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Abstract

Motivated by the phenomena of combinations of logics, we analyze
two categories of finitary signatures underlying to (propositional) logics:
the categories Ss ([4]) and Sf ([10]). Ss has a very simple notion of
morphism, but it is too strict: Ss has good categorial properties (is a
complete/cocomplete ω-accessible category), but does not allows a good
treatment of the identity problem for logics ([5]). Sf has a more flexible
notion of morphism: it allows a better treatment of the identity problem
for logics but, on the other hand, Sf has serious categorial defects. We

define a pair of (faithful) functors Ss
(+)

�
(−)
Sf , such that (+) is left adjoint

to (−). We consider the (endo)functor in Ss, T := (−) ◦ (+) and we
prove that T preserves filtered colimits and reflects isos/epis/monos. We
consider the monad (or triple) canonically associated to this adjunction,
T = (T, µ, η), and we prove that Sf = Kleisli(T ): this result entails that
the category of logics Lf build over Sf has: unconstrained fibrings, i.e.
coproducts, and “constrained” fibrings, i.e. colimits with base diagram
“in” Ss (i.e., obtained via (+) : Ss −→ Sf ).
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Introduction

In this work we consider (finitary) signatures for (propositional) logics
through the original use of Category Theory: the study of the “sociology of
mathematical objects”, aligning us with a recent, and growing, trend of study
logics through its relations with other logics, in particular by the processes of
combinations of logics.

The phenomenon of combinations of logics ([13]), emerged in the mid-1980s,
was the main motivation for considering categories of logics. There are two
aspects of combination of logics: (i) splitting of logics: a analytical process;
(ii) splicing of logics: a synthesis. The “Possible-Translations Semantics”,
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introduced in [12], is an instance of the splitting process: a given logic system is
decomposed into other (simpler) systems, providing, for instance a conservative
translation of the logic in analysis into a “product” (or weak product) of simpler
or better known logics. The “Fibring” of logics, introduced originally in the
context of modal logics ([16]), is “the least logic which extends simultaneously
the given logics”; after, this was recognized as a coproduct construction ([19]):
this provides an example of synthesis of logics.

In the field of categories of logics there are, of course, two choices that must
be done: (i) the choice of objects (how represent a logical system?); (ii) the
choice of arrows (what are the relevant notions of morphisms between logics?).

The main flow of research on categories of logics, represented by the groups
of CLE-Unicamp (Brazil) and IST-Lisboa (Portugal) focus on the determi-
nation of the conditions for preservation of metalogical properties under the
process of combination of logics. On the other hand, the “global aspects”
of categories of logics, that ensure for example the abundance or scarcity of
constructions, seem to have not been adequately studied.

The present work provides the first part of a project of considering cate-
gories of logical systems satisfying simultaneously four natural requirements:
(i) If they represent the major part of the usual logical systems;
(ii) If they have good categorial properties (e.g., if they are a complete and/or
cocomplete category, if they are accessible categories ([1]));
(iii) If they allow a natural notion of algebraizable logical system (as in the con-
cept of Blok-Pigozzi algebraizable logic ([6]) or Czelakowski’s proto-algebraiza-
bility ([14]));
(iv) If they provide a satisfactory treatment of the identity problem of logical
systems (when logics can be considered ”the same”? ([5], [11])). * in the series
of articles [2], [3], [4], was considered a simple (but too strict) notion of mor-
phism of signatures, where are founded some categories of logics that satisfy
simultaneously three requirements ((i), (ii) and (iii)); here we will denote by
Ss the category of signatures therein;
* in the series of papers [8], [9], [10], [11],1 [15] is developed a more flexible no-
tion of morphism of signatures based on formulas as connectives (our notation
for the associated category will be Sf ), it encompass other three requirements
((i), (ii) and (iv)).

Overview of the paper: In section 1 we recall the basic properties of the
categories of signatures Ss and Sf and we add some new information. In section

2 we compare these two categories of signatures by means of functors Ss
(+)

�
(−)

Sf and we prove that they provide an adjoint pair of functors. In section

1We want to thank professor Marcelo Coniglio for suggesting that reference.
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3 we identify the monad (or triple) associated to the described adjunction,
we identify some properties of the monad, we prove that Sf is, precisely, the
Kleisli category of that monad and we extract some consequences. We finish
this work presenting some future directions.

All the basic notions on category-theory, freely used in this work, can be
found in [17].

In the sequel, X = {x0, x1, . . . , xn, . . .} will denote a fixed enumerable set
(written in a fixed order).2

1 Categories of signatures

We recall here the basic notions and results on (finitary) signatures.

• A signature Σ is a sequence of sets Σ = (Σn)n∈ω such that Σi ∩ Σj = ∅
for all i < j < ω .

• We write |Σ| =
⋃
n∈ω Σn for the support of Σ.

• We denote by F (Σ), the formula algebra of Σ, i.e. the set of all (propo-
sitional) formulas built with signature Σ over the variables in X. More
precisely F (Σ) =

⋃
i∈N Fi, where the (Fi)i∈N are recursively defined by:

* F0 = X;
* Fi+1 = Fi ∪ {〈cn, ψ0, · · · , ψn−1〉 : where cn ∈ Σn for some n ∈ N and
{ψ0, · · · , ψn−1}⊆Fi}.

• As usual, we will also denote:
* cn(ψ0, · · · , ψn−1) := 〈cn, ψ0, · · · , ψn−1〉;
* φ(xi0 , · · · , xin−1) means just that the formula φ has its variables con-
tained in the set {xi0 , · · · , xin−1}.

• For all n ∈ N let F (Σ)[n] = {ϕ ∈ F (Σ) : var(ϕ) = {x0, x1, . . . , xn−1}},
where var(ϕ) is the set of all variables that occur in the Σ-formula ϕ.

• The notion of complexity compl(ϕ) of the formula ϕ is, as usual, the
number of occurrences of connectives in ϕ.

• On composition/substitution:
If {φ, ψ0, · · ·ψn−1}⊆F (Σ), var(φ) ⊆ {xi0 , . . . , xin−1}, ~x = (xi0 , . . . , xin−1)

and ~ψ = (ψ0, · · · , ψn−1), then (φ(~x)[~x | ~ψ]) will denote the corresponding
composition (or substitution), recursively defined on compl(φ) by:

2We thank the reviewer for his/her thorough review and highly appreciate the comments
and suggestions, which significantly contributed to improving the quality of the publication.
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* compl(φ) = 0: φ = xn, for some n ∈ N
xn[~x|~ψ] := ψk, if xn = xik ;

* compl(φ) > 0: φ = cn(ϕ0, · · · , ϕn−1)
cn(ϕ0, · · · , ϕn−1)[~x|~ψ] := cn(ϕ0[~x|~ψ], · · · , ϕn−1[~x|~ψ]).

1.1 The category Ss
We will write Ss for the category of signatures and strict morphisms of

signatures presented in [2], [3], [4], and described below.

The objects of Ss are signatures.
If Σ,Σ′ are signatures then a strict morphism f : Σ −→ Σ′ is a sequence

of functions f = (fn)n∈ω, where fn : Σn −→ Σ′n. Composition and identities
in Ss are componentwise.

For each morphism f : Σ −→ Σ′ in Ss there is a unique function f̂ :
F (Σ) −→ F (Σ′), called the extension of f , such that:
(i) f̂(x) = x, if x ∈ X;
(ii) f̂(cn(ψ0, . . . , ψn−1) = fn(cn)(f̂(ψ0), . . . , f̂(ψn−1)), if cn ∈ Σn.

Then, by induction on the complexity of formulas:
(0) compl(f̂(θ)) = compl(θ)), for all θ ∈ F (Σ).
(1) If var(θ) ⊆ {xi0 , . . . , xin−1}, then f̂(θ(~x)[~x | ~ψ]) = (f̂(θ(~x))[~x | f̂(~ψ)].

Moreover var(f̂(θ)) = var(θ) and then f̂ restricts to maps f̂ �n: F (Σ)[n] −→
F (Σ′)[n], n ∈ N.
(2) The extension to the formula algebra of a composition is the extension’s
composition. The extension of an identity is the identity function on the for-
mula algebra.

Observe that Ss is equivalent to the functor category SetN, where N is the
discrete category with object class N, then Ss has all small limits and colimits
and they are componentwise. Moreover, the category Ss is a finitely locally
presentable category, i.e., Ss is a finitely accessible category that is cocomplete
and/or complete ([1]). The finitely presentable signatures are precisely the
signatures of finite support.
(Sub) For any substitution function σ : X −→ F (Σ), there is unique exten-
sion σ̃ : F (Σ) −→ F (Σ) such that σ̃ is an “homomorphism”: σ̃(x) = σ(x), for
all x ∈ X and σ̃(cn(ψ0, . . . , ψn−1) = cn(σ̃(ψ0)), . . . , σ̃(ψn−1)), for all cn ∈ Σn,
n ∈ ω; it follows that for any θ(x0, . . . , xn−1) ∈ F (Σ) σ̃(θ(x0, . . . , xn−1)) =
θ(σ(x0), . . . , σ(xn−1)). The identity substitution induces the identity homomor-
phism on the formula algebra; the composition substitution of the substitutions
σ′, σ : X −→ F (Σ) is the substitution σ′′ : X −→ F (Σ) , σ′′ = σ′ ? σ := σ̃′ ◦ σ
and σ̃′′ = σ̃′ ? σ = σ̃′ ◦ σ̃.
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(3) Let f : Σ −→ Σ′ be a Ss-morphism. Then for each substitution σ : X −→
F (Σ) there is a substitution σ′ : X −→ F (Σ′) such that σ̃′ ◦ f̂ = f̂ ◦ σ̃.

1.2 The category Sf
We will write Sf for the category of signatures and flexible morphisms of

signatures presented in the series of papers [8], [9], [10], [11], [15] and described
below.

We introduce the following notations:
• If Σ = (Σn)n∈N is a signature, then write T (Σ) := (F (Σ)[n])n∈N; clearly
T (Σ) satisfies the “disjunction condition”, then it is a signature too.
• For each signature Σ and n ∈ N, let the function:
(jΣ)n : Σn −→ F (Σ)[n] : cn 7→ cn(x0, . . . , xn−1).

We have the inverse bijections (just notations):
h ∈ Sf (Σ,Σ′) ! h] ∈ Ss(Σ, T (Σ′));
f ∈ Ss(Σ, T (Σ′)) ! f [ ∈ Sf (Σ,Σ′).

Thus: Sf (Σ,Σ′) = Ss(Σ, T (Σ′)); moreover jΣ = id
(f)
Σ ∈ Sf (Σ,Σ).

For each morphism f : Σ −→ Σ′ in Sf there is a unique function f̌ :
F (Σ) −→ F (Σ′), called the extension of f , such that:
(i) f̌(x) = x, if x ∈ X;
(ii) f̌(cn(ψ0, . . . , ψn−1) = (fn(cn)(x0, . . . , xn−1))[x0 | f̌(ψ0), . . . , xn−1 | f̌(ψn−1)),
if cn ∈ Σn.

The notion of extension of Sf -morphism to formula algebras shares many
properties with notion of extension of Ss-morphism to formula algebras: e.g.,
the properties (1), (2), (3).

The composition in Sf is given by (f ′ • f)] := (f̌ ′�n ◦(f ])n)n∈N. The iden-

tity id
(f)
Σ in Sf is given by id

(f)
Σ

]
= ((jΣ)n)n∈N.

Remark that the “information encoded” by the of extension of Sf -morphism
is enough to determine that morphism. More precisely, given g, f ∈ Sf (Σ,Σ′),
note that:
∗ (f ])n = f̌�n ◦(jΣ)n, n ∈ N;
∗ f̌ = ǧ ⇒ f ] = (f̌�n)n∈N ◦ jΣ = (ǧ�n)n∈N ◦ jΣ = g] ⇒ f = g.

For the reader’s convenience we add here the proof that Sf is a category:
∗ identity: f • idΣ = f = idΣ′ • f :

(f • idΣ)]n = f̌�n ◦(idΣ)]n = f̌�n ◦(jΣ)n = (f ])n;

(idΣ′ • f)]n = ˇidΣ′�n ◦(f ])n = idF (Σ′)[n] ◦ (f ])n = (f ])n.
∗ associativity: (f ′′ • f ′) • f = f ′′ • (f ′ • f):
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((f ′′ • f ′) • f)]n = ˇ(f ′′ • f ′)�n ◦ (f ])n =
(f̌ ′′ ◦ f̌ ′)�n ◦(f ])n = (f̌ ′′�n ◦f̌ ′�n) ◦ (f̌�n ◦(jΣ)n) =
f̌ ′′�n ◦(f̌ ′�n ◦f̌ �n) ◦ (jΣ)n = f̌ ′′�n ◦(f̌ ′ ◦ f̌)�n) ◦ (jΣ)n = f̌ ′′�n ◦( ˇf ′ • f)�n
◦(jΣ)n = f̌ ′′�n ◦((f ′ • f)])n = (f ′′ • (f ′ • f))]n.

Definition 1.1 A Sf -morphism f : Σ −→ Σ′ is regular if compl(f̌(θ)) ≥
compl(θ), any θ ∈ F (Σ).

Proposition 1.2 (a) The mapping f ∈ Ss(Σ,Σ′) 7→ (jΣ′ ◦ f)[ ∈ Sf (Σ,Σ′) is

a (natural) bijection Ss(Σ,Σ′)
∼=−→ {h ∈ Sf (Σ,Σ′) : compl(ȟ(θ)) = compl(θ),

for any θ ∈ F (Σ)}.
(b) If f ∈ Sf (Σ,Σ′), then: f is regular iff f(c1) 6= x0 , all c1 ∈ Σ1.
(c) The “empty” signature is the unique initial object of Sf (as in Ss).
(d) If a (non full) subcategory of Sf with the same objects and “copies” of Ss
arrows have only regular morphisms, then it has a strict 3 initial object.

Proof.
(a) The proof follows by induction in the complexity of formulas.
(b) If f(c1) = x0 for some c1 ∈ Σ1, so compl(f̌(c1(x0))) = compl(x0) = 0 <

1 = compl(c1(x0)). Therefore, f isn’t regular.

If f(c1) 6= x0, so exists a formula ϕ ∈ F (Σ)[0] such that f(c1) = ϕ 6= x0.
So, for definition of Σ0 as free algebra, exists a c′n ∈ Σn and ψ0, · · · , ψn−1 such
that ϕ = c′n(ψ0, · · · , ψn−1). In this way, compl(f(cn))f(c′n(ψ0, · · · , ψn−1)) =
1 + compl(ψ0) + · · ·+ compl(ψn−1)) > 1 = compl(cn(x0, · · · , xn−1)).

So, by induction on complexity of formulas, if for all c1 ∈ Σ1, f(c1) 6= x0,
f is regular.

(c) The initial signature is empty in every coordinate.
(d) If a subcategory S of Sf contains Ss, then it has the empty signature

as unique initial object. On the other hand, if Σi is the initial object and

Σ
f−→ Σi is a S morphism, so the image of each connective can be only a vari-

able, that has arity 1. Therefore, Σ can only have connectives of arity 1. But
if f(c1) = x0, f is not regular. So, Σ needs to be the initial object too, thus
Σi is strict initial object. �

Proposition 1.3 (a) Sf has weak terminal objects.4 More precisely, a sig-
nature Σ′ is an weak terminal object iff F (Σ′)[n] 6= ∅, ∀n ∈ N iff Σ′0 6= ∅ and

3A initial object 0 is strict if, and only if, for all morphism f : x → 0, f is a isomorphism.
4A object 1 is weak terminal if, and only if, for all object x, exists a (not necessarily

unique) morphism f : x → 1.
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exists k > 2 such that Σ′k 6= ∅.
(b) Sf does not have terminal object. (Example: let Σ′ be a weak terminal ob-
ject and take a signature Σ with only one conective and it is binary: as F (Σ′)[2]
is infinity, there are many Sf -morphisms from Σ into Σ′.)

Remark 1.4 It is easy to see that Sf has weak products: a weak product of
a (small) family of signatures can be given by taking the product signature in
the strict category Ss and the corresponding Ss-projections, transformed into
Sf -morphisms (see the next section). As Sf has initial object, any family of
parallel arrows has an weak equalizer.

2 The fundamental adjunction

In this section we define functors between the categories Ss and Sf and prove
that they establishes an adjunction, thus allowing pass some information from
one category to another.

Proposition 2.1 Connecting categories of signatures:
(a) We have the (faithful) functors:

(+) : Ss −→ Sf : (Σ
f−→ Σ′) 7→ (Σ

(jΣ′◦f)[

−→ Σ′);

(−) : Sf −→ Ss : (Σ
h−→ Σ′) 7→ ((F (Σ)[n])n∈N

(ȟ�n)
n∈N−→ (F (Σ′)[n])n∈N).

T : Ss −→ Ss (Σ
f−→ Σ′)

T7→ ((F (Σ)[n])n∈N
(f̂�n)

n∈N−→ (F (Σ′)[n])n∈N).

(b) For each f ∈ Ss(Σ,Σ′), we have ˇ(f+) = f̂ ∈ Set(F (Σ), F (Σ′)).
(c) We have the natural transformations:

η : IdSs
−→ (−) ◦ (+) : (ηΣ)n := (jΣ)n

ε : (+) ◦ (−) −→ IdSf
: (εΣ)]n := idF (Σ)[n]

and we write
µ = (−)ε(+). (µΣ)n : T ◦ T (Σ)n → T (Σ)n

Note that the endofunctor T maps each formula ϕ to a connective xϕy.
The natural transformation εΣ : T (Σ) → Σ maps each connective xϕy to a
formula ϕ(x0, · · · , xn−1)

The following technical results are fundamental to establish the main results
of this work.

Lemma 2.2 The explicit definition of µ is:
µΣn = ε̌Σ �n: F (TΣ)[n]→ F (Σ)[n]
µΣn(xϕy(ψ0, · · · , ψn−1)) = ε̌Σ �n (xϕy(ψ0, · · · , ψn−1)) =
ϕ(x0, · · · , xn−1)[x0|(ε̌Σ �n (ψ0), · · · , xn−1|ε̌Σ �n (ψn−1))]
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Proof. The proof follows directly for definitions and notions in the Proposi-
tion 2.1:

µΣ = ε−+Σ = ε−Σ = (ε̌Σ �n)n∈N �

Note that the natural transformation µ modifies the complexities (since
it transforms a derived connective xϕy into a formula ϕ) but does not loses
“information”.

Lemma 2.3 Let g ∈ Ss(Σ,Σ′), f ∈ Ss(Σ′,Σ′′), k ∈ Sf (Σ,Σ′) and h ∈
Sf (Σ′,Σ′′). Then:

(a) T (idΣ) = idTΣ

(b) T (f ◦ g) = Tf ◦ Tg

(c) Tf ◦ jΣ = jΣ′ ◦ f

(d) µΣ ◦ TjΣ = idTΣ

(e) f+] = jΣ′ ◦ f

(f) h− = µΣ′′ ◦ Th]

(g) (h • k)] = µΣ′′ ◦ Th] ◦ k]

(h) (f ◦ g)+ = (Tf ◦ jΣ′ ◦ f)[

(i) µΣ′′ ◦ Th− = h− ◦ µΣ′

Proof.
(a) T (idΣ) = ( ˇid �n)N = idTΣ

(b) T (f ◦ g) = (( ˇf ◦ g) �n)N = (f̌ �n ◦ǧ �n)N = T (f) ◦ T (g)

(c) Tf ◦ jΣ(cn) = Tf(cn(x0, · · · , xn−1)) = f̌ �n (cn(x0, · · · , xn−1)) =
f(cn)(x0, · · · , xn−1) = jΣ′(f(cn)) = jΣ′ ◦ f(cn)

(d) µΣ ◦ TjΣ(xϕy) = µΣ(xxϕy(x0, · · · , xn−1y)) =
xϕy(x0, · · · , xn−1)[x0|x0, · · · , xn−1|xn−1] = xϕy = idTΣ(xϕy)

(e) f+ = (jΣ′ ◦ f)[ ⇔ f+] = jΣ′ ◦ f

(f) h−(xϕ(x0, · · · , xn−1)y) = ȟ(ϕ(x0, · · · , xn−1)) = µΣ′′(xϕ(x0, · · · , xn−1)y)
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(g) (h • k)] = (ȟ �n ◦k]n)n∈N = µΣ′′ ◦ Th] ◦ k]

(h) (f ◦ g)+ = (jΣ ◦ f ◦ g)[ = (Tf ◦ jΣ′ ◦ f)[

(i) Th−◦jΣ′ = jΣ′′◦h− ⇒ µΣ′′◦Th−◦jΣ′ = µΣ′′◦jΣ′′◦h− ⇒ µΣ′′◦Th−◦jΣ′ =
h− ⇒ µΣ′′ ◦ Th− = h− ◦ µΣ′ �

Proposition 2.4 (+) and (−) are functors.

Proof.
∗ (+) is a functor:

(id(s)
Σ)+ =

def
(jΣ)[ = id(f)

Σ

f+ • g+ =
2.3g

(µΣ′′ ◦ Tf+] ◦ g+])[ =
2.3e

µΣ′′ ◦ T (jΣ′ ◦ f) ◦ jΣ′ ◦ g)[ =
2.3b

µΣ′′ ◦

T (jΣ′) ◦ Tf ◦ jΣ′ ◦ g)[ =
2.3d

Tf ◦ jΣ′ ◦ g =
2.3h

(f ◦ g)+

∗ (−) is a functor:

(idΣ)− = (( ˇidΣ)�n)n∈N = (idF (Σ)[n])n∈N

(h • k)− =
2.3f

µΣ′′ ◦ T (h • k)] =
2.3g

µΣ′′ ◦ T (µΣ′′ ◦ Th] ◦ k]) =
2.3b

µΣ′ ◦ TµΣ′′ ◦

T 2h] ◦ Tk] =
2.3f

µΣ′′ ◦ Th− ◦ Tk] =
2.3i

h− ◦ µΣ′ ◦ Tk] =
2.3f

h− ◦ k− �

Theorem 2.5 The (faithful) functor (+) is a left adjoint of the (faithful) func-
tor (−): η and ε are, respectively, the unit and the counit of the adjunction.

Proof. (Sketch)
∗ (+) is the left adjoint of (−). Is suficient to show the triangular identities:

(ε+Σ •η+
Σ)] =

2.3g
µΣ ◦Tε]Σ ◦η

]
Σ =

2.1c
µΣ ◦T (idΣ)◦η]Σ =

2.3a
µΣ ◦TjΣ =

2.3d
idTΣ ⇒

ε+Σ • η+
Σ = idΣ

ε−Σ ◦ η−Σ =
2.3f

µΣ ◦Tε]Σ ◦ ηTΣ =
2.1c

µΣ ◦T (idΣ) ◦ ηTΣ =
2.1c

µΣ ◦T (idΣ) ◦TjΣ =
2.3a

µΣ ◦ TjΣ =
2.3d

idTΣ

∗ (+) is faithful. Lets f and g ∈ Ss(Σ,Σ′):
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If for all cn ∈ Σ, f+(cn) = g+(cn) = c′n(x0, · · · , xn−1), then, for all cn ∈ Σ,
f(cn) = g(cn).

∗ (−) is faithful. Let f and g ∈ Sf (Σ,Σ′):

If for all cn ∈ Σ, f−(cn) = g−(cn) = ϕ(x0, · · · , xn−1), then, for all cn ∈ Σ,
f(xcny) = g(xcny) = xϕy. �

The above Theorem immediately yields the:

Corollary 2.6 (a) The functor (+) preserves colimits and the functor (−)
preserves limits.
(b) Both the functors (+) and (−) reflect epimorphisms and monomorphisms.

We finish this section stating the following result.

Proposition 2.7 Let h ∈ Sf (Σ,Σ′):
(a) If h− is a Ss-epimorphism, then h is Sf -epimorphism.
(b) h is a Sf -monomorphism if and only if h− is a Ss-monomorphism.
(c) If h is an Sf -isomorphism, then “h ∈ Ss”, i.e. there is a (unique) Ss-
(iso)morphism f such that h = f+; in particular, h is regular.
(d) If h is a Sf -section, then h is regular and if g • h = id for some Sf -
morphism g that is regular over the “image signature of h” (i.e. the signature
whose connectives effectively occur in the image of some hn, n ∈ N), then
“h ∈ Ss”.

Proof.
(a) h− ∈ Ss(Σ,Σ′) is a Ss-epimorphism iff for all ψ ∈ F (Σ′), exists

ϕ ∈ F (Σ), such that h−(xϕy) = xψy. Therefore, for definition (2.1), h(ϕ) = ψ.

(b) The prove follows by induction on complexity. Note that h(cn) =
h(c′n) ⇔ h−(xcny) = h−(xc′ny). So, h is Ss − monomorphism iff h(cn) =
h(c′n) ⇒ cn = c′n iff h−(xcny) = h−(xc′ny) ⇒ cn = c′n. Suppose that if
compl(ϕ) < k and compl(ϕ′) < k, h−(xϕy) = h−(xϕ′y) ⇔ h(cn) = h(c′n),
for all cn that occurs in ϕ and all c′n that occurs in ϕ′. Then, if ψ =
cn(ϕ0, · · · , ϕn−1) and ψ′ = c′n(ϕ′0, · · · , ϕ′n−1), for formulas with complexity
less than k, h−(xψy) = h−(xψ′y) iff h−(xcny)(h−(xϕ0, · · · , ϕn−1y)) =
h−(xc′ny)(h

−(xϕ′0, · · · , ϕ′n−1y)) iff h(cn)(h−(xϕ0, · · · , ϕn−1y)) =
h−(c′n)(h−(xϕ′0, · · · , ϕ′n−1y)) iff h(cn) = h−(c′n) and for all 0 ≤ i < n, h−(ϕi) =
h−(ϕ′i).
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(c) If h ∈ Sf (Σ,Σ′) is a isomorphism, then exists k ∈ Sf (Σ′,Σ) such that

k • h = id
(f)
Σ and h • k = id

(f)
Σ′ . So, the complexity of the formulas in F (Σ) or

F (Σ′) need to be preserved by k•h and h•k respectively. If h or k are not regu-
lar, then the composite of then are regular too, and exists a connective c1 ∈ Σ1

such that h(c1) = x0 or exists a connective k ∈ Σ′1 such that k(c1) = x0. So,
for this fixed c1, k •h(c1) = x0 or h •k(c1) = x0. Thus, for absurd, h and k are
regular morphisms. In other hand, if h or k increases the complexity, h•k and
h • k will increases the complexity too. Thus, h is not a isomorphism. Finally,
since isomorphism h preserves complexity, for all cn ∈ Σn, exists c′n ∈ Σ′n such
hat h(c) = c′(x0, · · · , xn−1). Fix f ∈ Ss(Σ,Σ′) defined by f(cn) = c′n, then
h = f+.

(d) Analogously, if h ∈ Sf (Σ,Σ′) is a section, exists k ∈ Sf (Σ′,Σ) such

that k • h = id
(f)
Σ and the complexity also need to be conserved as above. If

g • h = id(s), as above in item (c), g(h(c1)) needs to be equal to c1, for all c1

in the “image” of h. �

3 The monad and its properties

Clearly, T = (−) ◦ (+) and it is a faithful functor. Let T = (T, η, µ) be the

monad (or triple) associated to the adjunction (η, ε) : Ss
(+)

�
(−)
Sf .

Proposition 3.1 The functor T reflects isomorphisms (respectively: monomor-
phisms, epimorphisms).

Proof. First remark that, for each signature Σ and n ∈ N, (ηΣ)n : Σn �
F (Σ)[n] establish a bijection between Σn and {θ ∈ F (Σ)n : compl(θ) = 1}.
Now let f : Σ −→ Σ′ a Ss-morphism such that T (f) is a Ss-isomorphism
(respectively: a Ss-monomorphism, a Ss-epimorphism). Then, for each n ∈ N,
f̂�n: F (Σ)[n] −→ F (Σ′)[n] is a bijection (respectively: a injection, a surjec-
tion) and, as compl(f̂(θ)) = compl(θ) for each θ ∈ F (Σ), f̂�n restricts to a bijec-
tion (respectively: a injection, a surjection) between {θ ∈ F (Σ)[n] : compl(θ) =
1} and {θ′ ∈ F (Σ′)[n] : compl(θ′) = 1}. Finally, as ηΣ′ ◦ f = T (f) ◦ ηΣ, we
conclude that fn : Σn −→ Σ′n is a bijection (respectively: a injection, a sur-
jection), for each n ∈ N , as we need. �

Proposition 3.2 The functor T preserves directed colimits (i.e., colimits of
diagrams over upward directed posets). More explicitly, let (I,6) be an up-
ward directed poset and D : (I,6) −→ Ss : i 7→ Σi be a diagram in Ss;
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(Σ, (Σi
αi→ Σ)i∈I) denotes the colimit of D in Ss; (Σ′, (T (Σi)

α′i→ Σ′)i∈I) be the

colimit of T ◦ D in Ss; (S, (F (Σi)
βi→ S)i∈I) denotes the colimit of (̂ ) ◦ D in

the category Set, then:
(a) The canonical function S → F (Σ), denoted k : colimi∈IF (Σi) −→
F (colimi∈IΣi), i.e. the unique function such that k ◦ βi = α̂i, i ∈ I, is a
bijection.
(b) The canonical Ss-morphism can : colimi∈IT (Σi) −→ T (colimi∈IΣi), i.e.
the unique Ss-morphism such that can◦α′i = T (αi), i ∈ I, is a Ss-isomorphism.
It is given by sequence of bijections

cann : colimi∈I(F (Σi)[n]) −→ F (colimi∈IΣi)[n], n ∈ N

obtained from the “restrictions” of the canonical bijection k just above.

Proof. (Sketch) For a proof of item (a) we apply a “global reasoning”: we
consider formula algebras and apply induction on complexity of formulas. For
(b): we extract “local” information from the result is (a), i.e., we consider
convenient “restrictions” to the subsets F (Σ)[n], n ∈ N. �

The same technique of proof in the Proposition above gives us the Theorem
below:

Theorem 3.3 Let T = (T, η, µ) be the monad associated to the adjunction

(η, ε) : Ss
(+)

�
(−)
Sf (i.e., µ = (+)ε(−)) is such that Kleisli(T ) = Sf . Moreover,

the functors (+) and (−) are precisely the canonical functors associated to the

adjunction of the Kleisli category of a monad. More explicitly: given (Σ
f−→

Σ′
f ′−→ Σ′′) in Sf , then f ′ • f = (µΣ′′ ◦ T (f ′]) ◦ f ])[ ,i.e., we have in Ss:

(Σ
f]−→ T (Σ′)

(f̌ ′�n)
n∈N−→ T (Σ′′)) =

(Σ
f]−→ T (Σ′)

T (f ′])−→ T ◦ T (Σ′′)
µΣ′′−→ T (Σ′′)).

Proof. This follows directly from item (g) in Lemma 2.3 �

Corollary 3.4 The category Sf has colimits for any (small) diagram “in Ss”,
i.e., given I a small category and a diagram D : I −→ Ss, the category Sf
has a colimit for the diagram (+) ◦D : I −→ Sf . In particular, Sf has all
(small) coproducts.
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Remark 3.5 Let Lf be the category of (Tarskian) logics and flexible signa-
ture morphisms that induces consequence relations preserving functions on the
formula algebras. Then there is an obvious forgetful functor Uf : Lf −→ Sf ,
and it has left and right adjoints, then Uf preserves limits and colimits. As Uf
also “lift” limits and colimits, then given a small category I, Lf is I-complete
(respectively, I-cocomplete) if and only if Sf is I-complete (respectively, I-
cocomplete). Thus the Corollary above entails that Lf has colimits for any
(small) diagram “in Ls”, in particular, it has “unrestricted fibrings” (= co-
products).

4 Final remarks and future works

In the present work we have provided a detailed account on two categories
of signatures considered by logicians that works with propositional logics.

In the sequence of works, [2], [3], [4] is proven that the set of (Tarskian)
logics defined over a given signature has a natural structure of algebraic lat-
tice; the category of (Tarskian) logics and strict signature morphisms that
induces consequence relations preserving functions on the formula algebras is a
ω-locally presentable category ([1]); the category of Blok-Pigozzi algebraizable
logics ([6]) and strict signature morphisms that induces consequence relations
and algebraizing pairs preserving functions on the formula algebras is a rela-
tively complete ω-accessible category ([1]).

In [18], a sequel of the present work, we will focus on categories of propo-
sitional logics: (i) analyzing categories previously defined in other papers; (ii)
presenting new (and more suitable) categories of logics. In there, we consider
(finitary, propositional) logics through the original use of Category Theory:
the study of the “ sociology of mathematical objects”, aligning us with a re-
cent, and growing, trend of study logics through its relations with other logics
(e.g. process of combinations of logics as fibring [16] and possible translation
semantics [12]). So will be objects of study the classes of logics, i.e. categories
whose objects are logical systems (i.e., a signature with a Tarskian consequence
relation) and the morphisms are related to (some concept of) translations be-
tween these systems. This provides the first steps of a project of considering
categories of logical systems satisfying simultaneously certain natural require-
ments (it seems that in the literature ([2], [3], [4], [8], [9], [10], [11], [15]) this
is achieved only partially): (i), (ii), (iii) and (iv).
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[1] J. Adámek, J. Rosický, Locally Presentable and Accessible Cat-
egories, Lecture Notes Series of the LMS 189, Cambridge University
Press, Cambridge, Great Britain, 1994.

[2] P. Arndt, R. A. Freire, O. O. Luciano, H. L. Mariano, Fibring and Sheaves,
Proceedings of IICAI-05, Special Session at the 2nd Indian International
Conference on Artificial Intelligence, Pune, India, 2005.

[3] P. Arndt, R. A. Freire, O. O. Luciano, H. L. Mariano, On the
category of algebraizable logics, CLE e-Prints vol.6 n.1, (2006),
http://www.cle.unicamp.br/e-prints.

[4] P. Arndt, R. A. Freire, O. O. Luciano, H. L. Mariano, A global glance on
categories in Logic, Logica Universalis 1(1) (2007), 3–39.
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