
South American Journal of Logic

Vol. 4, n. 2, pp. 373–383, 2018

ISSN: 2446-6719

Remarks on Expansions of the Real Field:
Tameness, Hardy Fields and Smooth Rings

Rodrigo Figueiredo and Hugo L. Mariano

Abstract

In the talk [2] presented at the Logic and Foundations section of ICM-
2018, Rio de Janeiro, the authors analyze, under a model-theoretic per-
spective, three ways to enrich the real continuum by infinitesimal and in-
finite quantities. In the present work, we establish a first model-theoretic
connection of another (but related to the previous one) triple of struc-
tures: o-minimal structures, Hardy fields and smooth rings.
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Introduction

According Matthias Aschenbrenner, Lou van den Dries and Joris van der Ho-
even ([2]):

“Germs of real-valued functions, surreal numbers, and transseries are three
ways to enrich the real continuum by infinitesimal and infinite quantities. Each
of these comes with naturally interacting notions of ordering and derivative”.

They examine this tripod by the model-theoretic analysis of the category
of H-fields, which provides a common framework for these structures.

In the present (short) work, we give some model-theoretic connections
among the elements of another tripod, although related to the previous one:
o-minimal structures, Hardy fields and smooth rings.
Overview of the paper. In the first section we present the preliminary defi-
nitions and results on o-minimal structures, Hardy fields and C∞-rings needed
in the sequel. Section 2 presents the connections among the elements of the
concerned tripod. A final section is devoted to the sketch of possible future
works around this subject. In order to write a (brief though) reader-friendly
text, we also include an appendix containing some basic results on extensions
of real smooth functions.



374 R. Figueiredo and H. L. Mariano

Acknowledgements. The authors are grateful to the referee for valuable
suggestions and comments.

1 Preliminaries

For the reader’s convenience we provide below a simplified account on the three
subjects pointed out in the title of this paper.

1.1 O-minimality

It is well-known that the theory of algebraically closed fields is strongly mini-
mal, i.e. the definable unary subsets of an algebraically closed field are finite
or cofinite: this is a direct consequence of the elimination of quantifiers.

Analogously, since the theory of real closed fields in the language of the
ordered rings admits quantifier elimination, it is an o-minimal theory, i.e. the
first-order definable unary subsets of a real closed field are finite unions of points
and open intervals. The corresponding topology generated over finite cartesian
products of definable sets is well-behaved or “tame”. For a full treatment of
o-minimal structures from a geometric viewpoint, see [3] and [4].

Some variants of the notion of o-minimality have been studied since its
systematization in the middle of the 1980s. We recall from [5], for instance,
that a sequence S := (Sn)n≥1, where each Sn is a collection of subsets of Rn,
is called a weak structure over the real field if, for all m,n ≥ 1, the following
conditions are satisfied:

(WS1) if A,B ∈ Sm, then A ∩B ∈ Sm;

(WS2) Sm contains all zero-sets of polynomials in R[X1, . . . , Xm];

(WS3) if A ∈ Sm and B ∈ Sn, then A×B ∈ Sm+n;

(WS4) Sm is closed under permutation of the variables.

If, in addition, the elements in S1 are just finite unions of connected components
of R, then S is said to be an o-minimal weak structure over the real field.

1.2 Hardy fields

Let f : X → R and g : Y → R be continuous real functions, where the subsets
X,Y ⊆ R contain an open interval of the form (c,+∞). These functions are
said to have the same germ at the infinity (shortly, germ at +∞), denoted
[f ] = [g], if they agree on some open interval (a,+∞) ⊆ X ∩ Y . Clearly,
this determines an equivalence relation on the set of such functions. Then the
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formed quotient set Q supports a natural structure of commutative unitary
ring of characteristic zero, with pointwise defined addition and multiplication
of germs at infinity. Moreover, this structure can be enriched by two binary
relations: ≤, the pointwise defined partial ordering; and �, the preorder of
dominance described as follows. We write [f ] � [g] and say that [f ] dominates
[g] iff there exists b > 0 such that |f(x)| ≤ b|g(x)| eventually, i.e., there exists
d ∈ R such that (d,+∞) ⊆ X ∩ Y and |f(x)| ≤ b|g(x)| holds for each x > d.
Two such continuous functions f, g have the same order of growth at the infinity
when [f ] � [g] and [g] � [f ].

A subfield F of the ring Q is a Hardy field when it is closed under differen-
tiation, i.e. if [f ] ∈ F , then [f ′] ∈ F . There is an interesting class of first-order
structures, the class of H-fields, formed by ordered differential fields satisfying
some further conditions, which includes all Hardy fields expanding R.

There is a strong relationship between Hardy fields and o-minimal struc-
tures brought by Chris Miller, for instance, in [8] (see Proposition 2.1 below).
A striking result ([7]) afforded by the combination of these two kinds of struc-
tures is the dichotomy, also obtained by Chris Miller, for o-minimal expansions
of the real field: either they are polinomially bounded or define the exponential
function.

We finish this subsection by asserting the following technical result on ex-
tensions of smooth functions defined on open subsets of the real line, which is
an easy consequence of the smooth version of Tietze extension theorem (see
Appendix A for more details).

Proposition 1.1 For any C∞ function g : (b,+∞) → R with b ∈ R and for
each c > b, there exists a C∞ function g̃ : R→ R such that g̃ = g on (c,+∞).

1.3 C∞-rings

Roughly speaking, a C∞-ring is an R-algebra satisfying additional conditions.
The original motivation to introduce and study C∞-rings was to construct
topos-models for Synthetic Differential Geometry (see [10]).

Precisely, a C∞-ring (or smooth ring) is a set A together with operations
Φf : Am → A for all m ≥ 0 and smooth functions f : Rm → R, where by
convention A0 is the single point {∅}. These operations must satisfy the con-
ditions: if f1, . . . , fn : Rm → R and g : Rn → R are smooth functions, and
h : Rm → Rn is given by

h(x1, . . . , xm) := g(f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))

then
Φh(c1, . . . , cm) = Φg(Φf1(c1, . . . , cm), . . . ,Φfn(c1, . . . , cm)),
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for all c1, . . . , cm ∈ A; for all 1 ≤ j ≤ m, Φπj = Πj , where πj : Rm → R and
Πj : Am → A denote the projections onto the jth terms of n-tuples (see [6] for
more details).

In particular, since each real polynomial function is smooth, then every
C∞-ring is an R-algebra. Since the theory of C∞-rings is equational, the corre-
sponding category admits many interesting constructions, particularly it has all
(small) limits and colimits and each set X freely generates a C∞-ring, namely
F (X) := colimY⊆finXC∞(RY ,R).

Every (non trivial) C∞-ring A is semi-real, in fact 1 +
∑
A2 ⊆ A×. In

Theorem 2.10 in [9], it is established that any C∞-field – i.e. a C∞-ring such
that its underlying ring is a field – is real closed1. This suggests the search for
connections between the areas of C∞-rings and o-minimal structures.

2 A first connection among o-mininal structures,
Hardy fields and smooth rings

For each n ∈ N, let C∞(Rn) denote the set of all smooth functions from Rn
to R, which is a commutative ring with unity when equipped with the usual
pointwise operations, and let F = (Fn)n∈N be a sequence with Fn ⊆ C∞(Rn).

Throughout this section, A designates the expansion of the ordered real field
(R, <,+, ·, 0, 1) by the set

⋃
n∈NFn. Unless otherwise stated, by “definable”

we mean “definable in A with parameters from R”.

Proposition 2.1 (Proposition 3.1, [8]) If R is an expansion of the real
field R, then the following are equivalent:

(1) R is o-minimal;

(2) the germs at +∞ of definable in R unary functions form a Hardy field;

(3) every unary definable in R function is either eventually zero or eventually
nonzero.

Theorem 2.2 If A is o-minimal, then the commutative ring (with unity) HA
of germs at +∞ of definable C∞ unary functions is a Hardy field, and is iso-
morphic to a subfield of a C∞-ring.

Proof. Recall that the commutative ring with unity H of the germs at
+∞ of definable unary functions is a Hardy field (Proposition 2.1). For the
first part of the theorem, it thus suffices to show that HA is a subfield of H

1In fact, in Theorem 2.10’ in [9] it is shown that every C∞-field satisfies an even stronger
condition: they are C∞-real closed.
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(for which it is sufficient to guarantee that each nonzero element in HA is
a unit), and HA is closed under differentiation. Indeed, any non eventually
zero definable C∞ function f is eventually nonzero by virtue of Proposition
2.1. Hence, there exists c ∈ R such that f does not vanish on (c,+∞). Let
g : (c,+∞) → R be the function given by g := 1/f . Clearly, g is definable
and C∞ (therefore [g] ∈ HA), and the equality [f ][g] = [1] holds. Now, if
f : (c,+∞)→ R is definable C∞ for some c ∈ R, then f ′ : (c,+∞)→ R defined
as x 7→ f ′(x) := limt→0(f(x + t) − f(x))t−1 is definable and C∞ as well, thus
[f ′] ∈ HA.

With regard to the second part, let I denote the set of all C∞ functions
from R to R which are eventually zero. Equipped with the operations induced
by those on C∞(R), I is an ideal of the ring C∞(R). (Indeed, observe that
the identically zero function is eventually zero and C∞; and, the sum of two
eventually zero C∞ functions is an eventually zero C∞ function as well as
the multiplication of an eventually C∞ function by a C∞ function.) We may
endow the quotient set C∞(R)/I with a C∞-ring structure as follows. For each
f ∈ C∞(Rn), let Φf : (C∞(R)/I)n → C∞(R)/I be the map defined as

Φf (c1 + I, . . . , cn + I) := f(c1, . . . .cn) + I, ci ∈ C∞(R).

To see that Φf does not depend on the representatives c1, . . . , cn, consider
c′1, . . . , c

′
n ∈ C∞(R) so that ci + I = c′i + I for each i = 1, . . . , n. Hadamard’s

lemma ensures the existence of C∞ functions gi : R2n → R (i = 1, . . . , n) with

f(y1, . . . , yn)− f(x1, . . . , xn) =
n∑
i=1

(yi − xi)gi(x1, . . . , xn, y1, . . . , yn),

for all xi, yi ∈ R. The equality of functions

f(c′1, . . . , c
′
n)− f(c1, . . . , cn) =

n∑
i=1

(c′i − ci)gi(c′1, . . . , c′n, c1, . . . , cn)

thus follows. Because c′i − ci ∈ I and I is an ideal, the right-hand side of the
above equality lies in I. So, the values of Φf at the tuples (c1 + I, . . . , cn + I)
and (c′1 + I, . . . , c′n + I) are the same. This concludes the well definition of Φf .
It is not hard to see that the sequence (Φf )f satisfies the defining conditions of
a C∞-ring, in particular, (C∞(R)/I, (Φf )f ) is a commutative ring with unity.

Now, we take T : HA → C∞(R)/I to be the map given by the rule

[f ] 7→ g + I,

where g : R→ R is a C∞ function (not necessarily definable) with g ∈ [f ]. Let
f1 and f2 be definable C∞ unary functions with [f1] = [f2]. By Proposition
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1.1, there exist total C∞ unary functions g1 and g2 and real numbers c1 and c2

satisfying g1|(c1,+∞) = f1 and g2|(c2,+∞) = f2. Since f1 and f2 are eventually
the same, g1− g2 ∈ C∞(R) is eventually zero. Therefore, g1− g2 lies in I. This
shows that T is well defined.

In order to prove that T is an injective ring with unity homomorphism, let
[f1] and [f2] be germs in HA and consider functions g1, g2 and g in C∞(R)
with g1 ∈ [f1], g2 ∈ [f2] and g ∈ [f1 + f2]. In view of the definition of
germ at +∞, there exists a real number c such that g = f1 + f2 = g1 + g2

holds on (c,+∞), thereby g − (g1 + g2) belongs to I. Therefore, we have
T ([f1] + [f2]) = T ([f1 + f2]) = g + I = g1 + g2 + I = T ([f1]) + T ([f2]).
Similarly, T ([f1][f2]) = T ([f1])T ([f2]). Also, from the construction of T , it
follows immediately that T ([1]) = 1 + I, where 1 denotes, as an abuse of
notation, the constant total function 1 ∈ R. Finally, if T ([f ]) = 0 + I, where 0
is the zero function, then by the definition of T we have [0] = [f ].

Thus, T is an isomorphism from HA onto Im(T ). From the first part of the
theorem, it follows that Im(T ) is a subfield of the C∞-ring C∞(R)/I. �

In what follows we show that the conclusion of Theorem 2.2 still holds
under weaker assumptions, namely the order minimality is imposed only on
the zero-sets of functions definable in A.

It is readily seen that the zero-sets of all definable functions from Rn to R
(n ≥ 1) form a weak structure, denoted Z = (Zn)n≥1.

Theorem 2.3 Suppose the weak structure Z is o-minimal. Then the commu-
tative ring with unity HA of germs at +∞ of definable C∞ unary functions is
a Hardy field, and is isomorphic to a subfield of a C∞-ring.

Proof. The proof of this theorem is entirely similar to that of Theorem 2.2,
except for the assertion that HA, the set of all germs at +∞ of definable C∞
unary functions, is a Hardy field. Such a conclusion is achieved if we show
that every nonzero element in HA is a unit. For this, let f : (c,+∞) → R be
a C∞ definable unary function, which is not eventually zero. The extension
f̃ : R → R of f by zero, that is, f := f on (c,+∞), and f := 0 on (−∞, c], is
then definable. (In the case c = −∞, we take f̃ to be the function f itself.)
Consequently, f̃−1(0) ∈ Z1. Since f̃−1(0) is a finite union of connected com-
ponents of the real line and f̃ is not eventually zero, none of these connected
components is of the form (d,+∞), with d ∈ R, nor f̃ satisfies: for all x ∈ R
there exists y > x at which f̃ vanishes. This amounts to the following situ-
ation: f is either eventually positive or eventually negative. Therefore, as in
the proof of Theorem 2.2, it has a multiplicative inverse in HA. �
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3 Concluding remarks and future works

In the paper [2], which has inspired this modest contribution, the authors
bring to one’s attention a triple of structures that are linked by the notion
of H-field which provides a common framework for these structures. They
present a model-theoretic analysis of the category of H-fields, e.g. the theory
of H-closed fields is model complete, and relate these results with the original
tripod: Hardy fields, surreal numbers and transseries.

In the same vein, we intend to analyze the class of C∞-fields under a model-
theoretic perspective since we believe that there are clues that this class should
satisfy many interesting logical properties:

• under real algebra perspective: as already mentioned, every C∞-field is
(C∞)- real closed;

• under differential algebra perspective: since every C∞-ring A is iso-
morphic to quotient of a free C∞-ring on some set X by an ideal I,
A ∼= C∞(RX)/I, it encodes many algebraic derivations.

These observations suggest the existence of a relation between the triple in
[2] and the one here presented that is even stronger than just having a common
vertex: Hardy fields. In particular, is there a general first-order theory that
includes naturally C∞-fields and the H-fields?

A Extending smooth real functions

We follow closely Chapter 13 and Appendix C in [11].
Recall from elementary calculus that the function f : R→ R, defined as

f(t) :=

{
e−

1
t , if t > 0

0, if t ≤ 0
,

is C∞. Let g : R→ R be

g(t) :=
f(t)

f(t) + f(1− t)
.

So g is also C∞. For any two positive real numbers a < b, the C∞ function
ρ : R→ R given by

ρ(x) := 1− g
(

(x− q)2 − a2

b2 − a2

)
,
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where q ∈ R, is called a C∞ bump function at q. A short description of ρ is
made as follows: ρ vanishes on R \ (q − b, q + b), equals 1 on [q − a, q + a], is
strictly increasing on [q − b, q − a], and is strictly decreasing on [q + a, q + b].

Given a map f : X → Y defined on a topological space X, we denote by
supp f the set {x ∈ X : f(x) 6= 0} and call it the support of f .

Lemma A.1 (Partitions of unity) Let {Uα}α∈Λ be an open cover of R. Then,
there is a countable family {ϕk}∞k=1 of C∞ functions ϕk : R→ R satisfying the
conditions

(1) {suppϕk}∞k=1 is locally finite, that is, any real number has a neighborhood
that intersects only finitely many suppϕk;

(2) each suppϕk is compact;

(3) for each k there exists an α ∈ Λ with suppϕk ⊆ Uα;

(4)
∑∞

k=1 ϕk = 1.

Such a collection {ϕk}k is called a C∞ partition of unity subordinate to the
cover {Uα}α∈Λ.

Proof. Our aim is to find, for each integer m, finitely many bounded open
intervals Wm

1 , . . . ,Wm
l(m) and finitely many C∞ bump functions φm1 , . . . , φ

m
l(m)

such that

(a) Wm
1 , . . . ,Wm

l(m) cover [m,m+ 1];

(b) φmj > 0 on Wm
j , and φmj = 0 on R \Wm

j for j = 1, . . . , l(m);

(c) suppφmj ⊆ Uαmj ∩ (m− 1,m+ 2) for some αmj ∈ Λ;

(d) suppφmj is compact.

Note that the collection {suppφmj } of the supports of the functions φmj is
locally finite, since any [m,m+1] does not intersect suppφnj , for all n ≥ m+3,
n ≤ m−3, and j = 1, . . . , l(n). Therefore, the sum φ :=

∑
m,j φ

m
j is well defined

as a smooth function. Moreover, any real number x lies in some [m,m + 1],
and by (a) in some open interval Wm

j as well. Hence, φmj (x) > 0. This shows
that the C∞ function φ is everywhere positive. In view of this, for each integer
m and each j = 1, . . . , l(m) the function ϕmj : R→ R, given by

ϕmj :=
φmj
φ
,
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is well defined. A routine argument shows that {ϕmj }m,j is a family of C∞
functions satisfying the conditions (1)-(4).

It remains to prove the statements (a)-(d). Indeed, for each point x ∈
[m,m + 1], where m is an arbitrary integer, there is an α ∈ Λ with x ∈
Uα ∩ (m− 1,m+ 2), by recalling that {Uα}α covers R. Let φx be a C∞ bump
function at x which is positive on a bounded open interval Wx centered at
x whose closure is included in the open set Uα ∩ (m − 1,m + 2). The set
suppφx is then included in [m− 1,m+ 2], therefore suppφx is compact. Since
{Wx : x ∈ [m,m+1]} is an open cover of the compact set [m,m+1], there are
finitely many intervals Wx1 , . . . ,Wxl(m)

, with associated C∞ bump functions
φx1 , . . . , φxl(m)

, which cover [m,m+ 1]. �

A function f : A→ R, defined on an arbitrary set A ⊆ R, is of class C∞ if
for every point x in A there exist an open U containing x and a C∞ function
f̂ : U → R such that f̂ = f in U ∩A.

Lemma A.2 (Tietze extension theorem) Let F be any closed subset of R
and let f : F → R be a C∞ function. Then there exists a C∞ function f̃ : R→ R
such that f̃ |F = f .

Proof. By hypothesis, for each x ∈ F there exist an open subset Ux of the real
line and a C∞ function f̂x : Ux → R such that f̂x = f on Ux∩F . Let {ϕk}∞k=1 be
a smooth partition of unity subordinate to the open cover {Ux}x∈F ∪{R\F} of
R. Let us reindex the partition of unity in order to have the same index set as
the cover, which gives {ϕx}x∈F ∪{ϕ0}, with suppϕx ⊆ Ux and suppϕ0 ⊆ R\F .
(This can be done by adding to the original family the zero functions.) Now,
we extend each f̂x to R by zero, so the function ϕxf̂x is smooth. Thus we can
define f̃ : R→ R by

f̃(y) :=
∑
x∈F

ϕx(y)f̂x(y).

Because the collection {suppϕx}x∈F is locally finite, this sum is finite in
a neighborhood of every point in R, and therefore defines a C∞ function.
Note that if y ∈ F then ϕ0(y) = 0, and fx(y) = f(y) for each x such that
ϕx(y) 6= 0. Then, for any y ∈ F , f̃(y) =

∑
x∈F ϕx(y)f̃x(y) =

∑
x ϕx(y)f(y) =

f(y)(
∑

x∈F ϕx(y) + ϕ0(y)) = f(y), i.e., f̃ is indeed an extension of f . �

Proof of Proposition 1.1. Set ĝ := g|[c,+∞). Then ĝ is of class C∞. Tietze
extension theorem thus gives a function g̃ : R→ R of class C∞ extending ĝ and
the proof is finished.
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