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Translating non Interpretable Theories
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Abstract

Interpretations are generally regarded as the formal representation of
the concept of translation. We do not subscribe to this view. A trans-
lation method must indeed establish relative consistency or have some
uniformity. These are requirements of a translation. Yet, one can both
be more strict or more flexible than interpretations are. In this article, we
will define a general scheme translation. It should incorporate interpre-
tations but also be compatible with more flexible methods. By doing so,
we want to account for methods that seem to imply a sense of translation
but are not reducible to interpretations. The main example will be the
relative consistent proof between ZF and NBG given by Novak (1950).
Further, we will explore a way of combining interpretations. This should
account for truth conditions discarded by interpretations in translated
theories.

Introduction

Many philosophers and mathematicians believe that interpretations [7, p. 61]
are the sole admissible concept of translation between first-order theories. How-
ever, in the article On What counts as a Translation [1], I defended that we
should see all translation methods with suspicion. Instead of claiming that a
privileged method is a translation, one should start from the questions: What
a translation should do? What should it preserve?

I argued that a translation in a theory T1 should preserve features of the
translated theory T2 so that reference relations of T1 can emulate the reference
relations of the T2. This requirement is hardly formalizable. It depends exten-
sively on how flexible one is to admit that a particular emulation represents
reference relations of the emulated theory. Often, a theory is interpretable
into another and yet it is not possible to construct a translation if one is more
demanding about how formulas are mapped.
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This is the case for PA and ZFfin.1 Those theories are mutually inter-
pretable and yet they are not bi-interpretable.2 Although ZFfin can interpret
PA, it still cannot see the copy of itself in PA as an isomorphic copy (extra re-
quirement of bi-interpretation). The mathematical community perceived this
result as evidence for not regarding ZFfin as the set-theoretic equivalent of PA.
Instead, they added the axiom of hereditarily finite sets in ZFfin (ZFt−fin);
Kaye and Wong [2] proved that the resulting theory is bi-interpretable with
PA.

The above result shows that being more demanding may reveal more subtle
aspects of reducibility. One may then understand the failure of bi-interpretation
as evidence that the flexibility in mutual interpretations created the illusion of
the ontological equivalence of PA and ZFfin – while a more demanding notion
of emulation shows that ZFfin cannot reduce PA to its reference relations.

Does this mean we should regard the more demanding concept to be the
true concept of translation? We believe not, it can still be the case that a more
demanding type of translation cannot account for any reduction among the
theories, i.e. it so inflexible that we can make no comparison for the theories
in question.

In this article, we will investigate the case in which there is no interpretation
between two theories and yet there is a way of comparing those two theories.
Comparing such theories is not foreign: it is widely common to prove relative
consistency between theories by assuming a model for the first and then using
this model to build a model for the second. Some wrongly assume that this kind
of construction implies the existence of an interpretation between the theories.
This is, for instance, the case of the proof of relative consistency between ZF
and NBG given by Novak [3]. Although by assuming a model for ZF one can
prove there is a model for NBG, there is no interpretation of NBG in ZF. We
will, therefore, present a way in which we can use Novak’s proof to generate
a sense of translation of NBG into ZF. From that, we work for a generalized
version of this kind of translation.

1 The problem of model theoretical construction

As argued before, we want to give an account of Novaks construction for NBG
as a translation. It seems to be an impossible task, since the model theoretical
technique (when used necessarily) is infinitary in nature. It is not possible

1ZFfin stands for Zermelo-Fraenkel set theory without the infinity axiom and with the
negation of the axiom of infinity.

2We will define interpretations further in the text. For now, one need only to remember it
is a commonly used method of translation. Also, bi-interpretations are a further requirements
over mutual interpretations.
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by standard techniques to reduce NBG to ZFC without recurring to actual
infinity. And it seems senseless to talk about translations for which we only
have infinitary descriptions. I assume therefore the task to provide a translation
that accommodates this critique.

The key step will be to separate the description of the translation and the
proof that the translation is sound. While the method of translation must
be constructive, for it must present the translated formula/s in every case, the
soundness for the same translation does not depend on any kind of performance.

Definition 1.1 We devise

1. Translation mapping: the process for generating formulas that emulate
the meaning of the original formula.

2. Soundness of translation: proof that a translation map preserves the
meaning.

The idea, thus, will be to push every infinitary aspect of the model theo-
retical reduction to the proof of soundness. Still, we should care about how
we will produce the formulas. Our strategy will be to make the technique of
interpretations more flexible.

Let’s now review what it means to provide an interpretation between two
theories:

Definition 1.2 An interpretation J is a mapping L1 −→ L2 that:

1. Preserves boolean structure:

(α ∧ β)J = αJ ∧ βI .

2. Uniformly substitute predicates:
For each predicate P in L1, there is a formula α in L2 such that

(P (x))J = α(x).

3. Uniformly bound quantifications:
There is a formula correspondent to the universe of quantification U in
L2

(∀x(α))J = ∀x(U(x)→ αJ).

This definition only states the structural requirements on the mapping be-
tween the languages. Now we need to impose that the mapping emulates
reference relations of the theory it is interpreting:
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Definition 1.3 J is an interpretation of T1 into T2 if

1. J is an interpretation of L1 into L2.

2. and for every α ∈ L1

if T1 ` α, then T2 ` αJ

1.1 Flexibilizing interpretation demands

There are many ways in which one can flexibilize interpretations: one can re-
frain from preserving the boolean structure, the uniformity of predicates and/or
uniformity of quantifiers. Also, we can refrain from preserving theoremicity as
in definition 1.3. Instead of preserving theorems, we may require that there is
a way for the translating theory to understand “true” sentences of the original
theory as “true in the translation”. We therefore hope that the flexible version
of interpretation satisfies:

T2 see as true each formula brought to a structure compre-
hensible to T2 that T1 proves.3

We symbolize this statement:

1. αTr(T2) denotes “the formula α brought to a structure comprehensible to
T2”.

2. T2 `s αTr(T2) denotes “see as true” according to how Tr(T2) was defined.

As a result, we have

Definition 1.4 (General scheme of interpretation) The pair 〈Tr(T2),`s
〉 is a translation if, for every α ∈ L1,

T1 ` α implies T2 `s αTr(T2).

Still, we need to have a connection of `s with the notion of provability.
The reason for that is that we hold that translations should imply relative
consistency between theories. For this purpose, we need only to require:

Definition 1.5 (Consistency Requirement) If T2 `s αTr(T2) ∧ ¬αTr(T2),
then T2 is inconsistent.

From this, it is easily verifiable that a translation implies relative consis-
tency of the theories involved. If T1 is inconsistent, then T1 ` α∧¬α for some
α; then, from the translation, T2 `s αTr(T2) ∧¬αTr(T2) – which implies that T2
is inconsistent.

3Note that we require that T1 proves a formula. Although this may also be flexibilized,
we keep this requirement because it is already sufficient for our purposes in this article.
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2 Model-style translation

Dealing with interpretations, we substitute each predicate in the translated
language by a single formula in the translating theory. Here, we refrain from
this impediment, mapping each predicate to a number of formulas (which may
be denumerable). The context of occurrence should be enough to determine
which is/are the correct interpretation/s for the predicate/s. This is an ac-
count of the idea that the interpretation for each predicate may vary under the
context in which it occurs.

The definition of the interpreted universe is a unique formula in interpreta-
tions. We also flexibilize this requirement, allowing the context of occurrence
to play a hole in what it means to make a quantification. Before, the quantifier
∀x would turn into ∀x(U(x) → . . .) (abbreviation ∀x ∈ U), now, the quan-
tifier will turn into ∀x(Uα(x) → . . .) (abbreviation ∀x ∈ Uα), where α is the
quantified formula.

Let’s now consider the actual way in which we may generate the translation.
Before, we make a notational simplification that won’t harm our result: we
consider only prenex formulas. This, even though not detrimental, causes the
need for extra proof: that any two prenex methods have the same effect in the
translation.

If in an interpretation we deal with each quantified variable in the order of
occurrence, then the procedure for obtaining αI from the sentence α will be
finished in n (the number of quantifiers occurring in α) steps. For instance, if
we take the formula ∀x∃y∀z(xPy ∧ yPz → xPz), the interpretation will occur
in the following steps:

∀x ∈ U∃y∀z(xP Iy ∧ yPz → xP Iz),

∀x ∈ U∃y ∈ U∀z(xP Iy ∧ yP Iz → xP Iz),

∀x ∈ U∃y ∈ U∀z ∈ U(xP Iy ∧ yP Iz → xP Iz).

In fact, the interpretation from α generates a sequence of n (number of
quantifiers) steps α, α2, α3, . . . , αn−1, α

I . In contrast, the new method will form
a tree of depth n. Each node in the tree will then ramify into all substitutions
for the predicate.

Let’s show a simplified illustration of the tree we may generate for the same
formula ∀x∃y∀z(xPy∧yPz → xPz) (We abbreviate U(x,∃y(xPy → yPy)) and
U(y, (xPy → yPy)) for Ux and Uy). We will annotate by I1, I2, . . . , In each
interpretation for the predicate P .

We follow with the precise definition of the interpretation tree. Before,
some notation will be important to simplify our work.
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For a binary predicate4 P in T1, we define a functor IP : 〈β1, β2〉 −→ α
and a set Id of all two free variable (x1 and x2) formulas in T2. Since Id is an
orderable set, we may denote IP 〈ϕ, γ〉 by P I(n,m) , being ϕ the n’th formula in
Id and γ the m’th formula in Id. Finally, we call xiP

I(n,m)xj the substitution
of x1 and x2 for xi and xj in P I(n,m) .

We define the transformation ∗(xi,Ik) for open formulas:

1. If α is xiPxj , then α
∗(xi,Ik)∗(xj,Iq) is x′iP

I(k,q)x′j .

2. If α is xiPxj , then α
∗(xj,Iq)∗(xi,Ik) is x′iP

I(k,q)x′j .
5

3. If xi does not occur in α, then α∗(xi,Ik) is α.

4. If α is γ ∨ β, then α∗(xi,Ik) is γ∗(xi,Ik) ∨ β∗(xi,Ik) .

5. If α is ¬γ, then α∗(xi,Ik) is ¬γ∗(xi,Ik) .

The set Id fixes the uniformity of the treatment of the variables. Using
the above structure, we may guarantee that each variable x is affected by a
transformation of the type ∗(x,Ik) a single time.

4We will only consider the case in which we are dealing with theories with only a single
binary predicate, for the other cases would follow easily.

5The purpose of having xi substituted for x′i guaranties that the transformation ∗(xi,Il)

does not affect the variable xi. Later, we will again use xi as we can avoid double quantifi-
cation using the variant equivalent formula. This will be sufficiently clear by the context.
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The identity relation uses the same structure. The functor I= must in-
ternalize identity with the same properties as IP . What fixes the relation
between the predicates P and = is the fact that they are bounded to the same
set Id. By dealing with first-order logic with equality, we may need to impose
some further conditions over I=. Further in the text, we will describe those
conditions.

We follow with the definition of the translation tree:

Definition 2.1 Let α be a prenex sentence of the form Q1x1Q2x2 . . . Qnxnβ
in T1, then αTr(T2) is a tree such that α is the initial node and

1. each node of level i is of the form
Q1x1 ∈ Ux1 . . . Qixi ∈ Uxi(Qi+1xi+1 . . . Qnxnβ

∗(x1,Ik1 )∗(x2,Ik2 )...∗(xi,Iki )).

2. the father node of the previous node is the node

Q1x1 ∈ Ux1 . . . Qi−1xi−1 ∈ Uxi−1(Qixi . . . Qnxnβ
∗(x1,Ik1 )∗(x2,Ik2 )...∗(xi−1,Iki−1

)
).

3. and for each q this father node has a son β
∗(x1,Ik1 )∗(x2,Ik2 )...∗(xi,Iq).

We say the translation is the generating process of this finite (or potentially
infinite) tree. This is enough to guarantee that the translation is intelligible
once we can write the tree as a precise and finite description (even in the
potentially infinite case). However, we need to define validity in this tree in
a way that satisfies the General Scheme of Interpretation and the Coherence
Condition.

We then define the validity of the prenex sentences recursively. We do this
in two stages: We define the condition of validity for the leaves and then the
recursive way in which we should propagate the results of the leaves over the
tree.

For those purposes, we define the S : Form −→ Form as a functor that
receives leaf formulas and returns a sentence that the regular proof system can
evaluate:

Definition 2.2 (Leaf validity) Let α be a prenex sentence in T1. If β is a
leaf in αTr(T2), then

T2 `s β if, and only if, T2 ` S(β)

Definition 2.3 (Node validity) Let α be a prenex sentence in T1, then

1. If the quantification treated in β is universal, then T2 `s β if, and only
if, T2 `s γ for each son of β.
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2. If the quantification treated in β is existential, then T2 `s β if, and only
if, T2 `s γ for some son of β.

This definition still does not impose the necessary restrictions on satisfying
the translation requirements. The reason for that, on the one hand, is that we
haven’t yet imposed restrictions over the predicates xi ∈ Uxi . On the other
hand, we haven’t imposed that the interpretation of equality satisfies versions of
equality and identity axioms. However, we proceed with incomplete definitions,
filling the gaps as it becomes necessary to prove the interpretation scheme.

2.1 Prenex condition

Up to this point, we only dealt with prenex sentences. Yet, we need a mech-
anism to bring formulas to their prenex equivalents in a organized way. We
then proceed by expanding the definition of `s to formulas in general:

Definition 2.4 Let α be any formula in T1, α′ the prenex form of α and α′′

the universal closure of α′, then αTr(T2) is (α′′)Tr(T2).

With this definition, we have consequently defined validity in `s. It is
enough to say T2 `s αTr(T2) if, and only if, T2 `s (α′′)Tr(T2). However, we
should show that this definition preserves equivalence in the original theory.
Two different and equivalent prenex formulas lead to the same result in `s
system:

Definition 2.5 (Prenex condition of equivalence) Let α1 and α2 be prenex
forms of α.

T `s (α1)
Tr(T ) ⇐⇒ T `s (α2)

Tr(T )

Initially, we analyze the simple case where α is ∀xβ ∨ ∃yγ, α1 and α2 are
∀x∃y(β ∨ γ) and ∃y∀x(β ∨ γ). For a simpler exposition, we take Id to be a set
with only two elements.

In this case, we obtain two translation trees (we abbreviate ∗(x,Ik) for ∗xk ;
the context makes it clear):

and
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Let’s suppose that T `s α1. From the tree structure, this means

{T ` ∀x ∈ Ux∃y ∈ Uy(β∗x1
∗y1 ∨ γ∗x1

∗y1 ) or T ` ∀x ∈ Ux∃y ∈ Uy(β∗x1
∗y2 ∨ γ∗x1

∗y2 )}

and

{T ` ∀x ∈ Ux∃y ∈ Uy(β∗x2
∗y1 ∨ γ∗x2

∗y1 ) or T ` ∀x ∈ Ux∃y ∈ Uy(β∗x2
∗y2 ∨ γ∗x2

∗y2 )}

If we want to prove that T `s α2, we need to show this implies

{T ` ∃y ∈ Uy∀x ∈ Ux(β∗y1
∗x1 ∨ γ∗y1

∗x1 ) and T ` ∃y ∈ Uy∀x ∈ Ux(β∗y1
∗x2 ∨ γ∗y1

∗x2 )}

or

{T ` ∃y ∈ Uy∀x ∈ Ux(β∗y2
∗x1 ∨ γ∗y2

∗x1 ) and T ` ∃y ∈ Uy∀x ∈ Ux(β∗y2
∗x2 ∨ γ∗y2

∗x2 )}

From the definition of T `s α1 and because x/y does not occur in γ/β, we
conclude

{T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y1 or T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y2}

and

{T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y1 or T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y2}

Similarly, we need to implicate:

{T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y1 and T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y1}

or

{T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y2 and T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y2}

Nonetheless, the implication we want is not the case. It is enough to notice
the case

T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y1
T 0 ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y2
T 0 ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y1
T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y2

This case would satisfy T `s α1, but it won’t satisfy T `s α2. In order
to solve this problem, we should require that the proof of soundness for the
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translation occur not in the theory T itself, but in some completion (deciding
over undecidable formulas) of it that satisfies the desired implication.

We can, as we will do, bound the satisfaction relation to a complete ex-
tension of T. In this case, the prenex condition is naturally satisfied. This
means that our relation `s is relative to a choice of completion over the trans-
lating theory: the s in `s represents the completion strategy over the original
theory and the functor S. We need therefore to amend the condition over the
leaves in `s:

Definition 2.6 (Amended) Let α be a prenex sentence in T1 and T s2 a com-
pletion of T2, then

1. If β is a leaf in αTr(T2), then T2 `s β if, and only if, T s2 ` S(β).

2. If the quantification treated in β is universal, then T2 `s β if, and only
if, T2 `s γ for each son of β.

3. If the quantification treated in β is existential, then T2 `s β if, and only
if, T2 `s γ for some son of β.

Yet, the required condition could be slightly weaker than taking T s to
be complete. We need only to have the completion over the formulas in the
languages of the leaves in `s:

Definition 2.7 (prenex equivalence sub-condition) Tr(T ) in L and T s

are such that, for all α in L, if T `s αTr(T ), then, for every leaf α∗i in the tree
αTr(T ),

T s ` S(α∗i) or T s ` S(¬α∗i)

To simplify the proofs in this section, we consider S to be the identity
functor. The proof of the following lemma should be similar for any adequate
functor S:

Lemma 2.8 If Tr(T ) in L and T satisfies the prenex equivalence sub-condition,
then they satisfy the prenex equivalence condition.

Proof. We only sketch the proof, showing that the sub-condition is enough
to overcome the difficulty presented above.

Suppose T `s αTr(T )1 , then

{T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y1 or T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y2}

and {T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y1 or T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y2}
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As T is complete for leaf formulas in α
Tr(T )
1 , we obtain

{T ` ∀x ∈ Uxβ
∗x1 or T ` ∃y ∈ Uyγ

∗y1 or T ` ∀x ∈ Uxβ
∗x1 or T ` ∃y ∈ Uyγ

∗y2}

and

{T ` ∀x ∈ Uxβ
∗x2 or T ` ∃y ∈ Uyγ

∗y1 or T ` ∀x ∈ Uxβ
∗x2 or T ` ∃y ∈ Uyγ

∗y2}

This tautologically implies

{(T ` ∀x ∈ Uxβ
∗x1 or T ` ∃y ∈ Uyγ

∗y1 ) and (T ` ∀x ∈ Uxβ
∗x2 or T ` ∃y ∈ Uyγ

∗y1 )}

{(T ` ∀x ∈ Uxβ
∗x1 or T ` ∃y ∈ Uyγ

∗y2 ) and (T ` ∀x ∈ Uxβ
∗x2 or T ` ∃y ∈ Uyγ

∗y2 )}

Therefore

{T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y1 and T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y1}

{T ` ∀x ∈ Uxβ∗x1 ∨ ∃y ∈ Uyγ∗y2 and T ` ∀x ∈ Uxβ∗x2 ∨ ∃y ∈ Uyγ∗y2}

Thus, T `s αTr(T )2 . By simple induction, we can finish the proof. What is left
in the proof can be done by simple induction. �

One may see the sub-condition as excessively arbitrary. This shouldn’t be
a problem; We hold as a principle that any explicit method of realizing a trans-
lation implies arbitrarities. The expressiveness of any technique is grounded
in admitting restrictions and, in this sense, to fix some less compromising re-
strictions enlarge our capability of realizing translations. The only way to not
impose restrictions is to not posit any method whatsoever.

Despite that, we hold that the sub-condition is not unmotivated. When,
for example, we take the regular case of interpretation; We observe that the
condition holds trivially. If T ` αI , then T ` αI or T ` ¬αI . For `s, each
translated “theorem” has a fully comprehensible translation tree in T . Nat-
urally, the opposite may also be admissible: it is reasonable to hold that the
understanding of a translated sentence depends on the full evaluation of the
tree. A yet more flexible system of translation can be defined. However, we
fix this level of restriction, for it is enough to account for the model theoretical
proofs of relative consistency.

2.2 Coherence condition

As stated before, we need to prove the connection with the concept of relative
consistency. Thus, we prove:

Theorem 2.9 (for coherence condition) If T `s αTr(T ) and T `s (¬α)Tr(T ),
then there is β such that T s ` β and T s ` ¬β.
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Proof. We note that, if a prenex formula α if of the form Qx(α′), then there
is another for ¬α of the form Q′x(¬α′) (Being Q′ the dual quantification for Q).
Thus, in each level of the translation tree αTr(T ) and ¬αTr(T ), we are dealing
with one universal quantification and one existential quantification. Moreover,
we observe that the leaves in both trees are organized similarly. If we overlap
the trees, the superposed leaves will be such that: if Qx ∈ Ux(α∗) is the leaf of
one tree, then Q′x ∈ Ux(¬α∗) is the leaf of the other (in this case we say the
leaves have the same position).

In view of these remarks, we prove by induction that if T `s αTr(T ) and
T `s (¬α)Tr(T ), then at least one leaf Qx ∈ Ux(α∗) in αTr(T ) and the leaf of
same position Q′x ∈ Ux(¬α∗) in (¬α)Tr(T ) are such that T s ` Qx ∈ Ux(α∗)
and T s ` Q′x ∈ Ux(¬α∗). Naturally, Q′x ∈ Ux(¬α∗) is logically equivalent
to ¬(Qx ∈ Ux(α∗)), therefore, if the result holds, there is a formula β ≡
Qx ∈ Ux(α∗) such that T s ` β and T s ` ¬β as wanted.

By induction, suppose that at some level k of the tree it holds for two nodes
of same position

T `s Q1x1 ∈ Ux1 . . . Qkxk ∈ UxkQx(α∗〈1,2,...,k〉) (1)

T `s Q′1x1 ∈ Ux1 . . . Q′kxk ∈ UxkQ′x(¬α∗〈1,2,...,k〉), (2)

being ∗〈1,2,...,k〉 the abbreviation for some sequence of the form ∗(x1,Id1 ) ∗(x2,Id2 )
. . . ∗(xk,Idk ).

For the next level, at least one of the quantifiers Qk+1 or Q′k+1 is universal.
Suppose, without loss of generality, Qk+1 is universal; Here Q′k+1 is existential.
For it holds the equation 2 above and Q′k+1 is existential, we know that, for
some son ∗〈1,2,...,k,k+1〉 of node ∗〈1,2,...,k〉,

T `s Q′1x1 ∈ Ux1 . . . Q′kxk ∈ UxkQ
′
k+1xk+1 ∈ Uxk+1

Q′x(¬α∗〈1,2,...,k,k+1〉). (3)

For any son γi of ∗〈1,2,...,k〉 in αTr(T ), T `s γi. In particular,

T `s Q1x1 ∈ Ux1 . . . Qkxk ∈ UxkQk+1xk+1 ∈ Uxk+1
Qx(α∗〈1,2,...,k,k+1〉). (4)

as desired.
As the case where k = 0 is equivalent to the supposition of the theorem,

then this argument finishes the induction.
�

2.3 Preserving First Order Logic derivation

We prove that the system `s preserves logic rules and axioms. From that, the
interpretation scheme will follow naturally. We start by proving the following
fact over tautologies:
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Lemma 2.10 If α is a tautology, then `s α.

Proof. The proof is a natural consequence of the fact that ∗(x1,i1) ∗(x2,i2)
. . . ∗(xn,in) preserves the boolean structure of the formulas. If the original for-
mula is a tautology, then each leaf of the translation tree is a tautology. �

Now we should specify the conditions for the identity operation. The first
aim in this case is to recover the identity axiom:

Lemma 2.11 If α is an axiom of identity x = x, then `s αTr(T ).

The translation for (x = x)Tr(T ) has leaves of the form ∀x ∈ Ux(x =I(k,k) x);
thus we need for every k

T ` ∀x ∈ Ux(I=〈αk, αk〉(x, x))

For this purpose, we add the first restriction on the functor I=:

Definition 2.12 (Identity condition) The functor I= in Tr(T ) should be
such that I=〈αk, αk〉(x, x) is a quasi-tautology.

The axiom of identity must be valid in any context. We should have a
formula U which encapsulates all possible contexts U(x, α).

Definition 2.13 (Condition over the universe of quantification) There
is a formula U such that, for every α, T ` x ∈ U(x, α)→ x ∈ U .

With this, we may fix the context for identity U(x, x = x) = U . We follow
with the evaluation of the equality axiom:

Lemma 2.14 If α is a equality axiom:

1. x = y → f(x) = f(y)

2. x = y ∧ z = w → (xPz ↔ yPw)

then `s αTr(T ).

Notably, if we have an axiom of the form x = y ∧ z = w → x ∈ z ↔ y ∈ w,
then the leaves in the translation tree have the form:

∀x, y, z, w ∈ Ux,y,z,w((x =I(i,j) y)∧ (z =I(k,q) w)→ (x =P(i,k) z)↔ (y =P(j,q) w))

Here we insert one more restriction for the identity functor; It must not
depend on the structure of the predicate P . However, as the functor IP is too
comprehensive, the restriction insides heavily over the identity. Ultimately,
this makes the formulas over x and y to be inter-substitutable.

The same argument over the quantifier context applies to equality. For this
reason, the abbreviation ∀x, y, z, w ∈ Ux,y,z,w must be ∀x, y, z, w ∈ U .
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Definition 2.15 (equality condition) The functor I= is such that

` I=〈αi, αj〉(x, y)→ ∀z ∈ U(αi(z)↔ αj(z))

This condition is, naturally, compatible with the identity condition, once it
is a tautological consequence of the equality condition in case i = j. It remains
to show that the lemma follows from the condition on identity:
Proof. [2.14]

We show that, for every i, j, k, q, if the condition holds, then

∀x, y, z, w ∈ U((x =I(i,j) y) ∧ (z =I(k,q) w)→ (x =P(i,k) z)↔ (x =P(i,k) z)).

Suppose (x =I(i,j) y) ∧ (z =I(k,q) w), then, we obtain

∀a ∈ U(αi(a)↔ αj(a)) ∧ ∀a ∈ U(αk(a)↔ αq(a))

From this, we concludes, from equality theorem,

∀x, z ∈ U(IP 〈αi, αk〉(x, z)↔ IP 〈αj , αq〉(x, z)).

This, in turn, implies

∀x, z, y, w ∈ U(IP 〈αi, αk〉(x, z)↔ IP 〈αj , αq〉(y, w)).

�

We continue with the proof for the substitution axiom for logic.

Lemma 2.16 If α is a substitution axiom, `s αTr(T ).

We now need to define the treatment for the constants. Here, we fix a
formula in Id for each constant and then treat them as we do with variables:

1. cI is some α ∈ Id.

2. if α is xiPc, then α∗(xi,Ik) is IP 〈αi, cI〉(x′i, xc).

3. if α is cPxi, then α∗(xi,Ik) is IP 〈cI , αi〉(xc, x′i).

This will be well defined if the following condition holds:

Definition 2.17 (Condition for constants) For every constant

T `s (∃!x(x = c))Tr(T ).
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We note that we can emulate the transformation for the constants as any
variable. The single important difference is that, for the constants, the trans-
lation tree does not ramify. For this reason, we introduce the notation: ∗(x,Ic)
which is equivalent to ∗(x,Ii), when the i’th formula of Id is the formula for the
constant c.

We follow with the proof for the lemma.
Proof. An axiom of substitution γ(c)→ ∃xγ(x) has as prenex form a formula
like ∃xQy(β(c, y)→ β(x, y)). It follows that the leaf for the translation tree is
of the form:

∃x ∈ UxQy ∈ Uy(β
∗(x,Ic)∗(y1,Ik1 )...∗(yn,Ikn

) → β
∗(x,Ik0 )∗(y1,Ik1 )...∗(yn,Ikn

)) (5)

We call the left side of the previous formula β1 and the right side β2. If
we take the ramification of the first level where Ik0 = Ic, we observe that all
leaves in this ramification are such that β1 = β2. Notably, this means that all
leaves are tautologies for this branch. Thus, if Ii = Ic

T `s ∃x ∈ Ux(γ(c)→ γ(x))∗(x,Ii)

This, in turn, is enough to obtain the lemma, since the quantification over
x is existential. �

Lemma 2.18 (Modus Ponens) If T `s α and T `s α→ β, then T `s β.

Proof. Let’s pay special attention to the translation tree for α→ β. Notably,
the prenex form may assume many equivalent formats. To facilitate the proof,
we chose the prenex steps conveniently:

Prenex operation:
One substitute

1. α for a variant of α.

2. ¬∀xα for ∃x¬α.

3. ¬∃xα for ∀x¬α.

4. Qx(α) ∨ β for Qx(α ∨ β) (valid only if x does not occur free in β).

5. α ∨Qx(β) por Qx(α ∨ β) (valid only if x does not occur free in α).

We do the prenexation of α→ β (¬α ∨ β) following the steps:

1. we obtain the prenex form of ¬α and β separately, obtaining
Qαx((¬α)′) ∨ Qβy((β)′) ( We may need to apply the operation 1 some-
times to avoid that the quantifications in each formula are the same).
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2. we apply 5 to extract all quantifications Qβy.

3. we apply 4 to extract all quantifications Qαx.

Using those operations, we obtain:

Qαx Qβy((¬α)′ ∨ (β)′) (6)

We thus note that the transformations in the translation tree are going to
affect (β)′ only after all transformations that affect (¬α)′ were applied.

Because of that, the trees for α and ¬α∨β become similar up to the ending
level of α (level k). On the other hand, the branches from this level in ¬α ∨ β
are structurally similar to the tree of β.

The level k node in ¬α ∨ β has the following form:

Qβy(¬α∗ ∨ β) (7)

However, from the same procedure as in 2.9, it must be a level k node such
that

T `s Qβy(¬α∗ ∨ β) (8)

and
T `s α∗ (9)

Let’s then analyze the branch for α→ β from the node Qβy(¬α∗ ∨ β).
Notably, this branch is s-valid only if T s proves the formula of the form

(¬α∗∨β∗′) in the same structural way as the validity for the β tree itself. That
is, if for each ∗′, T s proves (¬α∗ ∨ β∗′) and also (β∗

′
), then T `s β.

In fact, as T ` α∗, then for each ∗′ such that T ` (¬α∗∨β∗′). Thus T ` β∗′

by modus ponens. Therefore, T `s β as wanted.
�

It is only need then to prove the rule for quantifier introduction:

Lemma 2.19 If T `s α → β, and x does not occur free in β, then T `s
∃xα→ β.

Proof. Since x is a free variable in α, then it is not in β. We can without
loss arbiter that the first level in the tree for α→ β refers to the free variable
x quantified universally. Thus, we obtain T `s α∗1 → β for every ∗1.

From definition T `s ∃xα→ β in case T `s α∗1 → β for some ∗1. And this
is naturally the case since it is already true for all ∗1.

�
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This finishes the logical treatment of the model-style translation. And thus
we can say that, if Tr(T2) and `s satisfies all conditions described in this
section and T2 `s αTr(T1) for all α ∈ T1, then it satisfies the general scheme
of interpretation and the coherence condition.

3 Defining the translation of NBG in ZF

To define the translation of NBG in ZF, we are going to rely on Novak’s strategy
given in [3]. From a complete Henkin extension ZFs of ZF, we define the
countable model M for NBG:

1. Let ∼ be the equivalence relation of one free variable formulas in ZFs:
α ∼ β ≡ ∀x(α(x)↔ β(x)). We denote the equivalence class of a formula
by pαq.

2. M is the set of all equivalence classes pαq.

3. pαq ∈M pβq if, and only if, there is a constant c in ZFs such that
∀x(α(x)↔ x ∈ c) and β(c) are in ZFs.

4. Every Henkin constant c denotes px ∈ cq.

From this definition, one can prove that M � NBG. Our goal then is to
show that we can emulate this model construction in the translating system
described in previous sections.

The main difficulty is to emulate the Henkin constants introduced in ZFs.
We first use the index of the variables to arrange the set Id in our favor:
Let GN(α) be the Gödel numbering of the formula α, then

n(α) = min{GN(β) | ZF s ` ∀x(β(x)↔ α(x))} (10)

Let special indexes be the set of n(α)’s. From this we can devise the
special variables as yn(α1), yn(α2), . . . and the normal variables x1, x2, x3, . . . We
now define our Id set:

γ ∈ Id if, and only if, γ has only one normal free variable. (11)

We define the functor for membership relation:

I∈〈α, β〉 = ∃z(∀w(α(w)↔ w ∈ z) ∧ β(yn(α))) (12)

Basically, the functor is saying that α is a formula that stands for a set and
that the special variable for α is a “member” of β. Notably, we now have a free
variable yn(α) that needs specification. We have bounded every occurrence of



334 A.R. Freire

equivalent formulas to a single special variable – thus, once we force yn(α) to
be exactly the set whose membership coincides with α, then those equivalent
occurrences will be bounded to the same variable.

We specify the special variables in the final functor for `s:

S(β) =∃w∀z(α1(z)↔ z ∈ w)→ yn(α1) = w∧
∃w∀z(α2(z)↔ z ∈ w)→ yn(α2) = w∧
...

∧∃w∀z(αk(z)↔ z ∈ w)→ yn(αk) = w → β

where yn(α1), yn(α2), . . . , yn(αk) are the special variables occurring in β.
This trick using the special variables is enough to emulate the Henkin con-

stants in Novak’s technique. It is routine to verify that this S functor won’t
affect the conditions exposed in the previous section.

The problem here is that we do not use the full strength of the method.
Basically, we are solely using the branching of the translation tree to insert the
canonical construction for a model. Yet, we have shown a basis for attributing
translating meaning to a particular method of model theoretical reduction.
This method can be applied more generally to every model construction that
uses definable classes over Henkin canonical construction – and this can be
done in the same spirit as described above.

4 Combining interpretations

Philosophers and mathematicians use extensively interpretations in the study
of reductions among theories. Yet, we may find difficulty in arguing for a
particular interpretation being the intended reduction.

When we provide an interpretation I of a theory T1 into a theory T2, we
require for each α ∈ T1 that T2 ` αI . What may be the case (and often is) is
that T2 proves βI for many undecidable formulas of T1. Model-theoretically,
this means that the interpretation in T2 is discarding many possible models for
T1. Naturally, T2 may eliminate only bad models for T1, however it may be
the case that T2 is eliminating precisely the intended model for T1.

6

6It is widely accepted that the ordinal interpretation in ZFC for the natural numbers is
the intended model for arithmetics (even though we might not have formal criteria to deter-
mine that). Nonetheless, the determines of this model still depends on deciding undecidable
formulas in ZFC. Thus in coordinating the decision over undecidable formulas of ZFC and of
PA, we may end up with a mismatch between the extension of PA and the interpretation of
PA in the extension of ZFC.
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By using the enlarged concept of interpretation, we want to minimize the
number of possible models we exclude in a standard interpretation. The
method we will explore in this section is combining interpretations. In this
case, we change the requirement over the open formulas in ∗(xi,Jk):

Each composition of ∗(xi,Jk) should lead to a particular interpretation for
the predicates we already have for the languages of the theories in question
{I0, I1, . . . , In−1}. Any method suffices. We define here a particular type:

1. If α is γ ∨ β, then α∗(xi,Jk) is γ∗(xi,Jk) ∨ β∗(xi,Jk) .

2. If α is ¬γ, then α∗(xi,Jk) is ¬γ∗(xi,Jk) .

If the formula in question is a leaf, we start generating the correspondent
interpretation:

Let ai ∈ {0, 1} and (a1a2 . . . aq)2 mod(n) the remainder in the division by
n of the decimal representation of the binary representation a1a2 . . . aq.

Let γ be an atomic formula and k = (k1k2 . . . kq)2 mod(n), then

γ
∗(xi,Jk1 )∗(xi,Jk2 )...∗(xi,Jkq ) is γIk (13)

We now explore an illustrative example:
Let T1 = {∀x∃yα,∃x∀yβ,∃x∀yγ} and say I0 and I2 are interpretations of

T1 in T2. Moreover,

I1 interprets in T2 the formulas {∀x∃yα,∃x∀yβ,¬∃x∀yγ}
I3 interprets in T2 the formulas {∀x∃yα,¬∃x∀yβ,∃x∀yγ}

Suppose all those interpretations use the same universe of interpretation U ,
let ∗(xi,Jk) be written as ∗k and take Id to be {J0, J1}. We note that ∗0∗0 = I0,
∗0∗1 = I1, ∗1∗0 = I2 and ∗1∗1 = I3. We evaluate the translation tree for
β′ = ∀x∃yβ:



336 A.R. Freire

Since T2 ` β′I0 and T2 ` β′I1 , then the path 0 is valid universally – in turn,
the initial node is valid existentially. Therefore, T2 `s β′Tr(T2). Similarly, we

can conclude that T2 `s α′Tr(T2) and T2 `s γ′Tr(T2). Finally T2 `s T Tr(T2)1 .
Thus, we have a new translation method for T1 in T2 using the interpre-

tations I0, I1, I2 and I3. Nonetheless, only I0 and I2 are interpretations of the
original theory. We have allowed some flexibility to the translation require-
ments that make it possible to use partial interpretations I3 and I4 signifi-
cantly.

Furthermore, we still can push it a little further redefining I0 and I2:

I0 interprets in T2 the formulas {¬∀x∃yα,∃x∀yβ,¬∃x∀yγ}
I2 interprets in T2 the formulas {¬∀x∃yα,∃x∀yβ,∃x∀yγ}

Now we are in a situation in which none of the I’s are interpretations of T1
in T2. But for we still have T2 `s T Tr(T2)1 all of them together can account for
a translation of T1 in the enlarged sense of translation.

As we have discussed before, this result should still imply the relative con-
sistency of the theories. Therefore, this scheme shows that we can indeed use
a plurality of partial interpretations to prove a result of relative consistency.
This may be true even if the theory in question is not interpretable in the
translating theory.

5 Final remarks

We have worked with a flexible type of translation, allowing many changes in
the structure of the traditional interpretation. By doing so, we could include
as a translation the model theoretical proof of relative consistency between ZF
and NBG. Furthermore, we have shown that this enlarged concept of transla-
tion can reach new conditions of reducibility for models excluded by excessive
requirements of uniformity.

In order to accomplish these relations, we have described the requirements
of General scheme of interpretation and the Coherence condition. Sub-
sequently, we allowed ourselves to use in our favor what was left undefined. Yet,
we haven’t explored the full expressive power of this method. An account of
what are the models we can indeed construct is still needed. Thus, further
development should account for the new truth conditions we can describe for
a given theory as PA, ZF, and others.
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