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Abstract

In this paper we give a characterization of compact topological spaces,
in special, of compact zero-dimensional spaces (Theorems 1 and 2), in
terms of ultrafilter convergence (Definition 1). Motivated by this char-
acterization, we introduce a general method of compactification, which,
in the zero-dimensional case, preserves zero-dimensionality. Since zero-
dimensional spaces are uniformizable, the method also yields the respec-
tive Cauchy completion. In general case this compactification can be
interpreted as “completion” with respect to ultrafilter convergence. We
also prove that the continuous functions with values in compact zero-
dimensional spaces possess an extension property with respect to the men-
tioned compactification. Some applications to Model Theory are given,
specially to the compactification of a logic.

Keywords: zero-dimensional topological spaces, compactness and compactifi-
cation, ultrafilter convergence, abstract logics.

Introduction

In 1989 the Colombian Professor Xavier Caicedo, one of the most renowned
specialists in mathematical logic related to topological aspects of model the-
ory, paid a visit to IMECC (Institute of Mathematics, Statistics and Scientific
Computing) of Unicamp (University of Campinas), Brazil, for three months.
He is a professor at Los Andes University in Bogotá, Columbia. At that time,
he was invited by my doctoral adviser, Antonio Mario Sette, a professor at
Unicamp, to carry out a joint research with IMECC, and one of his activities
there was to teach some seminars on “Uniform topological methods in model
theory”.
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The topological methods in model theory of first order logic were intro-
duced mainly by Alfred Tarski (see [10], p. 713), who defined the elementary
topology in structure spaces of the same kind of similarity via a closure op-
erator. Nowdays, this topology is given by a clopen basis consisting of the
Mod(ϕ) classes for each sentence ϕ of the language Lωω corresponding to the
type of similarity. Notoriously, from this topology, which can also be defined
by other traditional languages of logic, it follows that topological compactness
is equivalent to logical compactness.

Professor Caicedo started his seminars showing that this elementary topol-
ogy is in fact a uniform topology in which the structure spaces are, in a natural
way, totally bounded, directing the discussion to his research on logical equiv-
alents of uniform properties such as uniform continuity of functions between
structure spaces [3].

The main idea that originated our research, in the context of Professor
Caicedo’s seminar, was that the Cauchy completeness of a compact uniform
space, namely, “all Cauchy nets converge”, must also have a logical equivalent
in model theory, and our conjecture was the following: given a Cauchy net of
structures, it converges, up to an elementary equivalence, to the ultraproduct
of the net.

This fact was established by me, Antonio Mario Sette and Daniele Mundici,
by the time the latter was a Professor at University of Milan, Italy, and had
already visited UNICAMP several times before. This result was published in
[6], and independently by Caicedo in [3].

The subsequent work, which is the subject of this paper, led to the follow-
ing directions: 1) to find a topological characterization for the compactness of
zero-dimensional spaces, namely, the ones with a clopen basis, and its Cauchy
completeness. Since its topology is uniform, this topological characterization,
as we will see, involves a notion of convergence through ultrafilters, the U -
convergence, which allows us to find a topological version of  Loś’s ultraprod-
uct theorem; 2) to develop a general method of compactification using local
ultrafilters (as we define in section 3) so that, in the case of zero-dimensional
spaces, the resulting compact space is still zero-dimensional; and 3) to apply
the obtained results to the process of “compactification of abstract logics” by
compactfying the corresponding structure spaces via the developed method.
Preliminary versions of this work were published in [4], [5] and [6].

1 U-Convergence and Compactness

A zero-dimensional (z-d) space X is a topological space which admits a basis
of clopen (i.e. open-closed) sets. It is clear that the collection of clopen sets
of a z-d space is a basis of the space that is closed under finite intersections
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and complements. In what follows, if X is a z-d space, we will suppose that
B is a basis of clopen sets of X which is closed under finite intersections and
complements (in this case obviously B contains X and the empty set ∅).

The topology of a z-d space admits an uniform structure (see [8]) that
generates it given by the following subbasis of uniformity: {UV /V ∈ B}, where,
for every V ∈ B, UV = {(x, y) ∈ X × X/x ∈ V ⇐⇒ y ∈ V }. In particular,
for every V ∈ B there exists W ∈ B, which can be taken as V itself, such
that UW ◦ UW ⊆ UV . This sub-basis has the following property that, besides
ensuring that the space topology is generated by this uniformity, shows that
the resulting uniform space is totally bounded: for every x ∈ X and every
V ∈ B,

UV [x] = {y ∈ X/(x, y) ∈ UV } =

{
V , if x ∈ V
V c , if x /∈ V.

(V c denotes the complement of V in X).
The fact that X is totally bounded can be proved with the following ar-

guments: for every n ≥ 1, we define Sn = {σ = (ε1, . . . , εn)/εi = 0, 1}, then,
given V1, . . . , Vn ∈ B we can decompose

X =
⋃
σ∈Sn

(V ε1
1 ∩ . . . ∩ V

εn
n ), where V εi

i =

{
Vi , if εi = 1
V c
i , if εi = 0

therefore, taking, for every σ ∈ Sn, xσ ∈ V ε1
1 ∩ . . . ∩ V εn

n (if it is not empty),
we have that X =

⋃
σ∈Sn

(UV1 [xσ] ∩ . . . ∩ UVn [xσ]).

For these uniform spaces, then, being complete, in the sense that every
Cauchy net converges, is equivalent to being compact (see [8], pp. 198–9).

This paper has four parts: the first one gives a characterization of compact
spaces (Theorem 1), giving greater emphasis to compact z-d spaces, in terms of
convergence modulo ultrafilters or U -convergence for short, which we will soon
define. It is interesting to observe that Theorem 1 gives us a topological version
of  Loś’s ultraproduct theorem. The second part introduces a method of general
compactification that preserves zero-dimensionality in the case of z-d spaces
and gives the respective completeness. In this section we will analyze the case
of big spaces with small topologies, specially important for the applications
to Model Theory. In the third part we will study the functorial properties of
the built compactification and we will prove an extension theorem for certain
continuous functions (Theorem 12). And in the fourh part we will apply the
obtained results to the case of structure spaces, of Model Theory, equipped
with the elementary topology given by a formal language. The emphasis on
z-d spaces through this paper is due to these applications.
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These are important examples of z-d spaces: the rationals Q with the
induced topology from the line, the space of orders of a formally real field with
the Harrison topology (see [5]), and the non-arquimedian topological vector
spaces, among others.

In this paper, if I is a non-empty set, then a ultrafilter over I is a collection
U ⊆ P(I) such that:

a) ∅ /∈ U

b) A, B ∈ U implies A ∩B ∈ U

c) A ∈ U , A ⊆ B implies B ∈ U

d) for all A ⊆ I: A ∈ U or Ac ∈ U .

Definition 1. Let X be a topological space and B be a basis of X:

1. U -convergence: Let (xi)i∈I be a family in X and U be an ultrafilter over
I; we define limU xi as the set of the x ∈ X such that for all V ∈ B with
x ∈ V , {i ∈ I / xi ∈ V } ∈ U (see [1]).

2. Let (D,≤) be a directed set; a net in X is any family (xi)i∈D of elements
of X.

3. An ultrafilter U over a directed set D is called free if it contains all the
subsets Ak = {i ∈ D/ i ≥ k}, for k ∈ D. (The notion of free ultrafilter
over a directed set generalizes the one of non-principal ultrafilter over the
natural numbers N; it can be seen that {Ak}k∈D has the Finite Intersection
Property (FIP)).

Definition 2. Let X be a z-d space:

1. Let (xi)i∈I be a family in X and U be an ultrafilter over I: we define
limU xi as the set of x ∈ X such that for every V ∈ B there exists A ∈ U
such that for every i ∈ A, (x, xi) ∈ UV , or equivalently, if for every V ∈ B,
{i ∈ I/(x, xi) ∈ UV } ∈ U . (This definition is equivalent, for z-d spaces, to
the usual U -convergence given in Definition 1).

2. A net (xi)i∈D is called a Cauchy net is for every V ∈ B there exists k ∈ D
such that for every i, j ≥ k, (xi, xj) ∈ UV

3. Let (xi)i∈D be a net in X; we define limi xi as the set of every x ∈ X
such that for every V ∈ B there exists k ∈ D such that for every i ≥ k,
(x, xi) ∈ UV .
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If X is a Hausdorff space, we can easily prove that the limits limU and limi,
if they exist, are unique.

The following lemma is essencial for the proof of our characterization of
compactness of z-d spaces, and it is due, fundamentally, to D. Mundici and
A.M. Sette, in the case of spaces of structures in Model Theory (see [4], p. 20).

Convergence Lemma. Let X be a z-d space, (xi)i∈D be a Cauchy net in X
and U be a free ultrafilter over D, then limU xi = limi xi and, in consequence,
limU xi independs of the ultrafilter U . (It is observed that the previous equality
is a set equality which can be empty).

Proof. a) Let x ∈ limi xi and let V ∈ B with x ∈ V ; we have that there exists
k ∈ D such that for every i ≥ k, (x, xi) ∈ UV , i.e., xi ∈ UV [x] = V , hence
Ak = {i ∈ D/i ≥ k} ⊆ {i ∈ D/xi ∈ V }, therefore, as U is free we have that
{i ∈ D/xi ∈ V } ∈ U , i.e., x ∈ limU xi.

b) Let x ∈ limU xi. So, for each V ∈ B, there exists AV ∈ U such that for
i ∈ AV , (x, xi) ∈ UV . However, since (xi)i∈D is a Cauchy net, then for each
V ∈ B, there exists kV ∈ D such that for all i, j ≥ kV , (xi, xj) ∈ UV .

Let V ∈ B and consider W ∈ B such that UW ◦ UW ⊆ UV , then there
exist AW and kW as above, hence, since U is free, Z = AW ∩ AkW ∈ U (in
particular, Z 6= ∅).
Let k ∈ Z and i ≥ k. Then, on the one hand, (x, xk) ∈ UW since k ∈ AW .
On the other hand, i, k ≥ kW implies that (xk, xi) ∈ UW . So (x, xi) ∈
UW ◦ UW ⊆ UV . Therefore x ∈ limi xi. �

Theorem 1. The following statements are equivalent (for z-d spaces):

i) For every family (xi)i∈I and every ultrafilter U over I, limU xi 6= ∅. In
this case, if x ∈ limU xi, we have that for every V ∈ B:

x ∈ V ⇐⇒ {i ∈ I/xi ∈ V } ∈ U.

ii) For every Cauchy net (xi)i∈D and every free ultrafilter U over D, limU xi 6=
∅. In this case, if x ∈ limU xi, we have that for every V ∈ B:

x ∈ V ⇐⇒ {i ∈ D/xi ∈ V } ∈ U

iii) The space X is complete.

iv) The space X is compact.
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Proof. (i ⇒ ii): Obvious.
(ii⇒ iii): From (ii) and from the Convergence Lemma every Cauchy net (xi)i∈D
converges to every x ∈ limi xi.
(iii⇒ iv): It follows directly from the fact that X is a totally bounded uniform
space.
(iv ⇒ i): Suppose that for every x ∈ X there exists Vx ∈ B such that x ∈ Vx
and {i ∈ I/xi ∈ Vx} /∈ U . Obviously, {Vx}x∈X is an open covering of the space
X. Hence, since X is compact, there exist x1, . . . , xn ∈ X such that {Vxk} is
still a covering of X.

Claim. {i ∈ I/xi ∈ Vx1} ∪ . . . ∪ {i ∈ I/xi ∈ Vxn} = I.

Indeed, given i ∈ I, xi ∈ X =
n⋃
k=1

Vxk , then there exists k ∈ {1, . . . , n} such

that xi ∈ Vxk , i.e., i ∈ {i ∈ I/xi ∈ Vxk}.
Therefore, since I ∈ U and U is a maximal filter, there exists k ∈ {1, . . . , n}

such that {i ∈ I/xi ∈ Vxk} ∈ U , a contradiction. Hence, limU xi 6= ∅.
Let x ∈ limU xi and V ∈ B. If x ∈ V , then, from the definition, {i ∈

I/xi ∈ V } ∈ U . If x /∈ V , then x ∈ V c ∈ B. So, from the definition,
{i ∈ I/xi ∈ V c} ∈ U , i.e., {i ∈ I/xi ∈ V } /∈ U . �

Now we give a characterization theorem of compactness of any topological
space in terms of U -convergence. As a consequence, we obtain a new method
of compactification.

Theorem 2. Let X be any topological space, then the following statements
are equivalent:

i) The space X is compact.

ii) For every family (xi)i∈I and every ultrafilter U over I, limU xi 6= ∅.

iii) For every net (xi)i∈D and every ultrafilter U over D, limU xi 6= ∅.

Proof. (i⇒ ii): It is contained in the proof of (iv⇒ i) of Theorem 1, in which
the fact of X be a z-d space is not used.
(ii ⇒ iii): Obvious.
(iii ⇒ i): Let {Fj}j∈J be a family of closed sets of X with the FIP. Let
K = Pω(J) be the collection of finite subsets of J , and, for every ∆ ∈ K
let x∆ ∈

⋂
j∈∆ Fj . Consider the family (x∆)∆∈K ; this family is a net with a

natural order given by the inclusion.
For every ∆ ∈ K, let A∆ = {∆′ ∈ K/∆ ⊆ ∆′} (see Definition 1, part

3), then {A∆}∆∈K have the FIP. Let U be an ultrafilter over K such that
{A∆}∆∈K ⊆ U ; then U is free and, from the hypothesis, there exists x ∈
limU x∆.
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Claim. x ∈
⋂
j∈J

Fj .

Indeed, let j ∈ J and suppose that x /∈ Fj , then x ∈ F cj which is open,
hence, there exists V ∈ B with x ∈ V and V ∩Fj = ∅. But because x ∈ limU x∆,
then for that V , {∆ ∈ K/x∆ ∈ V } ∈ U ; besides, A{j} ∈ U , in particular,
{∆ ∈ K/x∆ ∈ V } ∩ A{j} 6= ∅, i.e., there exists ∆ ∈ K with j ∈ ∆ such
that x∆ ∈ V . On the other hand, x∆ ∈

⋂
k∈∆

Fk, in particular, x∆ ∈ Fj , i.e.,

V ∩ Fj 6= ∅, a contradiction. �

2 A General Method of Compactification

The following is a method of compactification of every topological space with-
out any separation condition. In the zero-dimensional case, it preserves the
zero-dimensionality of the space.

Let X be any topological space and B be a basis of X closed for finite
intersections and containing X and ∅ (the topology generated by B itself can
be considered).

Let γX be the collection of every pair (K,U) where K ⊆ X and U an
ultrafilter over K. We define over γX the following basis: B∗ = {V ∗/V ∈
B} where V ∗ = {(K,U) ∈ γX/K ∩ V ∈ U}. This basis is closed for finite
intersections, it satisfies X∗ = γX, ∅∗ = ∅, (V ∪W )∗ = V ∗∪W ∗ and (V ∩W )∗ =
V ∗ ∩W ∗, and, in the zero-dimensional case, it is closed by complements, since
(V ∗)c = (V c)∗. It is observed that the topology of γX strongly depends of the
basis B considered in X.

The pairs (K,U) with K ⊆ X and U an ultrafilter over K can be called
local ultrafilters over X.

Let us consider the following injective map h : X −→ γX given by h(x) =
({x}, {{x}}). It can be easily verified that: (a) h(x) ∈ V ∗ ⇔ x ∈ V , (b) h is
a embedding of X in γX because V ∗ ∩ h[X] = h[V ], and (c) h[X] is dense in
γX since that if (K,U) ∈ V ∗, there exists x ∈ K such that h(x) ∈ V ∗.

Theorem 3. γX is compact.

Proof. Let {V ∗ci }i∈I be a collection of basic closed sets with the Finite Inter-
section Property (FIP). We have to prove that

⋂
i∈I

V ∗ci 6= ∅.

Claim 1. {V c
i }i∈I has the FIP.

Indeed, if i1, . . . , in ∈ I, there exists (K,U) ∈ V ∗ci1 ∩ . . . ∩ V
∗c
in

, i.e., K ∩
(V c
i1
∩ . . . ∩ V c

in
) ∈ U , hence, there exists x ∈ K such that x ∈ V c

i1
∩ . . . ∩ V c

in
.

Let M =
⋃
i∈I

V c
i , then there exists an ultrafilter W over M that contains

{V c
i }i∈I .
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Claim 2. (M,W ) ∈
⋂
i∈I

V ∗ci .

It suffices to observe that for every i ∈ I, M ∩ V c
i = V c

i ∈W . �

It can be observed that if X is compact and {V ∗ci }i∈I is a family of basic
closed sets in γX with the FIP, then we can choose x ∈ X such that h(x) ∈⋂
i∈I

V ∗ci .

Indeed, the family {V c
i }i∈I has the FIP in X, then, because X is compact,

there exists x ∈
⋂
i∈I

V c
i , hence, h(x) ∈

⋂
i∈I

V ∗ci .

Sometimes, like in the applications to Model Theory, for example (see last
section), it is necessary to consider big topological spaces with small topologies,
i.e., topological spaces where the collection of elements is a proper class and
the topology is a collection of subclasses that can be parametrized by a set.
This kind of collection are usually called small classes.

In a space of this kind, i.e., with a small topology, several topological con-
cepts can be defined in the usual way. For example, the concepts of interior
and closure can be defined because they involve only unions and intersections
of small collection of open and closed sets, respectively. The compactness prop-
erty involves only coverings by small families of open sets or small families of
open sets with the FIP, and convergence can be studied using nets defined on
directed sets (not proper classes). In particular, in the case of uniform struc-
tures defined from small basis, the notion of Cauchy completeness involves only
the convergence of small Cauchy nets.

Intuitively, the small classes are sufficiently elementary to be accepted with-
out problems from the point of view of the foundations of set theory. Obviously,
the usual set theories of Zermelo-Fraenkel (ZF) or Von Neumann-Bernays-
Gödel (NBG) do not allow to fundament such collections. However, a theory
which is sufficiently strong and relatively consistent with ZF + {there exists
at least one (strong) inaccessible cardinal θ} was suggested by Levy (see [9]).
In this theory, a natural model for such system could be obtained for example,
interpreting “class” by “set” and “set” by “set of cardinality < θ”.

Here we will suppose that our “Levy’s set theory” contains the following
axiom of choice for collections of small classes: if {Ai}i∈I is a collection of small
non-empty classes, i.e., I is a set, then there exists a set A that contains an
unique element of each class of the collection. This version will be denoted by
ACw.

Observe that Theorems 1 and 2 above can be also extended for big topolog-
ical spaces with small topologies. For example, in the proof of the part (iii ⇒
i) of Theorem 2, if {Fj}j∈J is a small family of closed sets of X with the FIP,
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the choice, for each finite ∆ ⊆ J of an element x∆ ∈
⋂
j∈∆

Fj can be justified as

an application of the axiom ACw.
Next we will properly modify the definition of γX in the case of X be a

big space with a small basis B of open sets, and we will reformulate the proof
that γX is compact using the axiom ACw. It can be observed that in the case
that X is a set we only need the Ultrafilter Theorem.

Let X be a proper class and B be a small basis of open sets in X (closed
for finite intersections and containing ∅ and X). We define

γX = {(K,U) / K is a set contained in X and U is an ultrafilter over K},

and for every V ∈ B, we define V ∗ = {(K,U) ∈ γX/K ∩ V ∈ U}.

Theorem 4. For a proper class X and a small basis B over X, γX is compact.

Proof. Let {V ∗ci }i∈I be a collection of basic closed sets with the FIP (note
that we can suppose I ⊆ B, thus I is a set). We need to prove that

⋂
i∈I

V ∗ci 6= ∅.

Let J = Pω(I) (finite parts of I) and, for every ∆ ∈ J we choose (based on
the axiom ACw) an element (K∆, U∆) ∈

⋂
i∈∆

V ∗ci . We have that {K∆}∆∈J is a

collection of sets and K =
⋃

∆∈J
K∆ is a set.

Claim 1. The family {K ∩ V c
i }i∈I has the FIP.

Indeed, let ∆ ∈ J . Then, since (K∆, U∆) ∈
⋂
i∈∆

V ∗ci we have that for i ∈ ∆,

K∆ ∩ Vi /∈ U∆, i.e., K∆ ∩ V c
i ∈ U∆, hence K∆ ∩ (

⋂
i∈∆

V c
i ) ∈ U∆, in particular,

K∆∩(
⋂
i∈∆

V c
i ) 6= ∅, therefore

⋂
i∈∆

(K∩V c
i ) = K∩(

⋂
i∈∆

V c
i ) 6= ∅, because K∆ ⊆ K.

Let M =
⋃
i∈I

(K ∩ V c
i ), then M is a set and there exists an ultrafilter W

over M such that {K ∩ V c
i }i∈I ⊆W .

Claim 2. (M,W ) ∈
⋂
i∈I

V ∗ci .

Indeed, let j ∈ I. Then, since K∩V c
j ∈W and M∩V c

j =
⋃
i∈I

(K∩V c
i )∩V c

j =⋃
i∈I

(K ∩V c
i )∩ (K ∩V c

j ) = K ∩V c
j , we have that M ∩V c

j ∈W , i.e., M ∩Vj /∈W .

Then, (M,W ) ∈ V ∗cj . Therefore, (M,W ) ∈
⋂
i∈I

V ∗ci . �

Next we will see that γX can be considered as the completion of X with
respect to U -convergence, where every family of elements of X U -converges to
some limit in γX (Theorem 5), and every point of γX is a U -limit of a family
of elements of X (Theorem 6).
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Theorem 5. Every family of elements of X U -converges in γX.

Proof. Let (xi)i∈I be a family in X and U be an ultrafilter over I (the family
may be understood as a function x : I → X such that for every i ∈ I, x(i) = xi).

Let Kx be the image set of the family, i.e., Kx = x[I], and Ux = {A ⊆
Kx/x

−1[A] ∈ U} (it can be easily proved that Ux is an ultrafilter over Kx).
Then, identifying xi (∈ X) with h(xi) (∈ γX), we have that, in γX:

(Kx, Ux) ∈ limU xi.
Indeed, observing that the facts xi ∈ V and h(xi) ∈ V ∗ are equivalent, we

need to prove that for every V ∗ with (Kx, Ux) ∈ V ∗, {i ∈ I/xi ∈ V } ∈ U .
If (Kx, Ux) ∈ V ∗, then Kx∩V ∈ Ux, hence, by definition, x−1[Kx∩V ] ∈ U ,

but x−1[Kx ∩ V ] = {i ∈ I/xi ∈ V }, therefore, {i ∈ I/xi ∈ V } ∈ U . �

Theorem 6. If (K,U) ∈ γX, then, considering K as a family in X whose
elements are parameterized by themselves, we have that limU K = cl{(K,U)}
(cl denotes the closure in γX). In particular, (K,U) ∈ limU K, i.e., every
element of γX is U -limit of a family of elements of X.

Proof. (A,W ) ∈ limU K ⇔ for every V ∗ with (A,W ) ∈ V ∗: {x ∈ K/x ∈
V } ∈ U , but {x ∈ K/x ∈ V } ∈ U ⇔ K ∩ V ∈ U ⇔ (K,U) ∈ V ∗ ⇔
V ∗∩{(K,U)} 6= ∅. Hence, (A,W ) ∈ limU K ⇔ for every V ∗ with (A,W ) ∈ V ∗:
V ∗ ∩ {(K,U)} 6= ∅ ⇔ (A,W ) ∈ cl{(K,U)}. �

We have, then, that γX is a compactification of X in any case, zero-
dimensional or not. In the zero-dimensional case it is also the completion
of the underlying uniform space. In the general case, as we already saw, γX
can be considered as the completion of X with respect of U -convergence. It
shall be observed that γX is never a Hausdorff space, even if X is so, and that
if X is compact, in general, γX does not reduce to X, as the next two theorems
will show.

Let (K,U) ∈ γX and J ⊆ U . Then, we define UdJ = {A ∩ J/A ∈ U}.
It can be proved that UdJ is an ultrafilter over J that trivially satisfies: for
every A ⊆ K, A ∈ U if and only if A ∩ J ∈ UdJ . Let (K,U) ∈ γX, we say
that U is an uniform ultrafilter over K if for every A ∈ U , |A| = |K| (the
bars denote the cardinality of the set). Let (K1, U1) and (K2, U2) in γX. We
define (K1, U1) ≡ (K2, U2) if for every V ∈ B, (K1, U1) ∈ V ∗ if and only if
(K2, U2) ∈ V ∗, i.e., (K1, U1) and (K2, U2) are indistinguishable by open sets of
γX.

Theorem 7. For every (K,U) ∈ γX and every J ∈ U , we have that (K,U) ≡
(J, UdJ); in particular, if x ∈ K and Ux is the principal ultrafilter (over K)
generated by x, then, (K,Ux) ≡ ({x}, {{x}}).
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Proof. (i) Let (K,U) ∈ V ∗, i.e., K ∩ V ∈ U , and suppose J ∩ V /∈ UdJ ,
then, for every A ∈ U , J ∩ V 6= A ∩ J , in particular, for A = K ∩ V we
have that J ∩ V 6= K ∩ V ∩ J = J ∩ V (since J ⊆ K), a contradiction,
hence (J, UdJ) ∈ V ∗.

(ii) Let (J, UdJ) ∈ V ∗, i.e., J ∩ V ∈ UdJ , then there exists A ∈ U such that
J ∩ V = A ∩ J ; suppose that K ∩ V /∈ U , then K ∩ V c ∈ U , hence,
K ∩ V c ∩ J ∈ UdJ , i.e., J ∩ V c ∈ UdJ . Therefore, J ∩ V /∈ UdJ , a
contradiction, in consequence, (K,U) ∈ V ∗.
For the case (K,Ux), it is enough to take J = {x}, so UxdJ = {{x}}. �

Theorem 8. Let K be an infinite set contained in X and U be a non-principal
ultrafilter over K, then, there exist J ∈ U and W an uniform ultrafilter over
J such that (K,U) ≡ (J,W ).

Proof. Let α = min{|A|/A ∈ U} and let J ∈ U be any set with |J | = α, then,
from Theorem 7, (K,U) ≡ (J, UdJ) (if U is principal, then α = 1 and J = {x}
with x ∈ K, so UdJ = {{x}}, which is uniform, hence, the case that interests
us is when U is non-principal).

Claim. UdJ is uniform, i.e., for every B ∈ UdJ , |B| = α.

Indeed, if B ∈ UdJ , then there exists A ∈ U such that B = A∩J . We have
that |B| = |A∩J | ≤ |J | = α. On the other hand, since A, J ∈ U , we have that
B ∈ U . So |B| ≥ α since α is the minimum. Therefore, |B| = α. �

It is observed that Theorems 7 and 8 reduce the local principal ultrafilters
to elements of X and the local non-principal ultrafilters to uniform ultrafilters.

3 Functorial Properties

Next we will define a functor ∗ of the category of the topological spaces 〈X,B〉
with a distinguished basis in the category of the compact spaces also with
a distinguished basis. A morphism in this category is a continuous function
f : 〈X,B〉 −→ 〈Y, C〉 that preserves the respective bases, i.e., if W ∈ C, then
f−1[W ] ∈ B. We say in this case that f is s-continuous (strongly continuous).

For every space X we define, as above, X∗ = γX, and if f : 〈X,B〉 −→
〈Y, C〉 is s-continuous, we define f∗ : 〈γX,B∗〉 −→ 〈γY, C∗〉 in a way that the
following diagram comutes (h and k are the canonical imersions):

X
f−→ Y

h ↓ ↓ k

γX
f∗−→ γY
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If (K,U) ∈ γX, we define f∗(K,U) = (Kf , Uf ) where Kf = f [K] and Uf =
{A ⊆ f [K]/K ∩ f−1[A] ∈ U}.

f∗ has the following properties: (a) Uf is an ultrafilter over Kf , (b) f∗◦h =
k◦f , i.e., f∗dX = f , (c), (idX)∗ = idX∗ , (d) Ug◦f = (Uf )g, so (g ◦f)∗ = g∗ ◦f∗.

Theorem 9. f∗ is s-continuous.

Proof. Let W ∗ = {(K ′, U ′) ∈ γY/K ′ ∩ W ∈ U ′} ∈ C∗, we will prove that
(f∗)−1[W ∗] = (f−1[W ])∗. Indeed, (f∗)−1[W ∗] = {(K,U) ∈ γX/f∗(K,U) ∈
W ∗} = {(K,U) ∈ γX/(Kf , Uf ) ∈ W ∗} = {(K,U) ∈ γX/f [K] ∩W ∈ Uf} =
{(K,U) ∈ γX/K ∩ f−1[f [K]∩W ] ∈ U} = {(K,U) ∈ γX/K ∩ f−1[W ] ∈ U} =
(f−1[W ])∗ ∈ B∗. �

In analogy to the definition of s-continuous function we can define the
notion of s-open function: we say that f : 〈X,B〉 −→ 〈Y, C〉 is s-open if for
every V ∈ B we have that f [V ] ∈ C. It is imediate that every s-open funtion
is open. A special kind of funtions in the mentioned category is the following:
f : 〈X,B〉 −→ 〈Y, C〉 is called an almost-homeomorphism if f is surjective,
s-continuous, s-open, and for every V ∈ B, f−1[f [V ]] = V . The following
theorem will show that the functor ∗ preserves almost-homeomorphisms.

Theorem 10. If f : 〈X,B〉 −→ 〈Y, C〉 is an almost-homeomorphism, then
f∗ : 〈γX,B∗〉 −→ 〈γY, C∗〉 is also an almost-homeomorphism

Proof. From Theorem 9, f∗ is s-continuous. We will prove now that f∗ is
s-open. Let V ∗ ∈ B∗, we will prove that f∗[V ∗] = f [V ]∗.

⊆: Let (B,W ) ∈ f∗[V ∗], then there exists (K,U) ∈ V ∗ such that (B,W ) =
f∗(K,U) = (Kf , Uf ), i.e., B = Kf = f [K] and W = Uf = {A ⊆
f [K]/K ∩ f−1[A] ∈ U}.
Suppose that (B,W ) /∈ f [V ]∗, hence, f [K] ∩ f [V ] = B ∩ f [V ] /∈ W , i.e.,
K ∩ f−1[f [K]∩ f [V ]] /∈ U , therefore K ∩ f−1[f [K]]∩ f−1[f [V ]] /∈ U , but
K ∩ V ⊆ K ∩ f−1[f [K]] ∩ f−1[f [V ]], hence, K ∩ V /∈ U , a contradition,
because (K,U) ∈ V ∗.

⊇: Let (B,W ) ∈ f [V ]∗, i.e., B ∩ f [V ] ∈W . We will build (K,U) ∈ V ∗ such
that f∗(K,U) = (B,W ).

Since B ⊆ Y and f is surjective, there exists K(= f−1[B]) ⊆ X such
that f [K] = B.

Claim. There exists an ultrafilter U over K such that W = {A ⊆
B/f−1[A] ∈ U}.
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Indeed, since K = f−1[B], then the restriction fdK : K → B is sur-
jective. So, from the fact that W is an ultrafilter over B, we have that
W f = {f−1[A]/A ∈W} is a filter basis over K. Let U be any ultrafilter
over K such that U ⊇ W f and let F = {A ⊆ B/f−1[A] ∈ U}. We will
prove that F = W .

(a) If A ∈ F , then f−1[A] ∈ U , hence, since U extends W f , there exists
A′ ∈ W such that f−1[A′] ⊆ f−1[A]. Therefore, since f is surjective,
A′ = f [f−1[A′]] ⊆ f [f−1[A]] = A, hence A ∈W .

(b) If A ∈ W , then f−1[A] ∈ W f ⊆ U , hence f−1[A] ∈ U , therefore
A ∈ F .

We will prove now that f∗(K,U) = (B,W ). Indeed, f∗(K,U) = (Kf , Uf )
where Kf = f [K] = B and Uf = {A ⊆ f [K]/K ∩ f−1[A] ∈ U} =
{A ⊆ B/f−1[B] ∩ f−1[A] ∈ U} = {A ⊆ B/f−1[B ∩ A] ∈ U} = {A ⊆
B/f−1[A] ∈ U} = W .

In fact, (K,U) ∈ V ∗ because we have that f−1[B ∩ f [V ]] ∈ U , i.e.,
f−1[B] ∩ f−1[f [V ]] ∈ U since B ∩ f [V ] ∈ W = {A ⊆ B/f−1[A] ∈ U}.
Therefore, since f−1[B] = K and f is an almost-homeomorphism we have
that K ∩ V ∈ U .

f∗ is obviously surjective. Finally, if V ∗ ∈ B∗, then (f∗)−1[f∗[V ∗]] =
(f∗)−1[f [V ]∗] = (f−1[f [V ]])∗ = V ∗. In consequence, f∗ is an almost-
homeomorphism. �

Almost-homeomorphisms have surprising properties not only from a topo-
logical but also from a logical point of view. A detailed study of its properties
will be done in another paper.

We will finish this construction with the results refering to the extension
property of the built compactification.

Lemma. If X is a z-d space and (K,U) ∈ γX, then, in X:

lim UK = ∩{V ∈ B/K ∩ V ∈ U}.

Proof. i) If x ∈ limU K, then for every V ∈ B with x ∈ V , K ∩ V ∈ U .
Suppose that there exists W ∈ B with K∩W ∈ U such that x /∈W , in this
case, x ∈ W c ∈ B. Hence K ∩W c ∈ U , i.e., K ∩W /∈ U , a contradiction,
therefore, x ∈ ∩{V ∈ B/K ∩ V ∈ U}.

ii) Suppose that x ∈ ∩{V ∈ B/K∩V ∈ U} and x /∈ limU K, then there exists
W ∈ B with x ∈W such that K ∩W /∈ U , i.e., K ∩W c ∈ U . Hence, since
W c ∈ B we have that x ∈W c, a contradiction, therefore, x ∈ limU K. �
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Observe that this lemma, in the case that X is compact, gives another
proof of the part (iv ⇒ i) of Theorem 1 since the family {V ∈ B/K ∩ V ∈ U}
is a family of closed sets with the FIP.

Theorem 11. If X is a compact z-d space, then there exists an application
g : γX → X that satisfies the following properties:

i) g is s-continuous and can be defined in such a way that gdX = idX (iden-
tifying X with h[X], in particular, X is a retraction of γX.

ii) g is s-open.

iii) For every V ∈ B: g−1[g[V ∗]] = V ∗.

iv) g is a proper map, i.e., g is closed and if K ⊆ X is compact, then g−1[K]
is compact in γX.

v) γX and X have the induced and coinduced by g topologies, respectively.

Proof. Let (K,U) ∈ γX. Then from Theorem 6, (K,U) ∈ limU K. Besides,
from the previous Lemma, there exists x ∈ X such that x ∈ limU K. Define
g(K,U) = x and observe that the choice of x is, initially, arbitrary in limU K.
Thus, it is possible to have more than one function g satisfying conditions
(i)–(v). In the case that (K,U) = ({z}, {{z}}) with z ∈ X we have that
∩{V ∈ B/{z} ∩ V ∈ {{z}}} = ∩{V ∈ B/z ∈ V } = {z}, hence, we define
g(K,U) = z satisfying the demand of gdX = idX .

i) In order to prove the s-continuity of g we will prove that for every V ∈ B:
g−1[V ] = V ∗.

If (K,U) ∈ g−1[V ], then x = g(K,U) ∈ V , but since x ∈ limU K we have
that, for that V , K ∩ V ∈ U , i.e., (K,U) ∈ V ∗.
If (K,U) ∈ V ∗, then, from the definition, x = g(K,U) ∈ limU K = ∩{W ∈
B/K∩W ∈ U}, in particular, from the fact that K∩V ∈ U we have x ∈ V .
Therefore, (K,U) ∈ g−1[V ].

ii) From (i) we have that if V ∈ B, g[V ∗] = g[g−1[V ]] = V since g is (obvi-
ously) surjective. Therefore, g is s-open.

iii) It is an immediate consequence from (i) and (ii) that for every V ∈ B:
g−1[g[V ∗]] = g−1[V ] = V ∗.

iv) The fact that g is closed will be proved in two steps.

a) For every V ∈ B, g[V ∗c]c ∈ B: indeed, we will prove that g[V ∗c] = V c; it
results from the proof of part (i) that V ∗ = g−1[V ], so V ∗c = g−1[V ]c =
g−1[V c], hence, g[V ∗c] = g[g−1[V c]] = V c because g is surjective.
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b) g[
⋂
i∈I

V ∗ci ] =
⋂
i∈I

g[V ∗ci ]: indeed,
⋂
i∈I

V ∗ci =
⋂
i∈I

g−1[V c
i ] = g−1[

⋂
i∈I

V c
i ],

hence, g[
⋂
i∈I

V ∗ci ] =
⋂
i∈I

V c
i =

⋂
i∈I

g[V ∗ci ].

The part (a) proves that the image of a basic closed set by g is a basic
closed set, and the part (b) proves that such property can be extended to
arbitrary closed sets. Therefore, g is closed.

Let K ⊆ X be compact, and suppose that g−1[K] ⊆
⋃
i∈I

V ∗i , then K =

g[g−1[K]] ⊆ g[
⋃
i∈I

V ∗i ] =
⋃
i∈I

g[V ∗i ] =
⋃
i∈I

Vi, hence since K is compact,

there exist i1, . . . , in ∈ I such that K ⊆
n⋃
k=1

Vik , therefore, g−1[K] ⊆
n⋃
k=1

g−1[Vik ] =
n⋃
k=1

V ∗ik , i.e., g−1[K] is compact.

v) It suffices to prove that the bases of γX and X are the bases induced and
coinduced by g, respectively.

Indeed, since for every V ∈ B we have that g−1[V ] = V ∗, then B∗ =
{V ∗/V ∈ B} = {g−1[V ]/V ∈ B} = induced basis by g; analogously,
B = {V/V ∗ ∈ B∗} = {V/g−1[V ] ∈ B∗} = coinduced basis by g. �

The part (v) of the previous theorem asserts that X is a quotient of γX,
in the case that X is a compact z-d space. In fact, the function g built in this
part is an almost-homeomorphism, and it can be proved that the properties
(iv) and (v) of Theorem 11 are satisfied by every almost-homeomorphism.

Theorem 12. If f : X → Y is s-continuous (respectively almost-homeomorphism)
with Y a compact z-d space, then there exists a s-continuous (respectively
almost-homeomorphism) function f̃ : γX → Y such that f̃dX = f .

Proof. Consider the following diagram:

X
f−→ Y

h ↓ ↓ k

γX
f∗−→ γY

g−→ Y

Defining f̃ = g ◦ f∗ we have that f̃ is s-continuous, respectively almost-
homeomorphism, from Theorems 9, 10 and 11, and that if x ∈ X, f̃(x) =
g(f∗(x)) = g(f(x)) = f(x), i.e., f̃dX = f . Note that f̃ is not necessarily
unique provided that g is not necessarily unique. �
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4 Application to Model Theory

In this section, an abstract logic is a pair 〈L, |=L〉, or simply L, in which L
is an application defined over the collection of vocabularies or similarity types
T such that for every τ ∈ T , Lτ is the class of sentences of L of type τ , and
|=L⊆

⋃
τ

(Stτ × Lτ ) is the truth relation of L, where Stτ is the collection of

structures of type τ (see [7]). We will suppose that L is small, in the sense
that, for every τ ∈ T , the collectiom of sentences Lτ is a set, not a proper class.

Here, L will be an extension of the elementary or first order logic Lωω in
the following sense. If for every ϕ ∈ Lτ , ModL(ϕ) = {A ∈ Stτ/A |=L ϕ}, then
the following sentences are satiefied:

(a) Atomic sentences property : for every type τ and every atomic sentence
ϕ ∈ Lτωω, there exists ψ ∈ Lτ such that ModL(ψ) = ModLωω(ϕ).

(b) Negation property : for every type τ and every sentence ϕ ∈ Lτ , there exists
ψ ∈ Lτ such that ModL(ψ) = ModL(ϕ)c.

(c) Conjunction property : for every type τ and every sentences ϕ,ψ ∈ Lτ ,
there exists θ ∈ Lτ such that ModL(θ) = ModL(ϕ) ∩ModL(ψ).

(d) Existencial quantifier property : if c /∈ τ (c is a constant symbol), then,
for every sentence ϕ ∈ Lτ∪{c}, there exists ϕ ∈ Lτ such that for every
structure A = 〈A, . . .〉 ∈ Stτ : A |=L ψ ⇔ for some a ∈ A, 〈A, a〉 |=L ϕ.

The properties (a), (b) and (c) ensure that the collection Bτ = {ModL(ϕ)/ϕ ∈
Lτ} is a basis to the zero-dimensional topology over Stτ , closed under finite in-
tersections and complements. We will denote by Stτ (L) the space Stτ equipped
with this topology. It is observed that for every τ , Stτ (L) is a big space with
a small topology, since Stτ is a proper class and L is small.

The logical compactness of L is usually formulated in the following way: for
every type τ , if Σ ⊆ Lτ is such that every finite subcollection has a model (in
Stτ ), so Σ has a model (in Stτ ). Equivalently, if for every finite subcollection
∆ ⊆ Σ, ModL(∆) =

⋂
ϕ∈∆

ModL(ϕ) 6= ∅, then ModL(Σ) =
⋂
ϕ∈Σ

ModL(ϕ) 6= ∅.

We will see that the second version means the topological compactness of each
space Stτ (L) in terms of families of basic closed sets with the FIP.

Theorem 1 which characterizes the compacity of a z-d space in terms of the
U -convergence adopts the following form in the case of the logic L.

Theorem 13. Let L be a small abstract logic. Then the following statements
are equivalent:

i) L is compact.
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ii) For every type τ every family {Ai}i∈I ⊆ Stτ and every ultrafilter U over
I, limU Ai 6= ∅, and if A ∈ limU Ai we have that for every ϕ ∈ Lτ :

A |=L ϕ⇔ {i ∈ I/Ai |=L ϕ} ∈ U.

�

It is observed that the statement (ii) of Theorem 13 is an abstract version
and a generalization, for compact logics, of the  Loś’s Theorem of ultraprod-
ucts restricted to sentences. It is always valid in Lωω because, in this case,
ΠUAi ∈ limU Ai. Therefore, the statement(i) of Theorem 1 can be considered
a topological version of  Loś’s Theorem. It is important to point that, since that
the spaces Stτ (L) are totally bounded, the version of  Loś’s Theorem given on
Theorem 13(ii) is the statement that such spaces are Cauchy-complete.

We shall also mention that the proof of (iii ⇒ i) on Theorem 2 is just an
adaptation of the known proof of the compactness of Lωω from  Loś’s Theorem.
In it, as we have already mentioned, the axiom ACw is explicitly used.

Our compactification method can be applied to Stτ (L) spaces in the fol-
lowing manner:

For every τ ∈ T , we define CStτ = {(K,U)/K ⊆ Stτ is a set of structures
and U is an ultrafilter over K}, and for every ϕ ∈ Lτ we define Mod∗L(ϕ) =
{(K,U) ∈ CStτ/K ∩ModL(ϕ) ∈ U} = {(K,U) ∈ CStτ/{A ∈ K/A |=L ϕ} ∈
U}.

Mod∗L(ϕ) can be considered as a collection of “generalized models” of ϕ.
From this point of view we can define the “truth” of the sentence ϕ in (K,U)
as

(K,U) 
L ϕ⇔ (K,U) ∈ Mod∗L(ϕ)⇔ {A ∈ K/A |=L ϕ} ∈ U,
therefore, (K,U) behaves as an ultraproduct of K modulo U .

The collection {Mod∗L(ϕ)/ϕ ∈ Lτ} is a basis of clopen sets, for a z-d and
compact (small) topology over CStτ , which is closed for finite intersections and
complements. Stτ is a dense subspace of CStτ by the embedding h : Stτ →
CStτ given by h(A) = ({A}, {{A}}). In addition, for every A ∈ Stτ and every
ϕ ∈ Lτ we have h(A) 
L ϕ⇔ A �L ϕ. Therefore, the semantics of CStτ is an
extension at level of sentences, of the semantics of Stτ .

With respect to this new semantics, the logic L is compact in the following
sense: given Σ ⊆ Lτ , if every finite subset of Σ has a generalized model (i.e.,
in CStτ ), then, Σ has a generalized model. We did, therefore, compactify the
logic L by extending the semantics.

The following are examples of s-continuous or s-open functions:

1. h : Stτ → CStτ is s-continuous because for every ϕ ∈ Lτ we have that

h−1[Mod∗L(ϕ)] = Mod∗L(ϕ) ∩ Stτ = ModL(ϕ).
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2. If L1 ≤ L2 (i.e., for every ϕ ∈ Lτ1 , there exists ψ ∈ Lτ2 such that ModL2(ψ) =
ModL1(ϕ)), then, the identity I : Stτ (L2) → Stτ (L1) is s-continuous, and
I : Stτ (L1)→ Stτ (L2) is s-open. Moreover, any of these properties charac-
terizes the fact that L1 ≤ L2.

3. Let c /∈ τ be a constant, then the function F : Stτ∪{c} → Stτ given by
F (〈A, a〉) = A is s-open. Indeed, the existencial quantifier property (d)
states, in other words, that for every ϕ ∈ Stτ∪{c} there exists ψ ∈ Stτ such
that F [ModL(ϕ)] = ModL(ψ).

We shall finish discussing the problem of the extension of the notion of
“satisfaction” of well formed formulas to CStτ , but before this we will show
an application of the new semantics to the elucidation of an old problem in
the foundantions of mathematics: the distinction between the “arbitrarily big”
and the “infinite”, which is, ultimately, closely related to the not always clear
distinction between the potential infinite and the actual infinite. The argument
we will present was suggested by A. M. Sette (personal communication).

Theorem 14. There exists a “set-object” which is finite but arbitrarily big.

Proof. Let St∅ be the space of the structures where ∅ is the empty similarity
type, i.e., the only symbol allowed in the structures of Stτ is the equality =.
Therefore, St∅ can be identified as the universe the the sets.

Let us consider the logic L = Lωω(Q0) where Q0 is the cardinal quantifier
which interpretation in a structure A = 〈A, . . . , 〉 is the following: A |=L

(Q0x)ϕ(x) ⇔ |{a ∈ A/A |=L ϕ[a]}| ≥ ℵ0. In L, the fact that a set A, i.e.,
a structure of St∅, is “finite” can be expressed; indeed, |A| < ℵ0 ⇔ A |=L

¬(Q0x)(x = x). On the other hand, for every n < ℵ0, the fact that |A| ≥ n
can also be expressed in L; indeed, |A| ≥ n ⇔ A |=L ∃≥n, where ∃≥n is the
sentence (∃x1) . . . (∃xn)

∧
i<j≤n

(xi 6= xj).

It can be observed that if A is a set, then |A| ≥ n for every n < ℵ0 implies
that |A| ≥ ℵ0, which is virtually in contradiction with |A| < ℵ0. It means that
the collection Σ = {∃≥n/n < ℵ0} ∪ {¬(Q0x)(x = x)} has no model in St∅,
which is a consequence of the compactness theorem of Lωω applied to the first
set. However, we will show that Σ has a generalized model in CSt∅. In fact,
the existence of such model is ensured by the compactness of CStτ because
every finite subset of Σ has a model which still is in St∅.

Next we will build a concrete model of Σ. For every n < ℵ0 let An ∈ St∅
such that |An| = n, and let K = {An/n < ℵ0}. Obviously, for every ultrafilter
U over K we have that (K,U) 
L (¬Q0x)(x = x) because {A ∈ K/A |=L

¬(Q0x)(x = x)} = {A ∈ K/|A| < ℵ0} = K ∈ U .
We will build now an ultrafilter W over K such that for every n < ℵ0,

(K,W ) 
L ∃≥n: for every n < ℵ0 let Mn = {A ∈ K/|A| ≥ n}, then the family
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{Mn} has the FIP; let W be an ultrafilter that contains the family {Mn} (in
fact, W is non-principal), then, for every n < ℵ0, (K,W ) 
L ∃≥n because
{A ∈ K/A |=L ∃≥n} = {A ∈ K/|A| ≥ n} = Mn ∈W .

We have then that (K,W ) is a generalized model of Σ and so it is the
wanted “set-object”. �

The previous theorem shows, among other things, that the relation between
two concepts, for example, of “being finite” and of “being arbitrarily big”, de-
pends of the considered logic. Even more, the existence of generalized models
shows that the concept of “set” itself is not caught by any of the considered
languages, although the quality of having some cardinality is. Metalinguisti-
cally, based on the Theorems 7 and 8 above, it is possible to assign a cardinality
to the models (K,U) on the following way: |(K,U)| = min{|A|/〈A, . . .〉 ∈ U}.
Back to the previous theorem we have that Lωω allows to “reach” the actual in-
finite from the potential infinite, although, Lωω(Q0) separates both concepts.
We must comment that non-standart models of Arithmetics also manage to
relate those two concepts creating the notion fo “hyperfinite”. It would be
interesting to make a comparative study.

It remains, then, to discuss the extension of the notion of “satisfaction”
for CStτ . The notion of “truth” for sentences was defined, as we already saw,
in a natural way because the topology of these spaces is defined from them,
although, the notion of “satisfaction” involves formulas with free variables and
the problem of extending the semantics for this case is not trivial and consists in
finding the ontological domain of these variables in relation to the new models.

A first step is to redefine the notion of abstract logic as a pair 〈L,
L〉 where,
in this case, 
L⊆

⋃
τ

(CStτ × Lτ ) is the new truth relation of L. Replacing

ModL(ϕ) for Mod∗L(ϕ) in the clauses (a), (b) and (c) given in the beginning of
this section, we have that they are satisfied due to the zero-dimensionality of
the CStτ spaces.

The property (d) of the existencial quantifier implicitly has the concept of
formulas with free variables. Let us see: a n-ary formula ϕ(c1, . . . , cn) of Lτ

is a sentence of Lτ∪{c1,...,cn} where c1, . . . , cn /∈ τ are constants. It allows us
to define the concept of satisfaction for ϕ in Lτ from the concept of truth in
Lτ∪{c1,...,cn}: if A = 〈A, . . .〉 ∈ Stτ and a1, . . . , an ∈ A, then

A |=L ϕ[a1, . . . , an]⇔ 〈A, a1, . . . , an〉 |=L ϕ(c1, . . . , cn).

In these terms, the property (d) of the existencial quantifier adopts the
following form: for every formula ϕ(c) in Lτ , there exists ψ ∈ Lτ , which can
be denoted by (∃x)ϕ(x), such that for every A ∈ Stτ ,

A |=L (∃x)ϕ(x)⇔ there exists a ∈ A such that 〈A, a〉 |=L ϕ(c).
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Using the function F : Stτ∪{c} → Stτ defined by F (〈A, a〉) = A and ob-
serving that for A = 〈A, . . .〉, F−1[A] = {〈A, a〉 ∈ Stτ∪{c}/a ∈ A}, this last
equivalence can be replaced by:

A |=L (∃x)ϕ(x)⇔ there exists 〈A, a〉 ∈ F−1[A] such that 〈A, a〉 |=L ϕ(c).

This last version can be adapted to the CStτ spaces applying the functor
∗ to the function F providing the following formulation to the property (d):

Existencial Quantifier Property for CStτ spaces: if c /∈ τ , then, for every
sentence ϕ ∈ Lτ∪{c}, there exists ψ ∈ Lτ such that for every (M,W ) ∈ CStτ ,

(M,W ) 
L ψ ⇔ there exists (K,U) ∈ (F ∗)−1[(M,W )]

such that (K,U) 
L ϕ,

or, equivalently,

(M,W ) 
L (∃x)ϕ(x)⇔ there exists (K,U) ∈ (F ∗)−1[(M,W )]

such that (K,U) 
L ϕ(c).

On the other hand, the expression (K,U) 
L ϕ(c), for (K,U) ∈ CStτ∪{c},
means K ∩ModL(ϕ(c)) ∈ U , i.e., {〈A, a〉 ∈ K/〈A, a〉 |=L ϕ(c)} ∈ U .

If we parameterize K as K = {〈Ai, ai〉/i ∈ I} and we identify U with an
untrafilter over I, then, we have that the involved elements ai determine a
function f ∈ Πi∈IAi such that f(i) = ai ∈ Ai, and, therefore,

(K,U) 
L ϕ(c)⇔ {i ∈ I/〈Ai, f(i)〉 |=L ϕ(c)} ∈ U.

It can be easily proved that if g ∈ Πi∈IAi is such that g ∼U f , i.e., {i ∈
I/g(i) = f(i)} ∈ U , then we also have

(K,U) 
L ϕ(c)⇔ {i ∈ I/〈Ai, g(i)〉 |=L ϕ(c)} ∈ U.

It means that the constant c admits an interpretation in (K,U) through the
equivalence class f of f modulo U , and we can formulate the desired notion of
“satisfaction” in the following way:

(K,U) 
L ϕ(c) in f ∈ ΠUK
(∆)⇔ {i ∈ I/〈Ai, f(i)〉 |=L ϕ(c)} ∈ U.

It can be observed that the equivalence (∆) cannot be written in the fol-
lowing way: (K,U) 
L ϕ(c) in f ⇔ 〈ΠUK, f〉 |=L ϕ(c), because ϕ is not
necessarily a first order formula.
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In a last analysis and making the appropriate identifications, the existencial
quantifier property for CStτ spaces admits the following reformulation: if K =
{Ai}i∈I and U is an ultrafilter over I, then, for every ϕ(c),

(K,U) 
L (∃x)ϕ(x)
(∆∆)⇐⇒ there exists f ∈ ΠUK such that

{i ∈ I/〈AI , f(i)〉 |=L ϕ(c)} ∈ U,

which, from the previous observation, cannot be rewritten as (K,U) 
L (∃x)ϕ(x)
⇔ there exists f ∈ ΠUK such that 〈ΠUK, f〉 |=L ϕ(c). We see, then, not
necessarily (K,U) ≡L ΠUK. Although, the question if |(K,U)| = |ΠUK| is
interesting here.

We conjecture here that if for every (K,U) ∈ CStτ (L), (K,U) ≡L ΠUK,
then, L ≡ Lωω.

The equivalences (∆) and (∆∆) constitute our formulation of the relation
of “satisfaction” for the semantics of the CStτ spaces. Now their model theory
can be developed.
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