
South American Journal of Logic

Vol. 4, n. 2, pp. 385–406, 2018

ISSN: 2446-6719

On the Uncomputability of Partial Meet
Contraction for Linear-Time Temporal Logic

Paulo T. Guerra and Renata Wassermann

Abstract

The AGM theory of belief revision has been successfully applied to
families of logics satisfying certain assumptions, as being compact, for
example. In this work we discuss some issues related to the application
of the AGM paradigm to temporal logics. We focus on the linear-time
temporal logic (LTL) and we show that the simple definition of an AGM
partial meet contraction for sets of LTL formulas is an undecidable prob-
lem. We discuss possible ways to address this problem and show that
under certain restrictions, it is possible to correctly define an operator of
partial meet contraction.

Keywords: Belief revision, Computability, Linear-time Temporal Logic.

Introduction

The AGM paradigm [2] is a theory about how idealized rational agents should
change their beliefs when receiving new information. We focus here in the
operation of contraction, which consists in removing a formula from the agent’s
beliefs by rationally choosing a subset of the original beliefs that does not imply
the specified sentence. This is important, for example, when an agent realizes
that some of its beliefs are not true.

Although originally developed for propositional logic, AGM paradigm has
been successfully adapted to other formalisms, as Description Logic [8, 20]
among others [23]. However, most the known generalizations of AGM rely on
the underlying logic being compact.

Recent works as [10] and [19] investigate the application of the AGM
paradigm on non-compact logics, such as temporal logics. In [10] the authors
propose new set postulates to characterize change operations over temporal
beliefs. In [19], the authors explore a new construction characterized by the

386 P. T. Guerra and R. Wassermann

classical AGM postulates that while the classical approach employs remainders
of the belief being removed, it uses its complements.

In this work we investigate why works as [10, 19] needed to avoid the
classical approach of partial meet contraction when dealing with non-compact
logics. The primary goal of this work is to investigate whether partial meet
construction [2] can be applied to temporal logics. We look specifically into
the problem of how to define contraction operators based on the partial meet
for LTL. We show that, given a set of LTL formulas B and a LTL formula α,
verifying whether there exists a maximal subset of B that does not imply α
(a remainder set) is in general undecidable. This is a crucial step for partial
meet constructions, hence we explore restrictions on the input for which the
remainder sets can be computed. Although we focus on LTL for the sake
of clarity, the undecidability result also holds for other temporal or dynamic
logics, such as CTL [5] and PDL [7, 13].

The rest of this paper is organized as follows: in the next section, we
provide the needed background in LTL, partial meet contraction and the type
of automata we will use in the proof of the undecidability. The third section is
devoted to the undecidability result and the fourth to exploring restrictions on
the language for avoinding the undecidability. In the last section, we conclude
and point towards future work.

1 Preliminaries

1.1 Linear-time Temporal Logic

Temporal logics are the basis of the area of formal system verification. In
formal verification, a system is described in a formal language and then checked
against a set of desired properties, usually described in some temporal logic
formalism.

Linear-time Temporal Logic [18, 16], or LTL for short, is a temporal logic
where the future is represented by a linear sequence of states, extending in-
finitely into the future.

In LTL, there are temporal connectives to express statements about events
in time. The main temporal connectives are X (“next state”), F (“some future
state”), G (“globally in the future states”), U (“true until”) and R (“released
by”). The formal syntax of a LTL formula is given by the following BNF

φ ::= ⊥ | p | ¬φ | φ ∨ φ | Xφ | φUφ | φRφ

where > ≡ ¬⊥, φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2), φ1 → φ2 ≡ ¬φ1 ∨ φ2, Fφ ≡ >Uφ and
Gφ ≡ ⊥Rφ.

On the Uncomputability of Partial Meet Contraction for LTL 387

The semantic of LTL is given through a labeled transition system that
finitely describes the sequence of possible states.

Definition 1.1 A LTL model is a labeled transition systemM = 〈AP, S, s0, R, L〉
where

1. AP is a countable set of propositional atoms,

2. S is a finite set of states,

3. s0 is the initial state

4. R ⊆ S × S is a transition relation such that R is serial (left-total) and
univocal (functional)1 on S,

5. L : AP → P(S) is a labeling function that indicates in which states a
proposition holds.

Figure 1 illustrates a state diagram for a LTL model defined as M = 〈{p, q},
{s0, s1}, s0, {(s0, s1), (s1, s1)}, L〉 where L(p) = {s0, s1} and L(q) = {s1}.

p p, q

s0 s1

Figure 1: Example of a LTL model.

Although the functional property in Definition 1.1 turns this LTL model
slight more restrictive than the usual Kripke structures, the Snipping Lemma
[9] shows that such model exists for any satisfiable LTL formula. This definition
of LTL model yields that each LTL model has an unique computation path,
being a useful property for the proofs of this work.

Definition 1.2 Let M = 〈AP, S, s0, R, L〉 be a LTL model. A computation
path π = s0 → s1 → ... in M is a sequence of states of M such that, for all
i ≥ 0, (si, si+1) ∈ R.

The satisfaction relation |= for LTL models is defined as follows.

1R is serial iff for all a ∈ S, (a, b) ∈ R. R is univocal iff for all {(a, b), (a, c)} ⊆ R, b = c.

388 P. T. Guerra and R. Wassermann

Definition 1.3 Let M = 〈AP, S, s0, R, L〉 be a LTL model and s ∈ S a state
of M. The satisfaction relation M, s |= φ is defined by structural induction on
φ as follows

1. M, s 6|= ⊥

2. M, s |= p iff s ∈ L(p)

3. M, s |= ¬φ iff M, s 6|= φ

4. M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2

5. M, s |= Xφ iff (s, s′) ∈ R and M, s′ |= φ

6. M, s |= φ1Uφ2 iff in the path fragment π = s0 → s1 → ... , where s = s0,
holds that for some sn, M, sn |= φ2 and for all i < n, M, si |= φ1.

7. M, s |= φ1Rφ2 iff in the path fragment π = s0 → s1 → ... , where s = s0,
holds that either (a) M, sn |= φ1 for some sn and M, si |= φ2 for all
i ≤ n, or (b) M, sn |= φ2 for all i ≥ 0.

If M, s0 |= φ, we say that M satisfies φ, denoted by M |= φ. The model
M in Figure 1, for example, satisfies the formulas p ∧ Xq, pUq and FGq, but
not q ∧Xp or Gq.

1.2 Remainder sets and partial meet contraction

Partial meet is a construction for contraction operators proposed by Alchourrón,
Gärdenfors and Makinson [2]. This construction is based on the concept of a
remainder set: given a belief set and an input belief, a remainder set is the set
of all maximal subsets of the belief set that do not imply the given input.

Definition 1.4 [2] Let K be a set of formulas, α a formula and Cn a conse-
quence operator, the remainder set K⊥α of K and α is defined as follows. For
any set X, X ∈ K⊥α if and only if

1. X ⊆ K,

2. α 6∈ Cn(X),

3. for all Y such that X ⊂ Y ⊆ K, α ∈ Cn(Y).

The partial meet construction also makes use of the concept of selection
function, a way of picking out the best elements of a remainder set according
to an intended selection criterion.

On the Uncomputability of Partial Meet Contraction for LTL 389

Definition 1.5 [2] Let K be a set of formulas and α a formula, a selection
function for K e α is a function γ such that

1. If K⊥α 6= ∅, then ∅ 6= γ(K⊥α) ⊆ K⊥α,

2. Otherwise, γ(K⊥α) = {K}.

A partial meet contraction is then obtained by taking the intersection of
the best elements picked out by a selection function.

Definition 1.6 [2] Let K be a set of formulas, for any sentence α, the op-
eration of partial meet contraction over K and α determined by a selection
function γ is given by

K −γ α =
⋂
γ(K⊥α)

1.3 Linear Bounded Automaton

A linear bounded automaton (LBA) is a restricted type of Turing machines
(TM) wherein the tape head in not allowed to move off the portion of the tape
containing the input [21]. Proposed by [17], LBAs approximate Turing ma-
chines from actual computers, modeling the computation process with limited
memory resources.2

Definition 1.7 A linear bounded automaton (LBA) is a 7-tuple 〈Q,Σ,Γ, δ, q0, qa, qr〉,
where

1. Q is a finite set of states,

2. Σ is a finite input alphabet,

3. Γ is a finite tape alphabet, where Σ ⊆ Γ,

4. δ : Q′ × Γ → Q × Γ × {L,R} is the transition function, where Q′ =
Q \ {qa, qr}

5. q0 ∈ Q is the start state,

6. qa ∈ Q is the accept state, and

7. qr ∈ Q is the reject state, where qa 6= qr.

2Definitions 1.7-1.10 are based on those given in [21] for Turing machines, with minor
adaptations to address LBA.

390 P. T. Guerra and R. Wassermann

and that δ is defined such that the LBA could not move its head off the positions
occupied in the tape by the input.3

Figure 2 illustrates a state diagram of a LBA M formally defined as M =
〈{q0, qa, qr}, {a, b}, {a, b}, δ, q0, qa, qr〉 where δ(q0, a) = (qa, a, R), δ(q0, b) =
(qr, b, R) and undefined otherwise.

q0 qa

qr

a→ a,R

b→
b, R

Figure 2: Diagram of a LBA

During a computation of a LBA, several changes may occur in the tape
content, head location or the control state. These items define a configuration
of a LBA and are usually represented by a single string, as given in Definition
1.8.

Definition 1.8 Let M = 〈Q,Σ,Γ, δ, q0, qa, qr〉 be a LBA and C = c1c2...cm a
string over the alphabet Q ∪ Γ, we say that C is a valid configuration of M if
and only if there is a ci such that ci ∈ Q and for all i 6= j, cj ∈ Γ.

For example, q0aa and aqaabb are valid configurations of M in Figure 2,
but not q0qrb or abab.

A computation step of a LBA is a transition between two configurations
such that one configuration yields the other according to its transition function.

Definition 1.9 Let M = 〈Q,Σ,Γ, δ, q0, qa, qr〉 be a LBA and Ci and Cj two
valid configurations of M , we say that Ci yields Cj if, for a, b, c ∈ Γ, u, v ∈ Γ∗

and qi, qj ∈ Q, one of the following conditions holds:

1. Ci = uqiav, Cj = ubqjv and δ(qi, a) = (qj , b, R).

2. Ci = uaqibv, Cj = uqjacv and δ(qi, b) = (qj , c, L).

The start configuration of a LBA M on input w is q0w. The accepting
configuration is a configuration in which the state symbol is qa. The rejecting

3This can be done by reserving two symbols in Σ to represent the left and right endmarkers
of input such that the transition function may not overwrite the endmarkers with a different
symbol, move to the left of the left endmarker, or move to the right of the right endmarker.

On the Uncomputability of Partial Meet Contraction for LTL 391

configuration is a configuration in which the state symbol is qr. Accepting
and rejecting configurations are halting configurations and do not yield further
configurations.

Definition 1.10 Let M be a LBA and w an input for M , a computation of
M on w is a sequence of configuration C1, C2, ..., Cl where

1. C1 is a starting configuration,

2. Each Ci yields Ci+1.

If Cl is an accepting configuration, we say that M accepts w. If Cl is a
rejecting configuration, we say that M rejects w. In both cases, we say that
M halts on w.

An interesting property of LBA is that, in contrast to the general case for
Turing machines, the acceptance problem for LBA is decidable. Due to the
limited number of distinct configurations of a LBA for an input, to decide
whether a LBA accepts an input can be done in a finite amount of time. Since,
for a LBA M with q states and g symbols in the tape alphabet, there are
exactly qngn distinct configurations for an input w of size n, if M accepts w it
must take less than qngn steps to reach an accepting configuration.

However many other undecidable problems for Turing machines remain
undecidable for LBA. This is the case for the emptiness problem of LBA, that
consists in determining whether a given LBA accepts any input.

We define the language of a LBAM as the set L(M) = {w ∈ Σ∗ |M accepts w}.
Let ELBA be the set of all LBA with an empty language,

ELBA = {〈M〉 | M is a LBA where L(M) = ∅}

The test of membership for ELBA is undecidable problem4.
In the next section, we establish the undecidability of our main problem,

computing remainder sets for LTL, based on a reduction to the emptiness
problem of LBA. We show that if our problem is decidable, we could decide
whether any LBA M belongs to ELBA, a contradiction.

2 Undecidability of partial meet contractions for LTL

In this section, we show that it is impossible to define an operator of partial
meet contraction for LTL belief bases due to the undecidability of the emptiness
problem for K⊥α.

4A didactic proof for this can be seen in [21].

392 P. T. Guerra and R. Wassermann

Definition 2.1 Let K be a set of LTL formulas and α ∈ LLTL, the empti-
ness problem for K⊥α, EK⊥α, consists in determining whether there is any
remainder set for K and α. We formally define EK⊥α as

EK⊥α = {〈K,α〉 | K⊥α = ∅},

where K⊥α = ∅ if and only if 〈K,α〉 ∈ EK⊥α.

To prove that EK⊥α is undecidable, we give a reduction from ELBA using
the concept of LBA-equivalent formulas.

2.1 Construction of LBA-equivalent formulas

A LBA-equivalent formula is a LTL formula φM
n that encodes a linear bounded

automaton M in the sense that each model for φM
n describes a computation of

M on inputs of n symbols.
For clarity, we first define a function σ : Σ∗ → LTL to convert arbitrary

strings into LTL formulas,

σ(c0c1...cm) =

m∧
i=0

Xici, where ci ∈ Σ∗.

For example, σ(abca) = a ∧Xb ∧XXc ∧XXXa, where Σ = {a, b, c}.
Let M = 〈Q,Σ,Γ, δ, q0, qa, qr〉 be a LBA, # be a symbol that neither belongs

to Q or Γ, and AP = Q ∪ Γ ∪ {#} be a set of propositional atoms, we build
φM
n over AP based on all possible configurations C1, C2, ..., Cl of M and all

inputs with exactly n symbols. The main goal is to capture basic aspects
of the computation of M , such as initial and halting configurations and its
intermediate transitions.

Definition 2.2 Let M be a LBA and C1, C2, ..., Cl stand for all possible con-
figurations of M with size n + 1. We define Π as the smallest set of LTL
formulas where

1.
∨
β∈∆

β ∈ Π, where ∆ = {σ(#q0w#) | w ∈ Σ∗ and w has exactly n

symbols} (I)

2. For each Ci in C1, C2, ..., Cl,

- If Ci = uqv, where u, v ∈ Γ∗, q ∈ {qa, qr}, then

G(σ(#uqv#)→ σ(#uqv#uqv#)) ∈ Π (H)

On the Uncomputability of Partial Meet Contraction for LTL 393

- If Ci = uqav and δ(q, a) = (r, b, R), where a, b ∈ Γ, u, v ∈ Γ∗, q, r ∈ Q,
then

G(σ(#uqav#)→ σ(#uqav#ubrv#)) ∈ Π (R)

- If Ci = ubqav and δ(q, a) = (r, c, L), where a, b, c ∈ Γ, u, v ∈ Γ∗, q, r ∈ Q,
then

G(σ(#ubqav#)→ σ(#ubqav#urbcv#)) ∈ Π (L)

3. G((
∨

p∈AP
p) ∧ (

∧
p∈AP

(p→ (
∧

q∈AP\{p}
¬q)))) ∈ Π (X)

The formula φMn is then defined as the conjunction of all formulas in Π

φMn =
∧
ψ∈Π

ψ.

We call φMn the LBA-equivalent formula to M on inputs of size n.

The clause (I) ensures that each modelM that satisfies φM
n encodes a valid

initial configuration of M in its initial sequence of states. The clause (H)
ensures that if Ci is a halting configuration, then σ(#Ci#) must occur infinitely
often in M. The clauses (R) and (L) ensure that, if a configuration Ci yields
Cj , all path fragments in M that satisfies σ(#Ci#) are immediately followed
by states that satisfies σ(#Cj#). Finally, the clause (X) ensures that only one
proposition holds in each state5.

Suppose, for example, that φM
2 is the LBA-equivalent formula to the au-

tomaton M in Figure 2 on inputs of 2 symbols, according to Definition 2.2. By
clause (I) in φM

2 , all models that satisfy φM
2 must satisfy

σ(#q0aa#) ∨ σ(#q0ab#) ∨ σ(#q0ba#) ∨ σ(#q0bb#)

If a model M satisfies φM
2 , its first states must encode a valid initial configu-

ration of M . Figure 3 illustrates a possible initial sequence of states for M.

. . .# q0 a b #

Figure 3: Possible initial sequence of states of M

Since M also satisfies (R) in φM
2 , σ(#q0ab#) holds in the initial state of M

and δ(q0, a) = (qa, a, R) is a transition in M , the model M must also satisfy

394 P. T. Guerra and R. Wassermann

...# q0 a b # a qa b #

Figure 4: Following states in M

σ(#q0ab#aqab#) in its initial state. Figure 4 illustrates what should be the next
sequence of states in M.

The configuration aqab is an accepting configuration of M . Since M sat-
isfies the clauses (H) in φM

2 , this encoding must repeat infinitely often in M.
This could be achieved by defining a loop on this set of states.

q0 a b # a qa b

Figure 5: Diagram of a model M for φM
2 .

The model shown in Figure 5 is a model of φM
2 that encodes an accepting

computation history for M with input ab.

2.2 Undecidability of EK⊥α

We show in Lemma 2.3 that the acceptance of an input by M is directly related
to the satisfaction of a formula φM

n ∧ Fqa.

Lemma 2.3 Let M = 〈Q,Σ,Γ, δ, q0, qa, qr〉 be a LBA and w an input for M
of n symbols,

M accepts w if and only if φMn ∧ Fqa is satisfiable.

Proof.

From left to right. If M accepts an input w, then there is a sequence
of configurations C1, C2, ..., Cl that M goes through as it accepts the
input w. Let C = #C1#...#Cl# be a concatenation of all C1, C2, ..., Cl
each one separated by the symbol # 6∈ Q ∪ Γ. We build a model M =
〈AP, S, s0, R, L〉 from C such that

– AP = Γ ∪Q ∪ {#},
– S = {s0, s1, ..., s|C|},
– R = {(si, si+1) | 0 ≤ i < |C|} ∪ {(s|C|, s|C|−(n+1))}

5This clause is important in the later sections to build the an unique equivalence between
LTL model and computation history.

On the Uncomputability of Partial Meet Contraction for LTL 395

– for all si ∈ S, L(si) = {ci}, where ci is the i-th symbol of C.

Since M accepts w, we have that qa is a symbol of C. By construction,
si ∈ L(qa) for some si ∈ S and it can be reached from the initial state,
thus it holds that M |= Fqa. Let n be the number of symbols of w, as
C1 is a valid initial configuration, the modelM satisfies the clause (I) of
φM
n . By construction, each state ofM is related to one single proposition,

thus M satisfies the clause (X) of φM
n . Since each Ci+1 legally follows

from Ci, for each state of M either σ(#Ci#) does not hold on it or it is
also true that σ(#Ci#Ci+1#). In both cases, the implications in clauses
(R) or (L) are globally satisfied in M. Finally, since Cl is an accepting
configuration, the transition (s|C|, s|C|−(n+1)) ∈ R ensures the satisfiability

of the clause (H). Thus, M |= φM
n and hence φM

n ∧ Fqa is satisfiable.

From right to left. If φM
n ∧ Fqa is satisfiable, then there is a model M =

〈AP, S, s0, R, L〉 such that M |= φM
n ∧ Fqa. As M |= Fqa, there is a

computation path π = s0 → s1 → · · · → sj → · · · → sk → . . . such that
si ∈ L(qa) for some i ≥ 0. Let sj be the first state in this path such
that sj ∈ L(qa) and sk the first following state such that sk ∈ L(#). Let
C = c1c2...ck be a string such that si ∈ L(ci), for 1 ≤ i ≤ k. Breaking
C according to the delimiters #, we obtain a sequence of configurations
C1, C2, ..., Cl.It remains to show that this is an accepting computation
history for M for some input of n symbols. By construction of φM

n ,
each Ci+1 must legally follow from Ci, since the clauses (R) and (L)
were defined from the function δ of M . According to our choice, Cl
has qa as state symbol and by clause (H) it should be a valid accepting
configuration. Finally, by clause (I) of φM

n , C1 has q0 as state symbol
and it is followed by a string w = w1...wn composed only by symbols of
the input alphabet. Thus, C is an accepting computation history of M
accepting w.

�

We show in Theorem 2.4 that EK⊥α is undecidable. The undecidability re-
sult comes from the fact that if EK⊥α is decidable, then the emptiness problem
for LBA would also be decidable, a contradiction.

Theorem 2.4 EK⊥α is undecidable.
Proof. This proof is by reduction from ELBA. Suppose that the TM R
decides EK⊥α. Construct a Turing machine S that decides ELBA as follows.

396 P. T. Guerra and R. Wassermann

S = “On input 〈M〉, where M is a LBA:

1. Run R on input 〈K,α〉, where
K = {φM

i | i ≥ 0} and α = ¬Fqa.

2. If R accepts, accept. If R rejects,
reject.”

Every element of K⊥¬Fqa must be a singleton, since for all φM
i 6= φM

j ,
there is no LTL model that simultaneously satisfies clauses (I) and (X) in both
φM
i and φM

j .

If R rejects 〈K,α〉, then there is a {φM
i } ∈ K⊥¬Fqa and a model M that

satisfies φM
i and Fqa. By Lemma 2.3, it holds that the LBA M accepts an

input of size i, and thus the language of M is not empty.
If R accepts 〈K,α〉, then K⊥¬Fqa = ∅. So, for all possible K ′ = {φM

i },
each LTL modelsM eitherM 6|= φM

i orM |= ¬Fqa. Since there is no φM
i such

that φM
i ∧ Fqa is satisfiable, by Lemma 2.3 there is no input accepted by M ,

thus the language of M is empty.
If R is a decider for EK⊥α, then S is a decider for ELBA. However, the

existence of S contradict the undecidability of ELBA, so it must be the case
that EK⊥α is undecidable. �

We have the following corollary as a consequence of Theorem 2.4.

Corollary 2.5 The AGM partial meet contraction is uncomputable for sets of
LTL formulas.

This result comes from the fact that, to define an AGM partial meet con-
traction for LTL, we need to check whether the set of remainder sets is empty,
thus for LTL this construction would depend on an undecidable problem.

3 Restricted LTL Contraction

Although Theorem 2.4 shows that in general, constructing a partial meet con-
traction for LTL is not feasible, we now show that under certain restrictions,
it is still possible to correctly define such an operator.

A possible restriction to this problem is to constrain it only to finite sets of
temporal formulas. In this case, compactness follows trivially and monotonicity
would be enough to ensure the correct definition of a partial meet contraction
[11]. In the case of the representation of systems using temporal logics, however,
infinite sets of formulas may appear even in fairly simple practical applications.
Consider, for example, the model in Figure 6. The set {p,Xp,XXp, ...} is a

On the Uncomputability of Partial Meet Contraction for LTL 397

very intuitive description of this system. Therefore, we do not want to pose
such a strong restriction.

We show in what follows, that it is possible to define an operator of partial
meet contraction with weaker restrictions and that could be used even for
infinite sets of beliefs.

3.1 Restriction over K

Our restriction on K consists in constraining the problem to belief bases that
could be defined by a model.

Definition 3.1 Let M be a LTL model, a belief base K is defined by a model
M if

K = {φ ∈ LLTL | M |= φ}

This representation is similar to that used by [14] where a belief base B
is an infinite set of formulas characterized by single propositional formula ψ
where B = {φ | ψ ` φ}.

p p, q

s0 s1

Figure 6: Example of a model.

3.2 Restriction over α

We restrict the input formula according to the type of temporal property it
represents. In formal verification, the correctness of a system is ensured by
systematically checking whether a given model satisfies or not a set of desired
properties. Lamport [15] introduces two major class of properties, safety and
liveness. Alpern and Schneider [3] show that every linear-time property can
be written as an intersection of a safety and a liveness property. We then
investigate the contraction problem according to the class of property expressed
by the formula α.

One should notice that the restriction over α, alone, is not enough to ensure
that an operator of partial meet contraction always exists. In fact, the formula
α = ¬Fqa Theorem 2.4 is one of the simplest types of linear-time properties

398 P. T. Guerra and R. Wassermann

called invariants (Definition 3.2), nevertheless the problem is shown undecid-
able.

We investigate the decidability of the vacuity problem EK⊥α, assuming
restrictions in both K and α, when K is a belief base defined by a model and
α represents either an invariant, a safety property or a liveness property.6

3.3 Contraction of invariants

Invariants are properties expected to be true continuously in a model. An
invariant describes a condition that must be satisfied in all reachable states
of a model [4]. In LTL, invariants are expressed by formulas Gφ where φ is a
propositional formula.

Definition 3.2 Let M be a LTL models, a propositional formula ψ is an in-
variant in M if M |= Gψ.

To address the vacuity problem for invariants, we use the concept of un-
folding models. First, we need to define how to represent a model by what we
call frame encoding.

Definition 3.3 LetM = 〈AP, S, s0, R, L〉 be a LTL model, the frame encoding
dMe of M is a string uv+ such that

1. u = s0s1...sm−1 and v = smsm+1...sn, and

2. for all i < n, (si, si+1) ∈ R, and (sn, sm) ∈ R

The unfolding of a modelM is a bissimilar modelM′ such that, for dMe =
uv+, the frame encoding of M′ is dM′e = uvv+. This intuitively means an
“extraction” of states from the loop of M to the portion of states out of this
loop.

Definition 3.4 Let M be a LTL model and dMe = uv+ its frame encoding,
a model Mk is a k-unfold of M if

1. dMke = zv+, where |z| = |uvk|, and

2. M and Mk are bissimilar.

Theorem 3.5 shows that, for a belief base K defined by a model and a
formula α = Gφ representing an invariant, if φ is not a tautology, the remainder
set K⊥α is nonempty.

6Although invariants are a special case of safety properties, we choose to address it sepa-
rately given its importance in formal verification applications.

On the Uncomputability of Partial Meet Contraction for LTL 399

p p, q p, q

Figure 7: The 1-unfolding of M in Figure 1.

Theorem 3.5 Let M be a LTL model, K a belief base defined by M and
α = Gψ a LTL formula, where ψ is an invariant in M,

if 6|= ψ, then K⊥α 6= ∅.

Proof. Let Pα be the set of propositional atoms of α and M1 be an 1-
unfolding of M (This ensures that dM1e = uv+ and |u| > 0). We define a
models M′ from M1 such that S′ = S, R′ = R and, for B = {l | l= p or l=
¬p, p ∈ Pα e M |= l} and B′ an element of B⊥φ, L′ is a labeling function such
that

L′(p) =


L(p) \ {s0}, if p ∈ B and p 6∈ B′,
L(p) ∪ {s0}, if ¬p ∈ B and ¬p 6∈ B′,
L(p), otherwise.

The base K ′ = {φ ∈ K | M′ |= φ} belongs to K⊥α. By construction,
K ′ ⊆ K and φ 6∈ Cn(K ′), so α 6∈ Cn(K ′). It remains to show that there is no
formula β ∈ K such that β 6∈ K ′ and α 6∈ Cn(K ′ ∪ {β}).

If β = p or β = ¬p, since B′ ∈ B⊥φ, it holds that φ ∈ Cn(B′ ∪ {β}). As
we have Cn(B′) ⊆ Cn(K ′), also φ ∈ Cn(K ′∪{β}). By construction, Xφ ∈ K ′,
thus φ ∧Xφ ∈ Cn(K ′ ∪ {β}) and α = Gφ ∈ Cn(K ′ ∪ {β}).

As an induction hypothesis, lets assume that for the formulas β1 and β2 it
holds that φ ∈ Cn(K ′ ∪ {β1}) and φ ∈ Cn(K ′ ∪ {β2}).

If β = β1Rβ2, every model of β1Rβ2 satisfies β2. Since β2 ∈ Cn(β1Rβ2) and,
by induction hypothesis, φ ∈ Cn(K ′ ∪ {β2}), it holds that φ ∈ Cn(K ′ ∪ {β})
and then α = Gφ ∈ Cn(K ′ ∪ {β}).

If β = β1Uβ2, every model M′′ of β1Uβ2 satisfies either β2, or β1 ∧
X(β1Uβ2). By induction hypothesis, M′′ is a model of φ, thus holds that
φ ∈ Cn(K ′ ∪ {β}) and then α = Gφ ∈ Cn(K ′ ∪ {β}).

Therefore, for all β ∈ K, if β 6∈ K ′, then α ∈ Cn(K ′ ∪ {β}). So, there is
no set K ′′ such that K ′ ⊂ K ′′ ⊆ K and α 6∈ Cn(K ′′), thus K ′ ∈ K⊥α.

�

400 P. T. Guerra and R. Wassermann

3.4 Contraction of safety properties

Safety properties are generalizations of invariants where we can describe the
expected behavior of sequences of events in a model instead of analyzing each
state independently. Typical safety properties includes mutual exclusion and
deadlock freedom. In this sense, a safety property expresses that “something
(bad) will not happen” [15]. We address then the vacuity problem of K⊥α
when the input formula represents a safety property.

The formal definition of safety properties can be provided by means of
counterexamples since each trace that refutes a safety property has a finite
prefix that is a witness of the failure [3].

Definition 3.6 We say that π is a finite counterexample for α in M if π is a
finite path s0 → s1 → ...→ sn in M such that π |= ¬α.

Definition 3.7 A LTL formula α expresses a safety condition if and only if
for any LTL model M, if M 6|= α, then there is a finite counterexample for α
in M.

The definition stipulates that if a violation of a safety property occurs,
there is an identifiable point at which this can be recognized [3].

In order to define a remainder set, we make use of what we call α-suppression:
minimal changes in a model in order to introduce counterexamples to α.

Definition 3.8 Let M be a LTL model, a model M′ is an admissible α-
suppression of M if

1. dM′e = dMe = uv+

2. M′ 6|= α

3. For all p ∈ AP

(a) L′(p) = L(p) if p is not a subformula of α,

(b) for v = v0v1...vn, if vi ∈ L(p), then vi ∈ L′(p).

This definition intuitively means that a model M′ is an admissible α-
suppression of M if it can be build from M by changing its labeling function
only in those states out of the loop portion.

In Figure 8, M1 and M2 are examples of Gp-suppression in the model of
Figure 7, M3 is not since it violates both conditions 3(a) and 3(b).

Definition 3.9 Let K be a belief base defined by a model, we denote the set
of elementary formulas of K by EK , where

EK = {Xiφ ∈ K | φ = p or φ = ¬p, p ∈ AP and i ≥ 0}

On the Uncomputability of Partial Meet Contraction for LTL 401

p, q p, qM1 :

q p, qM2 :

p p qM3 :

Figure 8: Modifications in the model of Figure 7.

We say that a M′ is a minimal α-suppression of M if M′ 6|= α and maxi-
mally preserves the elementary formulas satisfied by M.

Definition 3.10 A model M′ is a minimal α-suppression of M if

1. M′ is an admissible α-suppression of M

2. there is no admissible α-suppressionM′′ ofM such that {φ ∈ EK | M′ |=
φ} ⊂ {φ ∈ EK | M′′ |= φ}

We show in Theorem 3.11 that, for a belief base K defined by a model
and formula α representing a safety property, if α is not a valid formula, the
remainder set K⊥α is nonempty.

Theorem 3.11 Let M be a LTL model, K a belief base defined by M and α
a LTL formula expressing a safety property,

if 6|= α, then K⊥α 6= ∅.

Proof.
Let M = {M′ | M′ minimal admissible α-suppression of Mk} where Mk

is the smallest k-unfolding ofM such that M is not empty7. For allM′ ∈M,
it holds that K ′ = {φ ∈ K | M′ |= φ} ∈ K⊥α.

By construction K ′ ⊆ K and α 6∈ Cn(K ′), so it remains to show that for
all β ∈ K, if β 6∈ K ′, then α ∈ Cn(K ′ ∪ {β}).

7Since α is a safety property and thus it has finite counterexamples, it is guaranteed that,
for some unfolding ofM, some an admissible change produces a model that does not satisfy α.

402 P. T. Guerra and R. Wassermann

Let dM′e = uv+, as M′ is an admissible change of some Mk, for all
formulas Xnφ ∈ K, where n > |u|, Xnφ belongs to K ′. (Since φ must hold in
some loop state of Mk and these states are bissimilar to those in the loop of
M′). We show that it also holds for n ≤ |u|.

Let β = Xnφ ∈ K where n = |u|, we show that for K ′′ = K ′∪{β}, if β 6∈ K ′,
then α ∈ Cn(K ′′). (Um ponto chave que todo modelo de K ′′ bissimulvel por
uma modificao admissvel M′′ de M tal que dM′e = dM′′e. Caso contrrio,
existe φ = p ou φ = ¬p tal que Xiφ ∈ K ′ e Xiφ 6∈ K ′, para algum i > |u| ou
p 6∈ Pα).

If β = Xnp or β = Xn¬p. Since K ′ ⊆ K ′′, all models of K ′′ must be
bissimilar to some model M′′ that fulfills items 1 and 2 of Definition 3.8 with
respect to M′. If M′′ 6|= α, the model M′′ is an admissible α-suppression to
Mk, since M′′ |= β and β ∈ EK , M′ can not be a minimal α-suppression of
Mk, a contradiction. Thus, must be the case whereM′′ |= α and α ∈ Cn(K ′′).

As an induction hypothesis, lets assume that for the formulas β1 and β2 it
holds that α ∈ Cn(K ′ ∪ {Xnβ1}) and φ ∈ Cn(K ′ ∪ {Xnβ2}).

If β = Xn(β1Rβ2), every model of Xn(β1Rβ2) satisfies Xnβ2, thus Xnβ2 ∈
Cn(β). Since, by induction hypothesis, α ∈ Cn(K ′ ∪ {Xnβ2}) and Cn(K ′ ∪
{Xnβ2}) ⊆ Cn(K ′′), it holds that α ∈ Cn(K ′′).

If β = β1Uβ2, every model M′′ of Xn(β1Uβ2) satisfies either Xnβ2, or
Xnβ1∧Xn+1(β1Uβ2). In both cases, ifM′′ is also a model for K ′, by induction
hypothesis, M′′ is a model of α. Thus, it holds that α ∈ Cn(K ′′).

Therefore, for all β ∈ K, if β 6∈ K ′, then α ∈ Cn(K ′ ∪ {β}). So, there is
no set K ′′ such that K ′ ⊂ K ′′ ⊆ K and α 6∈ Cn(K ′′), thus K ′ ∈ K⊥α.

�

4 Undecidability of partial meet for other logics

Undecidability of EK⊥α holds also for other temporal and modal logics, as
CTL [5] and PDL [7, 13].

For CTL, the result can be shown with the same proofs presented here for
LTL, only with minor changes in some definition to its correspondent form in
CTL. For example, a LBA-equivalent formula in CTL is given by the same
construction of Definition 2.2, except for the replacement of the temporal op-
erators X and G by AX and AG, respectively.

We can show that a LBA M accepts w if and only if the CTL formula
φM
|w|∧EFqa is satisfiable. This property can be used as in Theorem 2.4, replacing
¬Fqa by ¬EFqa, to show that EK⊥α is undecidable for CTL.

Similarly, we can show that EK⊥α is undecidable for PDL. In this case, the
construction of a LBA-equivalent formula is done by replacing the temporal

On the Uncomputability of Partial Meet Contraction for LTL 403

operators X and G by [π] and [π∗], respectively, where π is an arbitrary PDL
program.

We can show that a LBA M accepts w if and only if the PDL formula
φM
|w| ∧ 〈π∗〉qa is satisfiable. As before, this property can be used in a proof

similar to that of Theorem 2.4, replacing ¬Fqa by ¬〈π∗〉qa, to show that EK⊥α
is also undecidable for PDL.

5 Conclusions

We show that the emptiness problem of remainder sets is undecidable by a re-
duction from the emptiness problem of linear bounded automata. This result
implies that it is in general impossible to define an AGM partial meet contrac-
tion for sets of LTL formulas. This undecidability result is derived from the
lack of compactness in LTL and its implications on how to define the satisfi-
ability of sets of LTL formulas, which plays a central role on the definition of
remainder sets.

We discuss possible ways to address this problem and show that by lim-
iting the sets of LTL formulas to those defined by a model, and restricting
the input formulas to those representing safety properties, we can avoid the
undecidability result.

We show that, with the proposed restrictions, if the desired property is
satisfiable, it is possible to find at least one element of the remainder set and
then correctly perform partial meet contraction in LTL. We give a procedure
that makes use of the finite nature of counterexamples for safety properties in
order to find at least a possible candidate for the contraction result, even for
non-compact LTL bases.

Recently, Van Zee et al.[22] have presented a logic for revision of temporal
belief bases, together with a construction for revision based on the minimality
of models. One can see that they avoid undecidability by considering beliefs
only up to a certain point in time. A similar idea was proposed by Finger and
Wassermann [6], where instead of full model checking, a bounded check was
used. This corresponds to limiting the future and checking the models only up
to a certain time. Along with [10, 19], these results support our claim that,
despite the undecidability result, AGM theory could still be successfully ap-
plied to several domains involving temporal logic once we restrict the language
appropriately.

Future work includes exploring other constructions for contraction such
as safe [1] and kernel contractions [12], which are based on selecting minimal
subsets of the belief base implying the input, instead of the maximal subsets
not implying it.

404 P. T. Guerra and R. Wassermann

Acknowledgments.

The first author was funded by grant #2010/15392-3, São Paulo Research
Foundation (FAPESP). The second author was partially supported by the
Brazilian Research Council (CNPq) grant #447178/2014-8.

References

[1] Carlos Alchourrón and David Makinson. On The Logic of Theory Change:
Safe Contraction. Studia Logica, 44:405–422, 1985.

[2] Carlos E Alchourron, Peter Gärdenfors, and David Makinson. On The
Logic of Theory Change: Partial Meet Contraction and Revision Func-
tions. Journal of Symbolic Logic, 50(2):510–530, 1985.

[3] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21(4):181–185, October 1985.

[4] Christel Baier and Joost-pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[5] Edmund M Clarke and E Allen Emerson. Design and synthesis of synchro-
nization skeletons using branching time temporal logic. In Dexter Kozen,
editor, Logics of Programs, volume 131 of Lecture Notes in Computer Sci-
ence, pages 52–71. Springer Berlin Heidelberg, 1982.

[6] Marcelo Finger and Renata Wassermann. Revising specifications with
CTL properties using bounded model checking. In Brazilian Symposium
on Artificial Intelligence, LNAI. Springer, 2008.

[7] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of
regular programs. Journal of Computer and System Sciences, 18(2):194 –
211, 1979.

[8] Giorgos Flouris. On Belief Change and Ontology Evolution. PhD thesis,
University of Crete, 2006.

[9] Dov M. Gabbay, Ian Hodkinson, and Mark Mark A. Reynolds. Temporal
logic : mathematical foundations and computational aspects. Volume 1.
Oxford logic guides. Clarendon Press, Oxford, 1994. Index : p. 641-653.

[10] Paulo Guerra and Renata Wassermann. Two AGM-style characterizations
of model repair. In Knowledge Representation and Reasoning Conference
(KR), pages 645–646, 2018.

On the Uncomputability of Partial Meet Contraction for LTL 405

[11] Sven O Hansson and Renata Wassermann. Local change. Studia Logica,
70(1):49–76, 2002.

[12] Sven Ove Hansson. Kernel contraction. The Journal of Symbolic Logic,
59:845–859, 9 1994.

[13] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic logic. MIT press,
2000.

[14] Hirofumi Katsuno and Alberto O Mendelzon. On the Difference Between
Updating a Knowledge Base and Revising it. In Proc. of KR, volume 52,
pages 387–395. Morgan Kaufmann, 1991.

[15] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Softw. Eng., 3(2):125–143, March 1977.

[16] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. Proceedings of the 12th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages
- POPL ’85, pages 97–107, 1985.

[17] J. Myhill. Linear Bounded Automata. Report // University of Pennsyl-
vania. Wright Air Development Division, Air Research and Technology
Command, United States Air Force, 1960.

[18] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th
Annual Symposium on Foundations of Computer Science, SFCS ’77, pages
46–57, Washington, DC, USA, 1977. IEEE Computer Society.

[19] Jandson Ribeiro, Abhaya Nayak, and Renata Wassermann. Towards be-
lief contraction without compactness. In Knowledge Representation and
Reasoning Conference (KR), pages 287–296, 2018.

[20] Márcio Moretto Ribeiro. Belief Revision in Non-Classical Logics. Springer
Briefs in Computer Science. Springer, 2013.

[21] M. Sipser. Introduction to the Theory of Computation. Cengage Learning,
2005.

[22] Marc Van Zee, Dragan Doder, Mehdi Dastani, and Leendert Van
Der Torre. AGM revision of beliefs about action and time. In Proc. In-
ternational Conference on Artificial Intelligence, pages 3250–3256. AAAI
Press, 2015.

[23] Renata Wassermann. On AGM for non-classical logics. Journal of Philo-
sophical Logic, 40(2):271–294, 2011.

406 P. T. Guerra and R. Wassermann

Paulo T. Guerra
Federal University of Ceará (UFC)
Campus Quixadá
Av. José de Freitas Queiroz, 5003 - Cedro - 63902-580, Quixadá, Ceará, Brazil
E-mail: paulodetarso@ufc.br

Renata Wassermann
Institute of Mathematics and Statistics
University of São Paulo (USP)
Rua do Matão, 1010 - CEP 05508-090 - São Paulo, SP, Brazil
E-mail: renata@ime.usp.br

