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Abstract

In this paper, we define and study the quasi topology structure (QTS)
in the frame of a topological space. The basic cognitive elements postu-
lated by the definition of this structure are analyzed in the frame of topo-
logical elements of a general topological space. Consequently, we study
some particular topological spaces especially some types of lattices that
can host the structure of quasi topology. The notion of quasi topology
structure in topological spaces is consistent.
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1 Introduction

The notion of quasi topology structure (QTS) was founded by Jean-Pierre De-
sclés in [3],[4],[5],[6]. It was defined as a cognitive model with applications in
several fields of sciences beginning with linguistics, especially formal semantics
and continuing with anthropology, sociology and laws as humanities and con-
tinuing with computer science at least in the area of image processing. That is
the reason for an analysis of quasi topology structure as mathematical model,
in other word to build the mathematical model associated to the quasi topol-
ogy structure.
This model must be a mathematical model encoding the idea that a set as
member of an abstract space can have a strict interior and a large interior a
closure and a large closure. It follows, obviously, that this set can be provided
with an internal boundary and an external boundary. These ideas comes from
the linguistic expressions of the space, the linguistic expression of the time,
even from basic notion in law as “legal” opposite to “illegal” or from the social
notion of “inhabitant of a city”. The strict interior and the strict exterior are
subsets of a given set. The closure and the large closure are supersets of it
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and the internal boundary and the external boundary are defined by mean of
previous notions. Their definitions are based on the structure of the host space
of the given set.
These are the cognitive elements of the structure of quasi topology.
From the technical point of view, it is a question of “approximate categoriza-
tion “, the term “approximate” being taken in its large meaning.
In the mathematical literature, several approaches modeling the notions of
strict interior and large closure where defined and studied. We can recall be-
tween them at least “fuzzy sets”[14], “rough sets”[11], “locology “[15]. The
first two approaches generated several derivative models as well as several ap-
plications in different fields of artificial intelligence. The third one has been
had developments in non-classical logic. From the mathematical point of view,
fuzzy sets are based on the extension of the classical notion of membership
function. Rough sets and the locology are based on algebraic relations. The
notions of “interior” and “exterior” from classical topology stand for “lower
approximation” and “upper approximation” in rough sets. In locology, these
notions are replaced by “heart” and “shadow”. There are two aspects to be
highlighted about these approaches: The “conceptual metaphor” which relates
“interior” of the topology to “lower approximation” of rough sets and to the
“heart” of locology have not the same “mathematical meaning”. For the “in-
terior” versus “closure” in topology the basic privileged idea is that one on
continuity / separation. For “lower approximation” versus “upper approxima-
tion” there is an algebraic relation defining them. As for the locology, it is
also an algebraic relation but with some additional conditions. The limits of
the applicative power of these mentioned above approaches was proved by us-
ing examples from social sciences and humanities, particularly from linguistic.
The quasi topology structure comes to cover these limits. Some examples of
applications were presented in [10], [6]. These examples come from various
fields, so with a different cognitive background. The quasi topology structure
encodes more cognitive features related to “interior”, “exterior” and “bound-
ary” of a set than rough sets and locology, namely, the existence of two types
of “interior”, two types of “closure” and, therefore, two types of “boundaries”.
A unified mathematical structure related to the quasi topology has not yet
been defined. The set theory conditions for a structure to be a quasi topology
are directly outcome from real examples. Theses conditions are established
in [4]. These conditions model the cognitive ideas of thick boundary, internal
boundary and external boundary of a set from an general space (a space of sets
in a set theory which is not provided with any other algebraic or topological
structure whatever it may be). The name of quasi topology is given because
the first well known structure modeling the idea of border or boundary was
the classical topology. A general idea is to immerse the Desclés’s based set
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structure in a general topology or in an algebraic structure in order to give it
a mathematical status. Moreover, the mathematical status is needed in order
to have a pattern for a computational model for applications. The goal of this
paper is to anchor the quasi topology structure in the frame of a topological
space, in other words to study the types of topological spaces capable to host
this structure. In addition to that, we try to model a space in which each of
its subset can acquire a structure of quasi topology. This space, if any will
be a quasi-topological space. Starting from the definition of a quasi topology
structure, we analyze its definitional conditions from the point of view of their
modeling firstly in a general topological space and then, in some particular
topological spaces as lattices and metric spaces.
The study of this structure has at least two reasons:

1. A mathematical structure susceptible to be adapted to computational
goals.

2. A computational implementation could serve in several types of applica-
tions, in experimental sciences or in humanities.

The structure of this paper is as follows: Section 2 presents the definition of the
quasi topology structure starting from a topological space. Section 3 recalls
the basic notions of topology. Section 4 presents the QTS anchored in some
types of topological spaces. Section 5 presents the conclusions.

2 Quasi topology structure (QTS)

Definition 2.1 [10] Let 〈X,O〉 be a topological space where X denotes the
space and O denote the topology. We say that a set E from this space is
structured by a quasi topology or it has a quasi topology structure (QTS) if
there exists two open sets O1 and O2 of O, and F1 and F2 two closed sets such
that:

O2 ⊂ O1 ⊆ E ⊆ F1 ⊂ F2 (2.1)

with:

O1is the biggest open set contained in E, that is O1 = Int(E) (2.2)

F1 is the smallest closed set containing E, that is F1 = Cl(E) (2.3)

O2 is the biggest open set strictly contained in O1 (2.4)

F2 is is the smallest closed set strictly containing F1 (2.5)

The set O2 is said to be the strict interior of E; the set O1 is the large in-
terior of E.
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The set F2 is said to be the large closure of E and the set F1 the strict clo-
sure of E.

The internal boundary, the external boundary, the strict boundary and the
large boundary of E are defined by:

Int-bound(E) = F1 −O2 (2.6)

Ext-bound(E) = F2 −O1 (2.7)

Large-bound(E) = Int-bound(E) ∪ Ext-bound(E) (2.8)

Bound(E) = Cl(E)− Int(E) = F1 −O1 (2.9)

The above definition is presented in an intuitive way in the Figure 1.

Figure 1: The quasi topology structure of a set E in a topological space

Remark 2.2 By analyzing conditions (2.2), (2.3), (2.4), (2.5) of the defini-
tion 2.1, we remark that one must capture two elements in the quasi topology
structure coming from the space on which this structure is anchored, namely:

• (a) The two strict inclusions between O2 and O1 and between F1 and F2

respectively;

• (b) To ensure the biggest open and the smallest closed.
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To manage (a), we must work with the strict inclusion that is not a transi-
tive relation. To manage (b), one of the solutions is to work with spaces X in
which there are sets with an infimum and a supremum.

3 Basic notions of general topology

Before analyzing and presenting the topological approach of a quasi topology,
we recall some basic notions of general topology [1],[2]. Despite their equiva-
lence, we need to recall at least the four equivalent definitions of a topological
space in order to highlight which is the most “salient feature” from the cogni-
tive point of view that can be used in a mathematical modeling. Moreover we
need investigate how these features are found in the structure of quasi topology.

Definition 3.1 (via open sets) A topological space is a pair 〈X, T 〉 of a set X
together with a collection T of subsets of X satisfying:

1. The empty set and X are in T.

2. The union of any collection of sets in T is also in T.

3. The intersection of any pair of sets in T is also in T.

The sets in T are the open sets. In this definition the salient feature is open
set.

Definition 3.2 (via closed sets) A topological space is a pair 〈X, T 〉 of a set
X together with a collection T of subsets of X satisfying:

1. The empty set and X are in T.

2. The intersection of any collection of sets in T is also in T.

3. The union of any pair of sets in T is also in T.

The sets in T are the closed sets. In this definition the salient feature is closed
set.

Definition 3.3 (via interior operator) - Kuratowski operator) A topological
space is a pair 〈X, Int 〉 of a set X together with an interior operator Int from
power set of X into power set of X, Int : P(X) → P(X) such that:

1. Int(A) ⊆A for all A ⊆ X

2. Int(A∩B) = Int(A)∩Int(B) for any two subsets A and B of X (preserving
finite intersection)
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3. Int(X) = X, Int(∅) = ∅

4. Int(Int(A)) = Int (A) for any subset A of X (idempotency of interior
operator)

In this definition the salient feature is the idempotency of the interior operator.

Definition 3.4 (via closure operator) - Kuratowski operator) A topological
space is a pair 〈X, Int 〉 of a set X together with a closure operator Int from
power set of X into power set of X, CL : P(X) → P(X) such that:

1. A ⊆Cl(A )for all A ⊆ X

2. Cl(A∪B) = Cl(A)∪Cl(B) for any two subsets A and B of X (preserving
finite union)

3. ClX) = X, Cl(∅) = ∅

4. Cl(Cl(A)) = Cl(A) for any subset A of X (idempotency of closure oper-
ator)

In this definition the salient feature is the idempotency of the closure operator.

These four previous definitions are equivalent.

4 A quasi topology structure defined by the notion
of topology

From the Definition 2.1, we notice that a QTS structure needs two cognitive
elements for its definition. If we take as a base a topological space as first
cognitive elements and something else as second element we say we are in a
quasi topology structure one topology based. In order to model the openess in
conditions (2.2) and (2.4) of the Definition 2.1, a natural idea is that a quasi-
topology structure can be defined on a space X using either a single topology
or two topologies.

4.1 Quasi topology structure one topology based

In Figure 2, it is presented the first quasi topology structure from [4]. It
is inspired from the Desclés’s theory of times and aspects in a grammar of a
language. From the mathematical point of view, this quasi topology is based on
the order relation induced on the real line R and by order relation un integers.
In fact, on the basis of this quasi topology, there are two cognitive elements
expressed inside the fundamentals of mathematics:
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• The fundamental classification In (integer numbers) ⊂ R (real numbers);

• The order relation on R.

However, it’s about one and the same topology.

Example 1 (Quasi topology one topology based. [3],[4]) In Figure2, there is
one of the first examples of Desclés of a QTS. We analyse from the mathemat-
ical point of view this example, in order to establish the types of sets E that can
receive a QTS structure generated by a topology in the space of real numbers
R.

Figure 2: A quasi topology structure of the set E in the space R with the
topology of intervals

As we can see in Figure 2, the space X is the real line R. The topology T1

is given by the integer bordered intervals of the form ]−n, n[ as open sets. So,
X = 〈R,T1〉. It is easy to see that T1 is a topology on R if one accepts that
]−0, 0[= ∅. We also remark that this topology is a topology based on an order
relation, namely order relation on real numbers. What kind of sets can have
a structure of quasi topology in this space? As we can see in the Figure 2, we
have the following cases:

1. If E =]−(n+1), (n+1)[ (E is an open interval bounded by opposite natural
numbers):
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]−n, n[ ⊂ ]−(n+1), (n+1)[ = E ⊂ [−(n+1), (n+1)] ⊂ [−(n+2), (n+2)]
(this is the case represented in Figure 2)

2. If E = [−(n+1), (n+1)](E is a closed interval bounded by opposite natural
numbers):
]−n, n[ ⊂ ]−(n+1), (n+1)[ ⊂ E = [−(n+1), (n+1)] ⊂ [−(n+2), (n+2)]

3. If E =]−n,m[ ou E = [−n,m] with n + 1 ≤ m (E is an open or a closed
interval bounded at left by a negative natural and at right by a positive
one in the relation n + 1 ≤ m):
]−(n− 1), (n− 1)[ ⊂ ]−n, n[ ⊂ E ⊂ [−m,m] ⊂ [−(m + 1), (m + 1)]

4. If E =]−n,m[ ou E = [−n,m] with n + 1 > m:
]−(m− 1), (m− 1)[ ⊂ ]−m,m[ ⊂ E ⊂ [−n, n] ⊂ [−(n + 1), (n + 1)]

5. If E′ = E ∪{r1, r2, . . . , rk} where r1, r2, . . . , rk /∈ E and they are real
numbers. We can easily see that we can find a O1 and a O2 from E if
and only if there is at least a natural number n, such that, n and −n
are between r1, r2, . . . , rk. For F1 = [−nmax, nmax] where nmax =
max{n,m, int(| r1 |) + 1, int(| r2 |) + 1, . . . , int(| rk |) + 1} and int(| ri |)
is the integer part of absolute value of ri.

6. If E′ = ]−r, r′[ where r and r′ are not naturals, we take E =]−n,m[,
where n = int(r + 1) and m = int(r′) + 1

7. Contrariwise, an interval of the type ]n,m[ cannot have a quasi topologic
structure in the space R endowed with the topology T1.

So, X = 〈R,T1〉 cannot be organized as a quasi-topological space but there
are some types of set E having a QTS structure. Thus, the notion of quasi
topology structure is consistent in the case of this space.

Remark 4.1 Instead to take the integers as the second cognitive element to de-
fine the topology T1, we can take another subcategory of real numbers, namely,
rational numbers. However, the form of open sets of T1 is very particular
compared with a common interval ]a, b[.

Remark 4.2 On the real line R endowed with the usual topology of intervals
induced by the order relation between two real numbers, we cannot define the
open O2 under the condition (2.4). In order to have the condition (2.4) fulfilled
we need another element as, for example, to endow the topological space with
a distance. That is to work in a metric space.
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4.2 Quasi topology structure in metric spaces

On R, as topological space, the structure of quasi topology can be instanciated
because of the total order of real numbers. For each open interval we can find
two other open intervals playing the role of O1 et O2 with respect of conditions
(2.2) and (2.4) respectively. On R2, with the topology of disks as open sets, for
each disk, we can find two other disks playing the role of O1 and O2. It is the
same on Rn with the topology of n-dimensional balls. An euclidean complete
space can be organized as a quasi-topological space with the meaning that each
of its nontrivial set can receive a QTS structure.

4.3 Quasi topology structure in lattices

To ensure condition (a) from Remark 2.2 the topological space must be an
ordered space.

4.3.1 Basic lattice theory definitions [17]

Definition 4.3 (Order set; Preordered set; Ordered topology) A set X is a
ordered set under the relation ≤ if the following statements hold for all a, b, c
in X:

1. a ≤ a (reflexivity)

2. If a ≤ b and b ≤ a then a = b (antisymmetry)

3. If a ≤ b and b ≤ c then a ≤ c (transitivity)

A set X is a preordered set if and only if only the reflexivity and the tran-
sitivity are fulfilled.

The set X is said to be a totally ordered set, if and only if the following
additional condition is fulfilled: either a ≤ b or b ≤ a, for all a and b in X.

An ordered topology is a topology that can be defined on a totally ordered
set. We study some topologies on a ordered space. We take as an ordered
space a lattice.

Definition 4.4 (Ideal; Filter) A subset I of a partially ordered set (X, ≤) is
an ideal, if the following conditions hold:

1. I is non-empty

2. For every x in I and every y in X with y ≤x implies that y is in I. (I is
a lower set)
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3. For every x, y in I, there is some element z in I, such that x ≤ z and y
≤z. (I is a directed set).

A subset F of a partially ordered set (X, ≤) is a filter if the following
conditions hold:

1. F is non-empty

2. For every x in F and y in X with x ≤y implies that y is in F. (F is an
upper set, or upward closed)

3. For every x, y in F, there is some element z in F such that z ≤x and z
≤y (F is downward directed).

Definition 4.5 (Lattice) An algebra (L,∨,∧) is called a lattice if L is a nonempty
set, ∧ and ∨ are binary operations on L, both ∧ and ∨ are idempotent, com-
mutative, and associative, and they satisfy the absorption law.

A lattice can be defined by mean of the notion of preordered set.

Definition 4.6 (Lattice-ordered set). A lattice L is a preordered set (L, ≤)
in which each two-element subset (a, b) has an infimum, denoted inf (a, b),
and a supremum, denoted sup (a, b). There is a natural relationship between
lattice-ordered sets and lattices. In fact, a lattice (L, ∨, ∧) is obtained from
a lattice-ordered poset (L, ≤) by defining a ∧ b = inf (a, b) and a ∨ b = sup
(a, b) for any a, b ∈ L . Also, from a lattice (L, ∨, ∧), one may obtain a
lattice-ordered set (L, ≤) by setting a ≤ b in L if and only if a = a ∧ b. One
obtains the same lattice-ordered set (L, ≤ ) from the given lattice by setting a
≤ b in L if and only if a ∨ b = b. (In other words, one may prove that for
any lattice, (L, ∨, ∧), and for any two members a and b of L, a ∧ b = b if
and only if a= a ∨ b.) A complete lattice is a partially ordered set in which all
subsets have both a supremum (least upper bound) and an infimum (greatest
lower bound).

4.3.2 Quasi topology structure in a complete lattice

In a complete lattice L, the topology Tint is the topology of open intervals. An
open interval is a set of the form Oab = {x ∈ X / a < x < b}. For a set E, we
define:
sup E = {x / for all y ∈E, y ≤ x} (the set of all upper bounds of E)
and
inf E = {x / for all y in E, x ≤ y} (the set of all lower bounds of E).
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Starting from a set E, O1, O2 can be chosen with regard to Tint as:
O1 = {x ∈ X / for all y ∈ inf E and for all z ∈ sup E, y < x < z}
O2 ={x ∈ X / for all y ∈ inf O1 and for all z ∈ sup O1, y < x < z}

In the same way:
F1 = {x ∈ X / for all y ∈ E, y ≤x and for all x like this, there are no z ∈ E
such that y ≤ z ≤ x}
F2 = {x ∈ X / for all y ∈ F1, y ≤x and for all x like this, there are no z ∈ F1

such that y ≤ z ≤ x}

In what follows, we take some types of lattices and bring out sets having
a QTS structure and sets without QTS structure. We apply this QTS in the
lattice of the Figure 3 by giving the QTS structure of three types of sets,
namely E1, E2 and E3.

Example 2 In the Figure 3, it is represented a complete lattice if we consider
all the vertices on the same level to be equal. The set E is considered at a time
as E1 (in red), as E2 (in blue) and as E3 (in green).

Figure 3: A quasi topology structure of the set E in the space of a complete
lattice

For E1 = {x11, x12, x13, x21, x22, x23, x24, x25, x31, x32, x33}, O1 = {x21,
x22, x23, x24, x25, x31, x32, x33},
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O2 = {x31, x32, x33}, F1 = {x11, x12, x13, x21, x22, x23, x24, x25, x31, x32,
x33} = E and F2 = { x11, x12, x13, x21, x22, x23, x24, x25, x31, x32, x33, xf}.
So we have: O2 ⊂ O1 ⊂ E = F1 ⊂ F2

For E2 ={x11, x12, x13, x22, x23, x24, x31, x32, x33}, O1 = { x22, x23, x24,
x31, x32, x33 }, O2 = {x31, x32, x33 }, F1 = {x11, x12, x13, x22, x23, x24, x31,
x32, x33} and F2 = {xf , x11, x12, x13, x22, x23, x24, x31, x32, x33, xf .}.
So we have: O2 ⊂ O1 ⊂ E = F1 ⊂ F2.

For E3 = {xf , x11, x12, x13, x22, x23, x24}, O1 = {x11, x12, x13, x22, x23,
x24}, O2 = {x22, x23, x24}, F1 = {xf , x11, x12, x13, x22, x23, x24} = E, F2 =
{xf , x11, x12, x13, x22, x23, x24} = E. So we have: O2 ⊂ O1 ⊂ E = F1 = F2.
So, E3 has no quasi topology structure in this topology.

Remark 4.7 In a lattice as total space, even it is a complete lattice we cannot
define a topology based on filters or, dually by ideals. For filters, that is because
of the fact that the union of two filters is not always a filter. For ideals, that
is because the union of two ideals is not always an ideal. Now, the idea is to
study the conditions, if any, under which the ideals and the filters represent the
open sets and, correspondingly, closed sets, respectively in a lattice viewed as
topological space. For this goal, we give Example 3 and Example 4.

Example 3 Let us consider the lattice L in Figure 4 that is a lattice with an
infimum. This is the space X. As open sets we consider all the filters having
the first element xi, that is all the filters of the form Fil = {xi} ∪ {xjk / xi
→∗xjk} where →∗ is the transitive closure of →. These filters are the filters
constructed by starting from xi and the path x1, x11, x12, . . . going at the right
till the path x1, x1m1, x2m2, . . . and as far as possible down if the lattice is infi-
nite or till the last level, if the lattice is finite. Let F denote the set of all these
filters. We can easily verify that (L, F) is a topological space if and only if the
empty set is considered as an filter of type Fil. The closed set corresponding to
an open set is the set obtained by adding to the open set all the vertices on the
following level after the last one in relation with vertices on the last level. For
example, for the filter of this type Fil1 = {xi, x11, x12} as open set, the closed
set is the ideal Id2 = {xi, x11, x12, x21, x22, . . . , x2m2}

For E = {xi, x11, x12, x21, x22}, we obtain O1 = {xi, x11, x12}; O2 = {xi};
F1 = {xi, x11, x12, x21, x22, x31, x32, . . . , x3m3}; F2 = {xi, x11, x12, x21, x22,
x31, x32, . . . , x3m3, x41, x42, . . . , x4m4}.
So, O2 ⊂ O1 ⊂ E ⊂ F1 ⊂ F2.
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Figure 4: Lattice with an infimum

Remark 4.8 1. The lattice L can be viewed as a topological space (L, F)
if we accept the empty set to be a filter. Formally, this represents a con-
tradiction of the axiom 1. from the Definition 4.4. In some applications,
we can accept this statement.

2. Only its subsets being the structure of a filter here above can be described
as having the structure of quasi topology.

Example 4 Let us consider the lattice L in Figure 5 that is a lattice with a
supremum. As in Example 3, from the lattice in Figure 5, we consider ideals
of the form Id = {xf} ∪ {xjk / xjk →∗ xf } Let I be the set of all these ideals.
In the same way, as in the Example 3, we can organize this lattice by an ideal
topology (L, I) and we can find sets with a quasi topology structure.
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Figure 5: Lattice with a supremum

Example 5 In the Figure 6 there is another type of lattice. This lattice is
related with the mathematical model of the Logic of Determination of Objects
(LDO) [7]. As finite lattice, it is also used in some transportation problems in
operational research. However, it is a particular lattice. We study this lattice
as a topological space and, then the sets receiving a quasi topology structure.

Figure 6: The LDO’s lattice model
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The particularities of this lattice are:
In the upper side Lup of the vertex x0 we can define ideals while in its lower

side Llow, filters. The first level in the upper side and, equaly, in the lower side
has n1 vertices, the second level 2 × n1, and so on the k level has 2k−1 ×n1
vertices. As in Example 3 and Example 4, we can organize the upper side of
the lattice Lup with the ideal topology (Lup , F) from Example 4 and the lower
side Llow with the filter topology ( Llow, I). Let us denote by Lup−low a lattice
of this form.

On Lup−low, we define a couple (Id, Fil), formed by an ideal Id and a filter
Fil as follow:

Definition 4.9 A pair (Id, Fil) is formed by an ideal of the form Id ={xjk
/ xjk →∗ xf} ∪ {x0} and by a filter Fil of the form Fil = {xi} ∪ { xjk / x0
→∗ xjk}. The lattice by Lup−low endowed with the two topologies (Lup, I) and
(Llow, F) can be seen as a topological space (Lup−low, (Lup ,I), (Llow, F)). But
these two topologies are disjoints with the meaning of the open sets are defined
only on the upper side of the lattice and the closed sets on both the upper side
and the lower side of a lattice. The only connection is by mean of open and a
closed containing both the vertex x0 .

Definition 4.10 We can define a hybrid topology Thyb in the sense that the
open sets are the ideals and the closed sets the formed by the pairs ideal –
filter of the form (Id, Fil) here above. Only condition to add is to consider
that the empty set is equaly a filter and an ideal. In this case, the closed set
corresponding to a filter Fil as an open set is the pair (Id, Fil) where the ideal Id
has the same number on vertex on the same level as the filter Fil. For example,
the filter of final vertices xf11 and x0, that is . . . xf21 xf22 xf11 x0 has several
closed sets and namely . . . xf21 xf22 xf11 x0 xi11 xi21 xi22. . . or . . . xf21 xf22 xf11
x0 xi12 xi23 xi23. . . and so on, . . . xf21 xf22 xf11 x0 xi1n1 xi2m2 xi22∗n1 . . .

Remark 4.11 In this case, the only violation of general topology axioms is
the fact that an open set can accept several closed sets.

From all considerations here above, it result the following theorem:

Theorem 4.12 In the lattice Lup-low viewed as topological space (Lup−low,
Thyb), there is a type of sets with a quasi topologic structure. This type is E
= { x/x ∈ Id ∪ Fil } of the pair (Fil, Id)} where Fil has the same number of
vertices as Id on the same level.

Example 6 For the lattice in Figure 6, let be E ={xf21, xf22, xf11,x0, xi11,
xi21, xi22}. Then O1 = {xf21, xf22, xf11, x0}; O2 = {xf11,x0}; F1 = {xf21,
xf22, xf11, x0, xi11, xi21, xi22, x31, x32, x33,x34}; F2 = {xf21, xf22, xf11, x0, xi11,
xi21, xi22, xi31, xi32, xi33, xi34, xi41, xi42, xi43, xi44, xi45, xi46, xi47, xi48}.
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4.4 A quasi topology in a space endowed with two topologies

Let X be a space endowed with two topologies T1 and T2 such that T2 ⊂ T1

, that is each open set in T2 is a open set of T1 and T1 contains at least an
open not belonging to T2 . In order to define a quasi topology structure, it is
necessary and sufficient the following conditions:
There are open sets O1 and O2 , O1 ∈ T1 and O2 ∈ T2, O2 ∈ T2 such that O2 ⊂
O1 and O2 is the largest with this strictly inclusion property; There are closed
sets, F1 and F2, F1 ∈ T1 and F1 /∈, T2, O2 ∈ T2 such that F1 ⊂F2 and F1 it is
the largest with this strictly inclusion property. We must find out which type
of topological spaces can ensure in a not trivial way these conditions, it means
there are sets of type E receiving a quasi topologic structure. In a complete
lattice to capture these constraints one can define two topologies T1 and T2

using the relation → for T1 and the relation →2, this last having the meaning
that x→2 y if and only if between x and y there is only one intermediate vertex.

4.5 Conclusions

The general conclusion is that if we want to keep all axioms (2.1) – (2.5) for
the quasi topology structure (QTS), we must take into account particular topo-
logical spaces. We analyzed some types of particular lattices and instanciated
some QTS anchored in them. Therefore, the notion of quasi topology structure
in topological spaces is consistent. Other conclusions are:

1. The definitional features of the QTS show that we still stay in the frame-
work of classical set theory but one highlights the idea of relation of
“biggest” and of “smallest” between the elements of a set and between
the elements of its power set.

2. None of the previous examples of topological spaces can be organized as
a quasi topological space, except metric spaces.

3. We can start from a more general definition of the QTS. Comparing with
the Definition 2.1 where the universe is a topological space 〈 X, O 〉,
we can put 〈 X, T 〉 where T is either a topology or a pair (T1, T2) of
topologies.

4. The QTS can be modeled in a non-trivial manner and in a consistency
mode either by ordered discrete topologies or in metric spaces as topo-
logical spaces.

5. If sets, O1 and O2 and F1 and F2 respectively are not related with the
ideas of continuity and separation that are the main ideas in classical
topology. Therefore, we can try to model a quasi topologic structure and,
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eventually a quasi topological space by means of spaces endowed with
algebraic relations as, for example, the approximation spaces proposed
by rough sets theory. This will be the topic of the next paper.
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213–233.

[7] J.P. Desclés, A. Pascu, Logic of Determination of Objects (LDO) : How to
Articulate “Extension” with “Intension” and “Objects” with “Concepts”,
Logica Universalis, Springer, vol. 5 nr 1, (2011), 75–89.

[8] J.P. Desclés, A.C. Pascu, C. Jouis, The Logic of Typical and Atypical In-
stances (LTA), Proceedings of the Twenty-Sixth International Florida Ar-
tificial Intelligence Research Society Conference, FLAIRS13, Miami, USA.
AAAI Press , (2013), 321–326.

[9] J.P. Desclés, A.C. Pascu, Logique de la Détermination des Objets (LDO);
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