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Abstract

In this paper I present a sequent calculus for intuitionistic first-order logic
with strong negation. The semantic is probabilistic, more precisely, it is
based on partial conditional probability functions. Soundness and com-
pleteness are proved.
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Introduction

The notation Pr(A,Γ) will be used for the probability of A conditional on
the set of sentences Γ. The main feature of this semantics is that,
Pr(A ⊃ B,Γ) = Pr(B,Γ ∪ {A}) i.e. the conditional probability of the intu-
itionistic conditional is the probability of the consequent conditionalized on
the antecedent, when Pr(B,Γ ∪ {A}) is defined.

It is a well-known fact that intuitionistic logic is closed to 3-value logic even
if it is not a n-value logic. In fact, intuitionistic logic is not verifunctional. For
example, A ⊃ B is true iff, when we find a proof of A, we find a proof of B,
i.e., if we discover that A is true, then we discover that B is true.

In the probabilistic context, the situation is slightly more complex. This
is so, because intuitionistic negation is not the adequate negation for proba-
bilistic interpretation. For example, Pr(¬(A ⊃ B),Γ) cannot be, in general, be
(1− Pr((A ⊃ B),Γ)).
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1 A Sequent Calculus for Intuitionistic Predicate
Logic with Strong Negation (SCIPLSN)

In what follows, ∼ is the strong negation, F is falsity and ¬ is the intuitionistic
negation and is not a primitive: ¬A=defA ⊃ F .

Definition 1.1. Let Con = {c1, . . . , cn, . . .} be the set of constants, V ar =
{x1, . . . , xn, . . .} the set of variables, Fon = {f0

0 , . . . , f
m
n , . . .} the set of func-

tion letters and Pre = {A0
0, . . . , A

m
n , . . .} the set of predicate letters (the super-

script indicates the number of arguments).

The set Ter of terms is defined as:
(i) Con ∪ V ar ⊆ Ter
(ii) If ti1 , . . . , tim ∈ Ter, then fmn (ti1 , . . . , tim) ∈ Ter
(iii) Nothing else is in Ter.

The set WFFs of well-formed formulas is defined as:
(i) {F,Am

n (ti1 , . . . , tim)} ⊆WFF for any i, n,m ∈ N;
(ii) if A,B ∈WFF , then ∼A,∀xiA,∃xiA, (A∧B), (A∨B), (A ⊃ B) ∈WFF ;
(iii) Nothing else is in WFF .

For a wff ∀xiA (resp. ∃xiA), A is call the scope of ∀xi (resp. ∃xi).

An occurrence of a variable xi in A which is not in the scope of ∀xi (resp.
∃xi) nor immediately preceded by ∀ (resp. ∃) is said to be free.

An occurrence of a variable xi in A which is in the scope of ∀xi (resp.
∃xi) or immediately preceded by ∀ (resp. ∃) is said to be bound.

Definition 1.2. Let A be a wff and t a term. A[t|xi] is the wff obtained by the
substitution of all the free occurrences of xi in A by t.
t is said to be free for xi in A iff no variable occurring in t is bound in A[t|xi].

Axioms

A,Γ⇒ A A1

F,Γ⇒ C A2

Γ⇒ ∼F A3
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Logical Rules

Γ⇒ A

∼A,Γ⇒ C
L∼

A,Γ⇒ C

∼∼A,Γ⇒ C
L∼∼ Γ⇒ A

Γ⇒ ∼∼A R∼∼

A,B,Γ⇒ C

A ∧B,Γ⇒ C
L∧ Γ⇒ A Γ⇒ B

Γ⇒ A ∧B, R∧

A,Γ⇒ C B,Γ⇒ C

A ∨B,Γ⇒ C
L∨ Γ⇒ A

Γ⇒ A ∨B R∨1

Γ⇒ B

Γ⇒ A ∨B R∨2

∼A,Γ⇒ C ∼B,Γ⇒ C

∼(A ∧B),Γ⇒ C
L∼∧ Γ⇒ ∼A

Γ⇒ ∼(A ∧B)
R∼∧1

Γ⇒ ∼B
Γ⇒ ∼(A ∧B)

R∼∧2

∼A,∼B,Γ⇒ C

∼(A ∨B),Γ⇒ C
L∼∨ Γ⇒ ∼A Γ⇒ ∼B

Γ⇒ ∼(A ∨B)
R∼∨

Γ⇒ A B,Γ⇒ C

A ⊃ B,Γ⇒ C
L ⊃ A,Γ⇒ B

Γ⇒ A ⊃ B R ⊃

A,∼B,Γ⇒ C

∼(A ⊃ B),Γ⇒ C
L∼⊃ Γ⇒ A Γ⇒ ∼B

Γ⇒ ∼(A ⊃ B)
R∼⊃

A[t|x],Γ⇒ C

∀xA,Γ⇒ C
L ∀ Γ⇒ A[y|x]

Γ⇒ ∀xA R ∀

A[y|x],Γ⇒ C

∃xA,Γ⇒ C
L ∃ Γ⇒ A[t|x]

Γ⇒ ∃xA R ∃
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Here we suppose that t is free for x in A and A[t|x] is the wff obtained from
A by replacing all the free occurrences of x by t. For R ∀, we also need the
following restriction: y must not be free in Γ, ∀xA. For L ∃, we also need the
following restriction: y must not be free in Γ, ∀xA and C.

∼A[t|x],Γ⇒ C

∼∃xA,Γ⇒ C
L∼∃ Γ⇒ ∼A[y|x]

Γ⇒ ∼∃xA R∼∃

∼A[y|x],Γ⇒ C

∼∀xA,Γ⇒ C
L∼∀ Γ⇒ ∼A[t|x]

Γ⇒ ∼∀xA R∼∀

For R ∼∃, we also need the following restriction: y must not be free in Γ,
∼∃xA. For L ∼∀, we also need the following restriction: y must not be free in
Γ, ∼∀xA and C.

From a proof-theoretic point of view, Γ⇒ ∼A can be interpreted as “from
Γ we have a constructive proof of the falsity of A”. The introduction of strong
negation gives us a conservative extension of intuitionistic logic: every derivable
sequent of intuitionistic logic is a derivable sequent of intuitionistic logic with
strong negation. Moreover, in intuitionistic logic we have Γ ⇒ A or Γ /⇒ A.
In intuitionistic logic with strong negation we have Γ ⇒ A or Γ ⇒ ∼A or
(Γ /⇒ A and Γ /⇒ ∼A.

We will also use the Cut Rule

Γ⇒ A A,∆⇒ C

∆,Γ⇒ C Cut

without proving its admissibility. See Negri and von Plato [19].

2 Partial Conditional Probability Functions

We now characterize the notion of partial conditional probability function.

Definition 2.1. A partial conditional probability function is any partial func-
tion

Pr : WFF × 2WFF → [0, 1]
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which satisfies some postulates that will be specified below.

A background Γ is said to be Pr-abnormal iff, for any A, Pr(A,Γ) = 1.
Otherwise, it is Pr-normal.

Two partial conditional probability functions that give the same value for
the same argument when defined are identical, i.e. they are the same function.
When Pr(A,Γ) is not defined, we will say that the probability of A is unknown
(the interpretation of probability is clearly subjective) giving the background
Γ. A first general constraint on partial conditional probability functions is the
condition:

Probabilistic Equivalence (PE). Let A and B be two wffs. We will say that
A and B are probabilistically equivalent iff, for any Pr and any Γ
(i) Pr(A,Γ) and Pr(B,Γ) are both defined or both undefined;
(ii) Pr(A,Γ) = Pr(B,Γ) when defined.

Probabilistic equivalence is the strongest semantic equivalence relation. See
Theorem 2.5 below.

The following definition will be useful.

Definition 2.2. A n-permutation is a bijection pern : {1, . . . , n} → {1, . . . , n}.

We will write
n∧

i=1
Ai for (A1∧(. . .∧An) . . .) and

n∨
i=1

Ai for (A1∨(. . .∨An) . . .).

We restrict the set of partial probability functions to those which satisfy
the following postulates:

DF. 1. If Pr(Aj ,Γ) = 0 for some 1 ≤ j ≤ n, then Pr(
n∧

i=1
Ai,Γ) = 0;

DF. 2. If Pr(Aj ,Γ) = 1 for some 1 ≤ j ≤ n, then Pr(
n∨

i=1
Ai,Γ) = 1;

Postulates DF.1 and DF.2 are the rules governing “unknown”.

The following postulates are also satisfied. When the probabilities are
known:

POS. 3. 0 ≤ Pr(A,Γ) ≤ 1;

POS. 4. If A ∈ Γ, then Pr(A,Γ) = 1;
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POS. 5. Pr(
n∨

i=1
Ai,Γ) = Pr(A1,Γ) + Pr(

n∨
i=2

Ai,Γ)− Pr(A1 ∧ (
n∨

i=2
Ai,Γ));

POS. 6. Pr(
n∧

i=1
Ai,Γ) = Pr(A1,Γ)× Pr(

n∧
i=2

Ai,Γ ∪ {A1});

POS. 7. Pr(
n∧

i=1
Ai,Γ) = Pr(

n∧
i=1

Apern(i),Γ)

POS. 8. Pr(A ⊃ B,Γ) = Pr(B,Γ ∪ {A});

POS. 9. If Γ is Pr-normal, then Pr(∼A,Γ) =
(1) 1− Pr(A,Γ) if A is an atom or F or (B ∧C) or (B ∨C) or ∀xA or ∃xA;
(2) Pr(B,Γ)× Pr(∼C,Γ ∪ {B}) if A is (B ⊃ C);
(3) Pr(B,Γ) if A is ∼B;

POS. 10. Pr(C,Γ ∪ {
n∧

i=1
Ai}) = Pr(C,Γ ∪ {A1, . . . , An});

POS. 11. If Γ is Pr-normal, then Pr(F,Γ) = 0;

POS. 12. If, for any ∆, Pr(A,Γ ∪∆) = 1,
then for any B and C, Pr(C,Γ ∪∆ ∪ {B}) = Pr(C,Γ ∪∆ ∪ {(A ⊃ B)})

POS. 13. If Pr(C,Γ∪{Ai}) = 1 for any i such that 1 ≤ i ≤ n, then Pr(C,Γ∪
{

n∨
i=1

Ai}) = 1;

POS. 14. If Pr(C,Γ∪{∼A1, . . . ,∼An}) = 1, then Pr(C,Γ∪{∼(
n∨

i=1
Ai})) = 1;

POS. 15. If Pr(C,Γ ∪ {∼Ai}) = 1 for any i such that 1 ≤ i ≤ n, then

Pr(C,Γ ∪ {∼(
n∧

i=1
Ai})) = 1;

POS. 16. Pr(∀xA,Γ) = lim
n→∞

Pr(
n∧

i=1
A[ti|x],Γ)where t1, . . . , tn, . . . is an enu-

meration of all the terms that are free for x in A ;

POS. 17. Pr(∃xA,Γ) = lim
n→∞

Pr(
n∨

i=1
A[yi|x],Γ) where y1, . . . , yn, . . . is an enu-

meration of all the variables which are not free in A and Γ;

POS. 18. If Pr(C,Γ ∪ {A[t|x]}) = 1, then Pr(C,Γ ∪ {∀xA}) = 1 where t is
free for x in A;

POS. 19. If Pr(C,Γ ∪ {A[y|x]}) = 1, then Pr(C,Γ ∪ {∃xA}) = 1 where y is
not free in A, Γ and C;
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POS. 20. If Pr(A[y|x],Γ) = 1 with y not free in Γ nor in A (or y = x), then
Pr(A[t|x],Γ) = 1 where t is free for x in A.

Remarks 2.3.
• DF.1-DF.2 are quite intuitive. For example, if Pr(A,Γ) = 0, then Pr(B ∧
A,Γ) = 0, Pr(B,Γ) being defined or not.
• Unknown is not a value but a lack of value. So, arithmetical operations
cannot be applied to expressions with unknown values, even equality. Even
if both Pr(A,Γ) and Pr(B,∆) are both unknown, this doesn’t mean that they
are equal.The only legitimate uses of expressions that have unknown values are
those explicitly given by DF.1-DF.2. So, if Pr(p,Γ) is unknown, POS.6 does
not hold, i.e. Pr(p ∧ ∼p,Γ) is undefined if Γ is Pr-normal.

One can easily prove that

Theorem 2.4. Pr(
n∨

i=1
Ai,Γ) = Pr(

n∨
i=1

Apern(i),Γ).

Proof. We just give a sketch of the proof. We proceed by induction using
POS.5, POS.6 and POS.7. It is clear and that any permutation of the disjuncts
preserves the value or lack of value.

Furthermore, using POS.10 together with POS.5 and POS.6, we can eas-

ily prove that, when defined, for any n ∈ N, Pr(
n∧

i=1
Ai,Γ) ≤ Pr(

n−1∧
i=1

Ai,Γ) and

Pr(
n∨

i=1
Ai,Γ) ≥ Pr(

n−1∨
i=1

Ai,Γ). So the sequences Pr(A1,Γ),. . . , Pr(
n∧

i=1
Ai,Γ), . . . ,

and Pr(A1,Γ),. . . , Pr(
n∨

i=1
Ai,Γ), . . . , are respectively decreasing and increasing.

As these sequences are bounded (by POS.3), it follows, by an elementary result
of real numbers analysis, that their limits exist and are in [0, 1]. This insures
that POS.16 and POS.17 are not only very intuitive constraints but are ade-
quate.

POS.8, Pr(A ⊃ B,Γ) = Pr(B,Γ ∪ {A}) calls for some comments. It is
simply the expression of the very intuitive interpretation of the probability of
the conditional as the conditional probability. David Lewis showed that this
cannot apply to material conditional, i.e. to ∼A∨B. But it can be applied to
A ⊃ B when “ ⊃ ” is the probabilistic conditional: The probability of A ⊃ B
given the background Γ is just the probability of B when A is hypothetically
add to Γ. Lewis’ proof does not hold in intuitionistic logic nor in intuitionistic
logic with strong negation. See [9].

The following theorem will be useful.



88 F. Lepage

Theorem 2.5. (Substituability of Probabilistic Equivalents in Background) Let
A and B be two wffs and Γ a set of wffs. If for any ∆, Pr(A,Γ ∪∆) is known
iff Pr(B,Γ ∪ ∆) is known and Pr(A,Γ ∪ ∆) = Pr(B,Γ ∪ ∆) when both are
known, then, for any C, Pr(C,Γ ∪∆ ∪ {A}) = Pr(C,Γ ∪∆ ∪ {B}) when both
are known.

Proof.
Pr(C ∧A,Γ ∪∆) =

Pr(C,Γ ∪∆)× Pr(A,Γ ∪∆ ∪ {C}) POS.13
Pr(C ∧B,Γ ∪∆) =

Pr(C,Γ ∪∆)× Pr(B,Γ ∪∆ ∪ {C}) POS.13
Pr(C ∧A,Γ ∪∆) = Pr(C ∧B,Γ ∪∆) Assumption + algebra
Pr(A ∧ C,Γ ∪∆) = Pr(B ∧ C,Γ ∪∆) POS.15
Pr(A,Γ ∪∆)× Pr(C,Γ ∪∆ ∪ {A}) =
Pr(B,Γ ∪∆)× Pr(C,Γ ∪∆ ∪ {B}) POS.13
Pr(C,Γ ∪∆ ∪ {A}) = Pr(C,Γ ∪∆ ∪ {B}) Assumption + algebra

Theorem 2.6. ∼(A ⊃ B) and (A ∧ ∼B) are substitutable in backgrounds.

Proof. Trivial by POS.9 (2).

The following definition will be useful.

Definition 2.7. Let PB ⊆ WFF be the set of wffs that are not of the form
A ⊃ B (PB for pseudo boolean).

Theorem 2.8. For any wff A ∈ PB, if Γ is Pr-normal, then Pr(∼A,Γ) =
1− Pr(A,Γ) when Pr(A,Γ) is defined.

Proof. This is a trivial consequence of POS.9 (1) and when A is ∼B, the
conclusion follows from induction using POS.9 (3).

This is the “classical” case. Consider the case where A /∈ PB. We have
Pr(∼(B ⊃ C),Γ) = Pr(B,Γ)× Pr(∼C,Γ ∪ {B}), when defined. The easy case
is when C ∈ PB: Pr(∼(B ⊃ C),Γ) = Pr(B,Γ) × (1 − Pr(C,Γ ∪ {B})) =
Pr(B,Γ)× (1− Pr(B ⊃ C),Γ). We have three sub-cases:

(1) If Pr(B ⊃ C,Γ) = 0, then Pr(∼(B ⊃ C),Γ) = Pr(B,Γ).
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(2) If 0 < Pr((B ⊃ C),Γ) < 1, then 0 < Pr(∼(B ⊃ C),Γ) < Pr(B,Γ)

(3) If Pr(B ⊃ C),Γ) = 1, then Pr(∼(B ⊃ C),Γ) = 0.

(1) If Pr((B ⊃ C),Γ) = 0, then Pr(C,Γ ∪ {B}) = 0. By hypothesis, C ∈ PB
and thus Pr(∼C,Γ∪ {B})) = (1−Pr(C,Γ∪ {B})) = 1 As Pr(∼(B ⊃ C),Γ) =
Pr(B,Γ)×Pr(∼C,Γ∪{B})) we have Pr(∼(B ⊃ C),Γ) = Pr(B,Γ)×Pr(∼C,Γ∪
{B}) = Pr(B,Γ)× (1− 0) = Pr(B,Γ).

(2) We have 0 < Pr((B ⊃ C),Γ) < 1 and thus 0 < Pr(C,Γ ∪ {B}) < 1
Pr(∼(B ⊃ C),Γ) = Pr(B,Γ)× Pr(∼C,Γ ∪ {B}).
This implies that 0 < Pr(∼(B ⊃ C),Γ) < Pr(B,Γ) because Pr(∼C,Γ∪{B}) =
1− Pr(C,Γ ∪ {B}) and 0 < 1− Pr(C,Γ ∪ {B}) < 1

(3) We have Pr((B ⊃ C),Γ) = 1 = Pr(C,Γ ∪ {B})
But Pr(∼(B ⊃ C),Γ) = Pr(B,Γ)×Pr(∼C,Γ∪{B}) = Pr(B,Γ)×(1−Pr(C,Γ∪
{B})) = Pr(B,Γ)× (1− 1) = 0.

We now have to take a closer look to the general case. The problem is with
C:
Pr((B ⊃ C),Γ) = Pr(B,Γ) × Pr(∼C,Γ ∪ {B}). If C /∈ PB i.e. C is D ⊃ E,
we are back to square one. We clearly need a proof based on the number of “⊃”.

Theorem 2.9. Let A be (C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .))))
with Cn ∈ PB (any A has this form, for some n ≥ 0). Then, when Pr(∼A,Γ)
is defined

(1) If Pr(A,Γ) = 0 then Pr(∼A,Γ) = Pr(C0,Γ)×Pr(C1,Γ∪{C0})×Pr(C2,Γ∪
{C0, C1})× . . .× Pr(∼Cn,Γ ∪ {C0, C1, C2 . . . Cn−1});

(2) 0 < Pr(A,Γ) < 1, then
0 < Pr(∼A,Γ) < Pr(C0,Γ) × Pr(C1,Γ ∪ {C0}) × Pr(C2,Γ ∪ {C0, C1}) × . . . ×
Pr(∼Cn,Γ ∪ {C0, C1, C2 . . . Cn−1});

(3) If Pr(A,Γ) = 1 then Pr(∼A,Γ) = 0

Proof. First of all, by applying POS.8 n times, we have Pr(C0 ⊃ (C1 ⊃ (C2 ⊃
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(. . . ⊃ (Cn−1 ⊃ Cn) . . .))),Γ) = Pr(Cn,Γ ∪ {C0, C1, C2 . . . Cn−1})

By applying POS.9 (2) n times, we have
Pr(∼(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .)))),Γ) = Pr(C0,Γ) ×
Pr(C1,Γ∪{C0})×Pr(C2,Γ∪{C0, C1})×. . .×Pr(∼Cn,Γ∪{C0, C1, C2 . . . Cn−1})

(1) We need to make sure that: If Pr(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃
Cn) . . .))))),Γ) = 0, then Pr(∼(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .))))),Γ) =
Pr(C0,Γ)×Pr(C1,Γ∪{C0})×Pr(C2,Γ∪{C0, C1})×. . .×Pr(Cn,Γ∪{C0, C1, C2 . . . Cn−1})
i.e. if Pr(Cn,Γ∪{C0, C1, C2 . . . Cn−1}) = 0, then Pr(∼Cn,Γ∪{C0, C1, C2 . . . Cn−1})) =
1.
This is trivial because Cn /∈ PB and thus, Pr(∼Cn,Γ∪{C0, C1, C2 . . . Cn−1}) =
(1− Pr(Cn,Γ ∪ {C0, C1, C2 . . . Cn−1})) = (1− 0) = 1.

(2) and (3) are also quite trivial along the same lines.

Corollary 2.10. Let A be (C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .))))
with Cn ∈ PB. Then, when defined, Pr(∼A,Γ) ≤ 1− Pr(A,Γ).

Proof. Trivial.

The following theorems will be useful.

Theorem 2.11. If Pr(A,Γ) = 1 and Pr(B,Γ) is defined, then Pr(B,Γ) =
Pr(B,Γ ∪ {A}).

Proof.
Pr(A ∨B),Γ) = 1 DF.2
= Pr(A,Γ) + Pr(B,Γ)− Pr(A ∧B),Γ) POS.5
= 1 + Pr(B,Γ)− Pr(A ∧B),Γ) Pr(A,Γ) = 1
Pr(B,Γ) = Pr(A ∧B,Γ) Algebra
Pr(B,Γ) = Pr(A,Γ)× Pr(B,Γ ∪ {A}) POS.6
Pr(B,Γ) = Pr(B,Γ ∪ {A}) Pr(A,Γ) = 1

Theorem 2.12. If Pr(∼A,Γ) = 1, then Pr(A,Γ) = 0

Proof. If A ∈ PB, it is a trivial consequence of POS.9 (1)-(3).
If not, A is (C0 ⊃ (C1 ⊃ (C2 ⊃ (. . . ⊃ (Cn−1 ⊃ Cn) . . .))))
with Cn ∈ PB.
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Pr(∼(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . .
⊃ (Cn−1 ⊃ Cn) . . .)))),Γ) = 1 Hypothesis

= Pr(C0,Γ)× Pr(C1,Γ ∪ { C0})× . . .×
Pr(∼(Cn,Γ ∪ {C0, . . . , Cn−1}) POS.9 (2) n times

Pr(C0,Γ) = Pr(C1,Γ ∪ {C0}) = . . . =
Pr(Cn−1,Γ ∪ {C0, . . . , Cn−2}) = 1 Algebra

Pr(C0,Γ) = Pr(C1,Γ) = . . . =
Pr(Cn−1,Γ) = 1 Thm 2.11 (n− 1) times

Pr(∼Cn,Γ ∪ {C0, . . . , Cn−1}) = 1 Algebra
Pr(Cn,Γ ∪ {C0, . . . , Cn−1}) = 0 Cn ∈ PB
Pr(Cn,Γ) = 0 Pr(Ci,Γ) = 1

for 0 ≤ i ≤ (n− 1)
and Thm 2.11 (n− 1) times

Pr(C0 ⊃ (C1 ⊃ (C2 ⊃ (. . .
⊃ (Cn−1 ⊃ Cn) . . .)))),Γ) =
Pr(Cn,Γ ∪ {C0, . . . , Cn−1}) =
Pr(Cn,Γ) = 0 Pr(Ci,Γ) = 1

for 0 ≤ i ≤ (n− 1)
and Thm 2.11 (n− 1) times

The above theorems show that the probabilistic semantic value of formulas
containing strong negation of “horseshoe” is far from being trivial.

Theorem 2.13. If A1, A2 ∈ PB, then ∼(A1 ∧ A2) and (∼A1 ∨ ∼A2) are
probabilisticaly equivalent.

Proof. We have to prove that, for any Γ, Pr(∼(A1 ∧ A2),Γ) = Pr((∼A1 ∨
∼A2),Γ) or both are unknown. Let us suppose that Pr(∼(A1 ∧ A2),Γ) is
known. Pr(∼(A1 ∧A2),Γ) = 1− Pr((A1 ∧A2),Γ) by POS.9 (1).

As the general proof uses Bayes’ theorem, we need to consider a special
case. Let us suppose that Pr(∼A1,Γ) = 0 (a similar proof holds for A2).

(α)

Pr(∼(A1 ∧A2),Γ) = 1− Pr((A1 ∧A2),Γ) POS.9 (1)
Pr(∼A1,Γ) = 0 Hypothesis
Pr(A1,Γ) = 1 A1 ∈ PB

Pr((A1 ∧A2),Γ) = Pr(A2,Γ) DF.1
1− Pr((A1 ∧A2),Γ) = 1− Pr(A2,Γ) Algebra
Pr(∼(A1 ∧A2),Γ) = Pr((∼A1 ∨ ∼A2),Γ) DF.2



92 F. Lepage

(β) Let us suppose that Pr(∼A1,Γ) 6= 0 and Pr(∼A2,Γ) 6= 0.

In that case, Pr(∼(A1∧A2),Γ) and Pr((∼A1 ∨∼A2),Γ) are both undefined
if and only if one of them is undefined.

We prove: Pr(∼(A1 ∧A2),Γ) = Pr((∼A1 ∨ ∼A2),Γ).

Pr(∼(A1 ∧A2),Γ) = 1− Pr((A1 ∧A2),Γ) POS.9 (1)
= 1− Pr(A1,Γ ∪ {A2}))× Pr(A2,Γ) POS.6
= Pr(∼A2,Γ) + Pr(A2,Γ)− Pr(A1,Γ ∪ {A2}))
×Pr(A2,Γ) A2 ∈ PB

= Pr(∼A2,Γ) + Pr(A2,Γ)× (Pr(∼A1,Γ ∪ {A2})) Algebra
= Pr(∼A1,Γ)− Pr(∼A1,Γ) + Pr(∼A2,Γ)

+ Pr(A2,Γ)× (Pr(∼A1,Γ ∪ {A2})) Algebra
= Pr(∼A1,Γ) + Pr(∼A2,Γ)− Pr(∼A1,Γ)

+ Pr(A2,Γ)× (Pr(∼A1,Γ ∪ {A2})) Algebra
= Pr(∼A1,Γ) + Pr(∼A2,Γ)− Pr(∼A1,Γ)×(

1− Pr(A2,Γ)× (Pr(∼A1,Γ ∪ {A2}))
Pr(∼A1,Γ)

)
Algebra

= Pr(∼A1,Γ) + Pr(∼A2,Γ)−
Pr(∼A1,Γ)× (1− PrA2,Γ ∪ {∼A1}) Bayes

= Pr(∼A1,Γ) + Pr(∼A2,Γ)−
Pr(∼A1,Γ)× (Pr(∼A2),Γ ∪ {∼A1}) A2 ∈ PB

= Pr(∼A1,Γ) + Pr(∼A2,Γ)− Pr((∼A1 ∧ ∼A1),Γ) POS.6
= Pr((∼A1 ∨ ∼A2),Γ) POS.5

Similarly, we have:

Pr(∼∃xiA,Γ) = Pr(∀xi∼A,Γ)

Pr(∼∃xiA,Γ) = 1− Pr(∃xiA,Γ) POS.9 (1)

= 1− lim
n→∞

Pr(
n∨

i=1
A[tin |x],Γ) POS.17

= lim
n→∞

(1− Pr(
n∨

i=1
A[tin |x],Γ)) Elementary calculus

= lim
n→∞

Pr(∼
n∨

i=1
A[tin |x],Γ) POS.9 (1)

In what follows, we will use “unknown”, “unknown value” and “undefined”
for the same purpose depending on the context.
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Γ ⇒ A is a valid sequent according to partial probabilistic interpretations
iff, for any Pr satisfying all the DF and all the POS,

Pr(A,Γ ∪∆) = 1

for all ∆. This intuition is very robust. A is a valid consequence of Γ iff, the
probability that A is 1 and remains invariant, regardless of what is added to
the background Γ.

Theorem 2.14. If Γ is Pr-abnormal, then Γ ∪ {A} is Pr-abnormal.

Proof.
Pr(A,Γ) = Pr(B,Γ) = 1 Γ is Pr-abnormal
Pr(B,Γ) = Pr(B,Γ ∪ {A}) = 1 Theorem 2.11

Theorem 2.15. If Pr(A ∧ ∼A,Γ) = 1, then Γ is Pr-abnormal.

Proof. Let us suppose that Γ is Pr-normal.

Pr(A ∧ ∼A,Γ) = 1 Hypothesis
Pr(A,Γ)× Pr(∼A,Γ ∪ {A}) = 1 POS.6
Pr(A,Γ) = Pr(∼A,Γ ∪ {A}) = 1 Algebra
Pr(∼A,Γ) = 1 Theorem 2.11
Pr(∼∼A,Γ) = 0 Theorem 2.12
Pr(A,Γ) = 0 POS. 9 (3)
1 = 0

Thus Γ is Pr-abnormal.

Theorem 2.16. If Γ is Pr-normal but Γ ∪ {A} is Pr-abnormal and Pr(A,Γ)
is defined, then Pr(A,Γ) = 0.

Proof.
Pr(F,Γ ∪ {A}) = 1 Γ ∪ {A} is Pr-abnormal
Pr(A,Γ) 6= 0 Hypothesis
Pr(F ∧A,Γ) = Pr(A ∧ F,Γ) POS.7
Pr(A ∧ F,Γ) = Pr(A,Γ)× Pr(F,Γ ∪ {A} POS.6
Pr(A ∧ F,Γ) = Pr(A,Γ) Γ ∪ {A} is Pr-abnormal

But this is impossible because, by POS.11 and DF.1 Pr(F ∧ A,Γ) = 0.
Thus Pr(A,Γ) = 0.

Theorem 2.17. If Pr(A,Γ) = 1 and Pr(A ⊃ B,Γ) = 0, then Pr(B,Γ) = 0.
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Proof.
0 = Pr(A ⊃ B,Γ) Hypothesis
= Pr(B,Γ ∪ {A}) POS.8
= Pr(B,Γ) Theorem 2.11

Theorem 2.18. If Pr(A,Γ) 6= 0 or (Pr(B,Γ) 6= 0), then Pr(A ∨B,Γ) 6= 0.

Proof. We proceed by contraposition.

0 = Pr(A ∨B,Γ) Hypothesis
= Pr(A,Γ) + Pr(B,Γ)− Pr(A ∧B,Γ) POS.5
= Pr(A,Γ) + Pr(B,Γ)− Pr(A,Γ)× Pr(B,Γ ∪ {A}) POS.6
= Pr(A,Γ)× (1− Pr(B,Γ ∪ {A})) + Pr(B,Γ) Algebra
Pr(A,Γ)× (1− Pr(B,Γ ∪ {A})) = 0 and Pr(B,Γ) = 0 POS.3
Pr(A,Γ) = 0 Algebra

3 Soundness

Let us recall the definition of validity: Γ ⇒ A is a valid sequent according to
partial probabilistic interpretations iff, for any Pr satisfying DF.1-DF.2 and
POS.3-POS.20,

Pr(A,Γ ∪∆) = 1

for all ∆. We write Γ ||− A.

We have two types of rules:

Γ⇒ A

∆⇒ C
and

Γ⇒ A Λ⇒ B

∆⇒ C
.

The former is sound iff Γ ||− A implies ∆ ||− C.

The latter is sound iff Γ ||− A and Λ ||− B implies ∆ ||− C.

Theorem 3.1. The sequent calculus SCILSN is sound according to partial
probabilistic interpretations.

We need to verify the validity of the axioms and the soundness of the rules.

Axioms

A1 A,Γ⇒ A is valid.
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Proof. By POS.4, for any A, Γ and Pr, Pr(A,Γ ∪ {A} ∪∆) = 1

A2 F,Γ⇒ A is valid.

Proof. We show that Γ ∪ {F} ∪∆ is Pr-abnormal for any Γ,Pr and ∆.

Pr(F,Γ ∪ {F} ∪∆) = 1 POS.4
Γ ∪ {F} ∪∆ is Pr-abnormal POS.11
Pr(A,Γ ∪ {F} ∪∆ = 1 Theorem 2.14
F,Γ⇒ A is valid Definition of validity.

A3 Γ⇒ ∼F is valid.

Proof. If Γ is Pr-abnormal, il is trivial. If not

Pr(∼F,Γ ∪∆) = (1− Pr(F,Γ ∪∆)) POS.9
Pr(F,Γ ∪∆) = 0 POS.11
Pr(∼F,Γ ∪∆) = 1 Algebra
Γ⇒ ∼F is valid Definition of validity.

Logical rules

Γ⇒ A

∼A,Γ⇒ C
L∼ is sound.

Proof. If Γ is Pr-abnormal, then by the Theorem 2.14 Γ∪{∼A} is Pr-abnormal
and we are done. Else, let us suppose that Γ is Pr-normal. For any ∆,

Γ⇒ A Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(A,Γ ∪∆ ∪ {∼A}) = 1 with ∆′ = ∆ ∪ {∼A}
Pr(∼A,Γ ∪∆ ∪ {∼A}) = 1 POS.4
Pr((∼A ∧A,Γ ∪∆ ∪ {∼A}) =

Pr((A ∧ ∼A,Γ ∪∆ ∪ {∼A}) POS.7
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Pr((∼A ∧A,Γ ∪∆ ∪ {∼A}) =
Pr((∼A,Γ ∪∆ ∪ {∼A})
×Pr((A,Γ ∪∆ ∪ {∼A} ∪ {∼A}) POS.6

Pr((A ∧ ∼A,Γ ∪∆ ∪ {∼A}) = 1 Algebra
Γ ∪∆ ∪ {∼A} is Pr-abnormal Theorem 2.15
Γ ∪ {∼A} ∪ {C} is Pr-abnormal Theorem 2.14
Pr(C,Γ ∪∆ ∪ {∼A}) = 1 Definition of abnormality
∼A,Γ⇒ C Definition of validity

A,Γ⇒ C

∼∼A,Γ⇒ C
L∼∼

Proof. For any ∆,

A,Γ⇒ C Hypothesis
Pr(C,Γ ∪ {A} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {∼∼A} ∪∆) = 1 POS.9 (3) and Theorem 2.5
∼∼A,Γ⇒ C Definition of validity

Γ⇒ A

Γ⇒ ∼∼A R∼∼

Proof. For any ∆,

Γ⇒ A Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(∼∼A,Γ ∪∆) = 1 POS.9 (3)
Γ⇒ ∼∼A Definition of validity

A,B,Γ⇒ C

A ∧B,Γ⇒ C
L∧

Proof. For any ∆,

A,B,Γ⇒ C Hypothesis
Pr(C,Γ ∪ {A,B} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {A ∧B} ∪∆) = 1 POS.10
A ∧B,Γ⇒ C Definition of validity
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Γ⇒ A Γ⇒ B

Γ⇒ A ∧B R∧

Proof. For any ∆,

Γ⇒ A Hypothesis
Γ⇒ B Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(B,Γ ∪∆) = 1 Definition of validity
Pr(B,Γ ∪∆ ∪ {A}) = 1 Theorem 2.11
Pr(A ∧B,Γ ∪∆) =

Pr(A,Γ ∪∆)× Pr(B,Γ ∪∆ ∪ {A}) POS.6
Pr(A ∧B,Γ ∪∆) = 1× 1 = 1 Algebra
Γ⇒ A ∧B Definition of validity

A,Γ⇒ C B,Γ⇒ C

A ∨B,Γ⇒ C
L∨

Proof. For any ∆,

A,Γ⇒ C Hypothesis
B,Γ⇒ C Hypothesis
Pr(C,Γ ∪ {A} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {B} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {A ∨B} ∪∆) = 1 POS.13
A ∨B,Γ⇒ C Definition of validity

Γ⇒ A

Γ⇒ A ∨B R∨1

Proof. For any ∆,

Γ⇒ A Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(A ∨B,Γ ∪∆) = 1 DF.2
Γ⇒ A ∨B Definition of validity

Γ⇒ B

Γ⇒ A ∨B R∨2
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Proof. Trivial by the soundness of R∨1 and Theorem 2.4

∼A,Γ⇒ C ∼B,Γ⇒ C

∼(A ∧B),Γ⇒ C
L∼∧

Proof. For any ∆,

∼A,Γ⇒ C Hypothesis
∼B,Γ⇒ C

Hypothesis
Pr(C,Γ ∪ {∼A} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {∼B} ∪∆) = 1 Definition of validity
Pr(C,Γ ∪ {∼(A ∧B)} ∪∆) = 1 POS.15
∼(A ∧B),Γ⇒ C Definition of validity

Γ⇒ ∼A
Γ⇒ ∼(A ∧B)

R∼∧1

Proof. For any ∆,

Γ⇒ ∼A Hypothesis
Pr(∼A,Γ ∪∆) = 1 Definition of validity
Pr(A,Γ ∪∆) = 0 Theorem 2.12
Pr(∼(A ∧B),Γ ∪∆) =

1− Pr((A ∧B),Γ ∪∆) POS.9 (1)
Pr((A ∧B),Γ ∪∆) =

Pr(A,Γ ∪∆)× Pr(B,Γ ∪∆ ∪ {A}) POS.6
Pr((A ∧B),Γ ∪∆) = 0 Algebra
Pr(∼(A ∧B),Γ ∪∆) = 1− 0 = 1 Algebra
Γ⇒ ∼(A ∧B) Definition of validity

Γ⇒ ∼A
Γ⇒ ∼(A ∧B)

R∼∧2

Proof. Trivial from the soundness of R∼∧1 and POS.7.

∼A,∼B,Γ⇒ C

∼(A ∨B),Γ⇒ C
L∼∨
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Proof. For any ∆

∼A,∼B,Γ⇒ C Hypothesis
Pr(C,Γ ∪∆ ∪ {∼A,∼B}) = 1 Definition of validity
Pr(C,Γ ∪∆ ∪ {∼(A ∨B)}) = 1 POS.14
∼(A ∨B),Γ⇒ C Definition of validity

Γ⇒ ∼A Γ⇒ ∼B
Γ⇒ ∼(A ∨B)

R∼∨

Proof. For any ∆,

Γ⇒ ∼A Hypothesis
Γ⇒ ∼B Hypothesis
Pr(∼A,Γ ∪∆) = 1 Definition of validity
Pr(∼B,Γ ∪∆) = 1 Definition of validity
Pr(A,Γ ∪∆) = 0 Theorem 2.12
Pr(B,Γ ∪∆) = 0 Theorem 2.12
Pr(A ∨B,Γ ∪∆) = 0 POS.5, POS.6 and algebra
Pr(∼(A ∨B),Γ ∪∆) = 1 POS.9 (1)
Γ⇒ ∼(A ∨B) Definition of validity

Γ⇒ A B,Γ⇒ C

A ⊃ B,Γ⇒ C
L ⊃

Proof. For any ∆,

Γ⇒ A Hypothesis
B,Γ⇒ C Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(C,Γ ∪∆ ∪ {B}) = 1 Definition of validity
Pr(C,Γ ∪∆ ∪ {B}) =

Pr(C,Γ ∪∆ ∪ {(A ⊃ B)}) POS.12
Pr(C,Γ ∪∆ ∪ {(A ⊃ B)}) = 1 Algebra
A ⊃ B,Γ⇒ C Definition of validity

A,Γ⇒ B

Γ⇒ A ⊃ B R ⊃
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Proof.

A,Γ⇒ B Hypothesis
Pr(B,Γ ∪∆ ∪ {A}) = 1 Definition of validity
Pr(A ⊃ B,Γ ∪∆) = 1 POS.8
Γ⇒ A ⊃ B Definition of validity

A,∼B,Γ⇒ C

∼(A ⊃ B),Γ⇒ C
L∼⊃

Proof. For any ∆,

A,∼B,Γ⇒ C Hypothesis
Pr(C,Γ ∪∆ ∪ {A,∼B} = 1 Definition of validity
Pr(C,Γ ∪∆ ∪ {A ∧ ∼B} = 1 POS.10
Pr(C,Γ ∪∆ ∪ {∼(A ⊃ B)} = 1 Theorem 2.6
∼(A ⊃ B),Γ⇒ C Definition of validity

Γ⇒ A Γ⇒ ∼B
Γ⇒ ∼(A ⊃ B)

R∼⊃

Proof. For any ∆,

Γ⇒ A Hypothesis
Γ⇒ ∼B Hypothesis
Pr(A,Γ ∪∆) = 1 Definition of validity
Pr(∼B,Γ ∪∆) = 1 Definition of validity
Pr(∼(A ⊃ B),Γ ∪∆) =

Pr(A,Γ ∪∆)× Pr(∼B,Γ ∪∆ ∪ {A}) POS.9 (2)
Pr(∼B,Γ ∪∆) = Pr(∼B,Γ ∪∆ ∪ {A}) = 1 Theorem 2.11
Pr(∼(A ⊃ B),Γ ∪∆) = 1 Algebra
Γ⇒ ∼(A ⊃ B) Definition of validity

A[t|x],Γ⇒ C

∀xA,Γ⇒ C
L ∀

Proof. We have to show that for any Pr, A,C, t,Γ, if Pr(C,Γ∪{A[t|x]}∪∆) = 1
for all ∆, then Pr(C,Γ ∪ {∀xA} ∪∆) = 1 for all ∆.
This corresponds exactly to what POS.18 says.
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Γ⇒ A[y|x]

Γ⇒ ∀xA R ∀ where y is not free in Γ and y is x or y is not free in A.

Proof. Let t1, . . . , tn, . . . be an enumeration of all the terms that are free for x
in A.

Γ⇒ A[y|x] Hypothesis
Pr(A[y|x],Γ ∪∆) = 1 Definition of validity
Pr(A[t1|x],Γ ∪∆) = 1 POS.20

. .

. .

. .
Pr(A[tn|x],Γ ∪∆) = 1 POS.20
Pr(A[t1|x] ∧ . . .∧, A[t1|x],Γ ∪∆) = 1 DF.10 n times, Thm 2.11
lim
n→∞

Pr((A[ti1 |x] ∧ . . . ∧A[tin |x]),Γ ∪∆) = 1 Elementary calculus

Pr(∀xA,Γ ∪∆)) = 1 POS.16
Γ⇒ ∀xA Definition of validity

A[y|x],Γ⇒ C

∃xA,Γ⇒ C
L ∃ where y is not free in Γ and C and y is x or y is

not free inA.

Proof. This corresponds exactly to what POS.19 says.

Γ⇒ A[t|x]

Γ⇒ ∃xA R ∃

Proof. The proof is quite similar to that of R ∀ and left to the reader.

The proofs for the rules with strong negation of quantifiers are dual of the
preceding ones and are left to the reader.

This completes the proof of soundness.

�
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4 Completeness

The strategy we use to prove completeness is the following. Following Kripke’s
idea [6, 1, 5] for designing models for intuitionistic logic, we define a 3-valued
model{1, 0, u} where the three values are standing respectively for true, false
and unknown. Counter to what we have said at the beginning of this paper,
in this very particular model structure, u can be considered as a value. We
then show that any consistent set of sentences of SCILSN admits a 3-valued
model. Using this model, we define partial conditional probability functions
taking only the three values and we finally show that these functions sat-
isfy DF.1-DF.2 and POS.3-POS.20. Calling these partial probability functions
partial opinated functions, we show that every consistent set defines a partial
opinated function, which is stronger than to show that every consistent set
defines a partial probability function. Moreover, this model is canonical : if A
and Γ are such that Γ /⇒ A, then there is a ∆ such that Pr(A,Γ ∪∆) 6= 1.

Definition 4.1. A Deductively Closed Saturated Set (DCSS) is a set of wffs
∆ such that
(i) If ∆⇒ A, then A ∈ ∆ (closure);
(ii) If A ∨B ∈ ∆, then A ∈ ∆ or B ∈ ∆ (saturation);
(iii) It is not the case that ∆⇒ F (consistency).

Definition 4.2. If Γ is consistent, U(Γ) = {∆ : ∆ is aDCSS and∆ ⊆ Γ}.

Theorem 4.3. If Γ /⇒ A, there is a DCSS ∆ such that Γ ⊆ ∆ and ∆ /⇒ A.

Proof. (This proof is not constructive.)
A is called the test formula. Let E =< E0, E1, E2, . . . > be an enumeration
of all wffs where each wff appears denumerably many times. We define the
following sequence of sets:

Γ0 = Γ;
.
.
.

Γk+1 = Γk if Γk ∪ {Ek} ⇒ A;

Γk+1 = Γk ∪ {Ek} if Γk ⇒ Ek, and Ek is not (B ∨ C);

if Ek is (B ∨ C),
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Γk+1 = Γk ∪ {Ek} ∪ {B} if Γk ∪ {Ek} ∪ {B} /⇒ A
else Γk+1 = Γk ∪ {Ek} ∪ {C}.

We define

∆ =
∞⋃
k=0

Γk

Claim

(1) ∆ /⇒ A

We first show that, for any k, Γk /⇒ A.

For k = 0, it is trivial. Let us suppose that Γk /⇒ A, we show that Γk+1 /⇒A.

If Γk+1 = Γk∪{Ek} because Γk ⇒ Ek, and Ek is not (B∨C), we get the result
by the Cut rule.

Let us suppose that Ek is (B ∨ C).

If Γk+1 = Γk ∪ {Ek} ∪ {B} because Γk+1 /⇒ A, it is trivial;

If Γk+1 = Γk ∪ {Ek} ∪ {C} because Γk ∪ {Ek} ∪ {B} ⇒ A, we have to show
that Γk ∪ {Ek} ∪ {C} /⇒ A.

Let us suppose that Γk ∪ {Ek} ∪ {C} ⇒ A.

From L∨ we have:

Γk ∪ {Ek} ∪ {(B ∨ C)} ⇒ A. But Ek is (B ∨ C), so Γk ∪ {Ek} ⇒ A which
contradicts the hypothesis.

(2) If ∆⇒ B, then B ∈ ∆ because B is one of the Ek.

(3) ∆ is saturated, i.e., if A ∨ B ∈ ∆, then A ∈ ∆ or B ∈ ∆. It is a trivial
consequence of the definition of ∆.

(4) ∆ is consistent. This follows from the fact that ∆ /⇒ A.
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The most interesting consequence of Theorem 4.3 is that if A is a classical
tautology and Γ is such that Γ /⇒ A, then there is a DCSS ∆ such that Γ ⊆ ∆
and ∆ /⇒ A.

Corollary 4.4. If Γ is consistent, there is a DCSS ∆ such that Γ ⊆ ∆.

Proof. As Γ is consistent, there is a A such that Γ /⇒ A. We define a DCSS
∆ starting from Γ using A as the test formula.

Corollary 4.5. Let Γ be a consistent set. If there is no DCSS ∆ such that
Γ ⊆ ∆ and A ∈ ∆, then Γ ∪ {A} is inconsistent.

Proof. This is a trivial consequence of Corollary 4.4.

Corollary 4.6. If A ∈ ∆ for any DCSS ∆ such that Γ ⊆ ∆, then Γ⇒ A.

Proof. The above is the contraposition of Theorem 4.3.

Theorem 4.7. Let W be the set of all DCSS and ∆ ∈W . If A ⊃ B ∈ ∆ and
∆′ ∈W with ∆ ⊆ ∆′ and A ∈ ∆′, then B ∈ ∆′.

Proof. Let ∆,∆′ ∈W , A ⊃ B ∈ ∆, ∆ ⊆ ∆′ and A ∈ ∆′. We have A ⊃ B ∈ ∆′

and by

∆′ ⇒ A B,∆′ ⇒ B

A ⊃ B,∆′ ⇒ B
L ⊃

and by closure B ∈ ∆′.

Theorem 4.8. Let Γ be a consistent set of wffs such that Γ /⇒ A ⊃ B. Then
there is a DCSS ∆ such that Γ ⊆ ∆, A ∈ ∆ and B /∈ ∆.

Proof. We have A,Γ /⇒ B, Otherwise, by R ⊃,
A,Γ⇒ B

Γ⇒ A ⊃ B which contra-

dicts the hypothesis. We then start again the Theorem 4.3 using Γ0 = Γ∪{A}
and B as test formula.
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Definition 4.9. Let Γ be a consistent set of wffs. U(Γ) = {∆ : Γ ⊆ ∆ and
∆ is aDCSS.

Theorem 4.10. Let ∆ ∈ U(Γ). If B ∈ ∆, then ∆ ∈ U(Γ ∪ {B}).

Proof. (This proof is not constructive)
If B ∈ Γ, the proof is trivial. Let us suppose it is not the case that B ∈ Γ. Let
E =< E0, E1, E2, . . . > be an enumeration of all the wffs of ∆ where every
A ∈ ∆ appears denumerably many times. Let us consider the following two
sequences:

∆0 = Γ ∆′0 = Γ ∪ {B}
. .
. .
. .

∆i+1 = ∆i ∪ {Ei} ∆i+1 = ∆′i ∪ {Ei}
. .
. .
. .

It is clear that ∆ =
∞⋃
k=0

∆k.

It is also clear that, for any i, ∆i ⊆ ∆′i.
Let k be the smallest integer such that Ek is B. We then have ∆k+1 = ∆′k+1

and for any k′ ≥ k + 1, ∆k′ = ∆′k′ .

∆′ =
∞⋃
k=0

∆′k = ∆. But ∆′ ∈ U(Γ ∪ {B}).

Corollary 4.11. If A ∈ ∆ for any ∆ ∈ U(Γ), then U(Γ) = U(Γ ∪ {A}).

Proof. It is a trivial consequence of Theorem 4.10.

Theorem 4.12. Let ∆ be a DCSS such that A, A ⊃ B ∈ ∆. Then B ∈ ∆.

Proof. The above is a trivial consequence of Theorem 4.7.

Theorem 4.13. For any Γ and any A1, . . . , An, (A1 ∧ . . . ∧ An),Γ ⇒ C iff
A1, . . . , An,Γ⇒ C
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Proof. We just give a sketch of the proof which is quite trivial.
→

We have:

A1, . . . , An,Γ⇒ A1 A1, . . . , An,Γ⇒ A2

A1, . . . , An,Γ⇒ A1 ∧A2,
R∧

A1, . . . , An,Γ⇒ A1 ∧A2 A1, . . . , An,Γ⇒ A3

A1, . . . , An,Γ⇒ A1 ∧A2 ∧A3
R∧

After (n− 1) steps, we get:

A1, . . . , An,Γ⇒ A1 ∧A2 ∧ . . . ∧An−1 A1, . . . , An,Γ⇒ An

A1, . . . , An,Γ⇒ A1 ∧ . . . ∧An
R∧

By the Cut rule, if (A1 ∧ . . . ∧An),Γ⇒ C, then A1, . . . , An,Γ⇒ C.

←

Let us suppose that A1, . . . , An,Γ⇒ C. We have

A1, . . . , An−2, An−1, An,Γ⇒ C

A1, . . . , An−2, (An−1 ∧An),Γ⇒ C
L∧

Applying L ∧ (n− 1) times, we get

A1, . . . , An,Γ⇒ C

(A1 ∧ . . . ∧An),Γ⇒ C
L∧

Theorem 4.14. For any Γ and any A1, . . . , An, (A1 ∨ . . .∨An),Γ⇒ C iff for
any i, 1 ≤ i ≤ n, Ai,Γ⇒ C

The proof is quite elementary and is left to the reader.

Theorem 4.15.
(∼A1 ∧ . . . ∧ ∼An),Γ⇒ C

(∼(A1 ∨ . . . ∨An)),Γ⇒ C
and

(∼(A1 ∨ . . . ∨An)),Γ⇒ C

(∼A1 ∧ . . . ∧ ∼An),Γ⇒ C

We merely give a sketch of the proof. By Theorem 4.13 we have, if
A1, . . . , An,Γ⇒ C then (A1 ∧ . . . ∧An),Γ⇒ C.
We show that ∼A1, . . . ,∼An,Γ⇒ (∼(A1 ∨ . . .∨An)) and the result follows by
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the Cut rule.
By R∼∨, we have ∼A1, . . . ,∼An,Γ ⇒ (∼(A1 ∨ A2)). Applying R∼∨ (n − 1)
times, we get the result we are looking for.

For the converse, we have to show that (∼(A1 ∨ . . . ∨ An)),Γ ⇒ (∼A1 ∧
. . . ∧ ∼An). In order to do this, we proceed in two steps. We first show that
if ∼A1, . . . ,∼An,Γ ⇒ C then (∼(A1 ∨ . . . ∨ An)),Γ ⇒ C using L∼∨ (n − 1)
times. Then we use Theorem 4.13 which implies that ∼A1, . . . ,∼An,Γ ⇒
(∼A1 ∧ . . . ∧ ∼An).

�

Theorem 4.16.
(∼A1 ∨ . . . ∨ ∼An),Γ⇒ C

(∼(A1 ∧ . . . ∧An)),Γ⇒ C
and

(∼(A1 ∧ . . . ∧An)),Γ⇒ C

(∼A1 ∨ . . . ∨ ∼An),Γ⇒ C

The proof is left to the reader.

Theorem 4.17. If U(Γ) = U(Γ′), then U(Γ ∪ {A}) = U(Γ′ ∪ {A}).

Proof. Let ∆ ∈ U(Γ and E =< E0, E1, E2, . . . > be an enumeration of all the
wffs where every wff appears denumerably many times.
We define the following sequence Λ0, Λ1, Λ2, . . . Λn, . . . :

Λ0 = ∆ ∪ {A};
.
.
.

Λn+1 = Λn ∪ {En} if Λn ⇒ En and En is not (B ∨ C);
Λn+1 = Λn ∪ {En} ∪ {B} if Λn ⇒ En and En is (B ∨ C) and

Λn ∪ {En} ∪ {B} is consistent;
Λn+1 = Λn ∪ {En} ∪ {C} otherwise;

.

.

.

Let Λ∆ =
∞⋃
n=0

Λn

Claim: Λ ∈ U(Γ ∪ {A}).

It is clear that Λ∆ is a DCSS and that Γ ∪ {A} ∈ Λ∆. As U(Γ) = U(Γ′), a
similar argument leads us to conclude that Γ′ ∪ {A} ∈ Λ∆.
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In order to conclude that U(Γ ∪ {A}) = U(Γ′ ∪ {A}), we have to show that,
for any Λ ∈ U(Γ ∪ {A}), there is a ∆′ ∈ U(Γ) such that Λ = Λ∆′ .
Let Λ ∈ U(Γ ∪ {A}) and E′ =< E′0, E

′
1, E

′
2, . . . > be an enumeration of the

wffs of Λ where every wff appears denumerably many times. We define the
following sequence of sets:

Λ′0 = ∅ if E′0 ⇒ A, Λ′0 = {E′0} otherwise;
.
.
.

Λ′n+1 = Λ′n if Λ′n ∪ {E′n} ⇒ A, Λ′n ∪ {E′n} otherwise;
.
.
.

Let Λ′ =
∞⋃
n=0

Λ′n

Claims:
(1) Λ′ ∈ U(Γ)
(2) If Λ′ ⇒ B then B ∈ Λ′

(3) If (B ∨ C) ∈ Λ′, then B ∈ Λ′ or C ∈ Λ′

(1) Λ′ ∈ U(Γ) Trivial
(2) If Λ′ ⇒ B then B ∈ Λ′

Λ′ ⇒ B Assumption
There is a Λ′n such that Λ′n ⇒ B A proof in Λ′ is finite.
There is a m such that B is E′n+m Definition of E′

B ∈ Λ′n+m+1 Definition of Λ′n+m+1

B ∈ Λ′ Definition of Λ′

(3) (B ∨ C) ∈ Λ′ Assumption
B /∈ Λ′ and C /∈ Λ′ Assumption
Λ′ ∪ {B} ⇒ A and Λ′ ∪ {C} ⇒ A Definition of Λ′

Λ′ ∪ {(B ∨ C)} ⇒ A L ∨
A ∈ Λ′ Contradiction

Definition 4.18. The pair < W,⊆> is called the Kripkean canonical frame.
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Definition 4.19. Let A∗ be B or ∼B according to whether A is ∼B or B.

Definition 4.20. The canonical partial probabilistic model is the 3-uple
< W,⊆ ,Pr<W,⊆ > > where Pr<W,⊆ > : L × 2L → {0, 1 , u} is such that, for
any A, Γ

(i) If A is a literal,

Pr<W,⊆ >(A,Γ) =


1 if A ∈ ∆ for any ∆ ∈ U(Γ)

0 if A∗ ∈ ∆ for any ∆ ∈ U(Γ)

u otherwise

(ii) If ∼∼B,

Pr<W,⊆ >(A,Γ) =


1 if B ∈ ∆ for any ∆ ∈ U(Γ)

0 if ∼B ∈ ∆ for any ∆ ∈ U(Γ)

u otherwise

(iii) If A is B ∧ C,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B ∈ ∆ andC ∈ ∆

0 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ or∼C ∈ ∆

u otherwise

(iv) If A is ∼(B ∧ C),

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ or∼C ∈ ∆

0 if for any ∆ ∈ U(Γ), B ∈ ∆ and C ∈ ∆

u otherwise

(v) If A is B ∨ C,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B ∈ ∆ orC ∈ ∆

0 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ and∼C ∈ ∆

u otherwise



110 F. Lepage

(vi) If A is ∼(B ∨ C),

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ and∼C ∈ ∆

0 if for any ∆ ∈ U(Γ), B ∈ ∆ orC ∈ ∆

u otherwise

(vii) If A is B ⊃ C,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ) such thatB ∈ ∆, C ∈ ∆

0 if for any ∆ ∈ U(Γ), B ∈ ∆ and∼C ∈ ∆

u otherwise

(viii) If A is ∼(B ⊃ C),

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B ∈ ∆ and∼C ∈ ∆

0 if for any ∆ ∈ U(Γ), ∼B ∈ ∆ orC ∈ ∆

u otherwise

(ix) If A is ∀xB,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B[y|x] ∈ ∆ for any y not free in ∀xB

0 if for any ∆ ∈ U(Γ), ∼B[t|x] ∈ ∆ for some t free for x in B

u otherwise

(x) If A is ∼∀xB,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), ∼B[t|x] ∈ ∆ for some t free for x in B

0 if for any ∆ ∈ U(Γ), B[y|x] ∈ ∆ for any t free in ∀xB

u otherwise
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(xi) If A is ∃xB,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), B[t|x] ∈ ∆ for some t free for x in B

0 if for any ∆ ∈ U(Γ), ∼B[y|x] ∈ ∆ for any y not free in ∃xB

u otherwise

(xii) If A is ∼∃xB,

Pr<W,⊆ >(A,Γ) =


1 if for any ∆ ∈ U(Γ), ∼B[y|x] ∈ ∆ for any y free x in ∼∃xB

0 if for any ∆ ∈ U(Γ), B[t|x] ∈ ∆ for some t free for x in B

u otherwise

Theorem 4.21. (We drop the index.) For any Pr, A and Γ, if, for any
∆ ∈ U(Γ), A ∈ ∆, then Pr(A,Γ) = 1

Proof.
(i) A is a literal. It is trivial by definition 4.20(i).

(ii) A is ∼∼B. By definition 4.20(ii), Pr(A,Γ) = 1 if B ∈ ∆ for any ∆ ∈ U(Γ).
But by R∼∼, ∼∼B ∈ ∆.

(iii) A is B ∧ C. By definition 4.20(iii), Pr(A,Γ) = 1 if B ∈ ∆ and C ∈ ∆ for
any ∆ ∈ U(Γ). In that case, by R∧, B ∧ C ∈ ∆ for any ∆ ∈ U(Γ).

(iv) A is ∼(B ∧C). By definition 4.20(iv), Pr(A,Γ) = 1 if ∼B ∈ ∆ or ∼C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∼∧1 or R∼∧2, ∼(B ∧ C) ∈ ∆ for any
∆ ∈ U(Γ).

(v) A is B ∨ C. By definition 4.20(v), Pr(A,Γ) = 1 if B ∈ ∆ or C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∨1 or R∨2, B ∨C ∈ ∆ for any ∆ ∈ U(Γ).

(vi) A is ∼(B ∨ C). By definition 4.20(vi), Pr(A,Γ) = 1 if ∼B ∈ ∆ and
∼C ∈ ∆ for any ∆ ∈ U(Γ). In that case, by R∼∨, ∼(B ∨ C) ∈ ∆ for any
∆ ∈ U(Γ).

(vii) A is B ⊃ C. By definition 4.20(vii), Pr(A,Γ) = 1 if for any ∆ ∈ U(Γ)
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such that if B ∈ ∆, then C ∈ ∆. In that case, by R ⊃, for any ∆ such that
B ∈ ∆, B ⊃ C ∈ ∆.

(viii) A is ∼(B ⊃ C). By definition 4.20(viii), Pr(A,Γ) = 1 if B ∈ ∆ and
∼C ∈ ∆ for any ∆ ∈ U(Γ). In that case, by R∼⊃, ∼(B ⊃ C) ∈ ∆ for any
∆ ∈ U(Γ).

Theorem 4.22. For any Pr, A and Γ, if, for any ∆ ∈ U(Γ),∼A ∈ ∆, then
Pr(A,Γ) = 0.

Proof.
(i) A is a literal. If A is p, then A∗ is ∼p ∈ ∆. If A is ∼p, A∗ is p and by R∼∼,
∼∼p ∈ ∆ i.e. ∼A ∈ ∆.

(ii) A is∼∼B. By definition 4.20(ii), Pr(A,Γ) = 0 if∼B ∈ ∆ for any ∆ ∈ U(Γ).
By R∼∼, ∼∼∼B ∈ ∆ for any ∆ ∈ U(Γ) i.e. ∼A ∈ ∆.

(iii) A is B ∧C. By definition 4.20(iii), Pr(A,Γ) = 0 if ∼B ∈ ∆ or ∼C ∈ ∆ for
any ∆ ∈ U(Γ). By R∼∧1 or R∼∧2, ∼(B ∧ C) ∈ ∆ for any ∆ ∈ U(Γ).

(iv) A is ∼(B ∧ C). By definition 4.20(iv), Pr(A,Γ) = 0 if B ∈ ∆ and C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∧, B ∧ C ∈ ∆ for any ∆ ∈ U(Γ) and by
R∼∼, ∼∼(B ∧ C) ∈ ∆ for any ∆ ∈ U(Γ).

(v) A is B ∨ C. By definition 4.20(v), Pr(A,Γ) = 0 if ∼B ∈ ∆ and ∼C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∼∨, ∼(B ∨ C).

(vi) A is ∼(B ∨ C). By definition 4.20(vi), Pr(A,Γ) = 0 if B ∈ ∆ or C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∨1 or R∨2, B ∨C ∈ ∆ for any ∆ ∈ U(Γ)
and by R∼∼, ∼∼(B ∨ C) ∈ ∆ for any ∆ ∈ U(Γ) .

(vii) A is B ⊃ C. By definition 4.20(vii), Pr(A,Γ) = 0 if B ∈ ∆ and ∼C ∈ ∆
for any ∆ ∈ U(Γ). In that case, by R∧, B ∧C ∈ ∆ for any ∆ ∈ U(Γ). In that
case, by R∼⊃, ∼(B ⊃ C) ∈ ∆ for any ∆ ∈ U(Γ).

Theorem 4.23. For any Pr,A and Γ, Pr(A,Γ) = 1 iff for any ∆ ∈ U(Γ), A ∈
∆ and Pr(A,Γ) = 0 iff or any ∆ ∈ U(Γ),∼A ∈ ∆.

Proof. The ifs come from Theorem 4.21 and Theorem 4.22. The only ifs come
from the u otherwise clause of definition 4.20.
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Theorem 4.24. In the canonical model, for any Γ and any Pr, Γ is consistent
iff Γ is Pr-normal.

Proof.
(1) If Γ is consistent, then Γ /⇒ F . Furthermore, F /∈ ∆ for any ∆ ∈ U(Γ)

and by Theorem 4.23, Γ⇒ ∼F and thus Pr(F,Γ) = 0. So, Γ is Pr-normal.

(2) If Γ is inconsistent then Γ⇒ F . By axiom 2, for any C, F,Γ⇒ C and
by the Cut rule, Γ⇒ C. By Theorem 4.21, Pr(C,Γ) = 1 and Γ is Pr-abnormal.

So, with respect to the canonical model, the two expressions are equivalent.

Theorem 4.25. The canonical model gives to the connectives ∧ and ∨ the
value of the Kleene strong connectives in the following sense:

Pr<W,⊆ >(A ∧B,Γ) =


1 iff Pr<W,⊆ >(A,Γ) = Pr<W,⊆ >(B,Γ) = 1

0 iff Pr<W,⊆ >(A,Γ) = 0 or Pr<W,⊆ >(B,Γ) = 0

u otherwise
and

Pr<W,⊆ >(A ∨B,Γ) =


1 iff Pr<W,⊆ >(A,Γ) = 1 or Pr<W,⊆ >(B,Γ) = 1

0 iff Pr<W,⊆ >(A,Γ) = Pr<W,⊆ >(,Γ) = 0

u otherwise

Proof. The proof is straightforward using Theorem 4.21 and Theorem 4.22 and
is left to the reader.

Theorem 4.26. If Pr(A,Γ) = u and Pr(A,Γ ∪ {B}) = 0, then Γ ∪ {A,B}) is
inconsistent.

Proof. Let us suppose that Γ∪{A,B}) is consistent. In that case U(Γ∪{A,B})
is not empty. So there is a ∆ ∈ U(Γ) which contains A and B and thus
Pr(A,Γ ∪ {B}) 6= 0.

We need to make sure of one last thing: Does Pr<W,⊆ > define a partial
conditional probability function?



114 F. Lepage

Theorem 4.27. Pr<W,⊆ > satisfies DF.1-DF.2 and POS.3-POS.20.

Proof. (We drop the index.)

Let us begin with

POS. 7 Pr(
n∧

i=1
Ai,Γ) = Pr(

n∧
i=1

Apern(i),Γ)

We proceed by induction on the number of ∧.

n = 1
We have to prove that, when both are defined, Pr(A1∧A2,Γ) = Pr(A2∧A1,Γ).
We have two cases:
(1) Pr(A1 ∧A2,Γ) = 1 and
(2) Pr(A1 ∧A2,Γ) = 0

(1)
Pr(A1 ∧A2,Γ) = 1 Assumption
(A1 ∧A2) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
A1, A2 ∈ ∆ for any ∆ ∈ U(Γ) Definition 4.20(iii)
(A2 ∧A1) ∈ ∆ for any ∆ ∈ U(Γ) R∧ and closure
Pr(A2 ∧A1,Γ) = 1 Theorem 4.23

(2)
Pr(A1 ∧A2,Γ) = 0 Assumption
(∼(A1 ∧A2)) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
A1 ∈ ∆orA2 ∈ ∆ for any ∆ ∈ U(Γ) Definition 4.20(iv)
(A2 ∧A1) ∈ ∆ for any ∆ ∈ U(Γ) R∼∧1 or R∼∧2 and closure
Pr(A2 ∧A1,Γ) = 0 Theorem 4.23

Let us suppose it is the case for n− 1 conjuncts. We have

Pr(
n∧

i=1
Ai,Γ) = Pr(A1 ∧ (

n∧
i=2

Ai,Γ) Definition of Pr(
n∧

i=1
Ai,Γ)

= Pr(Apern(1) ∧ (
n∧

i=2
Apern(i),Γ) Induction hypothesis

= Pr(
n∧

i=1
Apern(i),Γ) Algebra

DF. 1 If Pr(Aj ,Γ) = 0 for some 1 ≤ j ≤ n, then Pr(
n∧

i=1
Ai,Γ) = 0;

Let pern be a permutation such that pern(1) = j
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Pr(Aj ,Γ) = 0 Assumption
∼Aj ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23

∼(Aj ∧ (
n∧

i=2
Ai,Γ)) ∈ ∆ for any ∆ ∈ U(Γ) R∼1 + closure

∼(Apern(1) ∧ (
n∧

i=2
Apern(i))) ∈ ∆ for any ∆ ∈ U(Γ) Apern(1) = Aj

Pr(
n∧

i=1
Apern(i)) = 0 Theorem 4.23

Pr(
n∧

i=1
Ai) = 0 Pr satisfies DF. 7

DF. 2 If Pr(Aj ,Γ) = 1 for some 1 ≤ j ≤ n, then Pr(
n∨

i=1
Ai,Γ) = 1.

The proof is quite similar to the preceding one.

POS.3 0 ≤ Pr(A,Γ) ≤ 1.
Trivial.

POS.4 If A ∈ Γ, then Pr(A,Γ) = 1.
Trivial.

POS.6 Pr(
n∧

i=1
Ai,Γ) = Pr(A1,Γ)× Pr(

n∧
i=2

Ai,Γ ∪ {A1}).

We have two cases.

(1) At least one of the Aj is such that Pr(Aj ,Γ) = 0. By the adequation

of DF. 1, Pr(
n∧

i=1
Ai,Γ) = 0.

In that case, either j = 1 or j 6= 1. In both cases, Pr(A1,Γ)×Pr(
n∧

i=2
Ai,Γ∪

{A1}) = 0 because either Pr(A1,Γ) = 0 or, by the adequation of DF. 1 again,

Pr(
n∧

i=2
Ai,Γ ∪ {A1}) = 0.

(2) All of the Aj ’s are such that Pr(Aj ,Γ) = 1.

In that subcase, by the definition of 4.20 (iii) for all j, Aj ∈ ∆ for all

∆ ∈ U(Γ) and applying R∧ n− 1 times and by the closure, Pr(
n∧

i=1
Ai,Γ) = 1,
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Pr(Aj ,Γ) = 1 and Pr(
n∧

i=2
Ai,Γ ∪ {A1}) = Pr(

n∧
i=2

Ai,Γ) = 1 (because Γ =

Γ ∪ {A1}). We get 1 = 1× 1 and we are done.

POS.5 Pr(
n∨

i=1
Ai,Γ) = Pr(A1,Γ) + Pr(

n∨
i=2

Ai,Γ)− Pr(A1 ∧ (
n∨

i=2
Ai,Γ)).

We merely have to verify all the possibilities when all the probabilities are

defined. When Pr(A1,Γ) and Pr(
n∨

i=2
Ai,Γ) are defined, Pr(A1∧(

n∨
i=2

Ai,Γ)) and

Pr(
n∨

i=1
Ai,Γ) are also defined and by definition 4.20 (iii) and (v), we have the

following table:

Pr(A1,Γ) Pr(
n∨

i=2
Ai,Γ) Pr(A1 ∧ (

n∨
i=2

Ai,Γ)) Pr(
n∨

i=1
Ai,Γ)

1 1 1 1
1 0 0 1
0 1 0 1
0 0 0 0

One can easily see that Pr(
n∨

i=1
Ai,Γ) = Pr(A1,Γ) + Pr(

n∨
i=2

Ai,Γ) − Pr(A1 ∧

(
n∨

i=2
Ai,Γ)).

POS.9 If Γ is Pr-normal, then Pr(∼A,Γ) =
(1) 1− Pr(A,Γ) if A is an atom or F or (B ∧ C) or (B ∨ C) or ∀xB or ∃xB;
(2) Pr(B,Γ)× Pr(∼C,Γ ∪ {B}) if A is (B ⊃ C);
(3) Pr(B,Γ) if A is ∼B.

(1) If A is an atom or F or (B ∧ C) or (B ∨ C) or ∀xB or ∃xB.

(i) Pr(∼p,Γ) = 1

Pr(∼p,Γ) = 1 Assumption
iff ∼p ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
iff Pr(p,Γ) = 0 Theorem 4.20
iff Pr(∼p,Γ) = 1− Pr(p,Γ) Algebra



Probability, Intuitionistic Logic and Strong Negation 117

(ii) Pr(∼p,Γ) = 0
Pr(∼p,Γ) = 0 Assumption
iff ∼∼p ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
iff p ∈ ∆ for any ∆ ∈ U(Γ) L∼∼ and R∼∼
iff Pr(p,Γ) = 1 Theorem 4.20
iff Pr(∼p,Γ) = 1− Pr(p,Γ) Algebra

(iii) If A is F
Pr(∼F,Γ) = 1 iff ∼F ∈ ∆ for any ∆ ∈ U(Γ) which is the case by A3.

But Pr(F,Γ) = 0 iff ∼F ∈ ∆ for any ∆ ∈ U(Γ) which is the case by A3.
Pr(∼F,Γ) = 1− Pr(F,Γ) = 1 by algebra.

(iv)Pr(∼F,Γ) = 1 is not the case if Γ is consistent.

(v) We show that

(α) Pr(∼(B ∧ C),Γ) = 1− Pr((B ∧ C),Γ)

Pr(∼(B ∧ C),Γ) = 1 Assumption
∼(B ∧ C) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
Pr((B ∧ C),Γ) = 0 Theorem 4.23
1 = 1− 0 Algebra

Pr(∼(B ∧ C),Γ) = 0 Assumption
(B ∧ C) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
Pr((B ∧ C),Γ) = 1 Theorem 4.23
0 = 1− 1 Algebra

(β) Pr(∼(B ∧ C),Γ) = 1− Pr((B ∧ C),Γ)

This case is as trivial as (α) and is left to the reader.

Cases (2) and (3) are also trivial.

POS.10 Pr(A,Γ ∪ {
n∧

i=1
Ai}) = Pr(A,Γ ∪ {A1, . . . , An})

It is a straightforward consequence of Theorem 4.13.

POS.8 Pr(A ⊃ B,Γ) = Pr(B,Γ ∪ {A})
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We have to show that

(1) Pr(A ⊃ B,Γ) = 1 iff Pr(B,Γ ∪ {A}) = 1

and

(2) Pr(A ⊃ B,Γ) = 0 iff Pr(B,Γ ∪ {A}) = 0.

(1) We have to prove that, if A ⊃ B ∈ ∆ for any ∆ ∈ U(Γ) then B ∈ ∆
for any ∆ ∈ U(Γ ∪ {A})

Pr(A ⊃ B,Γ) = 1 Assumption
A ⊃ B ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
A ⊃ B,A ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) U(Γ ∪ {A}) ⊆ U(Γ), A ∈ Γ ∪ {A}
B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) Theorem 4.12
Pr(B,Γ ∪ {A}) = 1 Theorem 4.23

We also have to prove the converse, i.e., if Pr(B,Γ ∪ {A}) = 1, then
Pr(A ⊃ B,Γ) = 1.

Pr(B,Γ ∪ {A}) = 1 Assumption
B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) Theorem 4.23
∆ ∪ {A} ⇒ B for any ∆ ∈ U(Γ) Corollary 4.6
∆⇒ (A ⊃ B) for any ∆ ∈ U(Γ) R ⊃
(A ⊃ B) ∈ ∆ for any ∆ ∈ U(Γ) ∆ is a DCSS
Pr(A ⊃ B,Γ) = 1 Theorem 4.23

(2) We have to prove that
If Pr(A ⊃ B,Γ) = 0, then Pr(B,Γ ∪ {A}) = 0.

Pr(A ⊃ B,Γ) = 0 Assumption
∼(A ⊃ B) ∈ ∆ for any ∆ ∈ U(Γ) Theorem 4.23
A,∼B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) PR.5 (2)
Pr(A,Γ) = 1 and Pr(B,Γ) = 0 Theorem 4.23
Pr(B,Γ ∪ {A}) = 0 Corollary 4.11

We also have to prove the converse.
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Pr(B,Γ ∪ {A}) = 0 Assumption
∼B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) Theorem 4.23
A ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) Γ ∪ {A} ⊆ ∆
A ∧ ∼B ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) R∧
∼(A ⊃ B) ∈ ∆ for any ∆ ∈ U(Γ ∪ {A}) PR.5 (2)
Pr(A ⊃ B,Γ) = 0 Theorem 4.23

POS.12 If, for any ∆, Pr(A,Γ ∪∆) = 1,
then for any B and C, Pr(C,Γ ∪∆ ∪ {B}) = Pr(C,Γ ∪∆ ∪ {(A ⊃ B)})

It is a trivial consequence of L ⊃.

POS.11 If Γ is Pr-normal, then Pr(F,Γ) = 0.

It follows from Ax. 3 that ∼F ∈ ∆ for any ∆ ∈ U(Γ).

POS.13 Pr(C,Γ ∪ {Ai}) = 1 for any i such that 1 ≤ i ≤ n, then Pr(C,Γ ∪
{

n∨
i=1

Ai}) = 1.

It is a straightforward consequence of L∨ applies (n− 1) times.

POS.15 If Pr(C,Γ ∪ {∼Ai}) = 1 for any i such that 1 ≤ i ≤ n, then Pr(C,Γ ∪
{∼(

n∧
i=1

Ai})) = 1.

It is a straightforward consequence of L∼∧ applies (n− 1) times.

POS.14 If Pr(C,Γ ∪ {∼A1, . . . ,∼An}) = 1, then Pr(C,Γ ∪ {∼(
n∨

i=1
Ai})) = 1

It is a straightforward consequence of L∼∨ applies (n− 1) times.

POS.16

Pr(∀xA,Γ) = lim
n→∞

Pr(
n∧

i=1
A[ti|x],Γ) where t1, . . . , tn, . . . is an enumeration

of all the terms free for x in A.

There are two cases.

(1)
Pr(∀xA,Γ) = 1 Assumption
For all ∆ ∈ U(Γ), ∀xA ∈ ∆ Theorem 4.23
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A[ti|x],∆⇒ A[ti|x] axiom A1
A[ti|x] ∈ ∆ for all ti free for x in A L ∀ and closure of ∆

Pr(
n∧

i=1
A[ti|x],Γ) ∈ ∆ R ∧ (n-1) times

Pr(
n∧

i=1
A[ti|x],Γ) = 1 Theorem 4.23

lim
n→∞

Pr(
n∧

i=1
A[ti|x],Γ) = 1 calculus

(2)
Pr(∀xA,Γ) = 0 Assumption
For all ∆ ∈ U(Γ), ∼∀xA ∈ ∆ Theorem 4.23
∼A[yi|x],∆⇒ ∼A[yi|x] axiom A1
∼A[yi|x] ∈ ∆ for yi not free in A,
∼∀xA and ∆ R∼∀ and the closure of ∆

Pr(A[yi|x],Γ) = 0 Theorem 4.23
Pr(A[tj |x],Γ) = 0 for tj = yi

Pr(
j∧

i=1
A[ti|x],Γ) = 0 validity of DF.1

lim
n→∞

Pr(
n∧

i=1
A[ti|x],Γ) = 0 calculus + validity of DF.1

POS.17

Pr(∃xA,Γ) = lim
n→∞

Pr(
n∨

i=1
A[yi|x],Γ) where y1, . . . , yn, . . . is an enumeration

of all the variables that are not free in A and Γ.

The proof is quite similar to that of POS.16 and is left to the reader.

POS.18 If Pr(C,Γ ∪ {A[t|x]}) = 1, then Pr(C,Γ ∪ {∀xA}) = 1 where t is free
for x in A.

We show that U(Γ ∪ {∀xA}) ⊆ U(Γ ∪ {A[t|x]})

∆ ∈ U(Γ ∪ {∀xA}) Assumption
A[t|x],∆⇒ A[t|x] axiom A1
∀xA,∆⇒ A[t|x] L∀
A[t|x] ∈ ∆ closure of ∆
U(Γ ∪ {∀xA}) ⊆ U(Γ ∪ {A[t|x]} ∪ {∀xA}) set theory
Pr(C,Γ ∪ {∀xA}) =

Pr(C,Γ ∪ {∀xA} ∪ {A[t|x]}) = 1 Theorem 4.10
+Pr(C,Γ ∪ {A[t|x]}) = 1
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POS.19
If Pr(C,Γ ∪ {A[y|x]}) = 1, then Pr(C,Γ ∪ {∃xA}) = 1 where y is not free

in A, Γ and C.

The proof is similar that of POS.18 and is left to the reader.

POS.20 If Pr(A[y|x],Γ) = 1 with y not free in Γ nor in A (or y = x), then
Pr(A[t|x],Γ) = 1 where t is free for x in A.

Pr(A[y|x],Γ) = 1 Assumption
A[y|x] ∈ ∆ for all ∆ ∈ U(Γ) Theorem 4.23
∀xA ∈ ∆ for all ∆ ∈ U(Γ) R ∀
A[t|x],Γ⇒ A[t|x] A1
∀xA,Γ⇒ A[t|x] L ∀
A[t|x] ∈ ∆ for all ∆ ∈ U(Γ) Closure of ∆
Pr(A[t|x],Γ) = 1 Theorem 4.23

Theorem 4.28. SCILSN is complete according to the partial probabilistic in-
terpretation.

Proof. Let us suppose that Γ /⇒ A. There is a ∆ ∈ U(Γ) such that A /∈ ∆ .
Thus Pr(A,Γ) 6= 1.

References

[1] Peter Aczel, “Saturated Intuitionistic Theories”, Studies in Logic and the
Foundations of Mathematics, Contributions to Mathematical Logic - Pro-
ceedings of the Logic Colloquium, 50: 1-11, Hannover, 1968.

[2] Ernest Adams, The logic of Conditionals. Dordrecht, Reidel, 1975.

[3] Hartry Field, “Logic, Meaning, and Conceptual Role”, The Journal of
Philosophy, 84, 7 : 379-409, 1977.

[4] Szymon Frankowski, “Partial and Intuitionistic Logic”, Bulletin of the
Section of Logic 40, 3/4 : 179?188, 2011.

[5] Yuri Gurevich, “Intuitionnistic Logic with Strong Negation”, Studia Log-
ica, 36, 1/2 : 49-59.



122 F. Lepage

[6] Saul Kripke, “Semantical Analysis of Intuitionistic Logic I”, Formal sys-
tems and Recursive Functions, Michael Dummett and John Crossley
(eds.), 92-130, Amsterdam, North Holland, 1965.

[7] Hugues Leblanc, “Probabilistic Semantics for First-order Logic”, Studia
Logica, 36, 1/2 : 49-59,1979.

[8] François Lepage, “Partial Probability Functions and Intuitionistic Logic”,
Bulletin of the Section of Logic, 41, 3/4: 173-185, 2012.

[9] François Lepage, “Is Lewis’s Triviality Result Actually a Triviality Re-
sult?”, Logique & Analyse, 231, 373-377, 2015.

[10] François Lepage and Charles G. Morgan, “Probabilistic Canonical Models
for Partial Logic”, Notre Dame Journal of Formal Logic, 44: 125-138,
2003.

[11] François Lepage and Serge Lapierre, “Completeness and Representation
Theorem for Epistemic States in First-Order Predicate Calculus”, Logica
Trianguli, 3: 85-100, 1999.

[12] David Lewis, “Probabilities of Conditionals and Conditional Probabili-
ties”, The Philosophical Review, 85, 3, 297- 315, 1976.

[13] Charles G. Morgan, “Logic, Probability Theory, and Artificial Intelligence
? Part 1: The Probabilistic Foundation of Logic”, Computational Intelli-
gence 7: 94-109, 1991.

[14] Charles G. Morgan, “Canonical Models and Probabilistic Semantics”,
Logic, Probability, and Science, Niall Shanks and Robert Gardner (eds.),
17-29. Atlanta/Amsterdam, Rodopi, 2000. 7: 94-109, 1991.

[15] Charles G. Morgan and Hughes Leblanc, “Probabilistic Semantics for In-
tuitionistic Logic”, Notre Dame Journal of Formal Logic, 24, 2: 161- 180,
1983.

[16] Charles G. Morgan and Hughes Leblanc, “Probability Theory, Intuition-
ism, Semantics, and the Dutch Book Argument”, Notre Dame Journal of
Formal Logic, 24, 3: 289-304, 1983.

[17] Charles G. Morgan and Edwin Mares, “Conditional Probability and Non-
Triviality”, The Journal of Philosophical Logic, 24: 455-467, 1995.

[18] Reinhard Muskens, Meaning and Partiality. Stanford, CSLI, 1995.



Probability, Intuitionistic Logic and Strong Negation 123

[19] Sara Negri and Jan von Plato, Structural Proof Theory. Cambridge, Cam-
bridge University Press, 2001.

[20] David Nelson, “Constructible Falsity”, The Journal of Symbolic Logic, 14,
1: 16-26, 1949.

[21] Karl Popper, The Logic of Scientific Discovery. New York, Routledge,
2002.

François Lepage
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