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Abstract

After some stage-setting in Section 1, Section 2 presents a proof offered
by Thomas Forster (in his book Reasoning About Theoretical Entities)
to show that procedure offered for eliminating definite descriptions from
a certain range of formulas always yields a description-free equivalent
for any given description-containing formula. (This equivalent amounts
to a formula in which the description in question has been given the
broadest possible scope.) In Section 3, we show that the inductive case of
disjunction in this proof (by induction on formula complexity) does not
go through as claimed, and that the result itself is not correct. In Section
4 we look at some similarities and contrasts between Forster’s proposed
elimination procedure and one emerging more directly from one prominent
strand – the binary quantifier approach – in the Russellian legacy. This
leads us, on a more positive note, to a few observations about a class
of truth-functions intimately connected with that range of contexts in
which the descriptive binary quantifier is “scope-indifferent” – the falsity-
preserving functions – from which we pass, by way of conclusion, to a
corrective reformulation suggested by that discussion for the description-
as-terms treatment of Forster’s discussion.
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Introduction

We focus on one aspect of a treatment of definite descriptions to be found
in Chapter 2 of Forster [9], familiarity with which will not be assumed. The
relevant passages will be quoted in full, and in any case, it is a treatment of a
kind which might independently occur to anyone curious about, as we might
put it, variations on a theme of Russell – whether or not they were pursuing the
project Forster sets himself in the main body of that work. Indeed, after the
present introductory section, no further mention of that project will be made.
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Our main concern will be to draw attention to a problem in this treatment
(Section 2), and then to look into some issues raised by a variant approach
avoiding the problem in question (Section 3). But, just to give the background
for those wondering about it, we include in this section a very brief summary,
before getting down to the business of outlining that treatment and a difficulty
that it faces. Other readers can skip straight to Section 1 for the needed
exposition of [9], without missing anything relied on later.

Forster’s main concern in [9] is in interpretations as recursive (or structure-
respecting) translations from one language into another, in the main cases
achieving this recursivity by, as he puts it, commuting with the quantifiers and
connectives. On p. 13 of this book he writes: “An interpretation of L1 into L2
that sends equality to equality is an implementation. All other interpretations
are simulations.” His main focus is on the latter and of the status, from the
perspective of L2, as ‘virtual objects’, of the would-be referents of the terms
of L1 which are translated away in the case of a simulation. As a warm-up
exercise, Forster presents a Russell-inspired interpretation which counts as an
implementation rather than a simulation: definite descriptions, as terms, are
translated away as we pass from a language containing to a language lacking
them, but there is no tendency to think of what they might denote (in the case
of proper definite descriptions) as merely virtual objects.1 It is with one aspect
of this initial exercise, of considerable interest in its own right, that the present
discussion is concerned, rather than with the general program it is being used
to introduce. The argument referred to in our title is an inductive argument
(given as the proof of Forster’s Theorem 2.1) which, we will be suggesting,
goes wrong in a fairly subtle way, especially when compared with a similar
but slightly different argument coming out of the broadly Russellian tradition
(Section 3). Indeed one might draw from that comparison the conclusion that
the spirit of Forster’s treatment is on the right lines, even though its exact
articulation goes off track.

There may be good reason for readers of [9] to get clear about how this in-
terpretation (in Forster’s specialized sense) is meant to work, since it is the only
interpretation result which is worked out in full detail in the book. We shall
see in Sections 1 and 2 below, that although the idea of Foster’s Theorem 2.1 is
ingenious – restricting attention there to a class of formulas for which the con-
trast between narrow and broad scope for descriptions is (in effect) claimed to
make no difference, permitting a relatively uniform elimination-of-descriptions
recipe – the details actually supplied leave something to be desired. Further,
definite descriptions are appealed to ‘implicitly’ throughout [9], both to define

1He we use the special terminology of denoting as opposed to referring to employed in
Russell [30] to avoid the suggestion that it is the (‘logically proper’) name–bearer relation of
reference that is involved.



Description and Disjunction 3

function symbols (on p. 22) and in the characterisation of virtual entities (on
p. 30). Given that the latter are meant to be Forster’s main object of study,
it would be good if this case study worked out well, though the question of
whether or not the difficulty we find with his account of definite descriptions
in any way vitiates the overall project, we leave to those with a special interest
in that project to determine. Forster’s own view would seem to be that the
details to which we will be attending have no such significance for that project,
since at the start of Chapter 2 of [9] he writes: “Readers who are completely
confident about Russell’s theory of descriptions can probably safely skip the
rest of this chapter.”2 As already emphasized, however, we are concerned in
the following two sections not with the general project but precisely with the
details of the treatment provided of descriptions, and the instructive mistake
arising in the course of that treatment. Section 1 summarizes Forster’s expo-
sition in Chapter 2 of [9], and includes some incidental critical commentary on
it. Section 2 presents the main problem – of considerable interest in its own
right – with Forster’s treatment, and, as already mentioned, there are some
comparative remarks on what might be called a more mainstream contempo-
rary descendant (the binary quantifier approach) of the Russellian tradition in
Section 3.

1 Descriptions

On p. 12 of [9], before the chapter – Chapter 2, pp. 17–25 – on definite descrip-
tions begins, Forster writes that “Following Russell, we use upside-down iotas
for singular descriptions,” but to make life easier let us follow Prior [26], or,

2We might add here: most readers regarding themselves as completely confident about
Russell’s theory should probably have a look at Kuhn [20] and Kripke [18]. Forster himself
has some discussion going beyond the received wisdom on Russell, writing on p. 18: “If
one wants to think of Russell’s account of ι-terms as a thesis about the logical structure
of ordinary language, this compels one to say that the (top level) logical structure of ‘the
King of France is bald’ is an existential quantification. According to this view, ι-terms are
syntactic sugar and do not really denote. However, we are not obliged to adhere to this purist
view: in any situation in which an ι-term can legitimately be introduced there is a canonical
implementation for it.” This talk of introducing ι-terms only when legitimate suggests the
Hilbert–Bernays approach (see Gratzl [13] for references and discussion and Gratzl [14] for
aspects of what the ‘purist’ view involves) but on the following page Forster tells us that it
is not a path he intends to go down, saying instead that “[t]he obvious question of what one
is to make of formulæ containing embedded definite descriptions whose introduction has not
been authorised by a theorem in the style ∃!xφ(x) is largely sidestepped here by theorem
2.1”. We return to the theorem in question in the following section. Apropos of the non-
purist approach, to which Forster here implies he is in general (if not for present purposes)
sympathetic, we should mention that talk in the text of eliminating descriptions (as terms)
is not itself intended to suggest that it would be a good idea to ‘get rid of’ such terms, but
simply to refer to the provision of description-free equivalents for sentences containing them.
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for that matter, the more recent Neale [22], or Kuhn [20], and use a simple
uninverted iota (“ι”) for this purpose.3 We use this notation even in giving
direct quotations from Forster, such as the following (from p. 19 – and indeed
did so already in note 2):

Suppose we have a language L which does not contain singular de-
scriptions. We want to show how to interpret in L the language Lι, the
result of adding singular descriptions to L.

Definition 2.1 Let I be the interpretation Lι −→ L defined as fol-
lows. The recursive clauses are that I commutes with quantifiers and
connectives. Atomic and negatomic formulas are sent to themselves un-
less they contain singular descriptions. Let us consider this case in more
detail.

If ‘x’ is free in φ then for atomic or negatomic Ψ with ‘y’ free, I of
Ψ[ιx�φ(x)/y] is

(∃x)(φ(x) ∧Ψ[x/y] ∧ (∀y)(φ(y)→ y = x)).

Forster goes on to say what this becomes in the case that Ψ is an equa-
tion, and to emphasize that the order in which we expand the ι-terms in
φ(ιx(A(x), ιyB(y))) does not matter in the sense that the results will be (logi-
cally4) equivalent. Presumably the above definition should be modified in order
to take into account multiple ι-terms replacing variables (playing the ‘y’ role)
within the same atomic formula; this and several other complications, men-
tioned in the final paragraph of this section, do not affect the main problem
raised in Section 2.5 Next, on p. 20f. we have the following passage,6 in which

3Since the regular iota is no longer used for denoting unit sets, no confusion is in danger of
arising. We will return to “ ι” for authenticity when quoting from and discussing Russell di-
rectly in Section 3, in which there also appears a Digression with further details on notational
matters.

4Since Forster makes no mention of non-classical logic, the presumption should be that we
use classical predicate logic when formulas of L are concerned and stay as close to classical
predicate logic as possible for Lι – certainly not deviating from classical propositional logic,
even if some free-logical restrictions were to be imposed on universal instantiation (or ∀-
elimination) moves occasioned by the presence of ι-terms.

5The exact formation rules of the language Forster calls Lι are not stated, but clearly its
formulas are not just those satisfying the restrictive conditions of Theorem 2.1 below, which
do not allow, for example, quantifiers binding variables within ι-terms, whereas any use of
definite descriptions to understand function symbols, such as that mentioned in Section
as appearing on p. 22 of [9] – and particularly emphasized Smiley [32] – requires us to be
able to say such things as: ∀x(x < f(x)). When Forster explains this on p. 22, he stresses
that “nothing in theorem 2.1 depends on φ containing no free variables”, which can then be
bound by outlying quantifiers: it’s just that the simple elimination-of-ι-terms recipe provided
by Theorem 2.1 does not deliver a formula I(α) from a formula α containing such outlying
quantifiers. Perhaps Forster envisages extending I in such a way that I(∀vβ) = ∀vI(β).

6Naturally, we are forced to reproduce here the duplicate numbering used by Forster, with
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we take its opening reference to ‘induction on L’, to be to induction on the
complexity of formulas of L, for some suitable measure of complexity (an issue
to which we return below):

We can now prove by induction on L that:

Theorem 2.1 Suppose φ is built up from atomics and negatomics by
means of ∧, ∨, ∀, and ∃. Suppose also that ‘x’ is free in φ and no
variable free in φ is bound by any quantifier in Ψ. Then for any Ψ with
‘y’ free, I of Ψ[ιx�φ(x)/y] is logically equivalent to

(∃x)(φ(x) ∧Ψ[x/y] ∧ (∀y)(φ(y)→ y = x))

Proof :

This is proved by induction on Ψ. The base case (Ψ atomic or
negatomic) follows immediately from definition 2.1. The inductive steps
for the quantifiers and connectives are as follows.

Ψ is Ψ1 ∨Ψ2

Suppose ‘x’ is free in φ and no variable free in φ is bound by any
quantifier in Ψ1 or Ψ2. By induction hypothesis Ψ1[ιx�φ(x)/y] is equiv-
alent to (∃x)(φ(x) ∧Ψ1[x/y] ∧ (∀y)(φ(y)→ y = x)) and Ψ2[ιx�φ(x)/y] is
equivalent to (∃x)(φ(x) ∧Ψ2[x/y] ∧ (∀y)(φ(y)→ y = x)).

Therefore (Ψ1 ∨Ψ2)[ιx�φ(x)/y] is equivalent to:

(∃x1)(φ(x1) ∧Ψ1[x1/y] ∧ (∀y)(φ(y)→ y = x1)) ∨
(∃x2)(φ(x2) ∧Ψ2[x2/y] ∧ (∀y)(φ(y)→ y = x2))

By the uniqueness condition any witness to ‘∃x1’ must also satisfy the
first and third clauses of the second disjunct so the formula simplifies to

(∃x)(φ(x) ∧ (Ψ1 ∨Ψ2)[x/y] ∧ (∀y)(φ(y)→ y = x))

as desired.

The proof continues with the inductive cases presented by conjunction, the
universal quantifier, and the existential quantifier – the last case not being
treated in detail but being said to be similar to that of the universal quantifier
“but easier”. ([9], p. 32. Incidentally, as Forster explains after the proof, the
reason for the restriction in the formulation of the Theorem, that “no variable
free in φ is bound by any quantifier in Ψ” is that such variables would then
become free variables in I

(
Ψ[ιx �φ(x)/y]

)
.) However, since the problematic

inductive case, as we shall see, is that concerning disjunction, which is covered
in the quoted passage, we can stop there. We can look more closely at this case

the “2.1” as the number for the above definition and for the theorem below (and indeed for
the section in which both appear).
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in the following section, before which there are three preliminary matters to
attend to. The first concerns the slash notation, in such things as “Ψ[ιx�φ(x)/y]”
and “Ψ[x/y]”; we are taking it – nothing is explicitly said about this in [9] –
that in general for a term t (which in the current cases is either an ι-expression
or a variable) Ψ[t/y] is to be the result of replacing all occurrences of y in Ψ
by the term t. Whether this “all” should be replaced by the word “any” to
make room for the option that there are no such occurrences is a further issue
to return to in Section 2.7 The second preliminary point is that dividing up
the existence and uniqueness parts of the ι-free translations and having the Ψ
part sit between them makes the discussion harder to follow, so we will do all
this at the front of the translation,8 replacing:

(∃x)(φ(x) ∧Ψ[x/y] ∧ (∀y)(φ(y)→ y = x))

with

(∃x)(φ(x) ∧ (∀y)(φ(y)→ y = x) ∧Ψ[x/y]).

This allows us to abbreviate further, when convenient, to:

∃x(φ!(x) ∧Ψ[x/y]).

Here we use a notation from Kripke [19], p. 33, for example, in which the “!”
is shifted from making a uniqueness quantifier – “∃!x(Fx)” for “there exists
exactly one thing which is F” – to making a uniqueness-demanding predicate
– “∃x(F !x)” for “there exists something which is uniquely F”. We have taken
the further liberty of dropping the unnecessary parentheses around “∃x” that
appear in Forster’s presentation.9

Thirdly, we need to attend to a cluster of issues about the inductive or-
ganization of the proof of Theorem 2.1, the first part of which we saw above.
The ‘suitable measure of complexity’ alluded to before the result was quoted
would appear to be the number of occurrences of ∧, ∨, ∀, and ∃ used in the
construction of the formula in question. But what is the formula in question?
Peculiarly, the statement of the result begins by asking us to suppose that φ is
constructed from atomic and negated atomic formulas by means of these four
logical devices. But then the proof of the result is described as proceeding by

7See the discussion of ‘dummying in’ there.
8This is what Forster does on the first page of Chapter 2. It is not clear why he later

changes it to the ordering we are now changing back from.
9Incidentally, Kripke [19] also uses the parenthesized existential quantifier notation. How-

ever, it should be recalled that the material in question was presented – in that same notation
– on the original 1973 occasion of the lectures concerned, and uses the “(x)” notation for the
universal quantifier, where the parentheses are integral to the notation, making them desirable
in the ∃ case for parity.
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induction on (the complexity of) Ψ, rather than of φ. Since that is how the
proof does indeed proceed, we might do well to take the initial supposition on
the construction of φ to be a typographical slip, and replace it with Ψ – since
no corresponding assumptions about φ seem to be called on in the proof at all.
On the other hand, possibly Forster intends both Ψ and φ to be constructed
only using the devices in question. Note in passing that either way, Definition
2.1 does not succeed in defining an interpretation of Lι in L as it stands, since
I has only been defined for a fragment of Lι conforming to whatever restric-
tions Forster may have had in mind. (On this see the second half of note 11
below.) Indeed, why do we have the upper case “Ψ” alongside the lower case
“φ” anyway? Both are schematic letters for syntactic objects of the same kind
– (possibly open) formulas – after all. A lower case “ψ” did appear on the first
page (p. 17) of the chapter on descriptions, with a reference to the expression
“φ((ιx)(ψ(x)))” (which, in the notation used in the passages quoted above,
becomes “φ(ιx �ψ(x))”), and here as well as the change of case, the roles of
φ and ψ are the other way around, the latter rather than the former being
used to construct the ι-term. Perhaps this explains the later confusion about
whether the proof of Theorem 2.1 proceeds by induction on the construction
of φ or of Ψ.10

2 The Disjunction Issue

We come now to the main flaw we want to focus on in the proof quoted in
the preceding section of Theorem 2.1. Forster remarks of it ([9], p. 22), that
“this inductive proof will not work for ¬ and→” and that accordingly formulas
constructed with their aid “are not covered by this result.” We return to this
comment in Section 3, here emphasizing instead that in fact there is already a
problem about ∨, a problem of a kind somewhat reminiscent of those aired in

10Another somewhat murky aspect of at least the exposition of the inductive proof of
Theorem 2.1 concerns the basis case. It is to this that the remark mentioned above (between
quoting Definition 2.1 and Theorem 2.1) is addressed, concerning the insignificance of the
order in which we expand the ι-terms in φ(ιx �A(x), ιy �B(y)). And not explicitly attended to
at all is the fact ι-terms may themselves contain ι-terms in which they bind a variable, which
may in turn. . . (This is rather surprising in view of the explicit attention given on p. 19 of [9] to
the non-equivalence of ∃!x∃!yφ(x, y) and ∃!y∃!xφ(x, y).) Some complications arising for such
descriptions within descriptions are canvassed in Kuhn [20]; they turn out to be problematic
for the use of an duplicated iota-term used to indicate the scope of the description, to be
found in Whitehead and Russell [37]: see the following section. Kripke [18] also notes that
multiple occurrences of such terms provide one among several interesting potential obstacles
to showing that such terms can always be eliminated, though according to Grabmayer et al.
[12] these obstacles are merely apparent. Let us set aside all such complications here, since
whatever is said about them, the difficulty raised in the following section needs only a single
occurrence of one ι-term to illustrate it.
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A. N. Prior’s discussion of his modal logic Q (from [26], Chapter 5, esp. p. 49),
where the problem arises specifically in modal contexts).

For a counterexample to Theorem 2.1, using (invisible “=” aside) only
monadic predicate letters F,G,H, take Ψ(y) as Gy∨∃z(Hz) and for our ι-term
ιx�Fx. So I

(
Ψ[ιx�φ(x)/y]

)
is I

(
Gιx�Fx ∨ ∃z(Hz)

)
, which, since I commutes

with the connectives, is I
(
Gιx�Fx

)
∨ I

(
∃z(Hz)

)
, i.e., I

(
Gιx�Fx

)
∨ ∃z(Hz),

which is to say, the formula (∗) on the left below.11 On the other hand,
according to Theorem 2.1, I

(
Ψ[ιx �φ(x)/y]

)
should be logically equivalent to

∃x(φ!(x)∧Ψ[x/y]), giving us in the present case the formula (∗∗) on the right
below:

(∗) ∃x(F !x ∧Gx) ∨ ∃z(Hz) (∗∗) ∃x(F !x ∧ (Gx ∨ ∃z(Hz)))

Since (∗) and (∗∗) are evidently not equivalent – the former following from the
truth of its second disjunct regardless of whether there is a unique F (be it G
or otherwise) – Forster’s Theorem 2.1 is not correct.

Such examples suggest the following diagnosis of the fault in the inductive
case for Ψ being of the form Ψ1 ∨ Ψ2. Using now the more concise notation
of the above discussion, the proof continued by suggesting that the inductive
hypothesis allowed us to conclude that Ψ1[ιx�φ(x)/y] and Ψ2[ιx�φ(x)/y] were
respectively equivalent to ∃x(φ!x∧Ψ1(x)) and ∃x(φ!x∧Ψ2(x)), and the argu-
ment continued from here to note the equivalence of the disjunction of these
two to ∃x(φ!x∧(Ψ1(x)∨Ψ2(x))), the desired conclusion. But the appeal to the
inductive hypothesis is over-hasty, since for the original formula Ψ = Ψ1 ∨Ψ2

to fall under the conditions of the Theorem, in respect of having a free occur-
rence of the variable y in it, y does not need to be free in each of the disjuncts
– only in at least one of them. In the above (∗)/(∗∗) example, our disjunctive
Ψ had y free in the first disjunct (“Gy”) but not the second (“∃z(Hz)”), so
when occurrences of y are replaced by the ι-term (in our example, ιx�Fx) this
term finds its way only into the first disjunct, and not the second, blocking the
collapsing of the two ∃x(φ!x ∧ ) prefixes into a single one. (This does not
cause a similar difficulty for the case of Ψ = Ψ1 ∧Ψ2, as the interested reader

11The phrase “commutes with the connectives” here is adapted from Forster’s Definition 2.1
quoted in the previous section: “I commutes with quantifiers and connectives,” in which the
reference to connectives is presumably just to ∧ and ∨, since → has been banned altogether
and ¬ confined to pre-atomic position. (And the reference to quantifiers similarly excludes
any quantifier binding a variable in the ι-term.) These restrictions mean that I is not quite
what the start of Definition 2.1 suggests it is: a (total) function from the set of Lι formulas
into L. After saying that formulas involving → and (non-preatomic) ¬ “are not covered by
this result,” ( = Theorem 2.1), Forster writes (p. 22) “However, every formula is classically
equivalent to one that is,” which may be intended to show that the fragment of Lι which
constitutes the actual domain of I contains a formula equivalent to any given Lι, though
the status of the ‘no variable free in φ is bound by any quantifier in Ψ’ restriction remains
unclear in this connection.
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is encouraged to verify,12 or for the inductive case presented by the universal
quantifier. More interestingly, there is no problem for the inductive case of the
existential quantifier. In particular, it does not face the same obstacle as that
for ∨, even though existentially quantified formulas are often thought of as
tantamount to – possibly infinite – disjunctions of their instances, on the pre-
sumption that everything in the domain under discussion has a term denoting
it. This is because the above problem for ∨ arises from a ‘mixed disjunction’
in which the variable y occurs in one but not the other disjunct, while the
disjunction-of-instances just envisaged has y free in all disjuncts if it has y free
in any of them. There is something quite special, among disjunctions, about
the – infinite or otherwise – disjunctions which the analogy between ∃ and ∨
invites us to consider.13)

These diagnostic remarks may provoke the reaction that it cannot matter
whether we explicitly insist that when we write Ψ(y) as Ψ1 ∨ Ψ2 the latter
is itself Ψ1(y) ∨ Ψ2(y) with the parenthesized variable indicating an actual
occurrence in the subformula in question, since if there is no such occurrence
to begin with we can always ‘dummy one in’, introducing a vacuous occurrence
keeping the formula equivalent to the original y-less formula. For example, we
could replace a Ψ2 not containing any such free occurrence with the formula
Ψ2 ∧ y = y, or, plucking a monadic predicate letter J out of the air, rewrite
Ψ2 as (Ψ2∧Jy)∨Ψ2, or dually, as (Ψ2∨Jy)∧Ψ2.

14 Thus, it might be thought,
it does not matter whether we understand notations like Ψi(y), for i = 1, 2, as,
on the one hand, allowing for a free occurrence of “y” free in Ψi ready to be
replaced by the ι-term or, on the other hand, as requiring that there be at least
one such occurring free: dummying in allows us to boost “zero occurrences” to
“one occurrence” with no change in content.

Replying to this reaction requires attention to the particular proposal for
how the dummying-in is to proceed, because different ways of introducing
inessential occurrences of “y” have different consequences (vis-à-vis Theorem
2.1) when these occurrences are replaced by ι-terms. From the (∗)/(∗∗) exam-
ple above, however, it is clear enough a priori that a hitch will arise somewhere
or other in the procedure. For example, trading in Ψ2 for Ψ2 ∧ y = y means
that the results of replacing all free occurrences of y by ιx�φ(x) in the original

12If, instead of the Russellian gloss on G(ιx�Fx) as ∃x(F !x ∧Gx), we went for the (as we
might say) dual interpretation suggested in Bacon [1] – as ∀x(F !x→ Gx) – then the difficulties
would be reversed: now the problem arises from what below we shall call descriptively lopsided
conjunction rather than disjunctions, in view of the non-equivalence of ∀x(φ!(x)→ Ψ1(x)) ∧
Ψ2 with ∀x(φ!(x)→ (Ψ1(x) ∧Ψ2)).

13A corresponding point concerning the analogy between ∀ and ∧ is discussed at p. 227f.
of [6].

14The use of the absorption equivalences for such ‘dummying in’ purposes, as well as the
description of the process in these terms, can be found in Dunn [7], p. 352.
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and the new formula are the following pair, which are anything but equivalent:
Ψ2 itself in the first case, and Ψ2 ∧ ιx�φ(x) = ιx�φ(x) in the second, the latter
but not the former implying the existence of a unique φ.15 Consider next one
of the absorption equivalences: that of Ψ2 with (Ψ2 ∧ Jy) ∨ Ψ2, which, on
inserting ι-terms, becomes

(
Ψ2 ∧ J(ιx �φ(x))

)
∨ Ψ2. Since this equivalence is

sanctioned by classical logic (see note 4), there is no question of blocking it and
what we have is another counterexample to Theorem 2.1. The first disjunct is
equivalent to

∃x
(
φ!(x) ∧ (Ψ2 ∧ Jx)

)
∨Ψ2,

but when we try to put the whole formula into the gap in “∃x(φ!(x) ∧ . . .)”
we are blocked exactly as in the (∗)/(∗∗) example when we encountered a
disjunction (namely, Gιx�Fx∨∃z(Hz)) with a lopsided occurrence of the ι-term
– having it occur, that is, in only one of the disjuncts. The other absorption
law case dummied in “y” via (Ψ2 ∨ Jy) ∧Ψ2 and here the trouble sets in even
earlier when an ι-term replaces “y” since we have the ‘descriptively lopsided’
disjunction problem immediately in the first conjunct.

At this point, the question arises as to what options there might be for
repairing Forster’s Theorem 2.1. Since at least one such option is most conve-
niently raised after we have had a look at a somewhat more orthodox modern
version of a Russellian theory of descriptions, we postpone this question until
the end of the following section.

Let us instead conclude the present discussion with what might be called
an a priori argument against a combination of claims by Forster which re-
veals that the problem posed by disjunction for Theorem 2.1 could be detected
without reference to a specific (kind of) counterexample, but simply on the
basis of knowing already that → presented a problem for the inductive step.
The two claims in question are (i) that → would present an obstacle to his
inductive argument, and (ii) that ∨ presents no such obstacle, where the in-
duction is on the number of occurrences of binary connectives and quantifiers
in a formula constructed from atomic and negated atomic formulas by means
of those logical devices.16 Forster says that if the inventory of logical operators
permitted is {∧,∨,∀,∃} one has every formula in negation normal form (i.e.,
negation applied only to atomic subformulas) equivalent to a formula in which
a particular description has a single maximally broad scope occurrence, while

15At least we presume so. The instructions on p. 19 of [9], not quoted above, for how to
deal with identity statements are not entirely clear. See also the discussion of ιxφ = ιxφ in
the middle of p. 145 of Kuhn [20]; as Kuhn reminds us, Geach [10] had pointed out that the
general case of R(ιxφ)(ιxφ) already raises problems for Russell – scope indicators and all.

16Claim (i) is made in the passage quoted from [9] in the opening paragraph of this section,
as well as in note 11 above, and claim (ii) is made in the course of the argument given for
Theorem 2.1: this is the inductive case for ∨.
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this is not so if the inventory is extended to {∧,∨,→ ∀, ∃}. Well, Forster’s
Theorem 2.1 does not quite put it in these terms since the derived formula is
not one in which the ι-term in question appears at all – but is equivalent to
one (“∃x(φ!(x) ∧ )”) which spells out the wide scope reading, all the rest of
the formula filling the blank indicated. (We return to the broad/narrow scope
terminology in the following section.) Let us now show that the combination
of claims (i) and (ii) does not constitute a consistent position.

The inductive hypothesis for α of the form β → γ is that each of β, γ, having
fewer binary connectives or quantifiers than α, satisfies the condition. Consider
the formula ¬β∨α, or rather the formula β′∨γ, in which β′ is a negation normal
form replacement for ¬β, obtained from the latter by driving the outer negation
inwards using De Morgan’s Laws and the corresponding equivalence for→ (i.e.,
the equivalence of ¬(δ → ε) with δ ∧ ¬ε), as well as the corresponding moves
with quantifiers (¬∀ to ∃¬, ¬∃ to ∀¬) until it lands one or more unnegated
or negated atomic formulas – in the latter case vanishing with that preatomic
occurrences of ¬ by appeal to the Double Negation equivalence. This process
does not increase the number of binary connectives or quantifiers in ¬β, which
is the same as the number of the number of such operators in β. So by the
inductive hypothesis each of β′ and γ has an equivalent in which the description
in question has only a single maximally broad occurrence, so if the induction
step for ∨ worked, we should have this result for β′ ∨ γ – a formula which is
equivalent to β → γ, i.e., to α.

3 Forster-Inspired Russellian Explorations

Although Russell’s original notation for descriptions featured a definite descrip-
tion appearing in singular term position, it also featured a duplicated version of
that notation appearing earlier in a formula to indicate its scope. It was found
– call this Fact 1 – that when the description was proper (i.e., the condition
involves had a unique satisfier), the two versions were equivalent, at least when
attention was restricted to contexts involving the truth-functional connectives,
and – let us call this Fact 2 – that, with the same contextual restriction in
force, the version in which the description had broader scope always (logi-
cally) implied, though was not necessarily implied by the version in which the
description had narrower scope.17 To avoid complications and because they
were not the source of the difficulty in Section 2, we consider truth-functional
ontexts only, ignoring quantificational contexts (as well as those induced by
non-truth-functional connectives, touched on briefly in note 21). The double

17The facts described as familiar here and up to Proposition 3.2 below, can be found in
Whitehead and Russell [37], pp. 65–71 and 173–186, with Fact 1 appearing (essentially), for
example, as T14·3 on p. 185, and Smullyan [33], Kripke [18].
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use of iota-expressions, both in singular term position and as scope indicators,
is rather cumbersome, and several people noticed that the heart of Russell’s
theory could be conveyed more clearly by parsing definite descriptions as bi-
nary quantifiers. One early proponent of this approach was Prior ([27], final
paragraph), who wrote “(ιx � Fx)Gx”, to be read:“for the unique x such that
Fx, Gx”. The same idea evidently occurred to others in the 1960s, Quine
casually referring to it ([29] p. 327) as “Richard Sharvy’s neat notation”. Both
Prior and Sharvy actually write an inverted iota here, and, as announced in
note 3, for historical reasons we revert to that notation in the present section.18

We follow a fairly common practice of using Ix(Fx,Gx) for this, taking it either
as an abbreviation for “∃x(F !x ∧ Gx)” or else as a primitive construction so
interpreted as to be equivalent to that.

Digression on Notation. Chapter 4 of Bostock [5] has (save for font choice)
“Ix :Fx(Gx)” for this. Neale [22], p. 45, writes “[the x: Fx](Gx), and remarks
that “this is not to propose an alternative to Russell’s theory; it is just to find
a more congenial way of stating it.” That is right, if Russell’s theory is simply
Russell’s account of the truth-conditions of sentences containing descriptions.
There is more going on in T14 of [37], though. In particular there is a desire
to show that on the hypothesis that the description is proper, occurrences of
closed iota-terms participate in logical inferences much as they would if they
were individual constants. For example, on p. 180 of [37], one reads “The above
proposition shows that, provided ( ιx)(φx) exists, it has (speaking formally) all
the logical properties of symbols which directly represent objects.” Fact 1
above – repeated in ‘headline form’ below – is just one example of this. Evans
[8], p. 58 has (save for choice of font and lettering) “Ix[Fx;Gx]”; Blamey [3],
p. 279 has “Ix[Fx,Gx]”. (The latter is treated there in a non-classical logic as
true or false, respectively, depending as there is a unique F which is, or is not
G, and as undefined in the absence of such an F . This all goes back to Blamey
[2].) The capital “I” idea probably originated – though in the term-forming
role rather than as a binary quantifier – in boldface, in Scott [31], amusing his
readers with the following remark (p. 182): “Note that I is an inverted capital
I, which the author prefers to Russell’s inverted iota.” Since we are discussing
notation, let us recall that at the start of Section 1 above, we quoted Forster
as saying that he was following Russell with “upside-down iotas” – which is
actually a bit misleading: when these symbols appear on p. 17, upside down
they may be but we turn out not to have Russell’s notation (“ ι”), in which the
inverted iota is rotated through 180◦, but something not previously encountered
in polite society, in which the iota is reflected through 180◦, so that the curved
tail of the letter, now at its top, swerves disconcertingly to the right (“ιxφ(x)”)

18A more comprehensive list of those taking the binary quantifier route (together with
detailed references) can be found in note 60 on p. 60 of Neale [22].
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instead of the left (“ ιxφx”). Finally, it is apparently possible to confuse the
term-forming and the quantificational uses of ι (or I), inverted or otherwise,
as one sees in Horsten [15]. Here one encounters, on pp. 355 and 358, several
representations in the style of the following, for ‘The King of France is bald’:
(ιx)(KFx ∧ Bx), where what is intended is presumably B(ιx)(KFx) – here
retaining Horsten’s “(ιx)” with its parentheses. What is actually written is
either a term (“the unique thing which is both a King of France and bald”)
or an attempt at a quantificational usage but with a singulary rather than
binary quantifier (“for the unique thing in existence, that thing is a bald King
of France”). End of Digression.

Returning to the two Facts mentioned from the opening paragraph of this
section, let us state them for visibility in a simple ‘slogan’ form:

Fact 1: Proper ⇒ (Broad ⇔ Narrow)

Fact 2: Broad ⇒ Narrow

We can think about these issues most conveniently when the issue of broad-
vs.-narrow scope arises for the definite description (regimented as a binary
quantifier) and an n-ary sentence connective #:

Broad is Iv(φ(v),#(ψ1, . . . , ψn)) and
Narrow is #(Iv(φ(v), ψ1), . . . , Iv(φ(v), ψn)).

Note, especially in view of our findings in Section 2, that while the variable v
may occur free in some (or all) of the ψi, it need not occur free in all (or any)
of them.

Example 3.1 Taking n = 2 with # as ∨, and φ(v), ψ1, ψ2 as (monadic) Fx,
Gx, Hx, our Broad and Narrow forms are Ix(Fx,Gx∨Hx) and Ix(Fx,Gx)∨
Ix(Fx,Hx), which would appear according to the conventions of Whitehead and
Russell [37] as respectively

[( ιx)(Fx)](G( ιx)(Fx) ∨H( ιx)(Fx))

and

[( ιx)(Fx)](G( ιx)(Fx) ∨ [( ιx)(Fx)]H( ιx)(Fx)).

Fleshing out Facts 1 and 2 for the general case, we have, then:

Fact 1: ∃v(φ!(v)) ⇒
(
Iv(φ(v),#(ψ1, . . . , ψn)) ⇔ #(Iv(φ(v), ψ1), . . . , Iv(φ(v), ψn))

)
.

Fact 2: Iv(φ(v),#(ψ1, . . . , ψn)) ⇒ #(Iv(φ(v), ψ1), . . . , Iv(φ(v), ψn))
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Here and below the notations α ⇒ β, α ⇒ (β ⇔ γ), α ⇔ β mean that all
formulas of the forms α → β and α → (β ↔ γ), α ↔ β, respectively, are true
in all first-order structures (models, interpretations,. . . ).19

Why is Fact 1 a fact? Without going to the trouble of setting up all the
semantic apparatus needed for a rigorous proof, we can see that the first an-
tecedent, “∃v(φ!(v))” means that if a traditional ι-term were being used, it
would essentially be functioning like an individual constant picking out a sin-
gle individual in any given structure – the unique satisfier of the condition
φ(v), and so the Russellian scope indicators would play no disambiguating
role (“names are scopeless”20). But that means the scope disambiguation ef-
fected by the Broad/Narrow contrast is also doing no work: the two sides
are equivalent. This is why we have to disallow (as noted in Smullyan [33])
such things as modal operators or modalized truth-functional connectives as
substituends for #: here the predicates do not have a single fixed extension
to consider as traditional first-order structures give way to Kripke models or
the like in which even proper description singling out an individual in a given
structure may not surviving as the unique satisfier of the condition involved as
we pass through modal vocabulary invoking other structures (associated with
other possible worlds) where the predicates have different extensions.21

19We use this notation, left over from the sloganistic formulations above, simply because
it is easy on the eye. Strictly we should, rather than writing (for example) “α ⇒ β ⇔ γ”,
write instead “α ` β ↔ γ”, or indeed, if purifying away the appeal to specific connectives is
the order of the day, write “α, β ` γ” and α, γ ` β”. (Here ` is the consequence relation of
first-order logic supplemented with binary descriptive quantifiers.)

20We presume some precisification of this slogan is correct. For sources as well as qualms,
see note 27 on p. 60 of Evans [8]; Evans himself discusses (p. 37) the possibility of giving scope
to potentially non-denoting (but weakly rigid) names at p. 37, using a notation associated
perhaps with Hughes and Londey (and Toomas Karmo). That notation can even be extended
to individual variables so that the issue of scope arises for them also: see Prior [28], p. 228.
(Compare Wiggins [38] p, 284: “Well, nobody proposes that variables should have a scope.”)
A nuanced version of the scopelessness thesis for genuine proper names can be found on p. 100
of Blamey [2]: “The interest of all this is that the ‘more scopeless’ a quantifier expression is,
the more nearly it ‘approximates to a singular term’ for the language in question.” One could
refine the present discussion somewhat by making a distinction drawn (not necessarily using
this terminology) by Gareth Evans in the Evans–McDowell philosophy of language seminars
at Oxford in the 1970s, between scopeless expressions, for which the notion of scope does
not arise, and scope-indifferent expressions, to which the notion of scope applies but different
ways of fixing the expression’s scope in any given sentence all yield equivalent results.

21Along similar lines, in Section 2.3 of [9], Forster adds (a necessity operator) 2 to his
underlying language and suggest that the cases for which a result like his Theorem 2.1 fails
– the cases in which the definite description has narrow scope relative to the occurrence of
2 – are to be subsumed as violating the restriction that “no variable free in φ is bound
by any quantifier in Ψ”, on the grounds that 2-formulas are really of a form in which a
free variable ranging over possible worlds is bound by an outer universal quantifier. We were
rather surprised to read – [9], p. 23f. – that “(e)ver since Kripke it has been almost universally
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Taking Fact 1 for granted, assume the antecedent of Fact 2: we have a struc-
ture verifying Iv(φ(v),#(ψ1, . . . , ψn)). Accordingly, in this structure the de-
scription is proper, so by Fact 1, Iv(φ(v),#(ψ1, . . . , ψn)) and #(Iv(φ(v), ψ1), . . . ,
Iv(φ(v), ψn)) have the same truth-value, so our structure verifies #(Iv(φ(v), ψ1),
. . . , Iv(φ(v), ψn)).

While Facts 1 and 2 are familiar, less commonly canvassed is the question
of which truth-functional connectives # entitle us to the converse of Fact 2,
and hence to a biconditional (⇔) formulation of Fact 2 without the additional
antecedent present in the formulation of Fact 1. Such a strengthening of Fact
2 is in many ways analogous to Forster’s Theorem 2.1, which is also stated
without a propriety condition on the descriptions involved. More will be said on
the analogy in a moment. First, we need to recall the notion of an n-ary truth-
function’s being F-preserving.22 By this is meant when each of the function’s
n arguments is F(alse), so is the value of the function for those arguments.
(Alternatively put: {F} is closed under the function in question.23) Note that
for each n, exactly half of the 22

n
n-ary truth-functions are F-preserving; for

example when n = 1 the identity and constant false truth-functions are F-
preserving, while the negation and constant true truth-functions are not.

Proposition 3.2 If the truth-function associated with an n-ary connective #
is F-preserving, then we have the converse of Fact 2 above, i.e., for all formulas
φ, ψ1, . . . , ψn:

#(Iv(φ(v), ψ1), . . . , Iv(φ(v), ψn)) ⇒ Iv(φ(v),#(ψ1, . . . , ψn)).

felt that an expression purportedly of the form 2Ψ is really of the form (∀W)(W |= Ψ),”
having ourselves taken Kripke to be providing an extensional semantics for modal sentences
rather than as suggesting that such sentences do not have the form they appear to have.
We acknowledge, though, that the view expressed by Forster is gaining currency. The final
paragraph of Wehmeier [35], for example, reads as follows: “That definition [of intensionality]
derives from the familiar possible-world treatment of modal and temporal operators. While
it has long been a commonplace that these operators can be construed as quantifiers over
possible worlds or times, linguistic semantics seems to take more and more seriously the
notion that they literally are quantifiers. But if modals and tenses are actually quantifiers,
and quantifiers aren’t intensional operators, as I’ve argued here, then intensional operators are
uninteresting, merely theoretical constructs to which no feature of natural language answers.”
Wehmeier in unpublished work also develops a case for denying that modal contexts are
extensional rather than intensional, which does not go via the contentious claim that modal
operators literally are quantifiers. On such a view one could still give the Kripke semantics
its due by saying that it constitutes a non-modal semantics for modal sentences.

22Also called 0-preserving or falsity-preserving – see for example Urquhart [34], Section 5,
as well as references there given. Böhler et al. [4] use the term 0-reproducing for this.

23In what is otherwise a very helpful guide, Pelletier and Martin [23] say (p. 464), “functions
closed under F” – which makes no sense at all: how could anything be ‘closed under’ a truth-
value?
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Proof. Suppose that # is interpreted by an F-preserving truth-function
and we have a first-order structure verifying #(Iv(φ(v), ψ1), . . . , Iv(φ(v), ψn)).
Then by the condition on #, at least one of the Iv(φ(v), ψi) (i = 1, . . . , n)
must be true in the structure and so therefore must ∃v(φ!(v)) be. Taking a as
(the name of) a witness for this existential formula, and letting ψi(a) be the
result of replacing any free occurrences of v in ψi by a, we have that for all
j (1 ≤ j ≤ n) Iv(φ(v), ψj) is true in the structure iff ψj(a) is. So, since # is
truth-functional and #(Iv(φ(v), ψ1), . . . , Iv(φ(v), ψn)) is true in our structure,
so is #(ψ1(a), . . . , ψn(a)). But in view the truth of ∃v(φ!(v)) and the choice of
a, this suffices for the truth of Iv(φ(v),#(ψ1, . . . , ψn)) in the structure. �

Remark 3.3 Though this is not needed for our commentary on Forster, it
is worth mentioning that we also have a converse for Proposition 3.2: if the
truth-function associated with # is not F-preserving, then we can find a coun-
terexample to the schema inset there. For example, in any structure,

#Iv(v 6= v, v = v), . . . , Iv(v 6= v, v = v),

is true (choosing the same formula v = v for each ψi – and in fact it does not
matter which formula is chosen here), because its immediate subformulas, the
current Iv(φ(v), ψi) are all false, and our truth-function maps a sequence of n
F’s to T. On the other hand, the current instance of Iv(φ(v),#(ψ1, . . . , ψn))
with φ(v) as v 6= v and each ψi as v = v (or anything else) is false. �

Thus putting Fact 2 together with Proposition 3.2, we get

Corollary 3.4 For any (primitive or derived) n-ary connective # with which
is associated an F-preserving truth-function, and all formulas φ, ψ1, . . . , ψn, we
have:

#(Iv(φ(v), ψ1), . . . , Iv(φ(v), ψn)) ⇔ Iv(φ(v),#(ψ1, . . . , ψn)).

We will return to Forster’s own treatment in the light of these considerations
at the end of this section, after giving F-preservation some of the attention
which it deserves in view of the above findings. We use ⊕ to represent exclusive
disjunction, and we use the same notation (and terminology) for connectives
as for the associated truth-functions:

Proposition 3.5 # is an F-preserving connective if and only if # is definable
in terms of the set of binary connectives {∧,∨,⊕}.
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Proof. If : It suffices to observe that ∧,∨,⊕ are all F-preserving and that
this property is preserved by composition of functions and possessed by the
projection functions.

Only if : We adapt the standard proof of functional completeness for {∧,∨,¬}
(e.g., in [24]) which reads a Disjunctive Normal Form from a truth-table for the
formula #(p1, . . . , pn), representing each line by the corresponding conjunction
of the pi or ¬pi depending as pi has the value T or F in that line, and then
disjoining the conjunctions representing exactly the lines in which in which
#(p1, . . . , pn) has the value T. This disjunction is then equivalent to the de-
sired #(p1, . . . , pn), and uses only the connectives ∧,∨,¬. From this one then
proceeds to observe that either one of ∧, ∨ can be defined in terms of the other
and ¬, giving a further simplification. But for present purposes we retain ∧ and
∨ and show how to get rid of ¬, using ⊕. We need the latter anyway for making
the disjunction in the case that there is no line in which #(p1, . . . , pn) has the
value T, taking the empty disjunction as ⊥ = p1⊕p1, say. For any occurrence
of ¬pj in the conjunction representing a line in which our #-compound has
the value T, we now exploit the fact that # is F-preserving: this implies that
some pi (with i 6= j) has the value T in that line (since otherwise the value
of #(p1, . . . , pn) would be F), and we replace any all ¬pj with pi ⊕ pj . The
conjunction representing a line now has for each of its conjuncts either sentence
letter or the exclusive disjunction of two sentence letters, and the (inclusive)
disjunction of these conjunctions is equivalent to #(p1, . . . , pn). �

Example 3.6 Suppose we want to define ternary # with associated truth-
function mapping 〈T,T,T〉, 〈T,F,T〉, 〈F,F,T〉 to T and all other triples to
F. (Since the other triples include 〈F,F,F〉, we are in F-preserving territory.)
Writing p1, p2, p3 and p, q, r, we have, corresponding to these three T-cases, the
conjunctions p ∧ q ∧ r, p ∧ (p⊕ q) ∧ r, and (r ⊕ p) ∧ (r ⊕ q) ∧ r, so the desired
formula representing the given truth-function is the (∨-)disjunction of these
three.
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>,≡,⊃,∧,∨ >,∧,⊥,∨ >,⊥,¬,≡,⊕ •∧,∨,⊕,6⊃,⊥

⊃ ∧,∨,> >,∨,⊥ >,∧,⊥ ∧,⊥,∨ 6⊃

≡ ¬,>,⊥ ⊕

∨,> ∨,⊥ ∧,∨ >,⊥ ∧,> ∧,⊥

∨ > ¬ ⊥ ∧

Figure 1: Hazen’s Lattice of Binary Clones: See Remark 3.7(i).

Remarks 3.7 (i) The fact mentioned in the “if” direction of the proof of
Proposition 3.5, that the class of F-preserving truth-functions contains the
projection functions and is closed under composition of functions (the later
understood in its most general sense, sometimes called superposition), is well
known, the F-preserving truth-functions constituting one of Post’s clones: see
Pelletier and Martin [23], Chapter 3 of Part II in Lau [21], Urquhart [34]. In-
deed this is one of Post’s maximal clones, the addition of any truth-function not
belonging to it rendering compositionally definable all truth-functions. (Here
we ignore the difference – touched on below – between ‘iterative systems’ à la
Post [25] and clones proper. It could well be that Prop. 3.5 itself can be found
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in [25], but, as is usually the case, it takes less time to prove such things for
oneself from scratch than to try to extract them from Post’s arcane exposition,
and in any case we like the proof of it presented above. The result itself is cer-
tainly known in the literature – for example in Böhler et al. [4].) Post’s lattice
of clones is (countably) infinite and since the clone of F-preserving functions
figures there as a co-atom, so it does also in the more manageable (finite) lattice
of all – to use a term explained below – binary clones of truth-functions, a Hasse
diagram for which was constructed by Allen Hazen in 1995; as usual X’s being
lower on the diagram (via a chain of edges) than Y means that the binary clone
generated by X is properly included in that generated by Y . Hazen’s accom-
panying notes from the period observe that the lattice is not distributive (or
even modular); he called the elements of the lattice (two-variable) ‘expressivity
types’. We reproduce it here as Figure 1. Hazen has since pointed out to us –
as he subsequently learned – that the 26 elements of this lattice were described,
and noted to exhaust the number of cases, in Wernick [36] (see Wernick’s note
16: the 25 there alluded to are those below the top element) in the course
of his investigation of which irredundant sets of such functions were function-
ally complete – i.e., generated the top element of Post’s and Hazen’s lattices.
Post’s poset, at p. 101 of [25] is not quite a lattice, and its elements are not
exactly clones but ‘iterative systems’ alluded to above. These need not contain
the projections, but, partially compensating for this, are required to be closed
under (loosely speaking) identification and re-ordering of variables: see §5.2 of
Urquhart [34]. Similarly, a binary clone is a set of functions containing the
(binary) projection functions to the first and second coordinate and is closed
under composition. This is the definition given in Goldstern [11], p. 185, along
with obvious generalized form for n-ary clones. (N.B. A binary clone of truth-
functions is not a clone, but embodies a version of the clone idea restricted to
the binary setting. However, as Goldstern remarks, we have a tight connec-
tion: C is a binary clone on a set iff C is the intersection of the set of binary
functions on that set with some clone of functions on the set.) Contemporary
presentations of Post make adjustments so that we have a lattice: p. 636 of
Urquhart [34], p. 7 (or p. 149) of Lau [21], p. 44 of Böhler et al. [4] (perhaps the
clearest diagram). In Post’s lattice, so reconstructed, there are five co-atoms
rather than the four of Hazen’s, a discrepancy arising because two of Post’s
co-atoms are the set of all self-dual truth-functions and the set of linear truth-
functions, but restricting attention to at most binary truth-functions, all the
self-dual ones are linear, so the class of self-dual functions doesn’t constitute
a maximal proper subset of the class of all truth-functions. (Counterexamples
to this generalization arise at the earliest stage with ternary truth-functions,
such as the Majority function (p∧ q)∨ (p∧ r)∨ (q ∧ r), which are self-dual but
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not linear.24) The clone of linear truth-functions is represented in Figure 1 by
the second co-atom from the right. Our recent reference to Post’s lattice is to
the contemporary versions of it (e.g., in [34]), rather than to the original poset
on p. 101 of Post [25]. The top element in Figure 1 represents the binary clone
of all at most binary truth-functions – and so it could be labelled with any
basis of (up to) binary truth-functions which is functionally complete (in the
weaker of the two senses distinguished in (iii) below), such as {∨,¬}, where
braces are omitted in the diagram and redundant elements of the basis are
included in many cases, as in Hazen’s original hand-drawn diagram, to avoid
arbitrarily selecting from alternative irredundant bases. (In view of the func-
tional completeness of this set, such a basis also generates Post’s top element:
the clone of all truth-functions. Compare the corresponding top 1-ary clone,
generated by, for example, the negation and constant false functions, which
are evidently not functionally complete.) The bottom element represents the
smallest binary clone of truth-functions, generated by the appropriate pair of
projections (linguistically: the fragment in which we just have the sentence
letters p, q). Hazen’s notation is mostly preserved for the truth-functions (“⊃”
and “≡”, rather than “→” and “↔”, for instance, with “6⊃” for the comple-
mentary function in the former case and “⊕” (exclusive disjunction) in the
latter (rather than Hazen’s “6≡”). The clone of principal interest in connection
with our discussion – comprising the F-preserving functions – is the rightmost
co-atom in the diagram, marked as a solid black node in the diagram. (The
T-preserving functions make up the clone represented by the leftmost co-atom.
Naturally, their lattice-meet harbours the binary clone of idempotent truth-
functions.) Since our binary clone – or rather the similarly situated clone in
Post’s lattice – is the highest positioned clone not containing >, linguistically
it corresponds to the richest fragment of the language of classical propositional

24The characterization of linearity for Boolean functions given in Urquhart [34], p. 636, as
those representable “in the form x1 ⊕ . . . ⊕ xn ⊕ c, where c is a constant (0 or 1)”, is not
quite right since this requires every argument of the function to be essential, while for present
purposes functions with inessential variables also have to count as linear. Thus the form in
question should be – and in most of the literature on Boolean functions is – written as follows
(abbreviating x ∧ y to xy): c1x1 ⊕ . . . ⊕ cnxn ⊕ c, where c1, . . . , cn, c ∈ {0, 1}. Then ci can
be set to 1 for essential arguments and 0 for inessential arguments (and c itself toggles the
output, fixing such things as whether it is ⊕ or ≡ that is involved). Otherwise we don’t have
a clone at all, as Urquhart says on p. 639, in which passage “class” means clone: “when we
include an n-place function in a class, then we also include all those functions that arise from
it by adding irrelevant variables.” “Irrelevant” is the word used in Post [25] for inessential,
and though he does not require his iterative classes to be closed under the padding in of such
variables, he allows them to contain functions with inessential argument positions; since he
is treating all such classes, he makes a point (p. 55 of [25]) of including such functions in his
iterative class of linear functions (or, in Post’s terminology, alternating functions – though
curiously enough, while avoiding the term linear altogether, on p. 106 he baptizes the class
in question L1).
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logic for which the classical consequence relation is one without tautologies
(also called ‘purely inferential’ or ‘atheorematic’). If we wanted to label this
node with an irredundant basis, we have several options. Following Urquhart
[34], p. 638 (definition of C3) we could choose {∨, 6⊃} (in Urquhart’s notation,
{∨,r}). Taking a lead from (ii) below, we could choose {∨,⊕}; the other eco-
nomical option provided there is {∧,⊕}, which chosen in Böhler et al. [4] And
so on. As written, five truth-functions have been listed alongside this node in
Figure 1, so without even looking to see what they are, we know a priori from
Wernick [36] that we have a case of redundancy, since it is there shown that
no binary clone of truth-functions has an irredundant basis with more than
3 elements. [36] was rather scooped by the earlier publication of Post [25],
treating all clones rather than all binary clones case, and showing that each of
the clones/iterative systems is finitely based.

(ii) As in the standard case recalled in the proof of Proposition 3.5, in which we
can effect a further simplification by dropping either of ∧,∨ given the presence
of ¬, so in the present case we can drop either of ∧,∨ thanks to the presence
of ⊕, since we have:

p∧ q equivalent to (p∨ q)⊕ (p⊕ q) and p∨ q equivalent to (p∧ q)⊕ (p⊕ q).

(Alternatively, we could write the first definiens as ((p ∨ q) ⊕ p) ⊕ q, and
similarly in the second case.) We could have written “⇔” in place of “equiv-
alent to”, in accordance with the convention announced after the formally
regimented Facts 1 and 2 above, but were keen to avert a possible confusion:
the connective ↔ (with its expected logical behaviour), deployed in formulat-
ing that convention, is not available in the current fragment since it is not
F-preserving. Indeed more generally – perhaps the best known consequence
of using an exclusively F-preserving logical vocabulary – there are no valid
formulas at all in this vocabulary, as recalled toward the end of (i) above. (A
consequence-relation formulation in the style of note 19 would of course be
available.)

(iii) Recalling the contrast between functional completeness and strict func-
tional completeness, in the parlance of Grabmayer et al. [12], p. 388, or, as it is
put in Humberstone [17], p. 50 (and various subsequent publications), between
weak and strong functional completeness, we have the corresponding distinc-
tion between the weak/non-strict and strong/strict completeness of any basis
as generating a given set of truth-functions. The proof of Proposition 3.5 es-
tablishes only the weak completeness of the basis it mentions for the class of
F-preserving functions. This is evident with the move of defining ⊥ = p1⊕p1,
whose left-hand side we want to represent the truth-value F (a 0-place truth-
function) but whose right-hand side represents a 1-place truth-function which
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just constantly takes that value for any argument. The weaker kind of (rela-
tive) functional completeness is all that usually matters for logical purposes,
but evidently if one wants the stronger kind one will need the nullary F, so
⊥ will need to taken as primitive, since it qualifies as F-preserving. (Here we
think of f as F-preserving provided that, if all of f ’s arguments are F, then f ’s
value is F. In the case in which f is F, this conditional is secured by the truth
of its consequent.) Thus the envisaged complete basis would be {∧,∨,⊕,⊥}
or, for an irredudant basis, in view of (ii) above, either {∨,⊕,⊥} or {∧,⊕,⊥}.

�

At the start of Section 2 we quoted Forster as observing “this inductive
proof will not work for ¬ and →” and went on to point out that his induction
actually faltered on one of the cases that he had not set aside by restricting at-
tention to the {∧,∨,∀,∃}-formulas with negation allowed only pre-atomically:
the case of ∨. One cannot help observing that the connectives for which the
induction is here noted to falter, namely ¬ and →, fail to be F-preserving,
while the connectives for which Forster takes it that no problem arises, namely
∧ and ∨, are F-preserving. The fact that this is mistaken is neither here nor
there, when it comes to the following hypothesis: perhaps what Forster may
had at the back of his mind was not the argument given in the proof of his The-
orem 2.1, but instead something more along the lines of Corollary 3.4, though
formulated using the linguistic resources of Forster’s discussion.25 That would
turn the equivalence of Coro. 3.4 into something along the lines of:

::::::::::::::
⇔ ∃v(φ!(v) ∧#(ψ1, . . . , ψn)).

But while we can fill the gap on the left with

#(∃v(φ!(v) ∧ ψ1), . . . ,∃v(φ!(v) ∧ ψn)),

the result would not resemble Forster’s Theorem 2.1 in displaying a formula
from which definite descriptions are to be removed. If we follow Forster’s own

25However, its being mistaken is relevant to a worry along the following lines, which the
reader may now be (briefly) entertaining. In the present section we have been stressing
the role of composition by F-preserving connectives in delimiting the contexts for which the
kind of “Broad ⇔ Narrow” result which Forster’s Theorem 2.1 in effect aims at establishing.
But at the end of the previous section we stressed that from the point of view of Forster’s
actual argument, ∨ and → are completely on a par, despite their differing in respect of F-
preservation. What may appear puzzling here is explained, given the hypothesis mentioned
in the text, by the fact that what is really going on for a result of the kind Forster wants
is F-preservation, and the fact that the actual argument given does not recognise this but
would work equally well for → in place of ∨, is itself a reflection of the unsoundness of the
argument.
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example, taking his Ψ(y) to be the {∧,∨}-formula #(ψ1, . . . , ψn) constructed
from atomic and negated atomic formulas #(ψ1, . . . , ψn) in which somewhere
or other the variable y appears free, then we could fill the gap on the left with

#
(
ψ1(ιx � φ(x)), . . . , ψn(ιx � φ(x))

)
where each ψi(x) replaces any free y free in ψi with ιx �φ(x), in then we would
have a version of Forster’s Theorem 2.1 simplified by not having the ι-terms
on the left in the (syntactic) scope of any quantifiers. As we already know,
however, this version, like the original, would not be correct, because despite
metalinguistic appearances the term ιx�φ(x) is not guaranteed to appear in the
formula represented by ψi(ιx �φ(x)). As explained in Section 2, this is because
y may not have occurred free in any given ψi at all. An analogously failed
version of Corollary 3.4 would arise from overlooking an observation Blamey
pauses to make in [2], directly following on from the passage quoted in note 20,
about a quantifier expressions approximating to singular terms as they become
more scope-indifferent. We give Blamey’s continuation here using the above
notation “Ix(φ, ψ)” rather than his own “Ixφ ·ψ” (in which “·” is a punctuation
mark rather than a connective):

However, even within the confines of our extensional language, Ix(φ, )
turns out not to be entirely scopeless: it cannot hop around a formula
with total semantical freedom. For example it is easy to find φ, ψ, and χ
such that:

Ix(φ, ψ) ∨ χ 6' Ix(φ, ψ ∨ χ).

This is because the ‘strong’ table for ∨ is allowed. χ may be true making
the left-hand side true, but there may be no determinately unique x such
that φ, and this would leave the right-hand side undefined.

Here “'” (negated in the passage quoted26) is Blamey’s way of saying that the
formulas flanking it are true in all the same models, and the reference to strong
tables is to Kleene’s ‘strong’ three-valued logic, because Blamey’s account of
these matters is not bivalent, as explained in the Digression (on Notation)
earlier in this section. But the non-equivalence arises in the bivalent setting
of our discussion for essentially the same reason that Blamey gives, dropping
the word “determinately” and putting false for undefined in the final sentence.
This is not in tension with Coro. 3.4 for the F-preserving ∨, of course, because
in the inset example in the above passage from Blamey, the left-hand side has
for its second disjunct χ rather than, as there, Ix(φ, χ).

How might we reformulate Forster’s Theorem 2.1 to make a correction
analogous to that just recalled – place all the immediate subformulas of the

26Blamey actually writes “α '| β” rather than “α 6' β”.
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F-preserving compound in the context Ix(φ, ) – for the binary quantifier treat-
ment? One thing we could do is change:

Then for any Ψ with ‘y’ free, I of Ψ[ιx �φ(x)/y] is logically equivalent
to. . .

by replacing “Ψ with ‘y’ free” to “Ψ such that ‘y’ is free in every subformula
of Ψ”, or equivalently: “. . . is free in every atomic subformula of Ψ”. But –
continuing to ignore quantificational complexity – this is rather heavy-handed,
as composition by means of ∧ does not require it. For a leaner approach, then,
let us define what it is for a variable v to occur ‘suitably free’ in a formula (of
the description-free language Forster calls L) like this:

• If α is an atomic formula v is suitably free in α iff v occurs in α

• If α is the conjunction β ∧ γ then v is suitably free in α iff v is suitably
free in β or v is suitably free in γ.

• If α is the disjunction β ∨ γ then v is suitably free in α iff v is suitably
free in β and v is suitably free in γ.

• If α is the formula Qv′β for Q ∈ {∀,∃}, then v is suitably free in α iff v
is suitably free in β and v and v′ are distinct variables.

This differs from a similar inductive definition of occurring (merely) free in α in
the appearance of “and” rather than “or” in the clause pertaining to ∨, called
for by the observations of this and the previous section: this means that the
disjunctions we are dealing with have the ι-term in each disjunct, just as the
disjunctions arising in Proposition 3.2 (and Coro.3.4) have Iv(φ(v), ) on each
disjunct. Unsurprisingly, this difference suffices to push through the inductive
case of disjunction which went wrong in the proof of Theorem 2.1 we looked at
in Section 1. We are now showing that the claimed result holds provided that
Ψ is as described there except that y is suitably free in Ψ, and we get to the
case in which Ψ is Ψ1 ∨Ψ2, so y is suitably free in Ψ1 and also in Ψ2 and can
proceed as Forster wanted to, with: “By induction hypothesis Ψ1[ιx�φ(x)/y] is
equivalent to (∃x)(φ(x) ∧Ψ1[x/y] ∧ (∀y)(φ(y)→ y = x)) and Ψ2[ιx�φ(x)/y] is
equivalent to (∃x)(φ(x) ∧Ψ2[x/y] ∧ (∀y)(φ(y)→ y = x)).”

Of course the result is less general than the original, since y might be free
in the disjunction without being suitably free in it, but then, since the orig-
inal result was false, we needed to lose some generality here. Another way
of ‘repairing’ the result might be to avoid the problem of disjunction in the
same way that Forster himself avoided the problem of negation. Definition
2.1 fixed the description-free equivalents of – or, as Forster puts it, the result
of applying the function I to – negated atomic formulas just as for atomic
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formulas themselves, right at the start, thus providing the basis step for the
induction on the number of occurrences of ∀,∃,∧ and ∨. He makes the point
that since every formula is equivalent to one constructed from atomic formu-
las and their negations by means of these four operations, we have provided
description-free equivalents for all formulas by this means. But now that we
have observed disjunction is actually just as problematic as negation for an
inductive argument of the kind envisaged, we might put disjunction down at
the bottom layer too, and define I(Ψ[ιx �φ(x)/y]) in a variant of Definition
2.1 by having the basis of the induction be disjunctions of atomic or negated
atomic formulas, and this time using the number of occurrences of ∀,∃,∧ as
our measure of inductive complexity, the inductive part being that I commutes
with these three. The justification for the restriction would be as before: every
formula is equivalent to one constructed from these ‘elementary disjunctions’
by means of conjunction and quantification – for example, we can always take
a prenex normal form version of the formula with its quantifier-free matrix in
conjunctive normal form. The net effect, in Forster’s way of putting things, is
that I would no longer commute with disjunction or with negation, whereas on
the treatment he (thought he) was offering, it was negation only that presented
such an obstacle. On the original account, with F,G,H 1-place predicate let-
ters, I(¬G(ιx � Fx)) was not the negation of I(G(ιx � Fx)) and the formula
G(ιx � Fx) ∨ ¬G(ιx � Fx) is not an instance of the law of excluded middle –
occasioning the reference to free logic in note 4. On the modified account, a
disjunction Ha ∨ G(ιx � Fx) would not follow from its first disjunct, further
violating our inferential expectations. In calling this the modified account, we
do not intend to be taken as endorsing it over the original or over the sugges-
tion of the previous paragraph – we are simply contrasting the proposals. The
reader will by now no doubt have decided whether any of these options is more
appealing than the rest, or indeed preferable indeed to the ‘binary quantifier’
treatment of the subject matter.

Acknowledgments. We thank Allen Hazen for several corrections and for
allowing us to to use his hand-drawn lattice as the basis of Figure 1. An easier-
to-read Technicolor version, based on the same original, was created some years
ago by Greg Restall. As of when this is being written, it can be found at

http://jdh.hamkins.org/the-hierarchy-of-logical-expressivity/.

The material in the first three sections is an elaboration of our talk ‘Thomas
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