}_{\simeq_{\Gamma}}\right\rangle$, where $\left\langle F m / \simeq_{\Gamma}, \vee, \wedge,-, 0_{\Gamma}, 1_{\Gamma}\right\rangle$ is the Boolean algebra determined in Lemma 3.17, and (for any $\|\alpha\|_{\Gamma} \in F m / \simeq_{\Gamma}$), $f_{\simeq_{\Gamma}}\left(\|\alpha\|_{\Gamma}\right):=\left\{\|\lambda\|_{\Gamma}: \Gamma, \neg \lambda \vdash_{1} \alpha\right\}$.

Theorem 3.21 The system \mathbb{L}_{Γ} is an F_{1}-structure.
Proof. Taking into account Theorem 2.8, we only need to prove:
(a) $\mathfrak{f} \simeq: F m / \simeq_{\Gamma} \rightarrow \wp\left(F m / \simeq_{\Gamma}\right)$ is well-defined: assuming $\alpha \simeq_{\Gamma} \beta$, let us prove that $\mathfrak{f}_{\simeq_{\Gamma}}\left(\|\alpha\|_{\Gamma}\right)=\mathfrak{f}_{\simeq_{\Gamma}}\left(\|\beta\|_{\Gamma}\right)$, with $\mathfrak{f}_{\simeq_{\Gamma}}$ given as above. If $\|\lambda\|_{\Gamma} \in$ $\mathfrak{f}_{\Gamma}\left(\|\alpha\|_{\Gamma}\right)$, then $\|\neg \lambda\|_{\Gamma} \leq\|\alpha\|_{\Gamma}=\|\beta\|_{\Gamma}$. So, $\Gamma \vdash_{C_{1}} \neg \lambda \supset \beta$ (by Prop. 3.16). That is, $\Gamma, \neg \lambda \vdash{ }_{C_{1}} \beta$. Then, by definition of $\mathfrak{f}_{\simeq_{\Gamma}},\|\lambda\|_{\Gamma} \in \mathfrak{f}_{\simeq_{\Gamma}}\left(\|\beta\|_{\Gamma}\right)$. The other inclusion is similar.
(b) for every $\alpha \in F m,-\|\alpha\|_{\Gamma} \in \mathfrak{f}_{\simeq_{\Gamma}}\left(\|\alpha\|_{\Gamma}\right)$: from Prop. 2.3(8), it is valid $\Gamma \vdash_{C_{1}} \neg\left(\alpha^{\circ} \& \neg \alpha\right) \supset \alpha$. So, $\left\|\neg\left(\alpha^{\circ} \& \neg \alpha\right)\right\|_{\Gamma} \leq\|\alpha\|_{\Gamma}$, by Prop. 3.16. Therefore $-\|\alpha\|_{\Gamma}=\left\|\alpha^{\circ} \& \neg \alpha\right\|_{\Gamma} \in \mathfrak{f}_{\simeq_{\Gamma}}\left(\|\alpha\|_{\Gamma}\right)$.
(c) $\mathfrak{f}_{\simeq_{\Gamma}}\left(\|\alpha\|_{\Gamma}\right) \subseteq\|\alpha\|_{\Gamma}{ }^{\top}$: suppose $\|\lambda\|_{\Gamma} \in \mathfrak{f}_{\simeq_{\Gamma}}\left(\|\alpha\|_{\Gamma}\right)$ (that is, $\|\neg \lambda\|_{\Gamma} \leq\|\alpha\|_{\Gamma}$, from Prop. 3.16). Now, $1_{\Gamma}=\|\lambda \vee \neg \lambda\|_{\Gamma}=\|\lambda\|_{\Gamma} \vee\|\neg \lambda\|_{\Gamma} \leq\|\lambda\|_{\Gamma} \vee\|\alpha\|_{\Gamma}$ (by A9)). Thus, $\|\lambda\|_{\Gamma} \vee\|\alpha\|_{\Gamma}=1_{\Gamma}$, which means $\|\lambda\|_{\Gamma} \in\|\alpha\|_{\Gamma}^{\top}$.

Proposition 3.22 For every $\Gamma \subseteq F m$, the map $q_{\Gamma}: F m \rightarrow F m / \simeq_{\Gamma}$ defined by $q_{\Gamma}(\alpha):=\|\alpha\|_{\Gamma}$ is an F_{1}-valuation into the F_{1}-structure \mathbb{L}_{Γ} (which will be called the canonical \mathbb{L} / Γ-valuation).

Proof. Let q_{Γ} be defined as above. Taking into account Proposition 3.16, it is clear that q_{Γ} satisfies (a) of Def. 3.1. On the other hand, condition (b) is satisfied by the definition of 0_{Γ}, included in Lemma 3.17.
Let us prove condition (c), now. That is (for every $\alpha \in F m / \simeq_{\Gamma}$):
(c.1) $q_{\Gamma}(\neg \alpha) \in \mathfrak{f}\left(q_{\Gamma}(\alpha)\right)$: this is valid from axiom A10) and Definition 3.20.
(c.2) $-\left(q_{\Gamma}(\neg \neg \alpha)\right) \in \mathfrak{f}_{\Gamma}\left(q_{\Gamma}(\alpha)\right)$: we have $\neg\left((\neg \neg \alpha)^{\circ} \& \neg(\neg \neg \alpha)\right) \vdash_{C_{1}} \neg \neg \alpha$ and $\neg \neg \alpha \vdash_{C_{1}} \alpha$, from Prop. 2.3(8) and A10). So, $\Gamma \vdash_{C_{1}} \neg\left((\neg \neg \alpha)^{\circ} \& \neg(\neg \neg \alpha)\right) \supset \alpha$. Thus, by the definition of $\mathfrak{f}_{\simeq_{\Gamma}}$, we get $\left\|(\neg \neg \alpha)^{\circ} \& \neg(\neg \neg \alpha)\right\|_{\Gamma} \in \mathfrak{f}_{\simeq_{\Gamma}}\left(\|\alpha\|_{\Gamma}\right)=$ $\mathfrak{f}_{\Gamma}\left(q_{\Gamma}(\alpha)\right)$. Besides that, by definition of - , it holds $-q_{\Gamma}(\neg \neg \alpha)=-\|\neg \neg \alpha\|_{\Gamma}=$ $\left\|(\neg \neg \alpha)^{\circ} \& \neg(\neg \neg \alpha)\right\|_{\Gamma} \in \mathfrak{f}_{\simeq_{\Gamma}}\left(q_{\Gamma}(\alpha)\right)$ too, as it was expected.
Finally, let us prove (d): $-q_{\Gamma}\left(\beta^{\circ}\right) \vee-q_{\Gamma}\left(\gamma^{\circ}\right) \in \mathfrak{f}_{\simeq_{\Gamma}}\left(q_{\Gamma}\left((\beta \# \gamma)^{\circ}\right)\right)$, for every $\{\beta, \gamma\} \subseteq F m / \simeq_{\Gamma}$ (with $\left.\# \in\{\vee, \&, \supset\}\right)$: using Prop. 2.3(8) again (and applying axioms A12)-A14)), we have $\neg\left(\left(\beta^{\circ} \& \gamma^{\circ}\right)^{\circ} \& \neg\left(\beta^{\circ} \& \gamma^{\circ}\right)\right) \vdash_{C_{1}} \beta^{\circ} \& \gamma^{\circ}$ and $\beta^{\circ} \& \gamma^{\circ} \vdash_{C_{1}}(\beta \# \gamma)^{\circ}$. Thus, $\Gamma \vdash_{C_{1}} \neg\left(\left(\beta^{\circ} \& \gamma^{\circ}\right)^{\circ} \wedge \neg\left(\beta^{\circ} \& \gamma^{\circ}\right)\right) \supset(\beta \# \gamma)^{\circ}$, by Prop. 2.3(3). So, it holds $\left\|\left(\beta^{\circ} \& \gamma^{\circ}\right)^{\circ} \wedge \neg\left(\beta^{\circ} \& \gamma^{\circ}\right)\right\|_{\Gamma} \in \mathfrak{f}_{\simeq_{\Gamma}}\left(\left\|(\beta \# \gamma)^{\circ}\right\|_{\Gamma}\right)=$ $\mathfrak{f}_{\Gamma}\left(q_{\Gamma}\left((\beta \# \gamma)^{\circ}\right)\right)$, from Definition 3.20. In addition, we have $-\left\|\beta^{\circ} \& \gamma^{\circ}\right\|_{\Gamma}=$ $\left\|\left(\beta^{\circ} \& \gamma^{\circ}\right)^{\circ} \wedge \neg\left(\beta^{\circ} \& \gamma^{\circ}\right)\right\|_{\Gamma}$, by Lemma 3.17. Summarizing all this, $-q_{\Gamma}\left(\beta^{\circ} \& \gamma^{\circ}\right)$ belongs to $\mathfrak{f}_{\Gamma}\left(q_{\Gamma}\left((\beta \# \gamma)^{\circ}\right)\right)$. Thus, q_{Γ} is an F_{1}-valuation.

Corollary 3.23 For every $\Gamma \subseteq F m$, for every $\alpha \in F m$, it holds that $q_{\Gamma}(\alpha)=$ 1_{Γ} if, and only if, $\Gamma \vdash_{C_{1}} \alpha$.

Proof. Immeditate, from Propositions 3.16 and 3.22.
Corollary 3.24 For every $\Gamma, q_{\Gamma}(\Gamma) \subseteq\left\{1_{\Gamma}\right\}$.
Proof. By the previous corollary and extensiveness of $\vdash_{C_{1}}$.
Finally, we get completeness:
Theorem 3.25 For every $\Gamma \cup\{\alpha\} \subseteq F m, \Gamma \not \models_{\mathbb{F}_{1}} \alpha$ implies $\Gamma \vdash_{C_{1}} \alpha$.
Proof. By contrapositive: consider $\Gamma \cup\{\alpha\} \subseteq F m$ such that $\Gamma \nvdash_{C_{1}} \alpha$. It is possible to define the F_{1}-structure \mathbb{L}_{Γ}, according Definition 3.20. Moreover, the map q_{Γ} defined following Proposition 3.22 is an F_{1}-valuation, verifying $q_{\Gamma}(\Gamma) \subseteq\left\{1_{\Gamma}\right\}$ and $q_{\Gamma}(\alpha) \neq 1_{\Gamma}$ (by Corollaries 3.24 and 3.23). Hence, $\Gamma \not \vDash_{\mathbb{F}_{1}}^{\mathbb{L}_{\Gamma}} \alpha$, and then $\Gamma \not \vDash_{\mathbb{F}_{1}} \alpha$.

4 Decidability of C_{1}, simplified

As it was previously remarked, the definition of F_{n}-structures (besides its use in completeness) had as main motivation the proof of decidability of the calculi
C_{n}. In this context we say that a given logic is decidable if and only if it set of valid formulas (the set of C_{1}-theorems, in this case) is decidable. So, we will not work with arbitrary theories Γ, but we will consider that $\Gamma=\emptyset$, simply. Turning back to Fidel's proof of decidability of C_{1}, it is possible to simplify it, too. For this, we will adapt Birkhoff's Theorem for subdirectly irreducible Boolean algebras. This result will be proved from the notion of F_{1}-homomorphism (already given), together with the definitions of F_{1}-substructure and F_{1}-product, that will be provided along this section.

Definition 4.1 An F_{1}-structure $\langle S, \mathfrak{g}\rangle$ is $\boldsymbol{F}_{\mathbf{1}}$-substructure of $\langle L, \mathfrak{f}\rangle$ iff:
(1) S is a Boolean subalgebra of L.
(2) For every $x \in S, \mathfrak{g}(x) \subseteq \mathfrak{f}(x)$.

It is worth to note here that, if the definition given above were expressed according the formalism of Model Theory (as it was done in [3] for the case of the logic $\mathbf{m b C}$), it would not correspond to the standard notion of substructure: in the model-theoretic definition of substructure it is necessary that $\mathfrak{g}(x)=$ $\mathfrak{f}(x) \cap S$. Actually, Def. 4.1 is referred to the notion known as weak substructure in the literature ${ }^{7}$. This weakening will be necessary to relate any F_{1}-structure with its saturated version, to be defined later.

Proposition 4.2 For every injective F_{1}-homomorphism h between $\left\langle L_{1}, \mathfrak{f}_{1}\right\rangle$ and $\left\langle L_{2}, \mathfrak{f}_{2}\right\rangle$, for every Boolean subalgebra S of L_{1}, if we define (for every $x \in S$) $\mathfrak{g}(h(x)):=h\left(\mathfrak{f}_{1}(x)\right) \cap h(S)$, then the system $\langle h(S), \mathfrak{g}\rangle$ is an F_{1}-substructure of $\left\langle L_{2}, \mathfrak{f}_{2}\right\rangle$.

Proof. Considering the hypotheses above, define $\mathfrak{g}(h(x)):=h\left(\mathfrak{f}_{1}(x)\right) \cap h(S)$. Obviously it holds $\mathfrak{g}: h(S) \rightarrow \wp(h(S))$, being $h(S)$ a Boolean subalgebra of L_{2}. In addition, for every $x \in S, \mathfrak{g}(h(x)) \subseteq \mathfrak{f}_{2}(h(x)) \cap h(S)$, from Def. 4.1. Besides that, $-x \in \mathfrak{f}_{1}(x) \cap S$ and then (since h is Boolean homomorphism): $-h(x)=h(-x) \in h\left(\mathfrak{f}_{1}(x)\right) \cap h(S)=\mathfrak{g}(h(x))$. From Def. 4.1, $\langle h(S), \mathfrak{g}\rangle$ is a substructure of $\left\langle L_{2}, \mathfrak{f}_{2}\right\rangle$.

Definition 4.3 The $\boldsymbol{F}_{\mathbf{1}}$-product of the family $\left\{\left(L_{i}, \mathfrak{f}_{i}\right)\right\}_{i \in I}$ of F_{1}-structures is the following system:

$$
\boldsymbol{L}_{\boldsymbol{\pi}}:=\left\langle\prod_{i \in I} L_{i}, \mathfrak{f}_{\pi}\right\rangle\left(\text { where }, \text { for every } \bar{x} \in \prod_{i \in I} L_{i}, \mathfrak{f}_{\pi}(\bar{x}):=\prod_{i \in I} \mathfrak{f}_{i}\left(\pi_{i}(\bar{x})\right)\right)
$$

[^4]Proposition 4.4 The F_{1}-product of F_{1}-structures is also an F_{1}-structure. In addition, for every $i \in I$, the projection map $\pi_{i}: \prod_{i \in I} L_{i} \rightarrow L_{i}$ is a surjective F_{1}-bimorphism.

Proof. Given a family $\left\{\left\langle L_{i}, \mathfrak{f}_{i}\right\rangle\right\}_{i \in I}$ of F_{1}-structures and considering that $\prod_{i \in I} L_{i}$ is the Boolean product of $\left\{L_{i}\right\}_{i \in I}$, it is easy to see that $\boldsymbol{L}_{\boldsymbol{\pi}}$ satisfies the conditions established in Theorem 2.8. Besides that, given any $i \in I$, by Def. 4.3, $\pi_{i}\left(\mathfrak{f}_{\pi}(\bar{x})\right)=\pi_{i}\left(\prod_{i \in I} \mathfrak{f}_{i}\left(\pi_{i}(\bar{x})\right)\right)=\mathfrak{f}_{i}\left(\pi_{i}(\bar{x})\right)$. From this, π_{i} is a surjective F_{1}-bimorphism, since π_{i} is a Boolean epimorphism, for every $i \in I$.

We will prove now some basic properties of the F_{1}-valuations (recall Definition 3.1), related to all the notions given above. By the way, the items (a), (b), (c) and (d) that will be mentioned all along this section are always referred to the mentioned definition:

Proposition 4.5 Let h be an F_{1}-homomorphism from $\left\langle L_{1}, \mathfrak{f}_{1}\right\rangle$ to $\left\langle L_{2}, \mathfrak{f}_{2}\right\rangle$. For every F_{1}-valuation $v: F m \rightarrow L_{1}$, the composition $h \circ v$ is an F_{1}-valuation into L_{2}.

Proof. From the hypothesis above indicated, we have that $h \circ v$ behaves homomorphically w.r.t. $\vee, \&$ and \supset, verifying (a), consequently. Condition (\mathbf{b}) is valid because h is a Boolean homomorphism. Suppose $\alpha \in F m$, now. Since v satisfies $(\mathbf{c}),\{v(\neg \alpha),-v(\neg \neg \alpha)\} \subseteq \mathfrak{f}_{1}(v(\alpha))$. In addition, from Definition 3.11, it holds $h\left(\mathfrak{f}_{1}(v(\alpha))\right) \subseteq \mathfrak{f}_{2}((h \circ v)(\alpha))$. From all this, $(h \circ v)(\neg \alpha)$ $=h(v(\neg \alpha)) \in \mathfrak{f}_{2}((h \circ v)(\alpha))$. Moreover, it is valid that $-(h \circ v)(\neg \neg \alpha)=$ $h(-v(\neg \neg \alpha)) \in \mathfrak{f}_{2}((h \circ v)(\alpha))$. That is, $h \circ v$ verifies (\mathbf{c}). Finally, consider $\beta, \gamma \in F m$ and $\# \in\{\vee, \&, \supset\}$. Since v verifies Definition $3.1(\mathbf{d})$, it holds $-v\left(\beta^{\circ}\right) \vee-v\left(\gamma^{\circ}\right) \in \mathfrak{f}_{1}\left(v\left((\beta \# \gamma)^{\circ}\right)\right)$. Besides, since $h\left(\mathfrak{f}_{1}\left(v\left((\beta \# \gamma)^{\circ}\right)\right)\right) \subseteq$ $\mathfrak{f}_{2}\left(h\left(v\left((\beta \# \gamma)^{\circ}\right)\right)\right)$, we have $h\left(-v\left(\beta^{\circ}\right) \vee-v\left(\gamma^{\circ}\right)\right) \in \mathfrak{f}_{2}\left(h\left(v\left((\beta \# \gamma)^{\circ}\right)\right)\right)$. Then, $-(h \circ v)\left(\beta^{\circ}\right) \vee-(h \circ v)\left(\gamma^{\circ}\right) \in \mathfrak{f}_{2}\left((h \circ v)\left((\beta \# \gamma)^{\circ}\right)\right)$ (since h and v are homomorphic w.r.t. $\vee, \&$ and $\supset)$. Thus, $h \circ v$ verifies (d), too.

From this result it is easy to demonstrate:
Proposition 4.6 Let $\langle S, \mathfrak{g}\rangle$ be an F_{1}-substructure of $\langle L, \mathfrak{f}\rangle$. Every F_{1}-valuation into S is an F_{1}-valuation into L.

Proof. Consider $\langle L, \mathfrak{f}\rangle$ and $\langle S, \mathfrak{g}\rangle$ as defined above. Let v be an arbritrary F_{1}-valuation into S, and let $\alpha \in F m$: from Def. 3.1 (c) and Def. 4.1, we
have $\{v(\neg \alpha),-v(\neg \neg \alpha)\} \subseteq \mathfrak{g}(v(\alpha)) \subseteq \mathfrak{f}(v(\alpha))$. Now, let $\{\alpha, \beta\}$ be any pair of formulas. By (\mathbf{d}), it holds: $-v\left(\alpha^{\circ}\right) \vee-v\left(\beta^{\circ}\right) \in \mathfrak{g}\left(v\left((\alpha \# \beta)^{\circ}\right)\right) \subseteq \mathfrak{f}\left(v\left((\alpha \# \beta)^{\circ}\right)\right)$. The rest of the conditions are obviously valid.

From the previous result and Def. 3.6 it follows easily:
Proposition 4.7 If $\langle S, \mathfrak{g}\rangle$ is an F_{1}-substructure of $\langle L, \mathfrak{f}\rangle$, then $\models_{\mathbb{F}_{1}}^{L} \alpha$ implies $\models_{\mathbb{F}_{1}}^{S} \alpha$.

Concerning the relation between F_{1}-products and F_{1}-valuations note that, by its own definition, the "product of F_{1}-structures" induces a product of valuations, as we shall see in the sequel.

Definition 4.8 Let $\left\{\left\langle L_{i}, \mathfrak{f}_{i}\right\rangle\right\}_{i \in I}$ be a family of F_{1}-structures and let $\left\{v_{i}\right\}_{i \in I}$ a family of F_{1}-valuations $v_{i}: F m \rightarrow L_{i}$. We define the map $v_{\pi}: F m \rightarrow \prod_{i \in I} L_{i}$ by $v_{\pi}(\alpha):=\left(v_{i}(\alpha)\right)_{i \in I}$, for every $\alpha \in F m$.

Proposition 4.9 Let $\left\{\left\langle L_{i}, \mathfrak{f}_{i}\right\rangle\right\}_{i \in I}$ be a family of F_{1}-structures and consider the F_{1}-product $\boldsymbol{L}_{\boldsymbol{\pi}}$. Then, it holds:
(1) The map $v_{\pi}: F m \rightarrow \prod_{i \in I} L_{i}$ is an F_{1}-valuation into $\boldsymbol{L}_{\boldsymbol{\pi}}$.
(2) If $v: F m \rightarrow \prod_{i \in I} L_{i}$ is any F_{1}-valuation into $\boldsymbol{L}_{\boldsymbol{\pi}}$, then $\pi_{i} \circ v: F m \rightarrow L_{i}$ is an F_{1}-valuation into L_{i}, for every $i \in I$.

Proof. Item (1) follows straightforward, since the operations on the Boolean algebra $\prod_{i \in I} L_{i}$ are defined componentwise. On the other hand, every projection $\operatorname{map} \pi_{i}: \prod_{i \in I} L_{i} \rightarrow L_{i}$ is an F_{1}-homomorphism, cf. Prop. 4.4. Applying Prop. 4.5 now, it follows (2).

Proposition 4.10 Let $\left\{\left\langle L_{i}, \mathfrak{f}_{i}\right\rangle\right\}_{i \in I}$ be a family of F_{1}-structures and let $\boldsymbol{L}_{\boldsymbol{\pi}}$ be its F_{1}-product associated. For every $\alpha \in F m$, it holds: if $\models_{\mathbb{F}_{1}}^{L_{i}} \alpha$ for every $i \in I$, then $\models_{\mathbb{F}_{1}}^{L \pi} \alpha$.

Proof. Let $\left\{\left\langle L_{i}, \mathfrak{f}_{i}\right\rangle: i \in I\right\}$ be a family of F_{1}-structures and let $\boldsymbol{L}_{\boldsymbol{\pi}}$ be its product associated where, for every $\bar{x} \in \prod_{i \in I} L_{i}, \mathfrak{f}_{\pi}(\bar{x})=\prod_{i \in I} \mathfrak{f}_{i}\left(\pi_{i}(\bar{x})\right)$ (from Def.
4.3). Let α be in $F m$ such that, for every $i \in I$, it holds $\models_{1}^{L_{i}} \alpha$, and let
$v: F m \rightarrow \prod_{i \in I} L_{i}$ be any F_{1}-valuation into $\boldsymbol{L}_{\boldsymbol{\pi}}$. From Prop. 4.9(2), we have that (for every $i \in I) \pi_{i} \circ v$ is an F_{1}-valuation into L_{i}. So, for every $i \in I$ it holds $\pi_{i}(v(\alpha))=\left(\pi_{i} \circ v\right)(\alpha)=1_{i}$, by our hypothesis. Thus, $v(\alpha)=\left(1_{i}\right)_{i \in I}=$ 1_{π}. From this, $\models_{\mathbb{F}_{1}}^{\boldsymbol{L}_{\boldsymbol{\pi}}} \alpha$.

We will define now a special kind of F_{1}-structures, essential to our proof of decidability:

Definition 4.11 For every Boolean algebra L, the saturated F_{1}-structure determined by L is the F_{1}-structure of the form: $\left\langle L, \overline{\mathfrak{f}_{L}}\right\rangle$, where $\overline{\mathfrak{f}_{L}}(x):=$ $\{y \in L: x \vee y=1\}=x^{\top}$.

It is easy to see that $\left\langle L, \overline{\mathfrak{F}_{L}}\right\rangle$ is an F_{1}-structure, indeed. It is also obvious that every Boolean algebra L can determine several F_{1}-structures, depending of the choice of the map \mathfrak{f} involved. However, L can determine only one saturated F_{1}-structure. The following example shows this:

Example 4.12 The systems $\left\langle B_{2}, \mathfrak{f}\right\rangle$ and $\left\langle B_{2}, \overline{\mathfrak{f}_{B_{2}}}\right\rangle$ are all the possible $F_{1^{-}}$ structures that can be defined on B_{2}, where:

$$
\begin{array}{ll}
\mathfrak{f}(0)=\{1\} & \overline{\mathfrak{f}_{B_{2}}}(0)=\{1\} \\
\mathfrak{f}(1)=\{0\} & \overline{\mathfrak{f}_{B_{2}}}(1)=\{0,1\}
\end{array}
$$

In addition, $\left\langle B_{2}, \overline{\mathfrak{f}_{B_{2}}}\right\rangle$ is the saturated F_{1}-structure determined by B_{2} (see Definition 4.11). By the way, it is the canonical F_{1}-structure, already presented in Example 2.9.

Example 4.13 The following is an example of a non-saturated F_{1}-structure. Let us consider the eight-element Boolean algebra B_{8} (see Figure 2):

According to that figure, the complement of every element of B_{8} is indicated below:

\boldsymbol{x}	0	a	b	c	d	e	f	1
$-\boldsymbol{x}$	1	e	d	f	b	a	c	0

Now, defining for every $x \in B_{8}$:

$$
\begin{array}{lll}
\mathfrak{f}(0)=\{1\} & \mathfrak{f}(d)=\{b, e, 1\} & \mathfrak{f}(a)=\{e\} \\
\mathfrak{f}(b)=\{d, 1\} & \mathfrak{f}(f)=\{c, d\} & \mathfrak{f}(c)=\{f\} \\
& \mathfrak{f}(1)=\{a, d, f\} \\
\text { (} 10
\end{array}
$$

it is not difficult to check that $\left\langle B_{8}, \mathfrak{f}\right\rangle$ is an F_{1}-structure, indeed. Moreover, it is obviously a non-saturated one.

The following result is obvious.

Figure 2: Hasse's Diagram of B_{8}

Proposition 4.14 For every F_{1}-structure $\langle L, \mathfrak{f}\rangle$ it holds:
(1) $\langle L, \mathfrak{f}\rangle$ is substructure of the saturated structure $\left\langle L, \overline{\mathfrak{f}_{L}}\right\rangle$.
(2) If S is a subalgebra of L, then $\left\langle S, \overline{\mathfrak{f}_{S}}\right\rangle$ is an F_{1}-substructure of $\left\langle L, \overline{\mathfrak{f}_{L}}\right\rangle$.

On the other hand, to symbolize the saturated F_{1}-structure of the Boolean product of a family of algebras, we write $\overline{\boldsymbol{L}_{\boldsymbol{\pi}}}=\left\langle\prod_{i \in I} L_{i}, \overline{\mathfrak{f}_{\pi}}\right\rangle$.

Proposition 4.15 Let $\left\{\left\langle L_{i}, \mathfrak{f}_{L_{i}}\right\rangle: i \in I\right\}$ be a family of F_{1}-structures, and let $\boldsymbol{L}_{\boldsymbol{\pi}}$ be its F_{1}-product. Then $\boldsymbol{L}_{\boldsymbol{\pi}}=\overline{\boldsymbol{L}_{\boldsymbol{\pi}}}$ iff, for every $i \in I, \mathfrak{f}_{L_{i}}=\overline{\mathfrak{f}_{L_{i}}}$.

Proof. It follows from Def. 4.3 and this fact: for every $\bar{x}=\left(x_{i}\right)_{i \in I} \in \prod_{i \in I} L_{i}$, it holds that $\bar{x}^{\top}=\prod_{i \in I}\left(\pi_{i}(\bar{x})\right)^{\top}=\prod_{i \in I}\left(x_{i}\right)^{\top}$.

All the previous definitions and results allow us to obtain the following Representation Theorem for F_{1}-structures:

Theorem 4.16 Every F_{1}-structure $\langle L, \mathfrak{f}\rangle$ is F_{1}-isomorphic (in the sense of Def. 3.11) to a substructure of the saturated F_{1}-structure determined by the Boolean product of a family $\left\{L_{i}\right\}_{i \in I}$, where $L_{i}=B_{2}$, for every $i \in I$.

Proof. Given $\langle L, \mathfrak{f}\rangle$, it is well-known that L is representable as a subdirect product of a family $\left\{L_{i}\right\}_{i \in I}$, where $L_{i}=B_{2}$, for every $i \in I$ (see [1]). So, there is L^{\prime} verifying:
(a) There exists an (algebraic) isomorphism $h: L \rightarrow L^{\prime}$.
(b) L^{\prime} is subalgebra of $\prod_{i \in I} L_{i}$.

Now, from Prop. 3.12 and (a), $\left\langle L^{\prime}, \mathfrak{f}^{\prime}\right\rangle$ is an F_{1}-structure, where $\mathfrak{f}^{\prime}(h(x)):=$ $h(\mathfrak{f}(x))$, for every $x \in L$. Moreover, h is an F_{1}-isomorphism. Besides that,
from Prop. $4.14(1),\left\langle L^{\prime}, \mathfrak{f}^{\prime}\right\rangle$ is an F_{1}-substructure of $\left\langle L^{\prime}, \overline{\mathfrak{f}_{L^{\prime}}}\right\rangle$, the saturated $F_{1^{-}}$ structure of L^{\prime}, which, in turn, is a substructure of the F_{1}-saturated product $\overline{\boldsymbol{L}_{\boldsymbol{\pi}}}$ (apply Prop. $4.14(2)$ and (b), now). This completes the proof.

Theorem 4.17 For every $\alpha \in F m$ the following conditions are equivalent:
(i) $\models_{\mathbb{F}_{1}} \alpha$
(ii) $\models_{\mathbb{F}_{1}}^{\left\langle L, \overline{\mathfrak{F}_{L}}\right\rangle} \alpha$ for every saturated F_{1}-structure $\left\langle L, \overline{\mathfrak{f}_{L}}\right\rangle$.
(iii) $\models_{\mathbb{F}_{1}}^{\left\langle B_{2}, \overline{f_{B_{2}}}\right\rangle} \alpha$.

Proof. It is obvious that (i) implies (ii) and (ii) implies (iii). To prove that (iii) implies (i), let us suppose $\models_{\mathbb{F}_{1}}^{\left\langle B_{2}, \bar{f}\right\rangle} \alpha$, and let us consider any F_{1}-structure $\langle L, \mathfrak{f}\rangle$. Then, by Theorem 4.16, there is an F_{1}-isomorphism $h: L \rightarrow L^{\prime}$, being $\left\langle L^{\prime}, \mathfrak{f}^{\prime}\right\rangle$ an F_{1}-substructure of a F_{1}-saturated structure $\overline{\boldsymbol{L}_{\boldsymbol{\pi}}}=\left\langle\prod_{i \in I} L_{i}, \overline{\mathfrak{f}_{\pi}}\right\rangle$ where, for every $i \in I, L_{i}=B_{2}$. Now, according Prop. 4.15, $\overline{\boldsymbol{L}_{\boldsymbol{\pi}}}$ is the product of the saturated F_{1}-structures $\left\langle L_{i}, \overline{\mathfrak{f}_{L_{i}}}\right\rangle$. From this, our hypothesis and Prop. 4.10, we have $\models_{\mathbb{F}_{1}}^{\overline{L_{\pi}}} \alpha$. Hence, from Prop. 4.7, it holds $\models_{\mathbb{F}_{1}}^{\left\langle L^{\prime}, f^{\prime}\right\rangle} \alpha$. Thus, by Prop. $3.13, \models_{\mathbb{F}_{1}}^{\langle L, \mathfrak{f}\rangle} \alpha$. Since $\langle L, \mathfrak{f}\rangle$ is arbitrary, $\models_{\mathbb{F}_{1}} \alpha$.

Corollary 4.18 The logic C_{1} is decidable.
Proof. The algebra B_{2} is finite. Besides, for every $\alpha \in F m$, there is a finite number, m_{α}, of F_{1}-valuations from $F m$ to $\left\langle B_{2}, \overline{\mathfrak{f}_{B_{2}}}\right\rangle$, necessary to test if $\models_{\mathbb{F}_{1}}^{\left\langle B_{2}, \overline{f_{B_{2}}}\right\rangle} \alpha$. Actually, m_{α} is bounded by $2^{k_{\alpha}}$, being k_{α} the cardinal of the set of all the subformulas of α.

As it was pointed out in the previous result, the number m_{α} of F_{1}-valuations needed to test the validity of a given formula $\alpha \in F m$ is finite. However, it is not clear exactly how to obtain m_{α}, and which are the expressions that determine its obtention. This is an interesting problem, to be discussed later.

$5 \quad F_{1}$-structures and Quasi-matrices, compared

In [6] it was proposed a semantics for the C_{n}-logics (and, in particular, for C_{1}) based on the so-called quasi-matrices. It was one of the more "algorithmic" approaches for this family of logics ${ }^{8}$ and it was, a priori, different from the

[^5]F_{1}-structures-based semantics. We will show in the sequel that, even with different motivations, the quasi-matrix semantics and the semantics focused on the canonical F_{1}-structure $\left\langle B_{2}, \overline{\mathfrak{f}_{2}}\right\rangle$ are, essentially, the same. We will begin this analysis with a simple proof of some properties of F_{1}-valuations that are specific for $\left\langle B_{2}, \overline{\mathfrak{f}_{B_{2}}}\right\rangle$ (which will be called simply as canonical F_{1}-valuations, from now on):

Proposition 5.1 Every canonical F_{1}-valuation v verifies (for any $\alpha, \beta \in F m$):
(1) $v(\alpha \vee \beta)=1$ if, and only if, $v(\alpha)=1$ or $v(\beta)=1$.
(2) $v(\alpha \supset \beta)=1$ if, and only if, $v(\alpha)=0$ or $v(\beta)=1$.
(3) If $\gamma=\alpha \# \beta$, with $\# \in\{\vee, \&, \supset\}$, and $v\left(\gamma^{\circ}\right)=0$, then $v(\alpha)=1$ or $v(\beta)=1$.

Proof. Consider any F_{1}-valuation v on $\left\langle B_{2}, \overline{\mathfrak{f}_{B_{2}}}\right\rangle$. From Def. 3.1(a), (1) and (2) are trivial in this structure. To prove (3), suppose that $\gamma=\alpha \# \beta$ $(\# \in\{\vee, \wedge, \supset\})$ with $v\left(\gamma^{\circ}\right)=0$. Then, applying Definition 3.1 one more time, we have $-v\left(\alpha^{\circ}\right) \vee-v\left(\beta^{\circ}\right)=-v\left(\alpha^{\circ} \& \beta^{\circ}\right) \in \overline{\mathfrak{f}_{B_{2}}}\left(v\left(\gamma^{\circ}\right)\right)=\overline{\mathfrak{f}_{B_{2}}}(0)=\{1\}$ (by Proposition 2.11(5)). From (1), $-v\left(\alpha^{\circ}\right)=1$ or $-v\left(\beta^{\circ}\right)=1$. That is, $v\left(\alpha^{\circ}\right)=0$ or $v\left(\beta^{\circ}\right)=0$. So, from Proposition 3.5(12), $v(\alpha)=v(\neg \alpha)=1$ or $v(\beta)=$ $v(\neg \beta)=1$.

Definition 5.2 ([6], Definition 5) A $Q M_{1}$-valuation is a map $q: F m \rightarrow\{0,1\}$ verifying:
$Q M 1): v(\alpha)=0$ implies $v(\neg \alpha)=1$
QM2): $v(\neg \neg \alpha)=1$ implies $v(\alpha)=1$
QM3): $v\left(\beta^{\circ}\right)=v(\alpha \supset \beta)=v(\alpha \supset \neg \beta)=1$ implies $v(\alpha)=0$
$Q M 4): v(\alpha \supset \beta)=1$ if and only if $v(\alpha)=0$ or $v(\beta)=1$
QM5): $v(\alpha \& \beta)=1$ if and only if $v(\alpha)=v(\beta)=1$.
$Q M 6): v(\alpha \vee \beta)=1$ if and only if $v(\alpha)=1$ or $v(\beta)=1$.
$Q M 7): v\left(\alpha^{\circ}\right)=v\left(\beta^{\circ}\right)=1$ implies $v\left((\alpha \# \beta)^{\circ}\right)=1$ (with $\left.\# \in\{\vee, \&, \supset\}\right)$.
Definition 5.3 The consequence relation $=_{Q M_{1}} \subseteq \wp(F m) \times F m$ is defined as follows: $\Gamma \models_{Q M_{1}} \alpha$ iff, for every $Q M_{1}$-valuation q such that $q(\Gamma) \subseteq\{1\}$, it holds that $q(\alpha)=1$.

It is worth noting that, given α, the set of all the $Q M_{1}$-valuations needed to check the validity of α according the definition of $\models_{Q M_{1}}$ can be spreaded out in a kind of truth-table for α (which we will mention as the "quasi-truth table for $\alpha ")$. Besides this comment, the main result of this section is:

Proposition 5.4 For every map $v: F m \rightarrow\{0,1\}$, are equivalent:
i) v is a canonical F_{1}-valuation.
ii) v is a $Q M_{1}$-valuation.

Proof. Note first that every F_{1}-valuation v to $\left\langle B_{2}, \overline{\mathfrak{f}_{B_{2}}}\right\rangle$ satisfies all the conditions $Q M 1$)-QM7) of Def. 5.2, as they form part of Prop. 3.5 and Prop. 5.1. On the other hand, if v is a $Q M_{1}$-valuation, then it verifies Def. 3.1 (a) from $Q M 4)-Q M 6$) (and since we are focused on B_{2}). With respect to (b): if $v\left(\alpha^{\circ}\right)$ $=0$ or $v(\alpha)=0$, then it is satisfied. If not, then $v\left(\alpha^{\circ}\right)=v(\alpha)=1$. Note now that $v(\alpha \supset \alpha)=1$, because of $Q M 4)$. From all this and $Q M 3), v(\alpha \supset \neg \alpha)=0$, and so $v(\neg \alpha)=0$ (by $Q M 4$) again). Condition (b) is also valid, consequently. To prove c.1): suppose that $v(\alpha)=0$. From $Q M 1), v(\neg \alpha)=1 \in \overline{\mathfrak{f}_{B_{2}}}(v(\alpha))$. And, if $v(\alpha)=1, \overline{\mathfrak{f}_{B_{2}}}(v(\alpha))=\{0,1\}$. So, $v(\neg \alpha) \in \overline{\mathfrak{f}_{B_{2}}}(v(\alpha))$ always. To prove c.2): suppose first that $v(\alpha)=1$. In this case, $-v(\neg \neg \alpha) \in \overline{\mathfrak{f}_{B_{2}}}(\alpha)=\{0,1\}$, trivially. If, on the contrary, $v(\alpha)=0$, then $v(\neg \neg \alpha)=0$, from $Q M 2$), and so $-v(\neg \neg \alpha)=1 \in \overline{\mathfrak{f}_{B_{2}}}(\neg \alpha)$, too. Let us prove (d) finally, considering $\gamma=$ $\alpha \# \beta$, with \# any binary connective. This condition is trivially valid if $v\left(\gamma^{\circ}\right)$ $=1$, since in this case $\overline{\mathfrak{f}_{B_{2}}}\left(\gamma^{\circ}\right)=\{0,1\}$. If not, then $v\left(\alpha^{\circ}\right)=0$ or $v\left(\beta^{\circ}\right)=$ 0 , because $Q M 7$). Then $-v\left(\alpha^{\circ}\right) \vee-v\left(\beta^{\circ}\right)=1 \in \overline{\mathfrak{f}_{B_{2}}}\left(\gamma^{\circ}\right)$ always, proving (d), consequently. Summarizing, v verifies every condition of Def. 3.1.

Corollary 5.5 For every $\Gamma \cup\{\alpha\} \subseteq F m, \Gamma \models_{\mathbb{F}_{1}}^{\left\langle B_{2}, \overline{\bar{f}_{B_{2}}}\right\rangle} \alpha$ iff $\Gamma \models_{Q M_{1}} \alpha$.
It will be noted in addition that, once the F_{1}-valuations into $\left\langle B_{2}, \overline{\mathfrak{f}_{B_{2}}}\right\rangle$ have been identified as being $Q M_{1}$-valuations, the problem of the "number m_{α} ", of F_{1}-valuations needed to check if $\vdash_{C_{1}} \alpha$ (commented at the end of Section 4), is reduced to the number or $Q M_{1}$-lines of the quasi-matrix in the "quasi-truthtable" of α. This question is very interesting, as we said. Moreover, it is related with the existence of a set of generators of all the canonical F_{1}-valuations (or, alternatively, the $Q M_{1}$-valuations).

6 Historical Remarks

This section intends to provide a little comparison between the F_{1}-structures and the early works about semantic models for C_{1}, as it was done with the case of quasi-matrices in the previous section. In addition, we will compare the former presentation of F_{1}-semantics of Fidel with the one shown in this paper. First of all, we would wish to mention a (somewhat forgotten) work of A. Sette (see [14]): it is one of the first attempts of provide an algebraic interpretation of a da Costa logic (specifically, of C_{ω}). With this aim, it is defined there the notion of C_{ω}-algebra as being a system $\left(L, \vee, \wedge, \rightarrow,^{\prime}\right)$ wherein $(L, \vee, \wedge, \rightarrow)$ is an $R P L$ (that is, it is a relatively pseudo-complemented lattice, cf. [13]), and additionally ${ }^{\prime}: L \rightarrow L$ verifies $a \vee a^{\prime}=1$ and $a \leq a^{\prime \prime}$. Note that this algebraic structure is cleary related with some of the requirements established in Def. 2.4, indebted to M. Fidel, useful for every C_{n}, with $1 \leq n \leq \omega$.

However, even when the F-structures directly associated with C_{ω} (that is, $F_{\omega^{-}}$ structures, cf. [12]) are based on $R P L$ (as in the case of C_{ω}-algebras), the essential difference of both approaches is that the element a^{\prime} in F_{ω}-structures does not need to be unique. This last fact is strongly related with the fact that F-structures (in a general way) define algebraic-relational semantics, and not exclusively algebraic ones, as it was already commented. Indeed, algebraicrelational semantics seems to be more natural to the C_{n}-logics, because they are not algebraizable, cf. [8].

On the other hand, we already have seen the strong connection between quasi-matrices and F-structures, focusing our analysis on the formalism for F_{1} structures presented here. This study suggests a similar comparison between the original formalism and definitions of F-structures given in $[7]$ and the ones here presented. At this respect, it is possible to see that:

- The formalism given here does not modify the essence of the F_{1}-structures in the way that they were originally defined.
- However, the F_{1}-valuations used here are not the same as the used in [7]. For a better comparison of them, let us define "Fidel F_{1}-valuations" (the original definition indebted to Fidel, but with the formalism used here):

Definition 6.1 Given $\langle L, \mathfrak{f}\rangle$, a Fidel $\boldsymbol{F}_{\mathbf{1}}$-valuation is a map $v: F m \rightarrow L$, verifying:
(\mathbf{a}^{*}) For every $\delta \in \operatorname{Var}$:
$\mathbf{a . 1 *}) v(\neg \delta) \in \mathfrak{f}(v(\delta)), v(\neg \neg \delta) \in \mathfrak{f}(v(\neg \delta)), v\left(\delta^{\circ}\right) \in \mathfrak{F}(v(\delta)), v\left(\delta^{\circ}\right) \in$ $\mathfrak{f}(v(\delta \& \neg \delta)), v\left(\neg\left(\delta^{\circ}\right)\right) \in \mathfrak{f}\left(v\left(\delta^{\circ}\right)\right), v\left(\neg \neg\left(\delta^{\circ}\right)\right) \in \mathfrak{f}\left(v\left(\neg\left(\delta^{\circ}\right)\right)\right)$,
$\left.\mathbf{a . 2} \mathbf{2}^{*}\right) v(\delta \& \neg \delta)=v(\delta) \wedge v(\neg \delta) ; v(\delta) \wedge v(\neg \delta) \wedge v\left(\delta^{\circ}\right)=0 ; v\left(\delta^{\circ}\right) \leq v(\neg \delta) \vee$ $v(\neg \neg \delta) ; v(\neg \neg \delta) \leq v(\delta) ; v\left(\neg \delta^{\circ}\right) \leq v(\delta) \wedge v(\neg \delta)$.
$\left(\mathbf{b}^{*}\right)$ For every $\alpha, \beta \in F m, v(\alpha \& \beta)=v(\alpha) \wedge v(\beta), v(\alpha \vee \beta)=v(\alpha) \vee v(\beta)$, $v(\alpha \supset \beta)=v(\alpha) \Rightarrow v(\beta) ;$
$\left(\mathbf{c}^{*}\right)$ For every $\alpha, \beta \in F m, v\left((\alpha \vee \beta)^{\circ}\right) \in \mathfrak{F}(v(\alpha \vee \beta)), v\left(\alpha^{\circ}\right) \wedge v\left(\beta^{\circ}\right) \leq$ $v\left((\alpha \vee \beta)^{\circ}\right), v\left((\alpha \supset \beta)^{\circ}\right) \in \mathfrak{F}(v(\alpha \supset \beta)), v\left(\alpha^{\circ}\right) \wedge v\left(\beta^{\circ}\right) \leq v\left((\alpha \supset \beta)^{\circ}\right) ;$
(\mathbf{d}^{*}) For every α of the form $\beta \vee \gamma$ or $\beta \supset \gamma$, it holds $v\left(\alpha^{\circ}\right) \in \mathfrak{F}(v(\alpha)), v(\neg \alpha) \in$ $\mathfrak{f}(v(\alpha)), v(\neg \neg \alpha) \in \mathfrak{f}(v(\neg \alpha)), v\left(\alpha^{\circ}\right) \in \mathfrak{f}(v(\alpha \& \neg \alpha)), v\left(\neg\left(\alpha^{\circ}\right)\right) \in \mathfrak{f}\left(v\left(\alpha^{\circ}\right)\right)$, $v\left(\neg \neg\left(\alpha^{\circ}\right)\right) \in \mathfrak{f}\left(v\left(\neg\left(\alpha^{\circ}\right)\right)\right)$, and these elements satisfy additionally:
d.i*) $v(\neg \neg \alpha) \leq v(\alpha)$;
d.ii* $) v\left(\alpha^{\circ}\right) \leq v(\neg \alpha) \vee v(\neg \neg \alpha)$;
d.iii)* $v\left(\neg \alpha^{\circ}\right) \leq v(\alpha) \wedge v(\neg \alpha)$;
d.iv)* $v(\alpha) \wedge v(\neg \alpha) \wedge v\left(\alpha^{\circ}\right)=0$.
(\mathbf{e}^{*}) Finally, if α is of the form $\neg \beta$ or $\beta \& \gamma$, then $v(\neg \alpha) \in \mathfrak{f}(v(\alpha)), v\left(\alpha^{\circ}\right) \in$ $\mathfrak{F}(v(\alpha)), v(\neg \neg \alpha) \in \mathfrak{f}(v(\neg \alpha)), v\left(\alpha^{\circ}\right) \in \mathfrak{f}(v(\alpha \& \neg \alpha)), v\left(\neg\left(\alpha^{\circ}\right)\right) \in \mathfrak{f}\left(v\left(\alpha^{\circ}\right)\right)$, $v\left(\neg \neg\left(\alpha^{\circ}\right)\right) \in \mathfrak{f}\left(v\left(\neg\left(\alpha^{\circ}\right)\right)\right)$, validating additionally conditions (i)-(iv) of (\mathbf{d}^{*}).

It should be clear that Def. 3.1 is more operative than Def. 6.1. Moreover, it can be proved that they are not exactly the same: more specifically, both definitions coincide in the case of saturated F_{1}-structures, but they differ in the case of not saturated ones (see [10] for a detailed comparison).

Finally, we will remark that the way in which are defined the Lindenbaum F_{1}-structures in [7] is diferent to the given in Def. 3.20 (we are interested only in the case when $\Gamma=\emptyset$). Even when the support sets in both structures is the same (i.e. the Lindenbaum Boolean algebra defined on Fm), the main difference between both approaches lays on the definition of the function \mathfrak{f}. More specifically:

Definition 6.2 The Lindenbaum-Fidel $\boldsymbol{F}_{\mathbf{1}}$-structure (or, shorter, the LF-F_{1}-structure) is the F_{1}-structure of the form: $\left\langle F m / \simeq_{\Gamma}, \mathfrak{f}_{\simeq}^{*}\right\rangle$, where $\mathfrak{f}_{\simeq}^{*}(\|\alpha\|)$ $=\{\|\neg \lambda\|):\|\alpha\|=\|\lambda\|\}$.

Of course, Fidel's original definition of Lindenbaum F_{1}-structures included the map $\mathfrak{F}_{\simeq}^{*}$ (see [7], page 34). Indeed, $\mathfrak{F}_{\simeq}^{*}(\|\alpha\|)=\left\{\left\|\lambda^{\circ}\right\|:\|\alpha\|=\|\lambda\|\right\}$. We have already seen, however, that it is not essential. Despite this latter mentioned fact, the structures $\left\langle F m / \simeq_{\Gamma}, \mathfrak{f}_{\simeq}^{*}\right\rangle$ and $\left\langle F m / \simeq_{\Gamma}, \mathfrak{f}_{\simeq}\right\rangle$ (given in Def. 3.20) are not (necessarily) the same. In a similar way to the case of F_{1}-valuations, a compared analyisis of LF- F_{1}-structures and the ones given here (discussion that lies outside the scope of this paper) can be found in [10].

Summarizing, all these differences between both treatments of F_{1}-structures justify, under our point of view, the main results and the general approach of this paper.

$7 \quad$ Final Remarks

From all the definitions and results shown above, it should be clear that F_{1} structures, as developed here, are not only understood as a "better formalism" than the presented originally. Moreover, they not only allow us to prove completeness and decidability in a simpler way: the definitions of F_{1}-valuations and Lindenbaum F_{1}-structures given here differ from the given in [7], and in a certain sense both notions should not to be treated as the same (even when they are equally useful to prove completeness and decidability).

In addition, if we work with F_{1}-structures as here, some interesting questions can be posed in a clearer way (w.r.t. [7]). For instance, the definition and study of a category of F_{1}-structures seems to be natural, here (with respect to this, see [10] and [12] for a more extensive treatment of that category and other related ones). Other topic that deserves a deep analysis is the characterization of the minimum generator set that determines the F_{1}-valuations (or,
equivalently, the $Q M_{1}$-valuations taking into account the results of Section 5). Finally, F_{1}-structures deserve a good, deep, model-theoretic treatment, such as the done in $[3]$ for the logic $\mathbf{m b C}$. As we said above, all these problems could be solved (or, at least, analyzed) with the help of the simple presentation given in this paper.

Acknowledgements

We wish to thank CICITCA-UNSJ for its financial support. We are also grateful with the referee's corrections and suggestions, that helped to improve this paper.

References

[1] S. Burris and H. Sankappanavar. A Course in Universal Algebra. SpringerVerlag, 1981.
[2] W. Carnielli and M. Coniglio. Paraconsistent Logic: Consistency, Contradiction and Negation. Springer, 2016.
[3] M. Coniglio and A. Figallo-Orellano. A Model-theoretic Analysis of Fidelstructures for mbC. In: C. Baskent; T. Ferguson. (Ed.) Graham Priest on Dialetheism and Paraconsistency: 189-216, 2020.
[4] H. Curry. Foundations of Mathematical Logic (2nd Ed.). Dover, 1977.
[5] N. da Costa. On the Theory of Inconsistent Formal Systems. Notre Dame Journal of Formal Logic, 14:497-510, 1974.
[6] N. da Costa and E. Alves. A Semantical Analysis of the calculi C_{n}. Notre Dame Journal of Formal Logic, 18:621-630, 1977.
[7] M. Fidel. The Decidability of the calculi C_{n}. Reports on Mathematical Logic, 8:31-40, 1977.
[8] R. Lewin, I. Mikenberg, and M. G. Schwarze. C_{1} is not algebraizable. Notre Dame Journal of Formal Logic, 32:609-611, 1991.
[9] M. Mandelker. Relative annihilators in Lattices. Duke Mathematical Journal, 37:377-386, 1970.
[10] V. Quiroga. Study of an Algebraic-relational model for C_{1} : the Semantics of F_{1}-structures (in Spanish). Thesis (in preparation). National University of San Luis, Argentina.
[11] V. Quiroga. An Alternative Definition of F-structures for the $\operatorname{logic} C_{1}$. Bulletin of the Section of Logic, 42:119-134, 2013.
[12] V. Quiroga and V. Fernández. A Topological Duality for the F-chains associated with the logic C_{ω}. Mathematica Bohemica, 142:225-241, 2017.
[13] H. Rasiowa and R. Sikorski. The Mathematics of Metamathematics (2nd Ed.). PWN - Polish Scientific Publishers, 1970.
[14] A. Sette. On the Algebras and Hyper-lattices of C_{ω} (in Portuguese). MsC Dissertation. State University of Campinas, Brazil, 1971.

Verónica Quiroga
Basic Sciences Institute (Mathematical Area)
National University of San Juan (UNSJ)
Av. José I. de la Roza (Oeste) - 230, CP: 5400, San Juan, Argentina
E-mail: veronicaquiroga@gmail.com

Víctor Fernández
Basic Sciences Institute (Mathematical Area)
National University of San Juan (UNSJ)
Av. José I. de la Roza (Oeste) - 230, CP: 5400, San Juan, Argentina
E-mail: vlfernan@ffha.unsj.edu.ar

[^0]: ${ }^{1}$ Given a bounded classical implicative lattice ($L, \vee, \wedge, \rightarrow, 0,1$), we can define a Boolean negation " " by $-x:=x \rightarrow 0$, for all $x \in L$. In turn, if $(L, \vee, \wedge,-, 0,1)$ is a Boolean algebra, then can define a relative pseudocomplement " \rightarrow " by $x \rightarrow y:=-x \vee y$, for all $x, y \in L$.
 ${ }^{2}$ Please, distinguish between $x^{\circ}\left(x\right.$ is well-behaved) and $x^{0}(=x)$.

[^1]: ${ }^{3}$ This notion is dual to the definition of annihilator established in [9] and used frequently in Universal Algebra.

[^2]: ${ }^{4}$ In this case, the map w is not important, because $\operatorname{Var} \subseteq A$. By the way, the same situation happens in every $h_{1}: A \rightarrow F m$ such that $\operatorname{Var} \subseteq A$.

[^3]: ${ }^{5}$ Roughly speaking, a CIL L is the $\{\vee ; \wedge ; \rightarrow\}$-reduct of a Boolean algebra. Therefore, it have greatest element $1_{L}=x \rightarrow x$, with $x \in L$.
 ${ }^{6}$ Even when it is an obvious warning, we prevent to the reader that $-\|\alpha\|_{\Gamma}$ is not $\|\neg \alpha\|_{\Gamma}$, usually.

[^4]: ${ }^{7}$ By the way, the mentioned paper is the first one, to our knowledge, that distinguish the two model-teorethic notions compared here, in the context of F-structures.

[^5]: ${ }^{8}$ Of course, neither F-structures nor quasi-matrices are the only semantic approaches for the C_{n}-logics. It deserve to be mentioned the Possible-Translation Semantics, Tableaux Methods and Kripke-style semantics, among others. We refer the interested reader to [2], for a very updated survey of this an other related topics.

