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Abstract

We present the notion of filter pair as a tool for creating and analyzing
logics. We show that every Tarskian logic arises from a filter pair and that
translations of logics arise from morphisms of filter pairs, establishing a
categorial connection.
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Introduction

In this work we present the notion of filter pair, introduced in [28], as a tool
for creating and analyzing logics. We sketch the basic idea of this notion:

Throughout the article the word logic will mean a pair (Σ,`) where Σ is a
signature, i.e. a collection of connectives with finite arities, and ` is a Tarskian
consequence relation, i.e. an idempotent, increasing, monotonic, finitary and
structural relation between subsets and elements of the set of formulas FmΣ(X)
built from Σ and a set X of variables.

It is well-known that every Tarskian logic gives rise to an algebraic lattice
contained in the powerset ℘(FmΣ(X)), namely the lattice of theories. This
lattice is closed under arbitrary intersections and directed unions.

Conversely an algebraic lattice L ⊆ ℘(FmΣ(X)) that is closed under arbi-
trary intersections and directed unions gives rise to a finitary closure operator
(assigning to a subset A ⊆ FmΣ(X) the intersection of all members of L con-
taining A). This closure operator need not be structural — this is an extra
requirement.

We observe that the structurality of the logic just defined is equivalent to
the naturality (in the sense of category theory) of the inclusion of the algebraic

1This author did this work in the framework of the research training group GRK 2240:
Algebro-Geometric Methods in Algebra, Arithmetic and Topology, funded by the German
Science Foundation DFG.
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lattice of theories into the power set of formulas with respect to endomorphisms
of the formula algebra: Structurality means that the preimage under a substi-
tution of a theory is a theory again or, equivalently, that the following diagram
commutes:

FmΣ(X)

σ

��

L �
� i // ℘(FmΣ(X))

FmΣ(X) L

σ−1
|
L

OO

� � i // ℘(FmΣ(X))

σ−1

OO

More generally, for any Σ-structure we have the inclusion of the algebraic
lattice of filters for the logic into the power set of the underlying set of the
structure. The fact that the preimage of a filter under a homomorphism is a
filter again can again be expressed as the commutativity of a square as above.

We thus arrive at the definition of filter pair, Definition 2.1: A filter pair
for the signature Σ is a contravariant functor G from Σ-algebras to algebraic
lattices together with a natural transformation i : G → ℘(−) from G to the
functor taking an algebra to the power set of its underlying set, which preserves
arbitrary infima and directed suprema

The logic associated to a filter pair (G, i) is simply the logic associated (in
the above fashion) to the algebraic lattice given by the image i(G(FmΣ(X))) ⊆
℘(FmΣ(X)).

In particular, it is clear that different filter pairs can give rise to the same
logic, indeed this will happen precisely if the images of i for the formula algebra
are the same. A filter pair can thus be seen as a presentation of a logic, and
there can of course be different presentations of the same logic. We could have
removed a bit of this ambiguity by requiring that the natural transformation i
be an inclusion, but it is one of the insights of our work with filter pairs that
it is beneficial not to do this. We give an example of this point in Section 4.2.

Overview of the article: In Section 2 we fix notation and recall some
definitions we need.

In Section 3 we introduce the notion of filter pair sketched above and show
how, for a fixed set of variables, to a filter pair one can associate a logic
with this set of variables. More generally, the map i gives us a lattice of
“theories” not just for formula algebras but for any Σ-structure, see Proposition
2.4, thus yielding a “generalized logic”, whose set of formulas need not be
an absolutely free algebra. We show in Proposition 2.9 that if one fixes one
generalized logic coming from a filter pair, then the subsets of any other Σ-
structure that lie in the image of i are filters for this generalized logic – these
subsets are called the i-filters. We investigate the relation between the different
generalized logics, on different Σ-structures, arising from a fixed filter pair:
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In Proposition 2.12 we establish that homomorphisms of Σ-structures induce
translations of generalized logics and that these translations are conservative
if both Σ-structures in question are formula algebras. In Proposition 2.14 we
show that for absolutely free algebras every filter is an i-filter. It follows that
the logic defined by the matrices endowed with i-filters is again the same logic
as the one obtained from the filter pair. These propositions tie together the
various structures arising from a filter pair and establish a coherent picture
and can simply be read as such. However, they also have practical applications
and offer further intuitions about the notion of filter pair. This is explained
in Section 4, and the reader may to skip ahead after reading Section 2, to get
some further information and motivation for the content of Section 2.

In Section 3 we introduce morphisms of filter pairs, Definition 3.8. The
definition is inspired by [27] where the authors establish a correspondence of
certain functors between categories of Σ-algebras and translations of algebraiz-
able logics. Indeed, the definition of morphism can be read as the result of
trying to push these results beyond the realm of algebraizable logics. We show
that the construction of a logic from a filter pair is functorial and that this
functor has a right inverse, which associates to a logic its filter pair of its fil-
ters, see Example 2.7. This delineates the scope of the notion of filter pair:
Every logic admits a presentation by a filter pair. In fact, this construction
satisfies a certain universal property, see Theorem 3.9.

In Section 4 we offer a synthesis and outlook on future work to motivate
the notions and results of this article.

1 Preliminaries

Here we fix the basic definitions for the rest of the article.

Definition 1.1 A signature is a sequence of pairwise disjoint sets Σ = (Σn)n∈N.
If X is an arbitrary set, let FmΣ(X) denote the set of Σ-formulas over X, i.e.,
the free Σ-algebra on the set X.

In what follows, V = {v0, v1, ..., vn, ...} will denote a fixed enumerable set
(written in a fixed order). Denote FmΣ (respectively FmΣ[n]), the set of Σ-
formulas over V (resp. with exactly {v0, ..., vn−1} as the occurring variables).

Definition 1.2 Let Σ be a signature and A be a Σ-algebra.
A Tarskian consequence relation on A is a relation ` ⊆ ℘(A) × A which,

for every subset Γ ∪∆ ∪ {ϕ,ψ} of A, satisfies the following conditions:

◦ Reflexivity :If ϕ ∈ Γ, Γ ` ϕ

◦ Cut :If Γ ` ϕ and for every ψ ∈ Γ, ∆ ` ψ, then ∆ ` ϕ
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◦ Monotonicity :If Γ ⊆ ∆ and Γ ` ϕ, then ∆ ` ϕ

◦ Finitarity :If Γ ` ϕ, then there is a finite subset ∆ of Γ such that ∆ ` ϕ.

◦ Structurality :If Γ ` ϕ and σ : A → A is a Σ-homomorphism (substi-
tution), then σ[Γ] ` σ(ϕ).

The notion of (generalized) logic that we consider is:

Definition 1.3 Let Σ be a signature, X be a set and A a Σ-algebra.

1. A logic over the set X is a pair (Σ,`) where ` is a Tarskian consequence
relation on the set FmΣ(X).

2. A logic is a logic over the set V .

3. A generalized logic on the Σ-algebra A is a pair (A,`) where ` is a
Tarskian consequence relation on the Σ-algebra A.

Definition 1.4 Let Σ be a signature.

1. A matrix (over Σ) is pair 〈M,F 〉 where M is a Σ-algebra and F is subset
of M .

2. Let l = (A,`) be a generalized logic on the Σ-algebra A and let 〈M,F 〉
be a matrix. The set F is a l-filter if the following holds: for every
Γ ∪ {ϕ} ⊆ A such that Γ ` ϕ and every Σ-homomorphism (valuation)
v : A→ M , if v[Γ] ⊆ F then v(ϕ) ∈ F . The pair 〈M,F 〉 is then said to
be a matrix model of l. The set of all matrix models of l is denoted by
Matrl.

Definition 1.5 1. Let L be a lattice. A element a ∈ L is compact if for
every directed subset {di} of L we have a ≤

∨
i di ⇔ ∃i(a ≤ di). L is

called algebraic if it is a complete lattice such that every element is a join
of compact elements.

2. We will denote by Lat (resp. AL), the category of all lattices (resp.
algebraic lattices) and order preserving functions.

3. Σ-Str stands for the category of all Σ-algebras (or Σ-structures) and Σ-
homomorphisms.
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Remark 1.6 1. Let l = (A,`) be a generalized logic on a Σ-algebra A. We
have the map Fil : Obj(Σ−Str)→ Obj(Lat) such that for any Σ-algebra
M , Fil(M) ⊆ ℘(M) is the lattice of all l-filters of M . Since Fil(M) ⊆
℘(M) is closed under arbitrary intersections and directed unions, Fil(M)
is an algebraic lattice where the compact elements are precisely the finitely
generated filters. Thus we can restrict the codomain of the above function
to the class of all algebraic lattices Obj(AL). Moreover, Fil extends to
a contravariant functor from the category Σ − Str to the category AL
sending f ∈ homΣ−Str(M,N) to Fil(f) = f−1 (set-theoretic inverse
image). This is well-defined, because inverse images of filters are filters
again.

2. Given a Σ-algebra A and a matrix 〈M,F 〉, one can define an increasing,
idempotent, monotone and structural, but possibly non-finitary, relation
for Γ ∪ {ϕ} ⊆ A by: Γ `〈M,F 〉 ϕ iff for every valuation v : A → M , if
v[Γ] ⊆ F , then v(ϕ) ∈ F . If l denotes the generalized logic thus obtained,
then obviously 〈M,F 〉 is an l-matrix2

Moreover, given a class M ⊆ Matrl, the relation Γ `M ϕ is defined if
Γ `〈M,F 〉 ϕ for all matrices 〈M,F 〉 ∈M.

1.1 Categories of signatures and logics

We provide here a definition of category of logics. The ideas behind it come
from [23], [19], [2], [25] and [10].

First, we define the category of signatures with flexible morphisms, Sf .
Before defining this category, we introduce the following notation:

If Σ = (Σn)n∈N is a signature, then T (Σ) := (F (Σ)[n])n∈N is a signature,
too (sometimes called the derived signature).

A flexible morphism f : Σ → Σ′ is just a usual morphism of signatures
f ] : Σ→ T (Σ′), i.e. it is a sequence of functions f ]n : Σn → F (Σ′)[n], n ∈ ω.

For each signature Σ and n ∈ N, there is a particular flexible morphism jΣ
given by:

(jΣ)n : Σn → F (Σ)[n]
cn 7→ cn(v0, ..., vn−1)

For each flexible morphism f : Σ → Σ′, there is a unique function f̌ :
F (Σ)→ F (Σ′), called the extension of f , such that:

(i) f̌(v) = v, if v ∈ V ;

(ii) f̌(cn(ψ0, ..., ψn−1)) = f(cn)(f̌(ψ0), ..., f̌(ψn−1)), if cn ∈ Σn, n ∈ N.

2In fact l is the strongest (non-finitary) generalized logic on A such that 〈M,F 〉 is a matrix
model for that generalized logic.
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Definition 1.7 The category Sf is the category of signatures and flexible
morphisms as defined above. The composition in Sf is given by (f ′ • f ′′)] :=

((f̌ � ◦f ])n)n∈ω. The identity idΣ in Sf is given by (idΣ)]n := ((jΣ)n)n∈ω

Definition 1.8 If l = (Σ,`), l′ = (Σ′,`′) are logics, then a flexible translation
f : l → l′ is a flexible signature morphism f : Σ → Σ′ in Sf respecting the
consequence relation, i.e., for all Γ ∪ {ψ} ⊆ F (Σ), if Γ ` ψ then f̌ [Γ] `′ f̌(ψ).

The category Lf is the category of propositional logics and flexible transla-
tions as morphisms. Composition and identities are inherited from Sf .

2 Filter Pairs

To motivate the notion of filter pair, we recall from Remark 1.6 that, given
a logic l = (Σ,`), one can associate to each Σ-algebra M its collection of l-
filters Fil(M) and that, together with taking inverse image, this constitutes a
(contravariant) functor Fil : Σ-Str → AL, from Σ-structures to algebraic lat-
tices. Notice that for M ∈ Σ-Str the inclusion ιM : (Fil(M),⊆) ↪→ (P(M),⊆)
preserves arbitrary infima and directed suprema, thus, in particular, it is a
morphism in the category AL (i.e. it preserves order).

Moreover, given a morphism h : M → N we have the following commutative
diagram:

M

h
��

Fil(M) �
� ιM // (P(M),⊆)

N Fil(N)

h−1
|

OO

� �

ιN
// (P(N),⊆)

h−1

OO

This collection of data is the motivating example for the notion, and the
name, of filter pair.

Definition 2.1 Let Σ be a signature. A finitary filter pair over Σ is a pair
(G, i), consisting of a contravariant functor G : Σ-Str → AL and a collection
of maps i = (iM )M∈Σ-Str such that, for any M ∈ Σ-Str, the function iM :
G(M)→ (P(M),⊆) satisfies the following properties:

1. For any M ∈ Σ-Str, iM preserves arbitrary infima (in particular iM (>) =
M) and directed suprema.

2. Given a homomorphism h : M → N of Σ-structures the following
diagram commutes:
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M

h
��

G(M)
iGM // (P(M);⊆)

N G(N)

G(h)

OO

iGN

// (P(N);⊆)

h−1

OO

Remark 2.2 1. Condition 2. says that i is a natural transformation from
G to the functor ℘ : Σ-Strop → AL sending a Σ-structure to the power
set of its underlying set and a homomorphism of Σ-structures to its as-
sociated inverse image function.

2. Frequently, the functor G will preserve arbitrary infima and directed
suprema: this occurs whenever the maps iGM preserves and reflects these
suprema and infima.

Remark 2.3 As the name “finitary filter pair” suggests, there is a more gen-
eral notion of filter pair. In Proposition 2.4 below we will see how to associate
a logic to a finitary filter pair and this logic will be finitary. General filter pairs
can yield non-finitary logics. Such filter pairs will be considered in [3].

As in this article we only consider finitary filter pairs, we will simply call
them “filter pair” from now on.

From a filter pair we obtain a consequence relation on every Σ-algebra, i.e.
a generalized logic in the sense of Definition 1.3.

Proposition 2.4 Let (G, i) be a filter pair over the signature Σ and let A a
Σ-algebra. Then there is a generalized logic on A, lAG = (A,`AG), defined as
follows:
Given Γ ∪ {ϕ} ⊆ A, define

Γ `AG ϕ iff for any a ∈ G(A), if Γ ⊆ iGA(a) then ϕ ∈ iGA(a).

In particular, when A = FmΣ(X), for some set X, then we have a induced

logic on X, lXG := l
FmΣ(X)
G . When X = V , we just denote this induced logic by

lG.

Proof:
It is easy to see that `AG satisfies reflexivity, cut and monotonicity.
The structurality is a consequence of condition 2 (naturality). Indeed, let

σ ∈ Σ − str(A,A) and Γ ∪ {ϕ} ⊆ A such that Γ `AG ϕ. Consider a ∈ G(A)
such that σ[Γ] ⊆ iGA(a). This implies Γ ⊆ σ−1[iGA(a)]. By naturality we have
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σ−1[iGA(a)] = iGA(G(σ)(a)). Therefore ϕ ∈ iGA(G(σ)(a)) = σ−1[iGA(a)] and finally
σ(ϕ) ∈ iGA(a).

Last, we are going to prove finitarity. Let Γ ∪ {ϕ} ⊆ A. Consider the set
S = {Γ′ ⊆ A; Γ′ ⊆fin Γ}. Note that S is a directed set. Suppose that for
every Γ′ ∈ S, Γ′ 0AG ϕ. Then there is an a ∈ G(A) such that Γ′ ⊆ iGA(a)
and ϕ 6∈ iGA(a). Denote aΓ′ :=

∧
{a ∈ G(A); Γ′ ⊆ iGA(a)}; the infimum exists,

because algebraic lattices are complete. By condition 1 in the definition of
filter pair, the map iGA preserves infima, thus Γ′ ⊆ iGA(aΓ′) and ϕ 6∈ iGA(aΓ′). We
obtain that the set s := {aΓ′ ; Γ′ ∈ S} is a directed set.

By condition 1 in the definition of filter pair, iGA preserves directed suprema,
hence

Γ = ∪S ⊆
⋃

Γ′∈S
iGA(aΓ′) = iA(

∨
s).

On the other hand ϕ 6∈
⋃

Γ′∈S′ i
G
A(aΓ′) = iGA(

∨
s). Therefore Γ 0AG ϕ. �

Remark 2.5 Note that, for each Σ-algebra A, the set of all theories for the
generalized logic lAG = (A,`AG) is the image of iGA : G(A) → P (A): it follows
directly from the definition of `AG above that for each a ∈ A, iG(a) is a lAGtheory;
conversely, if Γ ⊆ A is a lAG-theory then, by a reasoning analogous to the pre-
sented in the proof above, we have Γ = iGA(aΓ) where aΓ :=

∧
{a ∈ G(A); Γ ⊆

iGA(a)}.

Remark 2.6 One can see a filter pair (together with a set X of variables)
as a presentation of a logic, different in style from the usual presentations
by axioms and rules or by matrices. It is clear from the definition that the
logic defined in this way does not depend on the values of the filter pair at Σ-
algebras other than FmΣ(X), and indeed it only depends on the image of the
map G(FmΣ(X)) → ℘(FmΣ(X)), as this is exactly the collection of theories
of the logic, by definition.
Thus, just as an algebraic structure can have many different presentations by
generators and relations, a logic can have presentations by different filter pairs,
each of which can be useful for different purposes.

Example 2.7 Given a Tarskian logic l = (Σ,`), by Remark 2.6, defining
Fil(A) to be the set of l-filters on a Σ-structure A provides a functor Fil :
Σ-Strop → AL, and hence a filter pair (Fil, i) where and i is the inclusion of
filters into all subsets. As filters on the formula algebra are exactly the theories,
this shows that every logic admits a presentation by a filter pair.

Definition 2.8 For a filter pair (G, i) and a Σ-structure M , the subsets of M
lying in the image of iM are called i-filters.
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Proposition 2.9 below says that, if one obtains a generalized logic from a
filter pair as in Proposition 2.4, the sets in the image of iM , for any other
Σ-structure M , are filters for that logic in the sense of Definition 1.4. This
justifies the name ”i-filter”.

Proposition 2.9 can thus be rephrased as saying that the set of i-filters on
any Σ-structure is contained in the set of filters. In general this inclusion is
strict, see Section 4.2 for a family of examples.

Proposition 2.9 Let (G, i) be a filter pair, A be a Σ-algebra and lA = (Σ,`A)
the associated generalized logic obtained as in Proposition 2.4. Then for any
Σ-algebra M the subsets in the image of iM are lA-filters.

Proof: Let M be a Σ-algebra, F = iM (x) ⊆ M a subset in the image of i,
Γ ∪ {ϕ} ⊆ A formulas with Γ `A ϕ and v : A → M be a Σ-homomorphism
with v[Γ] ⊆ F . We need to show that ϕ ∈ F . For this consider the naturality
square

A

v

��

G(A)
iA // (P(A),⊆)

M G(M)

G(v)

OO

iM
// (P(M),⊆)

v−1

OO

We have Γ ⊆ v−1[F ] = v−1[iM (x)] = iA(G(v)(x)). Now the assumption
Γ `A ϕ yields ϕ ∈ iA(G(v)(x)) = v−1[F ], i.e. v(ϕ) ∈ F . �

Proposition 2.10 Let (G, i) be a filter pair, A be a Σ-algebra. Define a rela-
tion `A∗ ⊆ ℘(A)×A:

Γ `A∗ ϕ iff for any Σ-algebra M , for any b ∈ G(M)
and any Σ-homomorphism v : A→M ,

if v[Γ] ⊆ iM (b) then v(ϕ) ∈ iM (b)

then `A∗ is a Tarskian consequence relation on the Σ-algebra A that coincides
with the consequence relation `A.

Proof: Suppose Γ `A∗ ϕ. Then, taking the identity as valuation, one has that
if Γ ⊆ iA(a) then ϕ ∈ iA(a) for all a ∈ G(A). Thus, by the very definition of
the generalized logic lA := (Σ,`A), we have Γ `A ϕ.

On the other hand suppose Γ `A ϕ. Then for any lA-matrix 〈M,F 〉 and
valuation v : A → M one has that if v[Γ] ⊆ F then v(ϕ) ∈ F : this holds in
particular whenever F = iM (x) for some x ∈ G(M). Since by Proposition 2.9
all subsets in the image of iM are filters, this implies that the defining condition
for Γ `A∗ ϕ is satisfied. �
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Remark 2.11 1. Call a matrix 〈M,F 〉 an i-matrix if the filter F is in
the image of iM . Denoting the collection of all i-matrices by i-Matr,
Proposition 2.9 can be subsumed as stating an inclusion i-Matr ⊆Matrl.
Proposition 2.10 then says that, although this inclusion can be strict, the
two classes of matrices always define the same logic (by the process given
in Remark 1.6).

2. The inclusions of i-filters into all filters, established by Proposition 2.9,
are also easily seen to form a natural transformation jG : G⇒ FilG : For
each Σ-structure M , jGM : G(M) → FilG(M) is the unique factorization
of iGM : G(M) → ℘(M) through ιM : FilG(M) ↪→ P (M). This exhibits
(FilG , ι) as a weakly terminal filter pair among all filter pairs presenting
the same logic lG. To make this statement precise, one needs of course a
notion of morphism of filter pairs. This will be given in the next section.

The following two propositions establish that, although the notions of i-
filter and lX -filter –where lX = (Σ,`X) is the logic on the set of variables X–
may differ for general algebras, this is not the case for an absolutely free algebra
FmΣ(Z), with a set of generators Z possibly different from X.

Proposition 2.12 Let (G, i) be a filter pair over the signature Σ.

1. For any homomorphism of Σ-structures f : A→ B and Γ ∪ {ϕ} ⊆ A:

Γ `A ϕ ⇒ f [Γ] `B f(ϕ).

2. For any injective map of sets f : X � Y and Γ ∪ {ϕ} ⊆ FmΣ(X):

Γ `X ϕ ⇔ f [Γ] `Y f(ϕ).

3. Γ `X ϕ iff there are finite sets X ′ ⊆f X and Γ′ ⊆f Γ such that var(Γ′ ∪
{ϕ}) ⊆ X ′ and Γ′ `X′ ϕ.

Proof: 1. Suppose Γ `A ϕ. Let z ∈ G(B) such that f [Γ] ⊆ iB(z). Then
Γ ⊆ f−1[iB(z)] = iA(G(f)(z)). Since Γ `A ϕ, we have that ϕ ∈ iA(G(f)(z)).
Therefore f(ϕ) ∈ iB(z). As z was arbitrary we have f [Γ] `B f(ϕ).

2. Let f : X → Y be injective. By 1 we have that Γ `X ϕ ⇒ f [Γ] `Y f(ϕ).
It remains to prove the converse. We split this proof in cases:
- if X 6= ∅: since f is injective there is a g : Y → X such that g ◦ f =
IdFmΣ(X). Hence g ◦ f [Γ] = Γ. Let z ∈ G(FmΣ(X)) such that Γ ⊆ iGX(z).

Therefore f [Γ] ⊆ g−1[iX(z)] = iY (G(g)(z)). Since f [Γ] `Y f(ϕ), we have
f(ϕ) ∈ iGY (G(g)(z)) = g−1[iGX(z)]. Therefore ϕ = g(f(ϕ)) ∈ iGX(z);
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- if X = ∅, but Σ0 6= ∅: then FmΣ(X) 6= ∅ and there exists a function
g′ : Y → FmΣ(∅) that can be uniquely extended to a Σ-homomorphism g :
FmΣ(Y )→ FmΣ(∅) and g ◦ f = IdFmΣ(∅). Thus the proof proceeds as in the
case just above.
- if X = Σ0 = ∅: then FmΣ(X) = ∅ and the equivalence

Γ `X ϕ ⇔ f [Γ] `Y f(ϕ).

is vacuously satisfied.
3. “⇒ ” Since `Z is finitary, there is a finite set Γ′ ⊆f Γ such that Γ′ `Z ϕ.

Consider Z ′ = var(Γ′) ∪ var(ϕ). Let a ∈ G(FmΣ(Z ′)). Suppose Γ′ ⊆ iGZ′(a).
We have the inclusion function j : Z ′ ↪→ Z such that j[Γ′] = Γ′. Due to 2 we
have Γ′ `Z′ ϕ.

“ ⇐ ” Let a ∈ G(FmΣ(Z)) such that Γ ⊆ iGZ (a). By assumption we have
that there are Γ′ ⊆f Γ and Z ′ ⊆f Z such that var(Γ′∪{ϕ}) ⊆ Z ′ and Γ′ `Z′ ϕ.
Consider the inclusion function j : Z ′ ↪→ Z. Notice that j[Γ′] = Γ′. By item 2
we have that Γ′ `Z ϕ, thus Γ `Z ϕ. �

Remark 2.13 Item 2 of Proposition 2.12 says that for an inclusion X ⊆ Y of
sets of variables, the logic (FmΣ(Y ),`Y ) is a natural extension of (FmΣ(X),`X
), i.e. a conservative extension given by extending the set of variables. By [16,
Thm. 2.6] finitary logics have a unique natural extension to each set of vari-
ables. Thus Proposition 2.12.2 tells us that the logic (FmΣ(Z),`Z) associated
to a filter pair for any set of variables Z uniquely determines the logic over
every other set of variables. See Section 4.4 for more on this point and what
changes in the case of infinitary logics.

In the same way as for the last two items of Proposition 2.12, the following
result depends on the freeness of the Σ-algebra.

Proposition 2.14 Let Σ be a signature, (G, iG) be a filter pair on Σ and let
lX be the associated logic on the set X. Suppose that Σ0 6= ∅ and that X
is an infinite set. Then for any set Z, if F ∈ FilX (FmΣ(Z)) then there is
a ∈ G(FmΣ(Z)) such that iGZ (a) = F .

Proof: Consider the set S = {a ∈ G(FmΣ(Z)); F ⊆ iGZ (a)}. Denote aF =∧
S. Notice that F ⊆ iGZ (aF ). We will show that F = iGZ (aF ). Suppose that

there is ϕ ∈ iGZ (aF ) such that ϕ 6∈ F . We consider two cases: |Z| ≤ |X| and
|X| ≤ |Z| where X is the set of variables over which lX is defined.

(|Z| ≤ |X|): In this case there is an injective function f : Z → X. By
2.12 we have F `Z ϕ iff f [F ] ` f(ϕ). Suppose that f [F ] ` f(ϕ). Then, since
F ∈ FilX (FmΣ(Z)), we have that for any valuation v : FmΣ(X) → FmΣ(Z)
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if v(f [F ]) ⊆ F then v(f(ϕ)) ∈ F . By hypothesis Σ0 6= ∅, then FmΣ(Z) 6= ∅
and there is a map g′ : X → FmΣ(Z) that can be uniquely extended to a Σ-
algebra homomorphism g : FmΣ(X) → FmΣ(Z) such that g ◦ f = IdFmΣ(Z).
In particular, g is a valuation g : FmΣ(X)→ FmΣ(Z) such that g ◦ f [F ] = F
and g ◦ f(ϕ) = ϕ. Then ϕ ∈ F which is a contradiction. Therefore f [F ] 6`
f(ϕ). Thus there is a ∈ G(FΣ(X)) such that f [F ] ⊆ iGX(a) = iGZ (G(f)(a)).
Hence G(f)(a) ∈ S. Thus aF ≤ G(f)(a), since iGZ preserves inf, iGZ (aF ) ⊆
iGZ (G(f)(a)). Hence ϕ ∈ iGZ (G(f)(a)), and this implies a contradiction. Then
F = iGF (aF ).

(|X| ≤ |Z|): Suppose that F `Z ϕ. Then by item (3) in Proposition 2.12
there are a finite subset F ′ ⊆ F and a finite subset Z ′ = var(F ′ ∪ {ϕ}) ⊆ Z
such that F ′ `Z′ ϕ. Since X is an infinite set there exists a injective map
f : X � Z and a finite subset X ′ ⊆ X such that f ′ := f� : X ′ → Z ′ is
a bijection. So there is a map g : Z → X such that g′ := g� : Z ′ → X ′

is the inverse of f ′. Due to items (2) and (3) in 2.12 we have F ′ `Z ϕ ⇔
fF ′ ◦g[F ′] `Z fF ′ ◦g[ϕ] ⇔ g[F ′] `X g(ϕ). Thus, since F ∈ FilX (FmΣ(Z)), for
any valuation v : X → FmΣ(Z) we have that if v(g[F ′]) ⊆ F then v(g(ϕ)) ∈ F .
Note that f ′ can be seen as a valuation and f ′(g′[F ′]) = F ′ ⊆ F . Then
ϕ = fF ′(g(ϕ)) ∈ F . This implies a contradiction. Hence F 6`Z ϕ. Therefore
there is a ∈ G(FmΣ(Z)) such that F ⊆ iGZ (a) and ϕ 6∈ iGZ (a). Thus a ∈ S. Thus
aF ≤ a and then iGZ (aF ) ⊆ iGZ (a). However ϕ ∈ iGZ (aF ) and hence ϕ ∈ iGZ (a)
which is a contradiction. Finally: F = iGZ (aF ). �

3 The category of filter pairs Fi
This section is dedicated to establishing a correspondence between the cate-
gories of propositional logics and filter pairs. Influenced by the encoding of
flexible morphisms of algebraizable logics given in [27], it is provided an anal-
ogous correlation involving generic propositional logics, amplifying the corre-
spondence obtained and opening possible applications to translations in oth-
ers kinds of “algebraizations” as equivalential, protoalgebraic, truth-equational
and others deductive systems in the Leibniz hierarchy.

3.1 A functorial encoding of signature morphisms

We present here the fundamental technical result needed in [27] and in the
present section: the functorial encoding of morphisms of signatures.

In what follows the maps U : Σ−Str → Set and F : Set→ Σ−Str denote,
respectively, the forgetful functor and the free Σ−algebra functor.

The following notions and results were originally presented in [27]:
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Fact 3.1 Let Σ,Σ′ ∈ Obj(Sf ). Consider H : Σ′ − Str → Σ − Str a functor
that “commutes over Set” (i.e. U ◦H = U ′) and, for each set Y , let ηH(Y ) :

F (Y ) → H(F ′(Y )) be the unique Σ-morphism such that (Y
σY→ UF (Y )

U(ηY )→

UHF ′(Y )) = (Y
σ′Y→ U ′F ′(Y )) (by the universal property of σY : Y → UF (Y ),

the “inclusion” of variables into its algebra of formulas). Then:

1. (ηH(Y ))Y ∈Set is a natural transformation ηH : F → H ◦ F ′.

2. For each set Y and each ψ ∈ F (Y ), V ar(ηH(Y )(ψ)) ⊆ V ar(ψ).

3. For each n ∈ N, let Vn := {v0, · · · , vn−1} ⊆ V , if ηH(Vn) preserves
variables, (i.e., ∀ψ ∈ F (Vn), V ar(ηH(X)(ψ)) = V ar(ψ)), then the
mapping cn ∈ Σn 7→ ηH(Vn)(cn(v0, · · · , vn−1)) ∈ F ′(Vn) determines a
unique Sf -morphism mH : Σ→ Σ′ such that m̌H = ηH(V ).

Definition 3.2 Let Σ,Σ′ be signatures. A signature functor from Σ to Σ′

is a functor Σ − Str H← Σ′ − Str that commutes over Set and such that the
natural transformation ηH : F ⇒ H ◦ F ′ preserves variables.

Fact 3.3 1. Let Σ−Str id→ Σ−Str. Then ηidΣ−Str = idF and idΣ−Str is a
signature functor; moreover midΣ−Str

= idΣ ∈ Sf (Σ,Σ).

2. Let (Σ − Str H← Σ′ − Str H′← Σ′′ − Str) be functors that commutes over
Set. Then ηH◦H′ = H(ηH′) ◦ ηH . If H and H ′ are signature functors,
then H ◦H ′ is a signature functor and, moreover, in this case, mH◦H′ =
mH′ •mH ∈ Sf (Σ,Σ′′).

Definition 3.4 Signature morphisms and signature functors: Given a

morphism in Sf , Σ
h→ Σ′, we obtain a functor Σ − Str

h?← Σ′ − Str in the
following way:
• For each M ′ ∈ Σ′ − Str denote by h?(M ′) = M ′h the Σ-structure such

that
– |M ′h| = |M ′| (structures with same underlying set);
– Let k ≥ 0 and ck ∈ (Σ)k, then h(ck) ∈ F (Σ′)[k] is a first-order k-ary term over
Σ′ and its interpretation in the Σ′-structure M ′ is a certain k-ary operation
on |M ′|, M ′h(ck) : |M ′|k → |M ′|; considering (ck)

M ′h := h(ck)
M ′ (it is a k-ary

operation on |M ′h|).
• Let g ∈ Σ − Str(M ′, N ′), we define h?(M ′, g,N ′) = (M ′h, g,N ′h) ∈

Σ−Str(M ′h, N ′h): clearly, the function g determines a Σ-homomorphism from
M ′h into N ′h).

Keeping the notation above, we have the following:
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Fact 3.5 1. By construction, the functor h? : Σ′ − Str → Σ − Str “com-
mutes over Set”, i.e., U ◦h? = U ′. It is straightforward that h? preserves,
strictly, the following constructions: substructures, products, directed in-
ductive limits, reduced products, congruences and quotients.

2. Let h ∈ Sf (Σ,Σ′), then for all Y ⊆ V , ηh?(Y ) = ȟ�Y : F (Y ) → F ′(Y )h.
In particular, ηh? preserves variables and h? is a signature functor.

Definition 3.6 Denote by S†f the (non-full) subcategory of the category of all

(large) categories3 given by the categories Σ − Str, for each signature Σ, and
the signature functors as morphisms between them.

Theorem 3.7 The categories Sf and S†f are anti-isomorphic. More precisely:

(a) The mapping Σ ∈ Obj(Sf ) 7→ Σ− Str ∈ Obj(S†f ) is bijective;

(b) Given Σ,Σ′ ∈ Sf , the mappings h ∈ Sf (Σ,Σ′) 7→ h? ∈ S†f (Σ′ − Str,Σ−
Str) and H ∈ S†f (Σ′ − Str,Σ − Str) 7→ mH ∈ Sf (Σ,Σ′) are (well-defined)
inverse bijections.
(c) id?Σ = idΣ−Str and (h′ • h)? = h? ◦ h′?;
midΣ−Str

= idΣ and mH◦H′ = mH′ •mH .

3.2 Filter pairs and Propositional Logics

In this subsection we will define a category of filter pairs and present it as
functorial encoding of the category of all (finitary, propositional) logics: in
fact, we can represent the category of logics and flexible morphisms as a co-
reflexive full subcategory of the category of filter pairs.

Definition 3.8 The category of Filter Pairs: The category Fi which is
composed by:
• Objects: Filters pairs (G, iG).

• Morphisms: Let (G, iG) be a filter pair over a signature Σ and (G′, iG
′
)

be a filter pair over a signature Σ′. A morphism (G, iG) → (G′, iG
′
) is a pair

(H, j) such that H : Σ′−str → Σ−str is a signature functor and j : G′ ⇒ G◦H
is a natural transformation such that given M ′ ∈ Obj(Σ′ − str),

iGH(M ′) ◦ jM ′ = iG
′

M ′ .

3I.e., the category whose objects are large categories and the arrows are functors between
categories.
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Σ′ − str H //

P
--

G′

��

Σ− str

P
rr

G

��
AL

• Identities: For each signature Σ and each filter pair (G, iG) over Σ,
Id(G,iG) := (IdΣ−Str, IdG).
• Composition: Given (H, j), (H ′, j′) ∈ ObjFi.

(H ′, j′) • (H, j) = (H ◦H ′, j • j′)

where (j • j′)M ′′ := jH′(M ′′) ◦ j′M ′′.

Observe that
iGH◦H′(M ′′) ◦ ((j • j′)M ′′) = iG

′′
M ′′ .

Indeed

iGH◦H′(M ′′) ◦ ((j • j′)M ′′) = iGH◦H′(M ′′) ◦ (jH′(M ′′) ◦ j′M ′′)
= (iGH◦H′(M ′′) ◦ jH′(M ′′)) ◦ j

′
M ′′

= iG
′

H′(M ′′) ◦ j
′
M ′′

= iG
′′

M ′′ .

It is straitforward to check that the composition is associative and that holds
the identity laws.

The correspondence between the objects of Lf and Fi is obtained through
of the Proposition 2.4 and the Example 2.7. Now we provide the correspon-
dence between morphisms of Lf and of Fi.

By 3.1, for any functor H : Σ′ − Str → Σ− Str such that it is a signature
functor, there is a signature morphism mH : Σ → Σ′, such that mH(cn) =
ηH(X)(cn(x0, ..., xn−1)). We consider the functor

L : Fi → Lf
(G, iG) lG
↓ (H, j) 7→ ↓ mH

(G′, iG
′
) lG′

It is clear that the assignments above preserves identities and compositions.
It only remains to show that mH is indeed a translation:
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Let Γ ∪ {ϕ} ⊆ F (X) such that Γ `G ϕ. Let a′ ∈ G′(F ′(X)). Suppose
that m̌H [Γ] ⊆ iG

′

F ′(X)(a
′) = iGH(F ′(X))(jF ′(X)(a

′)). Since (G, iG) is a filter pair,

then Γ ⊆ (m̌H)−1 ◦ iGH(F ′(X))(jF ′(X)(a
′)) = iGF (X) ◦ G(m̌H)(jF ′(X)(a

′)) and,

by the definition of Γ `G ϕ, ϕ ∈ iGF (X) ◦ G(m̌H)(jF ′(X)(a
′)) = (m̌H)−1 ◦

iGH(F ′(X))(jF ′(X)(a
′)). Thus m̌H(ϕ) ∈ iGH(F ′(X))(jF ′(X)(a

′)) = iG
′

F (X)(a
′). As

a′ has been taken arbitrary, we conclude that m̌H [Γ] `G′ m̌H(ϕ). Thus mH is
a Lf -morphism.

In [27] is obtained an accurate categorial relation between the category of
algebraizable logics and functors between (algebraic) structures that restrict to
quasivarieties. This correspondence has a “gap” when we treat more general
propositional logics, and we cover it with a similar construction defining the
following functor using the obtained functor by a signature morphisms as in
3.4.

F : Lf → Fi
l (Fil, ι)

h ↓ 7→ F(h) ↓
l′ (Fil′ , ι

′)

where F(h) = (h?, j?) and the natural transformation j? : Fil′ ⇒ Fil ◦ h?
is given by a family of inclusions, i.e., let M ′ ∈ Σ′ − str and F ′ ∈ Fil′(M ′),
then j?M ′(F

′) := F ′.
Observe that given l ∈ Lf , L ◦ F(l) = L((Fil, ι)) = lFil = l. Let h ∈

homLf
(l, l′), then L ◦ F(h) = L((h?, j?)) = mh? = h and L ◦ F = IdLf

.

Thus it only remains to check that j? is well defined:
Indeed, let Γ ∪ {ϕ} ⊆ F (X) such that Γ `l ϕ and v : X → h?(M ′) be a

map such that v̄[Γ] ⊆ F ′.

X

σ′X

$$
σX //

v ""

F (X)
ȟ //

v̄
��

h?F ′(X)

v̄′yy
h?M ′

Consider σX and σ′X the respective unit of adjunction between the free func-
tors (F, F ′) and the forgetful functors (U,U ′) over the categories (Σ− str,Σ′−
str). Consider v̄′ : F ′(X) → M ′ the unique Σ′-homomorphism given by the
universal property of the adjunction, such that v̄′ ◦ σ′X = v. As h?(F ′(X))
has the same universe of F ′(X), we can see the map v̄′ : h?(F ′(X))→ h?(M ′)
as a Σ-homomorphism, i.e., v̄′ = h?(v̄′). Since σ′X = ȟ ◦ σX , then it holds:
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v̄′ ◦ ȟ ◦ σx = v. Notice that v̄ is the unique morphism such that v̄ ◦ σX = v.
Hence v̄′ ◦ ȟ = v̄. Therefore, v̄′ ◦ ȟ[Γ] ⊆ F ′. As F ′ ∈ Fil′(M ′) and ȟ[Γ] `l′ ȟ(ϕ),
then v̄′ ◦ ȟ(ϕ) ⊆ F ′, hence v̄(ϕ) ∈ F ′. Since v has been taken arbitrary,
F ′ ∈ Fil(h?M ′). Thus ιh∗M ′ ◦ j∗M ′ = ι′M ′ .

On the other hand, in general, F ◦ L((G, iG)) 6= (G, iG).

One can define the following equivalence relation on the class of filter pairs:

(G, iG) ∼ (G′, iG
′
) iff Domain(G) = Domain(G′) and lG = lG′

where the logics above are defined over the same signature and over the
standard set of variables V = {v0, v1, · · · } (see Section 2).

This relation means that if two filter pairs are in correspondence, then they
define the same logic.

So we have that F ◦L((G, iG)) = (FilG , ι) and (G, iG) are in the same class
with respect to ∼.

The functors L and F give us, in a similar way as in [27], a “encoding”
for morphisms in Lf . Moreover, they establish that Lf is isomorphic to a
co-reflexive full subcategory of Fi:

Theorem 3.9 (a) The functor F : L → Fi is full, faithful and injective on the
objects.

(b) The functor F is left adjoint to the functor L. Moreover the components
of the counit of this adjunction is given by, for each signature Σ and each filter
pair (G, iG) over Σ:

(IdΣ−Str, j
G) : (FilG , ι)→ (G, iG)

where jGM : G(M) → FilG(M) is the unique factorization of iGM : G(M) →
℘(M) through ιM : FilG(M) ↪→ P (M), (see Remark 2.11.(2)). Thus for each
logic l′, jG induces by composition a (natural) bijection:

Fi(F(l′), (G, iG)) ∼= Lf (l′,L(G, iG)).

Proof:
(a) Since L ◦ F = IdLf

, the functor F is faithful and injective on objects.

Now let (H, j) : (Fil, ι) → (Fil′ , ι
′) be a morphism in Fi. Then for each σ′-

structure M ′, ιH(M ′) ◦ jM ′ = ι′M ′ and jM ′ is the inclusion j∗M ′ : Fil′(M
′) ↪→

Fil(m
∗
H(M ′)). Thus F(mH) = (m∗H , j

∗) = (H, j) and F is a full functor.
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(b) By standard results on category theory (see for instance [24]), it is
enough to prove that for each filter pair (G, iG), the morphism

(IdΣ−Str, j
G) : (FilG , ι)→ (G, iG)

is the couniversal arrow from the functor F to the object (G, iG), since F ◦
L((G, iG)) = F(lG) = (FilG , ι).

Let l′ = (Σ′,`′) be a logic and let (H, j) : F(l′) = (Fil′ , ι
′) → (G, iG)

be a filter pairs morphism. Suppose that G : Σ − str → AL. Then H :
Σ − str → Σ′ − str is a signature functor and, for each M ∈ Obj(Σ − Str),
ι′H(M) ◦ jM = iGM : G(M) ↪→ ℘(M). Thus jM factors uniquely as:

(G(M)
jM→−→ Fil′(H(M))) = (G(M)

jGM→−→ FilG(M))
j∗
IdΣ(M)→ −→ Fil′(H(M)))

Thus: (IdΣ, j
G) • F(mH) = (IdΣ, j

G) • (m∗H , j
∗) =→

3.7
=(H ◦ IdΣ, j

∗
H ◦ jG)

= (H, j).
Since F is a faithful functor, mH : l′ → lG is unique Lf -morphism such that

the diagram below commutes:

(Fil′ , ι
′)

(H,j) %%

F(mH)// (FilG , ι)

(IdΣstr,j
G)

��
(G, iG)

finishing the proof.
�

Remark 3.10 Since F is a full and faithful left adjoint of L, by a well known
result of category theory, the unity of this adjunction is an isomorphism. More-
over it is easy to see that the components of the natural transformation that is
the unity of this adjunction is given, for each logic l ∈ Obj(Lf ), by the identity
idl : l→ L ◦ F(l) = l.

4 Summary and outlook

In this work we have introduced the notions of (finitary) filter pair and shown
how to associate a logic to a filter pair. We further introduced the notion of
morphism of filter pairs and saw that the passage from filter pairs to logics
becomes a functor. This functor has a section, which in particular shows that
every logic admits a presentation by a filter pair.
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At the abstract level at which we have introduced these notions and the
basic facts about them, it may be hard to get an intuitive understanding and to
evaluate where the interest in them lies. In this final section we give outlooks
on forthcoming work, indicating the roles of the present results there, and the
reasons for our choices of definitions.

In section 4.1 we indicate how our definition of morphism of filter pairs was
suggested by the results of [26], and why such a notion is needed to pursue the
program of loc. cit. of a representation theory of logics.

The first basic intuition about filter pairs that we offered, is to see a filter
pair as a presentation of a logic. But in fact from a filter pair (G, i) one
gets more than just this logic. One also gets a distinguished set of filters on
each algebra, namely the i-filters. Thus a more accurate intuition is to see a
filter pair as a presentation of a logic together with a collection of matrices
for it. In section 4.2 below, we hint at why this class of matrices can be an
interesting extra datum and why a filter pair does in fact contain still more
useful information than just the logic and this class of matrices.

In section 4.3 we give an idea of the practical use of Proposition 2.12,
and finally in section 4.4 we say how this same Proposition offers yet another
intuition about what an (infinitary) filter pair is.

4.1 Filter pairs and representation theory of logics

The introduction of the notions of filter pair and morphism of filter pairs was
originally motivated by the programme, initiated in [26], of a representation
theory of logics. In this programme, the idea is to study logics through their
translations to a well-behaved class of logics, for example to algebraizable log-
ics. The translations are, however, studied on a semantic rather than a syn-
tactic level. In [27] it was shown that translations between algebraizable logics
correspond to functors between their associated quasivarieties (together with
some additional data). More general, non-algebraizable, logics are no longer
captured precisely by their associated classes of algebras - instead one has to
consider matrices, i.e. algebras together with filters for the logic.

The same is true for translations between logics. Instead of considering just
functors between certain subcategories of Σ-structures, we need to consider a
functorial relation between matrices, i.e. Σ-structures together with filters, for
both logics. For this to yield a translation between logics, it is not necessary to
relate all matrices of both logics. It is sufficient to consider a big enough class
of matrices such that the associated logic is the given one. A filter pair (G, i)
provides just such a sufficiently big class of matrices, namely the Σ-algebras
together with their i-filters. The notion of morphism of filter pairs is such
that it relates the matrices with i-filters on both sides and this is a semantic
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encoding of translations between general logics.
The functorial encoding of translations between algebraizable logics of [27]

is subsumed by the one presented here, but to make this precise, one first
needs to introduce congruence filter pairs, a class of filter pairs which allows
to capture the relation of a logic to its associated class of algebras.

4.2 Congruence filter pairs

A congruence filter pair is a filter pair (G, i), such that the functor G associates
to a Σ-algebra the algebraic lattice of congruences relative to a quasivariety
Q ⊆ Σ-str. This gives a first hint of how filter pairs can express semantical
aspects of logics, which was not yet visible from the general setup presented in
this work.

One can show that the logics admitting a presentation by a congruence
filter pair are precisely the logics admitting an algebraic semantics in the sense
of [5, Def. 2.2]. Several properties of such logics can be conveniently expressed
through properties of the filter pairs presenting them. For example, a logic
presented by a congruence filter pair (G, i) is algebraizable if i is injective, and
is truth-equational if i is surjective onto the filters of the associated logic.

This shows why, in spite of logics and i-matrices only being determined by
the image of i, it would not be a good idea to identify different filter pairs if
they have the same i-images: Then in particular every filter pair (G, i) would
be equivalent to a filter pair (G′, i′) where the transformation i′ is injective,
namely the filter pair where G′ associates to a Σ-algebra its lattice of i-filters
and i′ is the inclusion of these into the power set. But in the context of
congruence filter pairs, injectivity is a meaningful extra property, indicating
algebraizability of the logic. This is an example of how a filter pair can be still
more than a presentation of a logic together with a class of matrices.

We give a further example justifying our interest in the relation of i-filters
and general filters. We have seen in Proposition 2.9 that i-filters are always
filters for the associated logic, and have said that the image of i need not always
be the set of all filters. Indeed, by what we have said about congruence filter
pairs above, any logic with an algebraic semantics which is not truth-equational
provides an example of this phenomenon. One can show that for a congruence
filter pair the i-filters are always equationally defined. Since i-filters are closed
under intersection, one obtains a closure operator which to any filter of the
logic associates the smallest i-filter containing it. This gives a method to turn
any filter into an equationally defined filter.

Congruence filter pairs have proven to be a rich field of study. In particu-
lar, the relation of the Leibniz operator to the natural transformation i is an
interesting new feature not present for general filter pairs.
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4.3 Horn filter pairs and Craig interpolation

Horn filter pairs are a generalization of congruence filter pairs, which allow to
encode not just algebraic semantics of a logic but also semantics in a class of
first order structures axiomatized by universal Horn sentences. In upcoming
work we will give a criterion for when amalgamation in this class of structures
implies the Craig interpolation property of the associated logic. This criterion
subsumes, among other things, the cases of algebraizable logics and the left
variable inclusion companions of [6].

As amalgamation statements are concerned with the sets of variables oc-
curring in a formula, the proof for this criterion involves the logics associated
to a filter pair over several different sets of variables, and relies on Proposition
2.12.2. Also Proposition 2.14 is crucial for these results. As these propositions
are valid for arbitrary filter pairs, and besides their usefulness are part of the
basic picture, we decided to include them in the present work.

4.4 Infinitary filter pairs and natural extensions

Finitary filter pairs do by design always present finitary logics. In the defini-
tions of algebraic lattice and directed colimit, which enter into the definition of
the notion of finitary filter pair, there are implicit occurrences of the cardinal
ℵ0. Replacing these occurrences by some other regular cardinal κ, we obtain
the notion of κ-filter pair. Analogously to finitary filter pairs, a κ-filter pair
can be seen as a presentation of a logic of cardinality at most κ. Here a logic
is said to be of cardinality at most κ if, whenever Γ ` ϕ, there exists a subset
Γ′ ⊆ Γ of cardinality smaller than κ such that Γ′ ` ϕ.

Proposition 2.12.2 continues to hold for κ-filter pairs. It can be rephrased
as saying that given sets of variables X ⊆ Y , the logic associated to the filter
pair over the set of variables Y is a conservative extension of the logic over the
set of variables X. Such a conservative extension obtained by enlarging the set
of variables is called a natural extension; the availability of natural extensions
plays a role in several technical arguments in propositional logic.

It was noticed by Cintula and Noguera in [16] that a certain standard
construction of natural extensions actually only works under restrictions on
the cardinality of the logic. Further cardinality conditions on uniqueness were
given and the question was raised whether there always exists a unique natural
extension of a given logic to a given set of variables. The question was solved
by Přenosil in [29]: Existence is always guaranteed, uniqueness fails in a certain
cardinality range. Proposition 2.12.2, in the case of κ-filter pairs, is another
existence proof and it coincides with one of Přenosil’s constructions.

This throws a new light on Proposition 2.12.2: For finitary logics, by [16,
Thm. 2.6] there is a unique natural extension to any infinite set of variables
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- so Proposition 2.12.2 says that the logic associated to a filter pair over one
set of variables uniquely determines the associated logics over all other sets of
variables.

In the infinitary case, when uniqueness fails, this offers another perspective
on what a κ-filter pair is: It is a presentation of a logic, together with choices
of natural extensions to all bigger sets of variables. These considerations will
be presented in the forthcoming work [3].
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