
South American Journal of Logic

Vol. 4, n. 1, pp. 29–50, 2018

ISSN: 2446-6719

Term Functor Logic Tableaux

J.-Mart́ın Castro-Manzano and Paniel-O. Reyes-Cárdenas

Abstract

The plus-minus calculus of Term Functor Logic features a peculiar
algebra that, as of today, has not been used to produce a full tableaux
method: here we offer one.
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Introduction

Logic is about inference and in order to study it we usually make use of first
order languages: first order logic and first order logic with identity are logi-
cal systems defined after first order languages. The origin of this habit has a
complex and interesting history [10], but it is certainly related to the repre-
sentative advantages first order languages offer when compared to traditional
or Aristotelian term logic. By 1860, Augustus De Morgan had already pointed
out the inability of Aristotelian term logic to deal with relations [9], but it
was Russell who, around 1900, made popular the idea that the limits of the
traditional logic programme, i.e. syllogistic, were due to a commitment to a
ternary syntax, that is, a grammar of triads composed by a subject term and a
predicate term joined by a copula [31]. Later, in 1930, Carnap would generalize
this judgment to all traditional logic by claiming that its available syntax was
predicative only, as in “All (some) Greeks are (not) mortal” or “Socrates is
(not) mortal” [3].

It is true that the syntactical shortcomings of term logic cause big troubles
when trying to represent propositions other than predicative, say relational
(e.g., “Socrates and Plato are friends”), singular (e.g., “Socrates is mortal”),
or compound (e.g., “If you are Socrates, you are Plato’s friend”), but the major
problem ternary syntax creates is term homogeneity. Geach argues:

Our distinction between names and predicables enables us to
clear up the confusion, going right back to Aristotle, as to whether
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there are genuine negative terms: predicables come in contradictory
pairs, but names do not, and if names and predicables are both
called “terms” there will be a natural hesitation over the question
“Are there negative terms?” [17, p.64]

Broadly speaking, the worry with term homogeneity is that it does not
allow us to preserve the fundamental noun-verb distinction. This incapacity
is troublesome because the roles of nouns and predicates are not interchange-
able: the function of a noun is naming, whereas the function of a predicate
is predicating. Thus, the interchange of subject and predicate terms is a syn-
tactical matter that produces an undesired semantic effect, for only a noun
can be a logical subject, but a noun cannot maintain its role as a noun if it
suddenly becomes a predicate. So, this syntactical issue turns out to be a
semantic impossibility: between an Aristotelian term logic and genuine logic,
goes Geach [17, p.54], there can only be war!

By contrast, genuine logic, namely first order logic, follows the Fregean
paradigm that results from dropping terms and adopting a binary grammar of
function-argument pairs. These pairs promote a syntax that includes individ-
ual constants (a, b, c, . . .) or variables (x, y, z, . . .) as arguments that stand for
individual objects as logical subjects, plus relations (A,B,C, . . .) as functions
that stand for concepts, not objects, as logical predicates. Thus, for instance, a
singular proposition like “Socrates is mortal” could not be understood as a rela-
tion between a subject term and a predicate term, but as a function-argument
pair were a constant, a saturated and complete element, say s, denotes an
object named “Socrates” and works as an argument for the unsaturated and
incomplete expression “... is mortal”, say Mx, in such a way that the for-
mula Ms represents the proposition “Socrates is mortal”: clearly, this last
representation forbids any term shifting. Moreover, given this binary syntax,
propositions like “All men are mortal” and “Every circle is a figure; therefore,
anyone who draws a circle draws a figure” cannot be grasped as strings of
terms but as strings of quantifiers, variables, and relations, say ∀x(Hx⇒Mx)
and ∀x(Cx ⇒ Fx) ` ∀x((Dx ∧ ∃y(Cy ∧ Rxy)) ⇒ (Dx ∧ ∃y(Fy ∧ Rxy))),
respectively.

Genuine logic, thus, results from discarding the ternary syntax (subject-
copula-predicate) in order to favor a binary syntax (function-argument) that
promotes the use of first order languages. This syntactical standard is of course
familiar to us because we usually follow it when we teach, research, or apply
logic: this is the received view of logic. However, it comes as no surprise that
this view might very well feel familiar, but it is certainly not natural. Woods
comments (emphasis is ours):

It is no secret that classical logic and its mainstream variants
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aren’t much good for human inference as it actually plays out in
the conditions of real life—in life on the ground, so to speak. It
isn’t surprising. Human reasoning is not what the modern orthodox
logics were meant for. The logics of Frege and Whitehead & Russell
were purpose-built for the pacification of philosophical perturbation
in the foundations of mathematics, notably but not limited to the
troubles occasioned by the paradox of sets in their application to
transfinite arithmetic. [40, p.404]

Genuine logic (classical, according to Woods), no doubt, has been funda-
mental for the study of inference, but it amazes us that, despite its original pur-
pose, it is constantly used as a bona fide tool for representing natural language
reasoning. Let us consider, to this effect, “Bar-Hillel’s challenge” (emphasis is
ours):

I challenge anybody here to show me a serious piece of argu-
mentation in natural languages that has been successfully evaluated
as to its validity with the help of formal logic. I regard this fact
as one of the greatest scandals of human existence. Why has this
happened? How did it come to be that logic which, at least in the
views of some people 2,300 years ago, was supposed to deal with
evaluation of argumentation in natural languages, has done a lot
of extremely interesting and important things, but not this? [36,
p.256]

Since the late 60’s, Fred Sommers championed a revision of the ternary
syntax under the veil of Bar-Hillel’s challenge, that is, under the assumption
that logic has to deal with natural language reasoning. His project unfolded
into three branches: ontology, semantics, and logic (cf. [34]). These branches
became, respectively, a theory of categories that uses terms as the foundational
elements of language, a theory of truth that employs the properties of terms in
order to revive a correspondence theory of truth, and a theory of logic known
as Term Functor Logic that takes terms as basic units of predication [32, 33,
35, 11, 14, 15].

This last theory is basically a plus-minus algebra—a “logibra”, as Sommers
dubbed it—that uses terms rather than first order language elements such as
individual variables or quantifiers. However, since the proof methods for this
theory are still in the making, in this contribution we offer a tableaux method
for it. This goal should be of interest because the plus-minus calculus of Term
Functor Logic features a peculiar algebra that, as of today, has not been used
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to produce a full tableaux method (cf. [8, 28]).1 To reach this goal we briefly
present Term Functor Logic (with special emphasis on syllogistic), then we
introduce our contribution and, at the end, we discuss some of its features.

1 Preliminaries

1.1 Syllogistic

Syllogistic is a term logic that has its origins in Aristotle’s Prior Analytics [1]
and deals with inference between categorical propositions. A categorical propo-
sition is a proposition composed by two terms, a quantity, and a quality. The
subject and the predicate of a proposition are called terms: the term-schema S
denotes the subject term of the proposition and the term-schema P denotes the
predicate. The quantity may be either universal (All) or particular (Some) and
the quality may be either affirmative (is) or negative (is not). These categori-
cal propositions have a type denoted by a label (either a (universal affirmative,
SaP), e (universal negative, SeP), i (particular affirmative, SiP), or o (partic-
ular negative, SoP)) that allows us to determine a mood, that is, a sequence
of three categorical propositions ordered in such a way that two propositions
are premises and the last one is a conclusion. A categorical syllogism, then,
is a mood with three terms one of which appears in both premises but not in
the conclusion. This particular term, usually denoted with the term-schema
M, works as a link between the remaining terms and is known as the middle
term. According to the position of this middle term, four figures can be set up
in order to encode the valid syllogistic moods (Table 1).2

First Second Third Fourth
Figure Figure Figure Figure

aaa eae iai aee
eae aee aii iai
aii eio oao eio
eio aoo eio

Table 1: Valid syllogistic moods

1[35, p.183ff] have already advanced a proposal, but its scope is limited to propositional
logic.

2For sake of brevity, but without loss of generality, here we omit the syllogisms that require
existential import.
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1.2 Term Functor Logic

Term Functor Logic (TFL) is a plus-minus calculus, developed by Sommers [32,
33, 35] and Englebretsen [11, 14, 15], that deals with syllogistic by using terms
rather than first order language elements such as individual variables or quan-
tifiers.3 According to this algebra, the four categorical propositions can be
represented by the following syntax:4

• SaP := −S + P = −S− (−P) = −(−P)− S = −(−P)− (+S)

• SeP := −S− P = −S− (+P) = −P− S = −P− (+S)

• SiP := +S + P = +S− (−P) = +P + S = +P− (−S)

• SoP := +S− P = +S− (+P) = +(−P) + S = +(−P)− (−S)

Given this algebraic representation, the plus-minus algebra offers a simple
method of decision for syllogistic: a conclusion follows validly from a set of
premises if and only if i) the sum of the premises is algebraically equal to the
conclusion and ii) the number of conclusions with particular quantity (viz.,
zero or one) is the same as the number of premises with particular quantity [14,
p.167]. Thus, for instance, if we consider a valid syllogism, say the mood aaa
from figure 1, we can see how the application of this method produces the right
conclusion (Table 2).

Proposition TFL

1. All dogs are animals. −D + A
2. All German Shepherds are dogs. −G + D
` All German Shepherds are animals. −G + A

Table 2: A valid syllogism: aaa-1

In the previous example we can clearly see how the method works: i) if we
add up the premises we obtain the algebraic expression (− D + A) + (−G + D) =
−D + A− G + D = −G + A, so that the sum of the premises is algebraically
equal to the conclusion and the conclusion is −G + A, rather than +A− G,

3That we can represent and perform inference without first order language elements such
as individual variables or quantifiers is not news (cf. [29, 25, 20]), but Sommers’ logical
project has a wider impact: that we can use a logic of terms instead of a first order system
has nothing to do with the mere syntactical fact, as it were, that we can reason without
quantifiers or variables, but with the general view that natural language is a source of natural
logic (cf. [33, 34, 22]).

4We mainly focus on the presentation by [14].
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because ii) the number of conclusions with particular quantity (zero in this
case) is the same as the number of premises with particular quantity (zero in
this case).

This algebraic approach is also capable of representing relational, singular,
and compound propositions with ease and clarity while preserving its main
idea, namely, that inference is a logical procedure between terms. For exam-
ple, the following cases illustrate how to represent and perform inference with
relational (Table 3), singular5 (Table 4), or compound propositions6 (Table 5).

Proposition TFL

1. Some horses are faster than some dogs. +H1 + (+F12 + D2)
2. Dogs are faster than some men. −D2 + (+F23 + M3)
3. That which is faster than what is faster −(+F12 + (+F23 + M3))+

than men, is faster than men. (+F13 + M3)
` Some horses are faster than some men. +H1 + (+F13 + M3)

Table 3: A valid inference with relational propositions

Proposition TFL

1. All men are mortal. −M + L
2. Socrates is a man. +s + M
` Socrates is mortal. +s + L

Table 4: A valid inference with singular propositions

Proposition TFL

1. If you are Socrates, you are Plato’s friend. −[s] + [p]
2. You are Socrates. +[s]
` You are Plato’s friend. +[p]

Table 5: A valid inference with compound propositions

These examples are designed to show that TFL is capable of dealing with a
wide range of inferences, namely, those classical first order logic is capable of
dealing with. However, in certain sense, TFL is arguably more expressive than

5Provided singular terms, such as Socrates, are represented by lowercase letters.
6Given that compound propositions can be represented as follows, P := +[p], Q := +[q],

¬P := [−p], P ⇒ Q := − [p] + [q], P ∧ Q := +[p] + [q], and P ∨ Q := − − [p] − −[q], the
method of decision behaves like resolution (cf. [26]).
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classical first order logic. Let us consider, for example, the following natural
language inference [11, p.172]:

Plato taught Aristotle. So, Aristotle was taught by Plato.

It seems fair to say that the previous inference is a valid one, after all,
it is impossible for the premises to be true and the conclusion to be false.
However, it is not clear how such an inference is valid in classical first order
logic. Consider, for sake of explanation, the following first order representation:

Tpa ` Tpa

In the original example it is evident the conclusion is semantically equivalent
to the premise, yet the premise is syntactically different to the conclusion.
Ideally, this semantic difference should also be a syntactic one, for even if we
recognize that the premise and the conclusion share the same meaning, active
voice and passive voice are not syntactically equivalent. Now, classical first
order logic avoids this issue by assuming that such a syntactic difference is not
relevant because both propositions share the same propositional content, but
this strikes us as an ad hoc solution because, for instance, commutative pairs of
propositions also share the same propositional content yet we do not disregard
the syntactic difference. By contrast, TFL is capable of preserving the semantic
equivalence while indicating the syntactic difference, thus being able to perform
inference with active-passive voice transformations (for instance, by applying
Com and Assoc (for a summary of these rules vide Appendix A)):

+p1 + (+T12 + a2) ` +a2 + (+T12 + p1)

Further, consider another valid inference [11, p.173]:

Socrates taught a teacher of Aristotle. So, one whom Socrates taught, taught
Aristotle.

A plausible representation of the previous inference in classical first order logic
would be:

∃x(Tsx ∧ Txa) ` ∃x(Tsx ∧ Txa)

But again, this representation does not seem to be a faithful transcription
because it is unable to preserve a subtle but meaningful difference between the
premise and the conclusion, namely, the associative shift. By contrast, TFL
is able to perform inference with associative shifts (for instance, by applying
Assoc):
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+s1 + (+T12 + (+T23 + a3)) ` +(+s1 + T12) + (+T23 + a3)

Last but not least, consider another valid inference [11, p.174]:

Plato taught Aristotle with a dialogue. So, Plato taught Aristotle.

A possible representation of the previous inference in classical first order logic
could be:

∃x(Dx ∧ Tpax) ` Tpa

Now, since the relations Txyz and Txy have different arity, such an intuitive
inference is not valid prima facie, and so, for it to be valid in classical first order
logic we need an extralogical justification capable of connecting both relations.
By contrast, TFL is able to perform inference with polyadic simplifications:
it preserves the validity of the previous inference under the common sense
assumption that the teaching relation is polyadic (for example, by applying
Assoc and Simp):

+p1 + ((+T123 + a2) + D3) ` +p1 + (+T123 + a2)

We will return to these features later.

2 TFL tableaux

As we can see, the peculiar algebra of TFL has some interesting capacities (and
inference rules); however, as of today, this algebra has not been exploited as to
produce a full tableaux method (cf. [8, 35, 28]): so here we propose one in three
steps. First, we start by offering some rules; then we show how we can apply
those rules in three different inferential contexts (basic syllogistic, relational
syllogistic, and propositional logic); and finally, we offer some evidence to the
effect that the method is reliable.

As usual, and following [8, 28], we say a tableau is an acyclic connected
graph determined by nodes and vertices. The node at the top is called root.
The nodes at the bottom are called tips. Any path from the root down a series
of vertices is a branch. To test an inference for validity we construct a tableau
which begins with a single branch at whose nodes occur the premises and the
rejection of the conclusion: this is the initial list. We then apply the rules that
allow us to extend the initial list: Diagram 1

In Diagram 1, from left to right, the first rule is the rule for a (e) proposi-
tions, and the second rule is the rule for i (o) propositions. Notice that, after
applying a rule, we introduce some index i ∈ {1, 2, 3, . . .}. For propositions
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−A± B

−Ai ±Bi

+A± B

+Ai

±Bi

Diagram 1: TFL tableaux rules

a and e, the index may be any number; for propositions i and o, the index
has to be a new number if they do not already have an index. Also, follow-
ing TFL tenets, we assume the followings rules of rejection: −(±A) = ∓A,
−(±A± B) = ∓A∓ B, and −(−− A−−A) = +(−A) + (−A).

As usual, a tableau is complete if and only if every rule that can be applied
has been applied. A branch is closed if and only if there are terms of the
form ±Ai and ∓Ai on two of its nodes; otherwise it is open. A closed branch
is indicated by writing a ⊥ at the end of it; an open branch is indicated by
writing ∞. A tableau is closed if and only if every branch is closed; otherwise
it is open. So, again as usual, A is a logical consequence of the set of terms Γ
(i.e., Γ ` A) if and only if there is a complete closed tableau whose initial list
includes the terms of Γ and the rejection of A (i.e., Γ ∪ {−A} ` ⊥).

Accordingly, up next we show the method works for basic syllogistic (Di-
agram 2) and relational syllogistic (Table 6, Diagram 3), including cases of
active-passive voice transformations, associative shifts, and polyadic simplifi-
cations (Table 7, Diagram 4).

Proposition TFL

1. Every boy loves some girl. −B1 + (+L12 + G2)
2. Every girl adores some cat. −G1 + (+A12 + C2)
3. All cats are mangy. −C + M
4. Whoever adores something mangy is a fool. −(+A12 + M1) + F2
` Every boy loves something fool. −B1 + (+L12 + F2)

Table 6: A relational syllogistic example (adapted from [14, p.172])
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−M + P
−S + M
` −S + P
−(−S + P)

+S− P

+S1

−P1

−S1
⊥

+M1

−M1

⊥
+P1

⊥
−M− P
−S + M
` −S− P
−(−S− P)

+S + P

+S1

+P1

−S1
⊥

+M1

−M1

⊥
−P1

⊥

−M + P
+S + M
` +S + P
−(+S + P)
−S− P

+S1

+M1

−M1

⊥
+P1

−S1
⊥

−P1

⊥
−M− P
+S + M
` +S− P
−(+S− P)
−S + P

+S1

+M1

−M1

⊥
−P1

−S1
⊥

+P1

⊥

Diagram 2: Moods aaa-1, eae-1, aii-1, and eio-1
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−B + (+L + G)
−G + (+A + C)
−C + M

−(+A + M) + F
` −B + (+L + F)
−(−B + (+L + F))

+B− (+L + F)

+B1

−(+L + F)1

−L− F1

−B1

⊥
+(+L + G)1

+L1

+G1

−G1

⊥
+(+A + C)1

+A1

+C1

−C1

⊥
+M1

−L1
⊥

−F1

+F1

⊥
−(+A + M)1

−A−M1

−A1

⊥
−M1

⊥

Diagram 3: A relational syllogistic tableau



40 J.-M. Castro-Manzano and P.-O. Reyes-Cárdenas

+M + (+L + M)
` +W + (+L + M)
−(+W + (+L + M))
−W − (+L + M)

+M1

+L1

+W1

−W1

⊥
−(+L + M)1

−L−M1

−L1
⊥

−M1

⊥

+M + (+L + W)
` +(+M + L) + W
−(+(+M + L) + W)
−(+M + L)−W

+M1

+L1

+W1

−W1

⊥
−(+M + L)1

−M− L1

−M1

⊥
−L1
⊥

+M + (+L + W)
` +L + M
−(+L + M)
−L−M

+M1

+L1

+W1

−L1
⊥

−M1

⊥

Diagram 4: Passive-active voice transformation, associative shift, and polyadic
simplification

Proposition TFL

1. Some man loves some woman. +M1 + (+L12 + W2)
2. What a man loves is a woman. +(+M1 + L12) + W2

3. A woman is something a man loves. +W2 + (+M1 + L12)
4. A woman is loved by a man. +W2 + (+L12 + M1)
5. Some lover is a man. +L12 + M1

Table 7: Passive-active voice transformation, associative shift, and polyadic
simplification examples (adapted from [14, p.174])

As a sidenote, we now mention how the method can be used for propo-
sitional logic. Recall the transcription from propositional logic to TFL is
as follows: P := +[p], Q := +[q], ¬P := − [p], P ⇒ Q := − [p] + [q],
P ∧Q := +[p] + [q], and P ∨Q := −− [p]−−[q], the rules, then, go as in Dia-
gram 5 (notice that for the propositional case we need not use the superscript
indexes).
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−p± q

−p ±q

+p± q

+p

±q

Diagram 5: TFL tableux rules for propositional logic

2.1 Reliability

Finally, we produce some evidence to the effect that this method is reliable
(zuverlässig) in the sense that what can be proven using the inference rules
(say, TFLrulesvalid) produces closed complete tableaux (say, TFLtableauxvalid ), and vice
versa. For the purposes of this study we need only focus on mediate inference
rules.

Proposition 2.1 If an inference is TFLrulesvalid, it is TFLtableauxvalid .

Proof. We proceed by cases. We check each mediate inference rule of TFL
(vide Appendix) is TFLtableauxvalid . For the rule DON we only need to retort to
Section 3.1: in there we can observe the four possible ocurrences of DON and
how they are TFLtableauxvalid . For the rule Simp we can build the next tableaux
and observe they are all TFLtableauxvalid :

+(+X+ Y) + Z
` +X+ Y
−(+X+ Y)
−X− Y

+X1

+Y1

+Z1

−X1

⊥
−Y1

⊥

+(+X+ Y)− Z
` +X+ Y
−(+X+ Y)
−X− Y

+X1

+Y1

−Z1

−X1

⊥
−Y1

⊥

+(+X+ Y) + Z
` +X+ Z
−(+X+ Z)
−X− Z

+X1

+Y1

+Z1

−X1

⊥
−Z1

⊥
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+(+X+ Y)− Z
` +Y − Z
−(+X− Z)
−X+ Z

+X1

+Y1

−Z1

−X1

⊥
+Z1

⊥

+(+X+ Y) + Z
` +Y + Z
−(+Y + Z)
−Y − Z

+X1

+Y1

+Z1

−Y1

⊥
−Z1

⊥

+(+X+ Y)− Z
` +Y − Z
−(+Y − Z)
−Y + Z

+X1

+Y1

−Z1

−Y1

⊥
+Z1

⊥

Finally, for the rule Add we can build the next tableaux:

±A
±B

` +(±A) + (±B)
−(+(±A) + (±B))
−(±A)− (±B)

−(±A)
∓A
⊥

−(±B)
∓B
⊥

−X+ Y
−X+ Z

` −X+ (+Y + Z)
−(−X+ (+Y + Z))
+X− (+Y + Z)

+X1

−(+Y + Z)1

−Y − Z1

−X1

⊥
+Y1

−X1

⊥
+Z1

−Y1

⊥
−Z1

⊥

�

Proposition 2.2 If an inference is TFLtableauxvalid , it is TFLrulesvalid.

Proof. We proceed by reductio. Suppose we pick an arbitrary inference that
is TFLtableauxvalid but is not TFLrulesvalid. Then there is a complete closed tableau whose
initial list includes the set of terms Γ (possibly empty) and the rejection of the
conclusion; but from Γ alone we cannot construct a proof of the conclusion
by using any of the rules of mediate inference. There are three general cases
using the tableaux rules: a complete closed tableau whose conclusion is−A± B,
+A± B, or−A + A when Γ is empty. Since in each case the tableau is complete,
the corresponding rules have been applied; and since each tableau is closed,
each tableau must be of one of the following general forms:
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Γ
` −A± B
−(−A± B)

+A∓ B

+A

∓B

...

−A ∈ Γ
⊥

±B ∈ Γ
⊥

Γ
` +A± B
−(+A± B)
−A∓ B

+A ∈ Γ

±B ∈ Γ

...

−A
⊥

∓B
⊥

` −A + A
−(−A + A)

+A− A

+Ai

−Ai

⊥

So, suppose we have an instance of the first general form but the corre-
sponding inference is not TFLrulesvalid, i.e., where Γ+ = Γ∪{+A∓ B}, Γ+ ` ⊥, but
from any application of DON, Simp, and Add to Γ, the conclusion −A± B does
not obtain. Now, by following the paths of the tableau of the first general form,
we observe that, at the bottom, the tableau has a couple of closed branches.
Hence, at some previous nodes the tableau has to include something of the
form −A + X,−X± B, that is to say, we need Γ = {. . . ,−A + X,−X± B, . . .}.
But if so, by applying DON, we obtain −A± B from Γ, which contradicts the
assumption. Similarly, suppose we have an instance of the second general form
but the corresponding inference is not TFLrulesvalid, i.e., where Γ+ = Γ∪{−A∓ B},
Γ+ ` ⊥, but from any application of DON, Simp, and Add to Γ, the conclu-
sion +A± B does not obtain. By following the paths of the tableau of the
second general form, we observe that, at the bottom, the tableau has a couple
of closed branches, and for those branches to be closed, we need something of
the form +A,±B or something of the form +(+A + X)± B at some previous
nodes of the tableau, that is to say, we need either Γ = {. . . ,+A,±B, . . .}
or Γ = {. . . ,+(+A + X)± B, . . .}. But if so, in either case, by applying Add,
we obtain +A± B from Γ; and by applying Simp, we obtain +A± B from
Γ, which contradicts the assumption. Finally, assume we have an instance of
the third general form. In that case, the path of the tableau consists only of
Γ+ = {+A− A}, and so, trivially, Γ+ ` ⊥. But since Γ is empty, −A + A has
to be a tautology (i.e., All A is A) (cf. [14, p.168]). �
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3 Concluding remarks

In this contribution we have attempted to offer a full tableaux method for Term
Functor Logic. Here are some remarks we can extract from this attempt: a) the
tableaux method we have submitted avoids condition ii) of the method of de-
cision for syllogistic (namely, that the number of particular premises has to be
equal to the number of particular conclusions), thus allowing its general appli-
cation for any number of premisses. b) The method preserves the power of TFL
with respect to relational inferences, passive-active voice transformations, as-
sociative shifts, and polyadic simplifications, something that gives this method
a competitive advantage over classical first order logic (tableaux). c) As a
particular case, when no superscript index is used, we just obtain a tableaux
method for propositional logic. d) Due to the peculiar algebra of TFL, we
have no use for quantification rules nor skolemization, which could be useful
for logic programming. e) The number of inference rules (cf. [14, p.168-170])
gets drastically reduced to a shorter, simpler, and uniform set of tableaux rules
that preserves the capacity of TFL to perform inference in different inferential
contexts (basic syllogistic, relational syllogistic, and propositional logic). f)
Also, we have to mention that for the purposes of this paper we have focused
only on the terministic features of TFL, but further comparison is required
with the algebraic proof systems introduced by [6, 4], since these systems allow
us to reconstruct Boole’s analysis of syllogistic by employing polynomial for-
matted proofs [5] and can also be extended to several other logics, like modal
logic [2, 7]. g) Finally, we need to add that, due to reasons of space, we are un-
able to introduce the modal [12, 30, 21], intermediate [27, 37] or numerical [24]
extensions of the method that allow us to represent and reason with modal
propositions or non-classical quantifiers; however, we need to stress that the
inferential and representative powers of term logics go far beyond the limits of
the traditional or first order logic frontiers (cf. [22]).

For all these reasons, we believe this proof procedure is not only novel,
but also promising, not just as yet another critical thinking tool or didactic
contraption, but as a research device for probabilistic and numerical reasoning
(in so far as it could be used to represent probabilistic (cf. [38]) or numerical
reasoning (cf. [24])), diagrammatic reasoning (as it finds its natural home in
a project of visual reasoning (cf. [13, 35])), psychology (as it could be used
to approximate a richer psychological account of syllogistic reasoning (cf. [19,
18])), artificial intelligence (as it could be used to develop tweaked inferential
engines for Aristotelian databases (cf. [23])), and of course, philosophy of logic
(as it promotes the revision and revival of term logic (cf. [39, 33, 14, 15])
as a tool that might be more interesting and powerful than once it seemed
(cf. [3, 16, 17])). We are currently working on some of these areas.
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Posegga. Handbook of Tableau Methods. Springer, 1999.

[9] A. de Morgan. On the Syllogism, No. IV., and on the Logic of Relations.
Transactions of the Cambridge Philosophical Society, 10:331, 1864.

[10] Matti Eklund. On how logic became first-order. Nordic Journal of Philo-
sophical Logic, 1(2):147–67, 1996.

[11] George Englebretsen. The New Syllogistic. 05. P. Lang, 1987.

[12] George Englebretsen. Preliminary notes on a new modal syllogistic. Notre
Dame J. Formal Logic, 29(3):381–395, 1988.



46 J.-M. Castro-Manzano and P.-O. Reyes-Cárdenas

[13] George Englebretsen. Linear diagrams for syllogisms (with relationals).
Notre Dame J. Formal Logic, 33(1):37–69, 1991.

[14] George Englebretsen. Something to Reckon with: The Logic of Terms.
Canadian electronic library: Books collection. University of Ottawa Press,
1996.

[15] George Englebretsen and Charles Sayward. Philosophical Logic: An In-
troduction to Advanced Topics. Bloomsbury Academic, 2011.

[16] Peter T. Geach. Reference and Generality: An Examination of Some
Medieval and Modern Theories. Contemporary Philosophy / Cornell Uni-
versity. Cornell University Press, 1962.

[17] Peter T. Geach. Logic Matters. Campus (University of California Press).
University of California Press, 1980.

[18] Frank C. Keil. Exploring boundary conditions on the structure of knowl-
edge: Some nonobvious influences of philosophy on psychology. In David S.
Oderberg, editor, The Old New Logic: Essays on the Philosophy of Fred
Sommers, pages 67–84. Bradford book, 2005.

[19] Sangeet Khemlani and Philip N. Johnson-Laird. Theories of the syllogism:
a meta-analysis. Psychological Bulletin, pages 427–457, 2012.

[20] Steven T. Kuhn. An axiomatization of predicate functor logic. Notre
Dame J. Formal Logic, 24(2):233–241, 1983.

[21] M. Malink. Aristotle’s Modal Syllogistic. Harvard University Press, 2013.

[22] Larry Moss. Natural logic. In S. Lappin and C. Fox, editors, The Handbook
of Contemporary Semantic Theory. John Wiley & Sons, 2015.

[23] Eyal Mozes. A deductive database based on aristotelian logic. Journal of
Symbolic Computation, 7(5):487–507, 1989.

[24] Wallace A. Murphree. Numerical term logic. Notre Dame J. Formal Logic,
39(3):346–362, 1998.

[25] Aris Noah. Predicate-functors and the limits of decidability in logic. Notre
Dame J. Formal Logic, 21(4):701–707, 1980.

[26] Aris Noah. Sommers’s cancellation technique and the method of resolu-
tion. In David S. Oderberg, editor, The Old New Logic: Essays on the
Philosophy of Fred Sommers, pages 169–182. Bradford, 2005.



Term Functor Logic Tableaux 47

[27] Philip L. Peterson. On the logic of “few”, “many”, and “most”. Notre
Dame J. Formal Logic, 20(1):155–179, 1979.

[28] Graham Priest. An Introduction to Non-Classical Logic: From If to
Is. Cambridge Introductions to Philosophy. Cambridge University Press,
2008.

[29] Willard Van Orman Quine. Predicate functor logic. In J E Fenstad, editor,
Proceedings of the Second Scandinavian Logic Symposium. North-Holland,
1971.

[30] Adriane A. Rini. Is there a modal syllogistic? Notre Dame J. Formal
Logic, 39(4):554–572, 1998.

[31] B. Russell. A Critical Exposition of the Philosophy of Leibniz: With an
Appendix of Leading Passages. Cambridge University Press.

[32] Fred Sommers. On a fregean dogma. In Imre Lakatos, editor, Problems
in the Philosophy of Mathematics, volume 47 of Studies in Logic and the
Foundations of Mathematics, pages 47–81. Elsevier, 1967.

[33] Fred Sommers. The Logic of Natural Language. Clarendon Library of Logic
and Philosophy. Clarendon Press; Oxford: New York: Oxford University
Press, 1982.

[34] Fred Sommers. Intelectual autobiography. In David S. Oderberg, editor,
The Old New Logic: Essays on the Philosophy of Fred Sommers, pages
1–24. Bradford book, 2005.

[35] Fred Sommers and George Englebretsen. An Invitation to Formal Rea-
soning: The Logic of Terms. Ashgate, 2000.

[36] J. F. Staal. Formal logic and natural languages (a symposium). Founda-
tions of Language, 5(2):256–284, 1969.

[37] Bruce Thompson. Syllogisms using “few”, “many”, and “most”. Notre
Dame J. Formal Logic, 23(1):75–84, 1982.

[38] Bruce Thompson. Syllogisms with statistical quantifiers. Notre Dame J.
Formal Logic, 27(1):93–103, 1986.

[39] Henry Babcock Veatch. Intentional logic: a logic based on philosophical
realism. Archon Books, 1970.

[40] John Woods. Logic Naturalized, pages 403–432. Springer International
Publishing, Cham, 2016.



48 J.-M. Castro-Manzano and P.-O. Reyes-Cárdenas

J.-Mart́ın Castro-Manzano
Faculty of Philosophy
UPAEP University
21 sur 1103, Barrio Santiago, CP 72410, Puebla, Puebla, México
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Appendix A. Rules of inference for TFL

In this Appendix we expound the rules of inference for TFL as they appear
in [14, p.168-170].

Rules of immediate inference

1. Premise (P): Any premise or tautology can be entered as a line in proof.
(Tautologies that repeat the corresponding conditional of the inference
are excluded. The corresponding conditional of an inference is simply a
conditional sentence whose antecedent is the conjunction of the premises
and whose consequent is the conclusion.)

2. Double Negation (DN ): Pairs of unary minuses can be added or deleted
from a formula (i.e., −−X = X).

3. External Negation (EN ): An external unary minus can be distributed
into or out of any phrase (i.e., −(±X ± Y ) = ∓X ∓ Y ).

4. Internal Negation (IN ): A negative qualifier can be distributed into or
out of any predicate-term (i.e.,±X − (±Y ) = ±X + (±Y )).

5. Commutation (Com): The binary plus is symmetric (i.e., +X + Y =
+Y + X).

6. Association (Assoc): The binary plus is associative (i.e., +X + (+Y +
Z) = +(+X + Y ) + Z).

7. Contraposition (Contrap): The subject- and predicate-terms of a univer-
sal affirmation can be negated and can exchange places (i.e., −X + Y =
−(−Y ) + (−X)).

8. Predicate Distribution (PD): A universal subject can be distributed into
or out of a conjunctive predicate (i.e., −X + (+Y + Z) = +(−X + Y ) +
(−X + Z)) and a particular subject can be distributed into or out of a
disjunctive predicate (i.e., +X + (−(−Y ) − (−Z)) = − − (+X + Y ) −
−(+X + Z)).

9. Iteration (It): The conjunction of any term with itself is equivalent to
that term (i.e., +X + X = X).

Rules of mediate inference

1. (DON ): If a term, M , occurs universally quantified in a formula and
either M occurs not universally quantified or its logical contrary occurs
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universally quantified in another formula, deduce a new formula that is
exactly like the second except that M has been replaced at least once by
the first formula minus its universally quantified M .

2. Simplification (Simp): Either conjunct can be deduced from a conjunc-
tive formula; from a particularly quantified formula with a conjunctive
subject-term, deduce either the statement form of the subject-term or a
new statement just like the original but without one of the conjuncts of
the subject-term (i.e., from +(+X +Y )±Z deduce any of the following:
+X +Y , +X±Z, or +Y ±Z), and from a universally quantified formula
with a conjunctive predicate- term deduce a new statement just like the
original but without one of the conjuncts of the predicate-term (i.e., from
−X ± (+Y + Z) deduce either −X ± Y or −X ± Z).

3. Addition (Add): Any two previous formulae in a sequence can be con-
joined to yield a new formula, and from any pair of previous formulae
that are both universal affirmations and share a common subject-term
a new formula can be derived that is a universal affirmation, has the
subject-term of the previous formulae, and has the conjunction of the
predicate- terms of the previous formulae as its predicate-term (i.e., from
−X + Y and −X + Z deduce −X + (+Y + Z)).


