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Abstract

In 1932, Gödel proved that there is no finite semantics for propositional
intuitionistic logic. We consider all fragments of propositional intuition-
istic logic and check in each case whether a finite semantics exists. This
note may fulfill a didactic goal, as little logic and algebra are required.
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1 Introduction

As is well known, propositional classical logic has a finite semantics. In the be-
ginning of the 1920s, mathematicians like Kolmogorov, Glivenko, and Heyting
began to study intuitionistic logic, at that time sometimes called “the logic of
M. Brouwer” (see [12], [4], and [10], respectively). The natural question arised
whether also propositional intuitionistic logic had a finite semantics. In 1932,
Gödel proved that not to be the case. In his words:

“Es gibt keine Realisierung mit endlich vielen Elementen (Wahrheitswerten),
für welche die und nur die in H beweisbaren Formeln erfüllt sind . . . ” (see [6]),

where H refers to the axiomatic system for intuitionistic logic set up by Heyt-
ing in 1930 (see [10]). In fact, Gödel’s argument also holds for positive logic,
that is, the conjunction-disjunction-conditional fragment of intuitionistic logic.
So, there is no finite semantics for the (usual axiomatic system of the) men-
tioned fragment. Shortly afterwards, in 1933, Gödel himself proved that the
conjunction-negation fragments of intuitionistic and classical logic coincide
when only considering derivable formulas (see [7]). This implies that the
conjunction-negation fragment of intuitionistic logic does have a finite seman-
tics for the case of derivable formulas. However, Gödel’s result does not hold
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when premisses are considered (just note that the Double Negation Law holds
in classical logic, but not in intuitionistic logic). In particular, in this note we
will consider the conjunction-negation fragment also when having premisses in
order to see whether it has a finite semantics. In general, it is natural to try
to answer the same question regarding every fragment of intuitionistic logic,
including the trivial case of the fragment given by the language with no connec-
tives, which will be denoted ∅. This we do in the present note. All languages
considered appear pictorially in Figure 1.

Figure 1: The sixteen languages to be considered

In Section 2, we state our prerequisites. In Section 3, we use Gödel’s argu-
ment in order to prove that any fragment having the conditional, in particular
positive and intuitionistic logics, do not have a finite semantics. There are
only eight fragments left to consider. In Section 4, we see that the conjunction-
disjunction fragments and the fragments contained in it, do have a finite seman-
tics. In Section 5, we consider the disjunction-negation and the conjunction-
disjunction-negation fragments. Using an argument similar to the one in Sec-
tion 3, we see that there is no finite semantics for those fragments. Finally,
in Section 6, we consider the negation and conjunction-negation fragments,
finding in those cases a finite semantics.

As little knowledge of logic and algebra are required, we think this note may
fulfill the following didactic goal. Sometimes Gentzen’s Natural Deduction is
used to introduce logic. In that context, in order to decide if certain formula
follows from a given set of formulas in a given fragment, it is natural to inquire
if the fragment involved has a finite semantics.

The main purpose of this paper is to state and prove Theorems 3.7, 5.7,
and 6.5.
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2 Prerequisites

In this section we consider the basic syntactic and semantic notions. Also, we
fix the notation to be used.

2.1 Formulas and derivations

Any set included in the set of connectives {∧,∨,→, ¬} is called a language.
Given a language L, we use the notation FL for the set of formulas obtained in
the usual way from the set of (propositional) letters Π applying the connectives
in L. Recall that in intuitionistic logic the given connectives cannot be defined
from each other. Also, whenever we mention intuitionistic (classical) logic, we
mean propositional intuitionistic (classical) logic.

Given any language L, we talk of the L-fragment (of intuitionistic logic),
which is defined by the consequence relation resulting from the rules given
for the conectives in L. In the case of fragments with the conditional, it is
possible to use a Frege-style axiomatization, for example, the axiomatization
of intuitionistic logic given by Heyting in [10] that Gödel used in [6]. For one
contemporary version of that axiomatization the reader may see [2, Section
11.1]. In the case of any fragment, we use Gentzen’s Natural Deduction rules
(see [3, p. 186]):

ϕ ψ
(∧I) ,

ϕ ∧ ψ
ϕ ∧ ψ

(∧E) ,
ϕ

ϕ ∧ ψ
(∧E) ,

ψ

ϕ
(∨I) ,

ϕ ∨ ψ
ψ

(∨I) ,
ϕ ∨ ψ

ϕ ∨ ψ
[ϕ]
χ

[ψ]
χ

(∨E) ,
χ

[ϕ]

ψ
(→I) and

ϕ→ ψ

ϕ ϕ→ ψ
(→E) ,

ψ

where ϕ, ψ, and χ are formulas and the letters I and E stand for introduction
and elimination, respectively. Moreover, as we do not use ⊥, we need some-
thing like the following two rules in the case of negation, for introduction and
elimination, respectively:

[ϕ]

ψ

[ϕ]

¬ψ
(¬I) and¬ϕ

ϕ ¬ϕ
(¬E) ,

ψ
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where ϕ and ψ are any formulas.
Note that one is allowed to use assumptions. That means, for example,

that rule (∨E) should be understood as follows:

ϕ ∨ ψ
Γ, [ϕ]
χ

Γ, [ψ]
χ

(∨E) ,
χ

where ϕ, ψ, and χ are formulas and Γ is any set of formulas.
Given a language L and Γ ∪ {ϕ} ⊆ FL, we write Γ `L ϕ and say that ϕ

is a syntactic consequence of Γ in the L-fragment, meaning that there exists
a derivation of ϕ from Γ, where a derivation, roughly speaking, is a finite tree
constructed using only the given rules for the connectives in L (for a detailed
definition, see [13, p.24]). Also, we sometimes write `i or `c meaning that
there exists a derivation using intuitionistic logic (that is, all the given rules)
or classical logic, respectively. By classical logic we mean that we may use all
the given rules plus, for example, the rule

(TND) ,
ϕ ∨ ¬ϕ

where ϕ is any formula and (TND) stands for tertium non datur.
Note, for instance, that facts like ϕ `L ϕ and if Γ `L ϕ, then Γ, ψ `L ϕ

hold for any language L, in particular when L = ∅, no rule being needed. For
those facts we use the notation (SC).

Finally, note that, unlike Gödel, who only considered derivable formulas, in
the definition of syntactic consequence we need to consider the given set Γ of
formulas. This is due to the fact that a fragment may not have the conditional
as one of its connectives, so that it will not enjoy the Deduction Theorem.

2.2 Semantics

Let us now consider the concepts of poset, algebra, matrix, and semantic con-
sequence for a given matrix. In particular, we define Heyting and Boolean
algebras.

Given a set S and a binary relation R on S, we say that R is an order on
S iff R is reflexive, antisymmetric, and transitive.

Definition 2.1 A poset is a pair 〈P ;≤〉 such that

(i) P is a non-empty set and
(ii) ≤ is an order on P .

We frequently use the following particular case of a poset.
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Definition 2.2 A poset (P ;≤) is a chain iff it holds that x ≤ y or y ≤ x for
any elements x, y ∈ P .

Definition 2.3 Let L be a language. An algebra (for L) is a pair AL =
〈A;OL〉 such that

(i) A is a non-empty set and
(ii) OL is a set of operations on A for every connective in L.

In what follows we use the same symbols for both the connectives and their
corresponding operations. This ambiguity should not cause any problem.

Example 2.4 A lattice is an algebra 〈L;∧,∨〉 such that the following facts
hold for any x, y, z ∈ L:

x ∧ x = x, x ∨ x = x,
x ∧ y = y ∧ x, x ∨ y = y ∨ x,
x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∨ (y ∨ z) = (x ∨ y) ∨ z,
x ∧ (x ∨ y) = x, x ∨ (x ∧ y) = x.

Given a lattice 〈L;∧,∨〉, note that it can be proved that the binary relation
≤ on L defined by x ≤ y iff x ∧ y = x is an order (exercise). Consequently,
〈L;≤〉 is a poset.

Definition 2.5 A lattice 〈L;∧,∨〉 is distributive iff it holds that x∧ (y ∨ z) =
(x ∧ y) ∨ (x ∧ z), for any x, y, z ∈ L.

Definition 2.6 A Heyting algebra is an algebra 〈L;∧,∨,→,¬〉 such that the
algebra 〈L;∧,∨〉 is a distributive lattice and the following two conditions hold,
for all x, y, z ∈ L:

z ≤ x→ y iff z ∧ x ≤ y and
z ≤ ¬x iff z ∧ x ≤ y, for all y ∈ L.

Definition 2.7 A Boolean algebra is a Heyting algebra 〈H;∧,∨,→,¬〉 such
that it holds that y ≤ x ∨ ¬x, for any x, y ∈ H.

Remark 2.8 A Boolean algebra is usually defined without using →. We are
using → in order to make clear the connection between Boolean algebras and
our definition of classical logic, which we gave in the previous subsection.

Definition 2.9 Let L be a language. A matrix for L is a triple ML =
〈M,D,OL〉 such that

(i) 〈M ;OL〉 is an algebra for L and
(ii) D ⊆M is a set of designated values.
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Definition 2.10 Take a language L, Γ∪{ϕ} ⊆ FL, and let ML = 〈M,D,OL〉
be a matrix for L. Then, we say that ϕ is a semantic consequence of Γ for
ML (and use the notation Γ �ML

ϕ) iff for every assignment v : Π→ M , the
unique homomorphism v̄ : FL → M satisfies that if v̄ψ ∈ D, for all ψ ∈ Γ,
then v̄ϕ ∈ D.

Under “having a finite semantics” we understand the same as Gödel, that
is, we use the following definition.

Definition 2.11 Let L be a language. We say that the L-fragment has a finite
semantics iff there exists a matrix ML with a finite set of values such that for
every Γ ∪ {ϕ} ∈ FL it holds that Γ `L ϕ iff Γ �ML

ϕ.

It should be clear that, for each fragment, we will be looking for one matrix
(not for a class of matrices) and, moreover, for a finite one.

In this paper we assume to be known that intuitionistic and classical logic
are sound and complete relatively to the class of Heyting algebras and to the
two-element Boolean algebra, respectively. That is, we assume that the fol-
lowing two theorems hold. In the statement of the first theorem, given the
language L = {∧,∨,→,¬} and Γ∪ {ϕ} ⊆ FL, notation Γ �H ϕ means that for
every Heyting algebra with universe H and for every assignment v : Π → H,
the unique homomorphism v̄ : FL → H satisfies that if v̄ψ = 1, for all ψ ∈ Γ,
then v̄ϕ = 1.

Theorem 2.12 Let L be the language {∧,∨,→,¬} and Γ ∪ {ϕ} ⊆ FL. Then,
it holds that Γ `i ϕ iff Γ �H ϕ.

In the statement of the second theorem, 2{∧,∨,→,¬} denotes the matrix
with universe {0, 1} taking 1 as only designated element and operations ∧, ∨,
→, and ¬ defined as in the case of a Boolean algebra. Formally, 2{∧,∨,→,¬} =
〈{0, 1}, {1}, {∧,∨,→,¬}〉, such that 〈{0, 1}, {∧,∨,→,¬}〉 is a Boolean algebra.

Theorem 2.13 Let L be the language {∧,∨,→ ¬} and Γ ∪ {ϕ} ⊆ FL. Then,
Γ `c ϕ iff Γ �2{∧,∨,→,¬} ϕ.

Remark 2.14 Note that Theorem 2.13 requires just one matrix, whereas The-
orem 2.12, as emphasized, makes use of the hole class of Heyting algebras.

3 On fragments with the conditional

In his proof that there is no finite semantics for the syntactic consequence
of intuitionistic logic, Gödel constructed a formula using, among others, the
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disjunction connective. Now, in this section our goal is to deal with fragments
that have the conditional connective, but this may be the only one. Let us
see in detail that, instead of disjunctions, we may use formulas of the form
(ϕ→ ψ)→ ψ.

Lemma 3.1 Let L be a language with →. Then, for any ϕ,ψ ∈ FL, we have
(i) ϕ `L ϕ, (ii) `L ϕ→ ϕ, and (iii) ϕ,ϕ→ ψ `L ψ.

Proof. For (i) use (SC). Then, (ii) follows from (i) using (→I). In order to
prove (iii), just use (→E). �

As already said, in what follows we use Gödel’s argument with formulas of
a different form. In order to do that, we use the following abbreviation:

ϕ∨̇ψ := (ϕ→ ψ)→ ψ.

For example, the formula [(p3 → p2)∨̇(p3 → p1)]∨̇(p2 → p1) denotes the for-
mula

([([(p3 → p2)→ (p3 → p1)]→ (p3 → p1))→ (p2 → p1)]→ (p2 → p1)).

Note that ∨̇ is neither commutative nor associative. We omit parentheses
assuming association to the left. So, instead of the given formula, we may as
well write

(p3 → p2)∨̇(p3 → p1)∨̇(p2 → p1).

We use the following lemma.

Lemma 3.2 Let L be a language with→ and ϕ ∈ FL such that `L ϕ. Then (i)
`L ϕ∨̇ψ, for any formula ψ ∈ FL, (ii) `L ψ∨̇ϕ, for any formula ψ ∈ FL, and
(iii) If ψ = · · · ∨̇ ϕ ∨̇ · · · , where the given dots may be empty at the beginning
or the end, then `L ψ.

Proof. (i) By (→E) we have ϕ,ϕ → ψ `L ψ. Then, using (→I) it fol-
lows that ϕ `L (ϕ → ψ) → ψ. As we have `L ϕ, using (SC) it follows that
`L (ϕ → ψ) → ψ. (ii) As we have `L ϕ, by (SC) it follows that ψ → ϕ `L ϕ.
Then, by (→I) it follows that `L (ψ → ϕ) → ϕ. Part (iii) follows using parts
(i) and (ii). �

Now, let us turn to algebraic considerations, where we use the ∨̇ notation
in a way analogous to the corresponding connective.

Lemma 3.3 Let us have a Heyting algebra with universe A, order ≤, and
a, b ∈ A. Then, (i) If (A;≤) is a chain and a < b, then b → a = a and (ii) if
a ≤ b, then a∨̇b = b.
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Proof. (i) It is clear that (1) b ∧ a ≤ a. Now, let us suppose that b ∧ c ≤ a,
for any c ∈ A. Then, as A is a chain, then either b ∧ c = b or b ∧ c = c. Now,
as a < b, it cannot be the case that b ∧ c = b. So, b ∧ c = c. Then c ≤ a. So,
we have that, (2) for any c ∈ A, if b ∧ c ≤ a, then c ≤ a. From (1) and (2) it
follows that b→ a = a.

(ii) Assume a ≤ b. So, a → b is top. So, (a → b) → b ≤ b. It is also the
case that b ≤ (a→ b)→ b. �

Similarly to Gödel in [6], in order to prove our first theorem, we divide
our task into two propositions. The first one states that, if we had a finite
semantics, then certain formulas would be derivable. The second proposition
states that those formulas are not derivable.

The strategy of the proof of the first proposition consists, roughly speaking,
in finding a formula with more propositional letters than values in the given
semantics.

Proposition 3.4 Let L be a language with →. Suppose that the L-fragment
has a finite semantics, say with n ≥ 1 values. Then, for all n ≥ 1, it follows
that `L αn, where

αn = ∨̇
1≤i<j≤n+1

pj → pi.

Proof. Let L be a language with →. Suppose that the L-fragment has a
semantics with n values, that is, that there exists a matrix ML with a set of
values M and a natural number n such that |M | = n and such that for every
Γ ∪ {ϕ} ∈ FL it holds that

(C) Γ `L ϕ iff Γ �ML
ϕ.

Let us take an assignment v : Π→M and let us consider v̄αn. As there are n+1
propositional letters in αn, but only n values in M , there must be letters pi, pj
such that vpi = vpj . Now, let us consider the formula βn = αn[pi/pj ], where
αn[pi/pj ] indicates the substitution of all appearances of pi in αn for appear-
ances of pj . It should be clear that v̄βn = v̄αn. Also, βn = · · · ∨̇(pj → pj)∨̇ · · · ,
where the given dots may be empty at the beginning or the end. Now, using
Lemma 3.1 (ii), it holds that `L pj → pj and then, using Lemma 3.2 (iii), it
follows that `L βn. Then, taking Γ = ∅ in (C), �ML

βn. So, �ML
αn. So,

using (C) in the other direction, `L αn. �

Now, let us see that the formulas given in Proposition 3.4 are not derivable.

Proposition 3.5 Let 1 ≤ n be a natural number and αn a formula as in
Proposition 3.4. Then, 0i αn.
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Proof. Let us consider the Heyting algebra with universe {1, 2, . . . , n + 1}
and operations ∧, ∨, →, and ¬ defined by

x ∧ y = min{x, y}, x ∨ y = max{x, y},
if x ≤ y, then x→ y = n+ 1 else x→ y = y, and
if x = 1, then ¬x = n+ 1, else ¬x = 1, respectively.

Let us consider any assignment w such that wpi = i, for 1 ≤ i ≤ n+ 1. Then,

w̄αn = ∨̇
1≤i<j≤n+1

wpj → wpi,

= ∨̇
1≤i<j≤n+1

wpi, (as wpi < wpj , using Lemma 3.3(i)),

= wp1∨̇wp1∨̇ · · · ∨̇wp2∨̇wp2 · · · ∨̇wpn,

= wp1∨̇wp2∨̇ · · · ∨̇wpn, (by Lemma 3.3(ii)),

= wpn, (by Lemma 3.3(ii)),

= n,

6= n+ 1.

Using soundness of intuitionistic logic relatively to Heyting algebras, to finite
chains in particular, it follows that 0i αn. �

Note that Proposition 3.5 was stated for i, that is, for the fragment with
all connectives. So, we immediately get the following fact.

Corollary 3.6 Let αn be a formula as in Proposition 3.4. Then, for any
language L, we have that 0L αn, for any natural number n ≥ 1.

We finally get our goal in this section.

Theorem 3.7 Fragments with → do not have a finite semantics.

Proof. Applying Proposition 3.4, the formulas αn would be derivable, which
cannot be the case due to Corollary 3.6. �

4 On the ∅, {∧}, {∨}, and {∧,∨}-fragments

It remains to consider the fragments with languages appearing in Figure 2.
In this section, we will only consider the fragments with languages ∅, {∧},
{∨}, and {∧,∨}. The notation 2L will stand for any matrix of the form
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〈{0, 1}, {1}, OL〉, where L ⊆ {∧,∨} and the operations for ∧ and ∨ will make
them behave as the usual meet and join in a Boolean algebra. Let us first
consider the case of the {∧}-fragment.

Figure 2: Languages without the conditional

Proposition 4.1 Let Γ ∪ {ϕ} ⊆ F{∧}. Then, Γ `{∧} ϕ iff Γ �2{∧} ϕ.

Proof. Suppose Γ `{∧} ϕ. Then, the reader can easily check that it
follows that Γ �2{∧} ϕ. On the other hand, suppose Γ 0{∧} ϕ, that is,
Γ 0{∧} p1∧ p2∧ · · · ∧ pn. Then, by (∧I), there is a letter pi such that Γ 0{∧} pi.
So, by (∧E), pi is not a subformula of any formula in Γ. Then, there exists the
assignment w such that wpi = 0 and wp = 1 for letters p other that pi. So,
Γ 22{∧} ϕ. �

The ∅-fragment is easily dealt with.

Proposition 4.2 Let Γ ∪ {ϕ} ⊆ F∅. Then, Γ `∅ ϕ iff Γ �2∅ ϕ.

Proof. Similar to the previous one. �

Let us now consider the {∧,∨}-fragment.

Proposition 4.3 Let Γ ∪ {ϕ} ⊆ F{∧,∨}. Then, Γ `{∧,∨} ϕ iff Γ �2{∧,∨} ϕ.

Proof. If Γ `{∧,∨} ϕ, then, checking that the rules for ∧ and ∨ preserve 1
in the matrix 2{∧,∨}, it follows that Γ �2{∧,∨} ϕ. On the other hand, suppose
Γ 0{∧,∨} ϕ. Then, using the conjunctive normal form theorem (recall that
we have distributivity), it follows that ϕ and every formula in Γ is equivalent
to a conjunction of disjunction of letters. Then, by (∧I), Γ 0{∧,∨} χ, where
χ = q1∨ · · ·∨ qn. Also, as every formula in Γ is a conjunction (of disjunctions),
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and to have formulas α and β as different premisses is equivalent to having
α ∧ β as only premiss, then we might as well consider Γ to be a set of disjunc-
tions and call it ∆. Now, by (∨I), it follows that every disjunction in ∆ has a
letter that does not belong to the set {q1, . . . , qn}. Consequently, there exists
the assignment w such that wqi = 0, for all 1 ≤ i ≤ n and wp = 1 for letters
p other than the qi. So, every formula in ∆ will have value 1. So, Γ 22{∧,∨} ϕ. �

Finally, having considered the {∧,∨}-fragment, the {∨}-fragment is easily
dealt with.

Proposition 4.4 Let Γ ∪ {ϕ} ⊆ F{∨}. Then, Γ `{∨} ϕ iff Γ �2{∨} ϕ.

Proof. Similar to the end of the proof for the {∧,∨}-fragment, which was
reduced to only having disjunctions. Note that distributivity is not required. �

5 On the {∨,¬} and {∧,∨,¬}-fragments

It remains to consider the fragments for the languages appearing in Figure 3.
In this section we will only consider the {∨,¬} and {∧,∨,¬}-fragments. We
will use the following two lemmas.

Figure 3: The four remaining languages to be considered

Lemma 5.1 Let L be a language with ∨. Then, ϕ `L ϕ ∨ ψ and ψ `L ϕ ∨ ψ.

Proof. Immediate using (∨I). �

Lemma 5.2 Let L be a language with ∨ and ¬. Then, for any ϕ,ψ ∈ FL, we
have (i) if ϕ `L ψ, then ¬ψ `L ¬ϕ and (ii) `L ¬¬(ϕ ∨ ¬ϕ).

Proof. (i) Suppose ϕ `L ψ. Then, by (SC) we have that ϕ,¬ψ `L ψ.
By (SC) we also have that ϕ,¬ψ `L ¬ψ. Then, using (¬I) it follows that
¬ψ `L ¬ϕ. (ii) Using Lemma 5.1 we have that ϕ `L ϕ ∨ ¬ϕ. Then, by part
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(i), ¬(ϕ ∨ ¬ϕ) `L ¬ϕ. Using Lemma 5.1 again, we have that ¬ϕ `L ϕ ∨ ¬ϕ.
So, using (SC), ¬(ϕ ∨ ¬ϕ) `L ϕ ∨ ¬ϕ. Now, by (SC) we also have that
¬(ϕ ∨ ¬ϕ) `L ¬(ϕ ∨ ¬ϕ). Finally, using (¬I), we get that `L ¬¬(ϕ ∨ ¬ϕ). �

Remark 5.3 Recall that tertium non datur does not hold in intuitionistic
logic. However, as seen in part (ii) of Lemma 5.2, its double negation holds in
any fragment with ∨ and ¬.

On the other hand, intuitionistic logic enjoys the Disjunction Property, which
does not hold for classical logic.

Lemma 5.4 Let ϕ,ψ ∈ F. If `i ϕ ∨ ψ, then `i ϕ or `i ψ.

Proof. An algebraic proof runs as follows. If neither `i ϕ nor `i ψ hold,
then, by completeness, there are Heyting algebras H1, H2 and assignments
v1, v2 such that v̄1ϕ 6= 1H1 and v̄2ψ 6= 1H2 . Now, take the direct product
H1×H2 and add an element which is greater than any element of the universe
of the given product. Then, the resulting algebra with the natural assign-
ment will prove that it is not the case that `i ϕ ∨ ψ. For details, the reader
may see [14]. For other proofs, see [15, Exercise 2.6.7 or sections 5.6 to 5.10]. �

In order to prove our next theorem, we use the same strategy as in the case
of Theorem 3.7.

Proposition 5.5 Let L be a language with ∨ and ¬. Suppose that L has a
finite semantics, say with n ≥ 1 values. Then, the formulas of the following
form are derivable in L:

αn =
∨

1≤i<j≤n+1

¬¬(¬pi ∨ pj).

Proof. Suppose that L is a language with ∨ and ¬ that has a semantics with
n values, that is, that there exists a matrix ML with set of values M and a
natural number n such that |M | = n and such that for every Γ ∪ {ϕ} ∈ FL it
holds that

(C) Γ `L ϕ iff Γ �ML
ϕ.

Take an assignment v : Π → M and let us consider v̄αn. As there are n + 1
propositional letters in αn, but only n values in M , there must be letters pi,
pj such that vpi = vpj . Now, consider the formula βn = αn[pi/pj ]. It should
be clear that v̄βn = v̄αn. Now, it holds that `L ¬¬(¬pj ∨ pj). Consequently,
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`L βn. Then, by (C), �ML
βn. So, �ML

αn. So, using (C) in the other direc-
tion, `L αn. �

The following fact is easy to prove using the already stated Disjunction
Property.

Proposition 5.6 The formulas of the form given in Proposition 5.5 are not
intuitionistically derivable.

Proof. For every i, j, i 6= j, ¬¬(¬pi ∨ pj) is not even classically derivable.
So, by Lemma 5.4, it follows that 0i αn. �

Theorem 5.7 Fragments with ∨ and ¬ do not have a finite semantics.

Proof. Applying Proposition 5.5, the formulas of the given form would be
derivable, which cannot be the case, because they are not intuitionistically
derivable, as stated in Proposition 5.6. �

6 On the {¬} and {∧,¬}-fragments

There are only two fragments left to consider, that is, the {¬} and the {∧,¬}-
fragment. In the Introduction we stated that Gödel proved that the set of
derivable formulas of the conjunction-negation fragment of intuitionistic logic
coincides with the set of classically derivable formulas. This is also stated and
proved in detail in [11] (see Corollary to (a2) in p. 493). This implies that the
conjunction-negation fragment has a finite semantics with respect to derivable
formulas, that is, two-valued classical semantics. The natural question arises
whether we also have a finite semantics when having premisses as well. This
we solve in this section.

Regarding syntactical matters, in this section we use the following version
of the celebrated Glivenko Theorem and also the following Corollary. Glivenko
Theorem was originally proved for intuitionistic logic in [5]. Before stating
those facts, we define a set of formulas Γ ∈ F{∧,¬} to be classically (respectively
{∧,¬}-) consistent iff from Γ it is not possible to derive a contradiction in
classical logic (respectively in the {∧,¬}-fragment of intuitionistic logic), where
by a contradiction we mean a pair {ϕ,¬ϕ} of formulas.

Theorem 6.1 Let Γ ∪ {ϕ} ⊆ F{∧,¬}. Then, if Γ `c ¬ϕ, then Γ `{∧,¬} ¬ϕ.

By contraposition we get the following result.
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Corollary 6.2 Let Γ ⊆ F{∧,¬}. If Γ is {∧,¬}-consistent, then Γ is classically
consistent.

Regarding semantics, we use the concepts of subalgabra and congruence,
whose definitions we now state (for details or examples the reader may see [1]).

Definition 6.3 Given two algebras A and B of the same type, we say that B
is a subalgebra of A iff the universe of B is included in the universe of A and
every fundamental operation of B is the restriction to the universe of B of the
corresponding operation of A.

Definition 6.4 Given an algebra A = 〈A;F 〉, we say that a congruence on A
is an equivalence relation E on A such that for every n-ary operation f in L
and elements ai, bi in A,

if aiEbi, for all i, 1 ≤ i ≤ n, then f(a1, . . . , an)Ef(b1, . . . , bn).

The diagonal relation and the all relation are the only trivial congruences.
In this section, 3L stands for the matrix 〈{0, 1/2, 1}; {1};OL〉, where L is

either {∧,¬} or {¬} and the operations for ∧ and ¬ make them behave as the
usual meet and meet complement in a Heyting algebra (we might as well say
that a ∧ b = min {a, b}, for any a, b in the given set of values; ¬0 = 1, and
¬1/2 = ¬1 = 0). The only non-trivial congruence is given by the ellipses in
Figure 4. Note, also, that the algebra 〈{0, 1};OL〉, where L is either {∧,¬} or
{¬} and the operations for ∧ and ¬ make them behave as the usual meet and
meet complement in a Boolean algebra, is a subalgebra of the algebra of 3L.

Figure 4: The only non-trivial congruence in the algebra of 3L

Let us now consider the {∧,¬}-fragment.

Theorem 6.5 Let Γ ∪ {ϕ} ⊆ F{∧,¬}. Then, Γ `{∧,¬} ϕ iff Γ �3{∧,¬} ϕ.

Proof. ⇒) Suppose Γ `{∧,¬} ϕ. It is easily seen that the rules for conjunction
and the (¬E)-rule preserve 1. Regarding the (¬I)-rule, it can also be seen
that if ϕ �3{∧,¬} ψ and ϕ �3{∧,¬} ¬ψ, then �3 ¬ϕ. Indeed, suppose (H)
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ϕ �3{∧,¬} ψ and ϕ �3{∧,¬} ¬ψ. Given an assignment v, we will aim to discard

both v̄¬ϕ =1 /2 and v̄¬ϕ = 0. First, suppose v̄¬ϕ =1 /2. Then, ¬v̄ϕ =1 /2,
which cannot be the case as a negation can only have values 0 or 1. Second,
suppose v̄¬ϕ = 0, that is, ¬v̄ϕ = 0. Then, either v̄ϕ = 1 or v̄ϕ =1 /2. In
case v̄ϕ = 1, by (H) it follows a contradiction. In case v̄ϕ =1 /2, we define
the assignment v′ for propositional letters as follows: let v′p = 0 if vp = 0 and
let v′p = 1 if vp is either 1/2 or 1. Then, it is easily seen by induction on the
formation of ϕ that if a subformula ψ of ϕ has value v̄ψ =1 /2, then v̄′ψ = 1.
In particular, if v̄ϕ =1 /2, then v̄′ϕ = 1. So, v̄′ϕ = 1. Then, by (H), we get a
contradiction.
⇐) Suppose Γ 0{∧,¬} ϕ. There are three cases: (i) ϕ = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn,

where each ϕi is a either a negation or a letter; (ii) ϕ = ¬ψ, for some formula
ψ; or (iii) ϕ = p, for some letter p.

In case (i), by (∧I) and (∧E) we have that Γ 0{∧,¬} ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn iff
there is at least an i such that Γ 0{∧,¬} ϕi and such that ϕi is either a negation
or a letter. So, this case reduces to either case (ii) or case (iii).

In case (ii), using Theorem 6.1, we have that Γ 0c ¬ψ. Then, by complete-
ness of classical logic, Γ 22{∧,¬} ¬ψ. So, there is an assignment v : Π→ {0, 1}
such that v̄χ = 1 for all χ ∈ Γ and v̄¬ψ = 0. Then, as the algebra of the
matrix 2{∧,¬} is a subalgebra of the algebra of the matrix 3{∧,¬}, it follows,
using the same assignment v, that Γ 23{∧,¬} ¬ψ, that is, Γ 23{∧,¬} ϕ.

Finally, case (iii) means that Γ 0{∧,¬} p. Then, Γ is {∧,¬}-consistent.
Then, using Corollary 6.2, it follows that Γ is classically consistent. Then,
there exists an assignment v : Π → {0, 1} such that v̄ψ = 1 for all ψ ∈ Γ.
Now, let us define an assignment w : Π → {0,1/2, 1} such that wpi = vpi, for
all pi ∈ Π. Then, as the algebra of the matrix 2{∧,¬} is a subalgebra of the
algebra of the matrix 3{∧,¬}, it follows that w̄ψ = 1 for all ψ ∈ Γ. If wp = 0,
then we are done. In case wp = 1, let us define w′ like w except for w′p = 1/2.
It remains to be seen that for every ψ ∈ Γ, w̄′ψ = 1. Now, as Γ 0{∧,¬} p, then,
due to (SC) and (∧E), every occurrence of p in a formula ψ of Γ must appear
in a subformula of ψ of the form ¬χ, that is, it must appear in the scope of a
negation. Now, taking θ to be congruence relation given in Figure 4, we have
that as 1/2θ1, then w̄′¬χθw̄¬χ. As a negation can only have Boolean values
(that is, either 0 or 1), then we will have w̄′¬χ = w̄¬χ. Finally, w̄′ψ = w̄ψ.
So, for every ψ ∈ Γ, w̄′ψ = 1. �

Now we can easily deal with the {¬}-fragment.

Proposition 6.6 Let Γ ∪ {ϕ} ⊆ F{¬}. Then, Γ `{¬} ϕ iff Γ �3{¬} ϕ.

Proof. The left to right direction is the same as in the previous proof. For
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the other direction, just consider cases (ii) and (iii) in the previous proof. �

It is clear then, due to propositions 6.5 and 6.6, that both the {∧,¬}- and
the {¬}-fragment have a finite semantics.
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