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Truncation in Hahn Fields is Undecidable and Wild

Santiago Camacho

Abstract

We show that in any nontrivial Hahn field(a field of generalized power
series) with truncation as a primitive operation we can interpret the
monadic second-order logic of the additive monoid of natural numbers
and the theory of such structure is undecidable. We also specify a de-
finable binary relation on such a structure that has SOP(the strict order
property) and TP2(the tree property of the second kind).
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Introduction

Generalized series have been used in the past few decades in order to generalize
classical asymptotic series expansions such as Laurent series and Puiseux series.
Certain generalized series fields, such as the field of Logarithmic-Exponential
Series [2], provide for a richer ambient structure, due to the fact that these
series are closed under many common algebraic and analytic operations. In the
context of generalized series the notion of truncation becomes an interesting
subject of study. In the classical cases, a proper truncation of any Laurent
series

∑
k≥k0 rkx

k amounts to a polynomial in the variables x and x−1. In
the general setting a proper truncation of an infinite series can still be an
infinite series. It has been shown by various authors [1, 3, 5] that truncation
is a robust notion, in the sense that certain natural extensions of truncation
closed sets and rings remain truncation closed. We here look at some first-
order model theoretic properties of the theory of a Hahn Field equipped with
truncation. We show that such theories are very wild in the sense that they can
even interpret the theory of (N; +,×) via the interpretation of (N,P(N); +,∈),
and are thus undecidable, solving a question posed by van den Dries. We also
indicate definable binary relations with “bad” properties such as the strict order
property and the tree property of the second kind. In section 1 we introduce
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the preliminaries of Hahn series and valued fields. In section 2 we recall the
result of the undecidability of (N,P(N); +,∈) via the more familiar result of
undecidability for (N; +,×). The author would like to thank Philipp Hieronymi
and Erik Walsberg for bringing the bibliography of monadic second-order logic
to his attention.

Notations

We let m and n range over N = {0, 1, . . .}. For a set S, we denote its powerset
by P(S). Given a set S, and a tuple of variables x we write Sx for the cartesian
product S|x| where |x| denotes the length of the tuple x. Given a language L,
an L-formula φ(x), and an L-structureM = (M ; . . .) we let φ(Mx) denote the
set {a ∈Mx :M |= φ(a)}. For a field K we let K× = K \ {0}.

1 Preliminaries

Hahn Series

Let Γ be an additive ordered abelian group. Let k be a field. We indicate a
function f : Γ → k suggestively as a series f =

∑
γ∈Γ fγt

γ where fγ = f(γ)
and t is a symbol, and let supp(f) := {γ ∈ Γ : fγ 6= 0} be the support of f .
We denote the Hahn series field over k with value group Γ by

k((tΓ)) :=

f =
∑
γ∈Γ

fγt
γ : supp(f) is well-ordered

 ,

equipped with the usual operations of addition, and multiplication, that is with
α, β, γ ranging over Γ:

f + g =

(∑
γ

fγt
γ

)
+

(∑
γ

gγt
γ

)
=
∑
γ

(fγ + gγ) tγ ,

fg =

(∑
γ

fγt
γ

)(∑
γ

gγt
γ

)
=
∑
γ

 ∑
α+β=γ

fαgβ

 tγ .

Let f =
∑

γ fγt
γ be in k((tΓ)) and δ ∈ Γ. The truncation of f at δ is∑

γ<δ fγt
γ and we shall denote it by f |δ. We call f purely infinite, bounded,

infinitesimal if supp(f) ⊆ Γ<0, supp(f) ⊆ Γ≥0, supp(f) ⊆ Γ>0, respectively.
We will distinctly name three components of f : the purely infinite part f |0,
the bounded part f4 := f − f |0, and the infinitesimal part f≺ := f − f4,
so f = f |0 + f4, f4 = f0 + f≺
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2 Valued Fields

A valued field is a field K equipped with a surjective map v : K → Γ∪ {∞},
where Γ is an additive ordered abelian group, such that for all f, g ∈ K we
have

(V0) v(f) =∞ ⇐⇒ f = 0,

(V1) v(fg) = v(f) + v(g),

(V2) v(f + g) ≥ min{v(f), v(g)}

Every valued field gives rise to:

1. The valuation ring O := {f ∈ K : v(f) ≥ 0}, which is a local ring,

2. the maximal ideal O := {f ∈ K : v(f) > 0} of O, and

3. the residue field k := O/O of K.

Example 2.1 The canonical valuation on k((tΓ)) is given by the map v :
k((tΓ))× → Γ where v(f) = min(supp(f)). We then observe that the corre-
sponding valuation ring consists of the bounded elements of k((tΓ)), the maxi-
mal ideal of the valuation ring consists of the infinitesimal elements of k((tΓ))
and the residue field is isomorphic to k.

Other Structures in valued fields

A monomial group M of a valued field K is a multiplicative subgroup of K×

such that for every γ ∈ Γ there is a unique element m ∈M such that v(m) = γ.

Example 2.2 Let K = k((tΓ)). Then the canonical monomial group of
K is the set {tγ : γ ∈ Γ}.

An additive complement to the valuation ring O of a valued field K is
an additive subgroup V of K such that K = V ⊕O

Example 2.3 Let K = k((tΓ)). Then the canonical additive complement
for K is the set of purely infinite elements of K.

3 The natural numbers

We start with the following well known result.

Theorem 3.1 The theory of (N; +,×) is undecidable.
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Monadic Second-Order Logic

Given a structureM = (M ; . . .), monadic second-order logic of M extends
first-order logic over M by allowing quantification of subsets of M . More
precisely it amounts to considering the two-sorted structure (M,P(M); . . . ,∈),
where ∈⊆M×P(M) has the usual interpretation. The following Theorem and
its proof appear in [4].

Theorem 3.2 The theory of (N,P(N);∈) is decidable.

Lemma 3.3 Multiplication on N is definable in (N,P(N); +,∈).

Proof. If the multiplication of consecutive numbers is defined, then general
multiplication of two natural numbers can be defined in terms of addition:

n = mk ⇐⇒ (m+ k)(m+ k + 1) = m(m+ 1) + k(k + 1) + n+ n.

If divisibility is defined, then multiplication of consecutive numbers is defined
by

n = m(m+ 1) ⇐⇒ ∀k(∈ N)(n|k ↔ [m|k ∧ (m+ 1)|k]).

Divisibility can be defined using addition by

m|n ⇐⇒ ∀S(∈ P(N))(0 ∈ S ∧ ∀x(∈ N)(x ∈ S → x+m ∈ S)→ n ∈ S).

Since addition is a primitive, multiplication is defined in (N,P(N); +,∈). �

Corollary 3.4 The theory of (N,P(N); +,∈) is undecidable.

Proof. This follows from Lemma 3.3 and Theorem 3.1. �

4 Hahn Fields with Truncation

Let K = k((tΓ)) be a Hahn field with non-trivial value group Γ. We consider
K as an L-structure where L = {0, 1,+,×,O,M, V }, and the unary predicate
symbols M,O, and V are interpreted respectively as the canonical monomial
group tΓ, the valuation ring, and the canonical additive complement to O. For
γ ∈ Γ and m = tγ we set f |m := f |γ . Then we have the equivalence (for f , v
∈ K)

f |1 = v ⇐⇒ v ∈ V & ∃g ∈ O(f = v + g),
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showing that truncation at 1 is definable in the L-structure K. For m ∈ tΓ and
f ∈ K we have

f |m = g ⇐⇒ (m−1f)|0 = m−1g,

showing that the operation (f,m) 7→ f |m : K × tΓ → K is definable in the
L-structure K.

For convenience of notation we introduce the asymptotic relations 4,≺,
and � on K as follows. For f, g ∈ K, f 4 g if and only if there is h ∈ O such
that f = gh, likewise f ≺ g if and only if f 4 g and g 64 f , and f � g if and
only if f 4 g and g 4 f . Let R := {(m, f) ∈ tΓ ×K : m ∈ tsupp(f)}. Then R is
definable in the L-structure K since for a, b ∈ K

(a, b) ∈ R ⇐⇒ a ∈ tΓ and b− b|a � a.

Theorem 4.1 The L-structure K interprets (N,P(N); +,∈).

Proof. Let ≈ be the definable equivalence relation on K such that f ≈ g,
for f, g ∈ K, if and only if supp(f) = supp(g). Take n ∈ tΓ such that n ≺ 1.
Consider the element f =

∑
n n

n ∈ K, and the set S = {g ∈ K : supp(g) ⊆
supp(f)}. Let E ⊆ tsupp(f) × (S/≈) be given by

(m, g/≈) ∈ E :⇐⇒ m ∈ tsupp(g),

and note that E is definable in the L-structure K since R is. Define ι : N →
tsupp(f) by ι(n) = mn, and note that ι induces an isomorphism

(N,P(N);∈)
∼−→ (tsupp(f), S/≈;E),

such that ι(m+ n) = ι(m)ι(n). �

Corollary 4.2 The theory of the L-structure K is undecidable.

Proof. This follows easily from Theorem 4.1 and Theorem 3.4 �

Defining the coefficient field k

We now considerK = k(tΓ)) as an L−-structure, where L− = {0, 1,+,×,O, V }.
Note that for f ∈ O we have

fV ⊆ V ⇐⇒ f ∈ k,

where we identify k with kt0. Thus we can define the coefficient field k in the
L−-structure K.
Question: Is it possible to define the monomial group tΓ in the L′-structure
K?
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An approach without the monomial group

Alternatively we may work in the setting of the two sorted structure (K,Γ; v, T )
where K denotes the underlying field, Γ is the ordered value group, v is the
valuation, and T : K × Γ→ K is such that T (f, γ) = f |γ . Then we can define
the binary relation R ⊆ Γ×K by

(γ, f) ∈ R :⇐⇒ v(f − T (f, γ)) = γ.

We then obtain the following;

Theorem 4.3 The two-sorted structure (K,Γ; v, T ) interprets (N,P(N); +,∈).

The proof is similar to the proof of Theorem 4.1.

Corollary 4.4 The theory of the two-sorted structure (K,Γ; v, T ) is undecid-
able.

5 Dividing lines in model theoretic structures

We have already shown how (N; +,×) can be interpreted in the L-structure K
and thus we know that it has the strict order property and the tree property
of the second kind among others. In this section we make explicit a binary
relation that witnesses these properties inside K.

The independence property

Let L be a language and M = (M ; . . .) an L-structure. We say that an L-
formula φ(x; y) shatters a set A ⊆ Mx if for every subset S of A there is
bS ∈ My such that for every a ∈ A we have that M |= φ(a; bS) if and only
if a ∈ S. Let T be an L-theory. We say that φ(x; y) has the independence
property with respect to T , or IP for short, if there is a model M of T ,
such that φ(x; y) shatters an infinite subset of Mx.

For a partitioned formula φ(x; y) we let φopp(y;x) = φ(x; y), that is, φopp

is the same formula φ but where the role of the parameter variables and type
variables is exchanged.

Lemma 5.1 A formula φ(x; y) has IP if φopp has IP.

Proof. By compactness the formula φ(x; y) shatters some set {aJ : J ∈
P(N)}. Let the shattering be witnessed by {bI : I ⊆ P(N)}. Let B = {bIi : i ∈
N} be such that Ii = {Y ⊆ N : i ∈ Y }. Then we have

|= φ(aJ , bIi) ⇐⇒ i ∈ J,

and thus φopp shatters B. �
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The Strict Order Property

We say that a formula φ(x; y) has the Strict Order Property, or SOP for short,
if there are bi ∈ My, for i ∈ N, such that φ(Mx, bi) ⊂ φ(Mx, bj) whenever
i < j.

Proposition 5.2 The formula ϕ(x; y), defining the relation R as in section 4,
has SOP.

Proof. Let Θ = {θi : i ∈ N} be any subset of Γ such that θi < θj for i < j,
and consider the set {fn =

∑n
i=0 t

θi : i ∈ N}. Note that ϕ(K, fm) ⊂ ϕ(K, fn)
for m < n. �

The tree property of the second kind

We say that a formula φ(x; y) has the tree property of the second kind,
or TP2 for short, if there are tuples bij ∈ My, for i, j ∈ N, such that for any

σ : N→ N the set {φ(x; biσ(i)) : i ∈ N} is consistent and for any i and j 6= k we

have {φ(x; bij), φ(x; bik)} is inconsistent.

Lemma 5.3 If φ(x; y) has TP2 then φ has IP.

Proof. Let {φ(x, bij)}i,j∈N witness TP2 for φ(x; y). Fix j. Without loss of

generality we will assume that j = 0. Consider the set {bi0}. Let I ⊆ N. By
TP2 there is aI ∈Mx such that

M |= φ(aI ; b
i
j) ⇐⇒ (i ∈ I and j = 0, or i /∈ I and j = 1).

Thus by Lemma 5.1 φ(x; y) has IP. �

Lemma 5.4 Let A = {ai : i ∈ N} ⊆ Mx and B = {bI : I ∈ P(N)} ⊆ My.
Assume that there is φ(x; y) such that for any fixed bI ∈ B

|= φ(a; bI) ⇐⇒ there is i ∈ I such that a = ai.

Then φ has TP2.

Proof. Let φ, A, and B be as in the hypothesis of the Lemma. Let P =
{pi ∈ N} be the set of primes where pi 6= pj for i 6= j. We construct Aij ⊆ N
recursively as follows:

• A0
j := {pn0

j : n0 > 0}
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• Aij := {pmni : ni ∈ N, m ∈ Ai−1
j }.

So for example A1
2 = {pp

n0
2
n1 : n1, n0 > 0}.

Claim 1 For α ∈ Nn we have that
⋂
i<nA

i
α(i) 6= ∅.

It is not hard to check that

p
...

pα(n−1)

α(0) ∈
⋂
i<n

Aiα(i).

Claim 2: For fixed i, and j 6= k we have Aij ∩Aik = ∅.
For simplicity in notation we prove the case where i = 1. Let m ∈ A1

j ∩ A1
k.

Then m = p
p
m0
j
m1 = p

p
n0
k
n1 . Since pm0

j and pn0
k are non-zero, we have that pm1 =

pn1 , and thus pm0
j = pn0

k . Similarly, since m0 and n0 are non-zero we conclude
that pj = pk, and thus j = k.

Now let bij = bAij
. By compactness, together with Claim 1, we get that the

set {φ(x; biσ(i)) : i ∈ N} is consistent. By the hypothesis of the Lemma, together

with claim 2, we get that for any i and j 6= k we have {φ(x; bij), φ(x; bik)} is
inconsistent. �

If φ(x; y) and A are as in the lemma, we say that φ(x; y) and B only shatter
A in M . Note that in this case A is in fact a definable set.

Proposition 5.5 The formula ϕ(x; y), defining the relation R as in section 4,
has TP2.

Proof. Let Θ be a well-ordered subset of Γ and consider the sets

tΘ = {tθ : θ ∈ Θ}, and B =

{∑
δ∈∆

tδ : ∆ ⊆ Θ

}
.

It is clear then that ϕ(x; y) and B only shatter tΘ, and thus by Lemma 5.4 the
formula ϕ(x; y) has TP2. �

Corollary 5.6 The formula ϕ(x; y), defining the relation R as in section 4,
has IP.

Proof. The result follows directly from proposition 5.5 and lemma 5.3. �
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