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Abstract

In this paper, we will introduce the variety of bounded Hilbert algebras
with Moisil possibility operators σ1, σ2, . . . , σn−1, called MI0n-algebras.
First, we give a characterization of MI0n-congruences in terms of a par-
ticular class of deductive systems, namely modal deductive systems. Fur-
thermore, from the above results on MI0n-congruences, the principal ones
are described. In addition, we proved that the variety of MI0n-algebras is
semisimple.
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erators.

Introduction

In 1923, David Hilbert proposed to study implicative fragment of intuitionistic
propositional calculus. This fragment is well-known as positive implicative
calculus and its study was begun in 1935 by D. Hilbert and P. Bernays.

In 1950, L. Henkin ([13]) introduced implicative models as algebraic mod-
els of positive implicative calculus. Later, A. Monteiro renamed it as Hilbert
algebras and his Ph. D. student A. Diego ([10, 11, 12]) made one of the most
important contributions to this algebraic structure which we can define as fol-
low:

A Hilbert algebra (or I-algebra) is an algebra 〈A,→, 1〉 of type (2, 0) such
that the following axioms hold in A :

(I1) 1→ x = x,

(I2) x→ x = 1,

(I3) x→ (y → z) = (x→ y)→ (x→ z),



64 M. C. Canals Frau, A. V. Figallo and G. Pelaitay

(I4) (x→ y)→ ((y → x)→ x) = (y → x)→ ((x→ y)→ y).

The variety of Hilbert algebras is denoted by I. For each A ∈ I the
following properties are verified:

(I5) x→ 1 = 1,

(I6) the binary relation ≤ defined by x ≤ y if and only if x → y = 1 is a
partial order on A with greatest element 1.

(I7) x→ (y → z) = y → (x→ z),

(I8) x ≤ y implies y → z ≤ x→ z,

(I9) x→ (y → x) = 1,

(I10) x ≤ y implies z → x ≤ z → y.

A. Monteiro ([16]), proved that the semisimple I-algebras are those that
verify the additional identity:

(I11) (x→ y)→ x = x.

This author called Tarski algebras to semisimple I-algebras and Pierce law
to identity I11.

(I12) Let A be an I-algebra and let t ∈ A. We say that t ∈ A is a tarskian
element of A if t satisfies the identity:

(T) (t→ x)→ t = t for all x ∈ A,

The set of all tarskian elements of an I-algebra A is denoted by T (A).

Let A be a Hilbert algebra. A subset D ⊆ A is a deductive system of A
([2, 14]) if 1 ∈ D and if x, x → y ∈ D, then y ∈ D. The set of all deductive
systems of a Hilbert algebra A is denoted by D(A).

Other interesting properties of I-algebras are the following:

(I13) The deductive system generated by a set X ⊆ A is [X) :=
⋂
{D ∈ D(A) :

X ⊆ D}. In particular, if X = {a}, the principal deductive system is
[a) = {x ∈ A : a ≤ x}.
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(I14) If A is an I-algebra and ConI(A) is the set of all I-congruences of A,
then ConI(A) = {R(D) : D ∈ D(A)} where R(D) = {(x, y) ∈ A2 : x →
y ∈ D, y → x ∈ D}. Besides, [1]R(D) = D and if Θ ∈ ConI(A), then
R([1]Θ) = Θ.

A bounded Hilbert algebra (see [3, 5]) is a Hilbert algebra A with an element
0 ∈ A such that 0→ a = 1, for every a ∈ A. The notation a∗ means a→ 0.

The following result has been proved by Buşneag in [2, 4].

(I15) Let A be a bounded Hilbert algebra. Then, the following conditions are
equivalent:

(i) A is a Boolean lattice,

(ii) for all x ∈ A, x∗∗ = x.

1 MIn-algebras

Gr. C. Moisil introduced the 3-valued  Lukasiewicz algebras as algebraic models
of 3-valued  Lukasiewicz propositional calculus. It is well known that in 3-
valued  Lukasiewicz algebras it is possible to define an implication operator
which shows that 3-valued  Lukasiewicz algebras are a special case of Hilbert
algebras. This result was, in some way, the motivation of the papers [6] and
[7].

L. Iturrioz introduced in [15] the notion of modal operators on symmetric
Heyting algebras and defined the class of SHn-algebras. In [7, 8] Canals Frau
and Figallo consider some reducts of this class. In particular, they introduced
the following definition.

A Hilbert algebra of order n, (n ≥ 2), with the Moisil possibility opera-
tors (or MIn−algebra) is an algebra 〈A,→, σ1, . . . , σn−1, 1〉 of type (2,1,. . . ,1,0)
such that the reduct 〈A,→, 1〉 is a I-algebra and σ1, . . ., σn−1 are unary oper-
ations satisfying the following axioms:

(M1) (σ1x→ y)→ x = x,

(M2) σi(x→ y)→ (σix→ σjy) = 1, 1 ≤ i ≤ j ≤ n− 1,

(M3) (σix → σiy) → ((σi+1x → σi+1y) → . . . ((σn−1x → σn−1y) → σi(x →
y)) . . .) = 1,
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(M4) σi(x→ σjy) = x→ σjy, 1 ≤ i, j ≤ n− 1,

(M5) σn−1x = (x→ σix)→ σjx, 1 ≤ i ≤ j ≤ n− 1.

From now on, we will denote by MIn the variety of MIn-algebras.

Remark 1.1 In [7] MIn-algebras were called (n+1)-valued modal Hilbert alge-
bras, following the terminology of Iturrioz we have called them Hilbert algebras
of order n with Moisil operators.

Now, we will summarize some useful properties of MIn-algebras (see [7]).

(M6) σ1x ≤ x,

(M7) σi(σjx) = σjx,

(M8) σj1 = 1,

(M9) σ1x ≤ σ2x ≤ . . . ≤ σn−1x,

(M10) x ≤ σn−1x,

(M11) x ≤ y implies σix ≤ σiy,

(M12) σi(σjx→ y) = σjx→ σiy, i ≤ j,

(M13) x→ σj(x→ y) = σj(x→ y),

(M14) x→ σjy ≤ σj(x→ y),

(M15) σj(x→ y) ≤ σjx→ σjy,

(M16) (σ1x → σ1y) → ((σ2x → σ2y) → . . . ((σn−1x → σn−1y) → (x →
y)) . . .) = 1,

(M17) σix = σiy for all i = 1, 2, . . . , n− 1, implies x = y,

(M18) (σjx→ y)→ σjx = σjx,

(M19) σn−1x = (x→ σ1x)→ x,

(M20) σ1(σ1y → x)→ (σ1(σ1x→ z)→ (σ1y → z)) = 1.

(M21) The algebra CMI
n = 〈Cn,→, σ1, . . . , σn−1, 1〉, where Cn = {0, 1

n−1 , . . . ,
n−2
n−1 , 1},

x→ y =

{
1 if x ≤ y,
y x > y,

and σj(
k

n−1
) =

{
0 if k + j ≤ n− 1,

1 if k + j > n− 1
0 ≤ k ≤ n−1,

is a MIn-algebra, called the standard MIn-algebra.
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In theMIk−algebra CMI
k with 2 ≤ k < n−1 we can define σk, σk+1, . . . , σn−1

being σk = σk+1 = . . . = σn−1. Hence, the chain CMI
k ∈MIn.

(M22) Let A ∈ MIn. D ∈ D(A) is a modal deductive system if it satisfies the
following condition: x ∈ D implies σ1x ∈ D.

The set of all modal deductive system of a MIn-algebra A it is denoted by
Dm(A).

Let A ∈MIn, X ⊆ A and a ∈ A\X. Dm(X) denotes the modal deductive
system of A generated by X and Dm(X, a) denotes the modal deductive system
of A generated by X ∪{a}. Moreover, if B is a subalgebra of A we will denote
B / A.

Next, for the purpose of describing properties of modal deductive system
we use the following notation introduced by Buşneag in ([2]) and frequently
used by different authors:

(x1, . . . , xn−1;xn) =

{
xn if n = 1

x1 → (x2, . . . , xn−1;xn) if n > 1
.

(M23) Let A ∈ MIn, X ⊆ A and a ∈ A. Then, the following conditions are
verified:

(i) Dm(X) = {x ∈ A : ∃ h1, . . . , hk ∈ X : (σ1h1, . . . , σ1hk;x) = 1},
(ii) Dm(a) = {x ∈ A : (σ1a;x) = 1} = [σ1a).

(iii) Dm(X ∪ {a}) = {x ∈ A : (σ1a;x) ∈ Dm(X)}.

On the other hand, it is easy to see that:

(M24) If A ∈ MIn, B / A and DB ∈ Dm(B). Then, there exists D ∈ Dm(A)
such that DB = D ∩B.

(M25) Let A ∈ MIn and M ∈ Dm(A). Then, the following conditions are
equivalents:

(i) M is a maximal,

(ii) A/M is a simple MIn-algebra,

(iii) A/M ' S / CMI
n .
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2 Bounded MIn-algebras

In this section we are going to introduce the variety of bounded Hilbert algebras
with Moisil possibility operators.

Definition 2.1 A bounded MIn−algebra (or MI0
n-algebra) is an algebra 〈A,→,

σ1, . . . , σn−1, 0, 1〉 of type (2, 1, . . . , 1, 0, 0) where 〈A,→, σ1, . . . , σn−1, 1〉 is a
MIn-algebra and it satisfies the following additional condition:

(A1) 0→ x = 1.

We will denote by MI0
n the variety of MI0

n-algebras.

Example 2.2 The algebra CMI0
n = 〈Cn,→, σ1, . . . , σn−1, 0, 1〉 considered in

(M21) is a MI0
n−algebra.

We will list some basic properties valid in the MI0
n-algebras, proving just

some of them.

Proposition 2.3 Let A ∈MI0
n. Then, the following properties are satisfied:

(A2) σi0 = 0,

(A3) σix
∗ = x∗,

(A4) σj(σix)∗ = (σix)∗,

(A5) (σix)∗ → σix = σix,

(A6) σi((σix)∗ → σiy) = (σix)∗ → σiy,

(A7) (σix)∗ ∗ = σix,

(A8) (σix)∗ → (σiy)∗ = σiy → σix,

(A9) x∗ = (σn−1x)∗,

(A10) σix
∗ = (σn−1x)∗,

(A11) σi(σ1x)∗ = (σ1x)∗,

(A12) (σ1x→ (σ1y)∗)∗ → x = 1.

Proof.

(A2): From A1 and M6, we have that σ10 = 0. Then, from M19, we infer that
σn−10 = (0→ σ10)→ 0 = 0. Hence, from M9, we conclude that σi0 = 0.
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(A6): From A4, we have that σi((σix)∗ → σiy) = σi(σi((σix)∗)→ σiy). Hence,
taking into account M12 and M7, we obtain that σi((σix)∗ → σiy) =
(σix)∗ → σiσiy = (σix)∗ → σiy.

(A7): From A1, I10 and M18, we have that (σix → 0) → 0 ≤ (σix → 0) →
σix = σix. So, (σix)∗ ∗ ≤ σix. On the other hand, from I7 and I2 we
obtain that σix → (σix)∗ ∗ = σix → ((σix → 0) → 0) = (σix → 0)
→ (σix→ 0) = 1 from which we get that σix ≤ (σix)∗ ∗.

(A9): From M10 and I8, we have that (σnx)∗ ≤ x∗. On the other hand, since
σ1x ≤ x and so, from I8, we obtain that x∗ → (σ1x)∗ = (x → 0) →
(σ1x→ 0) = 1. Besides, from I7 and M5 we have that x∗ → (σn−1x)∗ =
(x → 0) → (σn−1x → 0) = σn−1x → ((x → 0) → 0) = ((x → σ1x) →
σ1x) → ((x → 0) → 0). Hence, from I7, I3, A1 and I5, we obtain that
x∗ → (σn−1x)∗ = (((x → 0) → (x → σ1x)) → ((x → 0) → σ1x)) →
((x→ 0)→ 0) = ((x→ (0→ σ1x))→ ((x→ 0)→ σ1x))→ ((x→ 0)→
0) = ((x → 0) → σ1x) → ((x → 0) → 0). For this result I3, M6 and
I8 we obtain x∗ → (σn−1x)∗ = (x → 0) → (σ1x → 0) = 1. Therefore,
x∗ ≤ (σn−1x)∗.

Definition 2.4 An element x of a MI0
n-algebra A is invariant if σix = x.

The set of all invariant elements of a MI0
n-algebra A is denoted by K(A).

Definition 2.5 An element x of a MI0
n-algebra A is regular if x∗ ∗ = x.

In what follows, the set of all regular elements of A we will denote by A∗ ∗.

Next, we will show the relationship between the above two definitions.

Proposition 2.6 Let A ∈MI0
n. Then, K(A) is a MI0

n-subalgebra of A.

Proof. Let x, y ∈ K(A). Then, x = σix and y = σjy, 1 ≤ i, j ≤ n− 1. Hence,
from M12 we have that x → y = σix → σjy = σj(σix → y) and from M7 we
deduce that σk(x → y) = x → y. Therefore, x → y ∈ K(A). On the other
hand, from M7 σkx = σk(σix) = x. So, σkx ∈ K(A). Besides, from A2 and
M8, we have that 0, 1 ∈ K(A).

Proposition 2.7 Let A ∈MI0
n. Then, A∗ ∗ = K(A).

Proof. Let x ∈ A∗ ∗. Then, from A2 and M14, we have that x = x∗ ∗ =
(x→ 0)→ σ10 ≤ σ1x

∗ ∗ = σ1x. The other inequality results immediately from
M6. Conversely, if x ∈ K(A) then x = σix. Then, from A7 we obtain that
x∗ ∗ = (σix)∗ ∗ = σix = x. Therefore, x ∈ A∗ ∗.
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Proposition 2.8 Let A ∈MI0
n. Then, K(A) is a Boolean lattice.

Proof. From the Proposition 2.6, we have that 〈K(A),→, σ1, . . . , σn, 0, 1〉 is
an MI0

n-algebra. Hence, from A7 and I15 we obtain that K(A) is a Boolean
lattice.

Remark 2.9 From Buşneag’s proof of I15, it was proved that for every k1,
k2 ∈ K(A), the following properties hold:

(i) k1 ∨ k2 = k∗1 → k2,

(ii) k∗1 is the boolean complement of k1.

Now, we will give another characterization of K(A), using the tarskian
elements of A.

Lemma 2.10 T (A) = K(A).

Proof. Let t ∈ T (A). Then, from M19, we have that σn−1t = (t → σ1t) →
t = t. So, t ∈ K(A). Conversely, let k ∈ K(A) and x ∈ A. Then, we
have that (k → x) → k = (σik → x) → σik and from M18 we infer that
(k → x)→ k = σik = k. Hence, k ∈ T (A) and so, K(A) = T (A).

3 Congruences

In this section we will determine the MIn-congruences and we will establish a
lattice isomorphism between ConMIn(A) and Dm(A). Besides, we will obtain
a characterization of MIn-congruences. Furthermore, from the above results
on the MIn-congruences, the principal ones are described.

The following two theorems were stated in [7].

Theorem 3.1 Let A ∈ MIn and D ∈ Dm(A). Then, ConMIn(A) = {R(D) :
D ∈ Dm(A)}, where R(D) = {(x, y) ∈ A2 : x→ y ∈ D, y → x ∈ D}.

Proof. Since A is a Hilbert algebra and D is a deductive system of A, by
I14 we know that R(D) is an I-congruence on A. Moreover, if (x, y) ∈ R(D)
since D is a modal deductive system, we have that σ1(x→ y), σ1(y → x) ∈ D.
Hence, from M9 we have that, σi(x → y), σi(y → x) ∈ D, 1 ≤ i ≤ n − 1, and
by M2 we infer that σix → σiy, σiy → σix ∈ D, 1 ≤ i ≤ n − 1. Therefore,
(σix, σiy) ∈ D, 1 ≤ i ≤ n−1 from which we conclude that R(D) ∈ ConMIn(A).
Conversely, let θ ∈ ConMIn(A). Then, θ ∈ ConI(A). From I14, we have that
[1]θ is a deductive system of A and R([1]θ) = θ. Besides, from hypothesis and
M8 we have that: if (x, 1) ∈ θ, then (σ1x, 1) ∈ θ, that is, [1]θ ∈ Dm(A) which
completes the proof.



Congruences on Bounded Hilbert Algebras with Moisil Operators 71

Theorem 3.2 Let A ∈ MIn. Then, the lattices ConMIn(A) and Dm(A) are
isomorphic.

Proof. It is a direct consequence of I14 and Theorem 3.1 considering the
applications θ 7→ [1]θ and D 7→ R(D) which are inverse to one another.

Next, we will show a characterization of simples MI0
n-algebras.

Corollary 3.3 Let A ∈MI0
n. Then, the following conditions are equivalent:

(i) A is a simple MI0
n-algebra,

(ii) σ1(A) = {0, 1}.

Proof. (i) ⇒ (ii): Suppose that A is a simple MI0
n-algebra and let x ∈ A.

From (M23), we have that [σ1x) is a modal deductive system of A. Hence,
[σ1x) = {1} or [σ1x) = A from which it follows that σ1x = 1 or σ1x = 0.

(ii)⇒ (i): Suppose that σ1(A) = {0, 1}. Let D ∈ Dm(A) and x ∈ D. Then,
σ1x ∈ D. If σ1x = 0, we have that D = A and if σ1x = 1, from M6, we have
that x = 1. Therefore, D = {1}.

Let A be an MIn−algebra and a, b ∈ A. By θ(a, b) we denote the principal
congruence of A generated by (a, b), i.e., the smallest congruence of A that
contains (a, b). In Theorem 3.4, we provide a description of the principal
congruences of A.

Theorem 3.4 Let A ∈ MIn. Then, for every a, b ∈ A it is verified that:
θ(a, b) = {(x, y) ∈ A2 : σ1(a→ b)→ (σ1(b→ a)→ x) = σ1(b→ a)→ (σ1(a→
b)→ y)}.

Proof. Let S = {(x, y) ∈ A2 : σ1(a→ b)→ ((σ1(b→ a)→ x) = σ1(b→ a)→
((σ1(a → b) → y)}. Then, (a, b) ∈ S. Indeed, from M6, I5 and I3, we have
that 1 = σ1(b → a) → ((σ1(a → b) → (a → b)) =

(
σ1(b → a) → ((σ1(a →

b)→ a)
)
→
(
σ1(b→ a)→ ((σ1(a→ b)→ b)

)
. From this statement and I6 we

have that σ1(b → a) → (σ1(a → b) → a) ≤ σ1(b → a) → (σ1(a → b) → b). In
a similar way we obtain that σ1(a → b) → (σ1(b → a) → b) ≤ σ1(a → b) →
(σ1(b→ a)→ a). Moreover, S is an equivalence relation on A such that:
(i): S is compatible with → : Let (x, y) ∈ S and t ∈ A. Then, we have
that σ1(a → b) → (σ1(b → a) → x) = σ1(a → b) → (σ1(b → a) → y).
From this last statement, we obtain that t → (σ1(a → b) → (σ1(b → a) →
x) = t → (σ1(a → b) → (σ1(b → a) → y) and from I7 we obtain that
σ1(a → b) → (σ1(b → a) → (t → x)) = σ1(a → b) → (σ1(b → a) → (t → y)).
So, (t → x, t → y) ∈ S. Moreover, from I3, we have that σ1(a → b) →
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(σ1(b → a) → (x → t)) = (σ1(a → b) → (σ1(b → a) → x)) → (σ1(a →
b) → (σ1(b → a) → t)). From this last statement, I7 and I3 we deduce that
σ1(a → b) → (σ1(b → a) → (x → t)) = (σ1(b → a) → (σ1(a → b) → y)) →
(σ1(b → a) → (σ1(a → b) → t)) = σ1(b → a) → (σ1(a → b) → (y → t)).
Therefore, we conclude that (x→ t, y → t) ∈ S.
(ii): S is compatible with σi : let (x, y) ∈ S. Then, σ1(a→ b)→ (σ1(b→ a)→
x) = σ1(b → a) → ((σ1(a → b) → y) from which σi

(
σ1(a → b) → (σ1(b →

a) → x)
)

= σi
(
σ1(b → a) → ((σ1(a → b) → y)

)
and we conclude the proof by

M12.
Hence, S ∈ ConMIn(A). Finally, if R ∈ ConMIn(A) and (a, b) ∈ R, then

S ⊆ R. Indeed, let (1) (x, y) ∈ S. Since (a, b) ∈ R we have that (2) (σ1(a →
b) → x, x) ∈ R and (σ1(b → a) → y, y) ∈ R from which we obtain that
(σ1(b → a) → (σ1(a → b) → x), σ1(b → a) → x) ∈ R and (σ1(a → b) →
(σ1(b → a) → y), σ1(a → b) → y) ∈ R. From (1) and I7, we conclude that
(σ1(b→ a)→ x, σ1(b→ a)→ y) ∈ R. Hence, from (2), (x, y) ∈ R.

Corollary 3.5 MIn has equationally definable principal congruences.

We prove that the varietyMIn satisfies the congruence extension property.

Lemma 3.6 Let A ∈ MIn, B / A and θ ∈ ConMIn(B). Then, there exists
ϕ ∈ ConMIn(A) such that θ = ϕ ∩B2.

Proof. Let B / A and θ ∈ ConMI(B). Then, by Theorem 3.2, there exists
D1 ∈ Dm(B) such that R(D1) = θ. Hence, by (M24), there exists D ∈ Dm(A)
such that D ∩ B = D1. Moreover, since D ∈ Dm(A) there exists R(D) ∈
ConMIn(A). Let ϕ = R(D) and suppose that (x, y) ∈ ϕ ∩ B2. Then, we have
x→ y, y → x ∈ D ∩B. So, (x, y) ∈ R(D1). From this last statement we have
ϕ ∩B2 ⊆ θ. In a similar way we obtain that θ ⊆ ϕ ∩B2.

From Lemma 3.6 and a result of A. Day ([9]) the following property holds:

Lemma 3.7 Let A ∈MIn. Then, the following conditions are equivalent:

(i) MIn satisfies the congruence extension property,

(ii) MIn satisfies the principal congruences extension property,

(iii) for all A, B ∈ MIn such that B / A and for all a, b ∈ B it follows that
θB(a, b) = θA(a, b) ∩B2.

Lemma 3.8 MIn has regular congruences.
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Proof. Let θ, ϕ ∈ ConMIn(A) and a ∈ A such that [a]θ = [a]ϕ. Let us consider
the quotients algebras A/θ and A/ϕ. Then, we have that: [1]θ = [a]θ → [a]θ =
[a]ϕ → [a]ϕ = [1]ϕ. Moreover, by Theorem 3.2, we have that R([1]θ) = θ and
R([1]ϕ) = ϕ. So, θ = ϕ.

Lemma 3.9 MIn has distributive congruences.

Proof. It is a direct consequence of [1] and taking into account that this
variety has the EDPC property.

Let A ∈ MI0
n. We denote by D P

m(A) the lattice of all principal deductive
systems of a MI0

n-algebra A and by ConPMI 0(A) the lattice of all principal
congruences of a MI0

n-algebra A.

Lemma 3.10 Let A ∈ MI0
n and let a, b ∈ A. Then,

[
wa,b

)
∈ D P

m(A), where
wa,b := (σ1(a→ b)→ (σ1(b→ a))∗)∗.

Proof. From A4, we have that σjwa,b = wa,b, from which we conclude that
wa,b ∈ K(A). From this last statement and from (ii) of (M23) we have that
[wa,b) ∈ D P

m(A).

Proposition 3.11 Let A ∈ MI0
n. Then, the lattices K(A) and D P

m(A) are
anti-isomorphic.

Proof. It follows from considering the application α : K(A) −→ D P
m(A) define

by α(k) = [ k) for all k ∈ K(A).

In the following theorem we will obtain a good characterization of principal
congruences in MI0

n−algebras.

Theorem 3.12 Let A ∈MI0
n and let a, b ∈ A. Then, θ(a, b) = θ

(
wa,b, 1

)
.

Proof. It is sufficient to show that:

(i)
(
wa,b, 1

)
∈ θ(a, b),

(ii) (a, b) ∈ θ
(
wa,b, 1

)
.

(i): From (a, b) ∈ θ(a, b) we infer that (σ1(b→ a), 1) ∈ θ(a, b). Hence, we have
that (σ1(a → b) → (σ1(b → a))∗, σ1(a → b) → 0) ∈ θ(a, b). From this last
statement we have that ((σ1(a→ b)→ (σ1(b→ a))∗)∗, (σ1(a→ b))∗∗) ∈ θ(a, b)
and by A7 we conclude that ((σ1(a → b) → (σ1(b → a))∗)∗, σ1(a → b)) ∈
θ(a, b). Besides, since (σ1(a→ b), 1) ∈ θ(a, b) we have that (wa,b, 1) ∈ θ(a, b).
(ii): (1) (a → b, b → a) ∈ θ(wa,b, 1). Indeed, by Theorem 3.4, we must
prove that σ1(wa,b → 1) → (σ1(1 → wa,b) → (a → b)) = σ1(1 → wa,b) →
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(σ1(wa,b → 1) → (b → a)), which is equivalent to prove that wa,b → (a →
b) = wa,b → (b → a) and from A12 is equivalent to 1 = wa,b → (b → a),
which follows immediately from I7 and A12. Hence, from (1), I3, I2 and I1
we have that

(
(a → b) → ((b → a) → a), (b → a) → a

)
∈ θ(wa,b, 1) and(

(b→ a)→ ((a→ b)→ b), (a→ b)→ b
)
∈ θ(wa,b, 1). From this last statement

and I4 we deduce (2)
(
(a → b) → b, (b → a) → a

)
∈ θ(wa,b, 1). On the other

hand, by (1), we have that (a → b, 1) ∈ θ(wa,b, 1) and (b → a, 1) ∈ θ(wa,b, 1).
So, we obtain

(
(a → b) → b, b

)
∈ θ(wa,b, 1) and

(
(b → a) → a, b

)
∈ θ(wa,b, 1).

From these two above statements and (2) we conclude that (a, b) ∈ θ(wa,b, 1).

Proposition 3.13 Let A ∈MI0
n. Then, the lattices ConPMI 0

n
(A) and D P

m(A)
are isomorphic.

Proof. It follows from Theorem 3.12 and by considering the application Ψ :
ConPMI 0

n
(A) −→ D P

m(A) defined by the prescription Ψ
(
θ(a, b)

)
=
[
wa,b

)
for all

θ(a, b) ∈ ConPMI 0
n

(A).

Corollary 3.14 Let A ∈ MI0
n. Then, the lattices K(A) and ConPMI 0

n
(A) are

anti-isomorphic.

Proof. It is a direct consequence of Proposition 3.11 and 3.13.

Corollary 3.15 Let A be a finite MI0
n-algebra. Then, |ConPMI 0(A)| = 2m

where m is the number of atoms of K(A).

Proof. It is a direct consequence of Proposition 3.14 and Proposition 2.8.

Next, we prove that the variety MI0
n is semisimple.

Proposition 3.16 Let A ∈ MI0
n. Then, the following conditions are equiva-

lent:

(i) A is a subdirectly irreducible MI0
n-algebra,

(ii) K(A) has a unique dual atom,

(iii) A is a simple MI0
n-algebra.

Proof. (i) ⇒ (ii): Let Θ0 be a unique nontrivial minimal congruence. Then,
there exists (a, b) ∈ Θ0 where a 6= b. Hence, θ(a, b) ⊆ Θ0 and θ(a, b) 6= ∆ from
which we get that Θ0 = θ(a, b). So, by Theorem 3.12 and Lemma 3.13, there
exists a unique minimal principal modal deductive system D0 = [wa,b) where
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wa,b ∈ K(A). Besides, taking into account that the lattices K(A) and DPm(A)
are anti-isomorphic we obtain that wa,b is a dual atom of K(A).

(ii) ⇒ (iii): Since A has a unique dual atom k, from Remark 2.9 we have
that k∗ is the unique atom of K(A). Therefore, K(A) = {0, 1} and from
Theorem 3.3 we conclude that A is simple.

(iii) ⇒ (i): It is easy to check.

Corollary 3.17 MI0
n is semisimple.

Proof. It is a direct consequence of Proposition 3.16.
@A
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Maŕıa Cristina Canals Frau
Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400, San Juan, Argentina
E-mail: mcanalsfrau@gmail.com

Aldo V. Figallo
Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400, San Juan, Argentina
E-mail: avfigallo@gmail.com

Gustavo Pelaitay
Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400, San Juan, Argentina
E-mail: gpelaitay@gmail.com


