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Abstract

This article shows the development of symbolic mathematical logic in
the works of G. Boole, A. De Morgan, and C. S. Peirce. Starting from
limitations found in syllogistic, Boole devised a calculus for what he called
the algebra of logic. Modifying the interpretation of categorial proposi-
tions to make them agree with algebraic equations, Boole was able to
show an isomorphism between the calculus of classes and of propositions,
being indeed the first to mathematize logic. Having a different purport
than Boole’s system, De Morgan’s is conceived as an improvement on
syllogistic and as an instrument for the study of it. With a very unusual
system of symbols of his own, De Morgan develops the study of logical
relations that are defined by the very operation of signs. Although his
logic is not a Boolean algebra of logic, Boole took from De Morgan at least
one central notion, namely, the one of a universe of discourse. Peirce crit-
ically sets out both from Boole and from De Morgan. Firstly, claiming
Boole had exaggeratedly submitted logic to mathematics, Peirce strives
to distinguish the nature and the purpose of each discipline. Secondly,
identifying De Morgan’s limitations in his rigid restraint of logic to the
study of relations, Peirce develops compositions of relations with classes.
From such criticisms, Peirce not only devises a multiple quantification
theory, but also construes a very original and strong conception of logic
as a normative science. In the end, some brief considerations about this
point will be presented.
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1 A little bit of history

One can say modern logic emerged from 1850 to 1880, with G. Boole in Eng-
land and G. Frege in Germany. But this may be a little hasty narrative.
Both thinkers recovered Leibniz idea of a pure language for logic, and each
one in a own peculiar way (of course). There is a difference Frege himself re-
marked: Boole sought to devise a calculus ratiocinator, wherein extensionality
was important for the calculus of classes. Frege’s own concept-script should
be understood more as a lingua characteri(sti)ca, that is, less like a calculus it
was a true symbolic language, aiming at the purely logical expression of what
Frege called the thought. Frege then gave prominence to intensionality as the
basis for his own propositional logic. By extension, logic is considered as a de-
scriptive science, that is, with the use of symbolic language, logicians describe
the nature of what is truly logical, that is, what it is to be True and to be
False independently of any psychologisms or empirical circumstances, such as
mental representations or natural idiomatic expressions. Frege’s concept-script
would then be the fulfillment of Leibniz dream, to wit, through it the rigorous,
exact, and objective expression of thinking in its most abstract formulations
would be accomplished, and modern logic thus is born.1

This narrative became a sort of commonplace in logic books. The develop-
ment of logic appears as a linear and progressive history, having Frege as the
founding father and everything else as a development of Fregean ideas. The
gist of the question is quantification theory: Frege would have been the first
and the only one to develop a theory of quantification for bound individual
variables. But, as we will see, Peirce also developed such a theory, almost at
the same time as Frege. In fact, Peirce published his quantification theory few
years after Frege, but independently nonetheless. This is a fact Heijenoort, in
a very influential work, solemnly ignored.2 But apart chronological issues, the
fact is that logic did not develop exactly like this. And Peirce himself may
not fit so well into this categorization, for multiple different reasons I cannot
hope to exhaust here. The development of the logic of relations turns out as a
central point in the history of logic, with special attention to A. De Morgan. I
hope my general argumentation gives the reader some hints on why there is a
lot more to tell. So, let us recover a bit of history.

1See G. Frege 1881 and 1882. For this historical summary I have draught from: W. Kneale
& M. Kneale 1991, especially Chapter VI; S. Burris and J. Legris 2016; V. Peckhaus 1999
and 2004; L. Haaparanta 2009. Other specific references will be properly quoted where they
were used.

2See, for instance, Van Heijenoort 1967. I. Anellis 2012 and 2015 provide the best argu-
ments for an informed criticism of Heijenoort. But this is no recent story. See, for instance,
H. Putnam 1982; C. Tiercelin 1991; G. Brady 2000; A. Molczanow 2012.
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1.1 The square of oppositions and the question of existential
import

The square of oppositions, as nowadays usually found in logic books, is absent
from all known works by Aristotle, even though anyone could in principle in-
fer it from the Estagirite’s descriptions of the relations among the four basic
categorical propositions—affirmative universal, negative universal, affirmative
particular, and negative particular. These descriptions mainly appear in chap-
ters VI and VII of Peri Hermeneias. Instructions to construct the square in a
diagram (but maybe not the diagram itself) seem to have been given for the
first time by Apuleius Madaurensis, or Lucius Apuleius Platonicus, c. 125-171,
in his commentary on Aristotle’s Peri Hermeneias.3

The starting point is the definition of affirmations and negations as con-
tradictory assertions: there is a contradiction (antiphasis; De Int., 17a 32-33)
whenever opposite assertions of the same property about the same thing are
made at the same time. Or, more accurately, opposite assertions cannot be
true at the same time. Another basic point is predication. General and singular
predications are formally similar. So, for instance, propositions like “Machado
de Assis is an animal” and “Humans are animals” are similar, since the universe
of discourse is completely denoted by the subject term, that is, it is universally
denoted. A whole different thing is to say “Some human is an animal” or “Not
every human is an animal”. There are two different ways of predicating, then,
universally and particularly. Such expressions are to be understood side by
side with the distinction between universal terms and particular, or singular,
terms. Because they denote classes of items, propositions in Aristotelian logic
are said to be categorical, that is, they categorize the subjects they refer to.

In declaratory—apophantic, in Greek—discourses subjects and predicates
are terms capable of being related in affirmations or negations. Terms can in
turn be individual like proper names, denoting one item, or universal, in which
case terms can stand by multiple items, e.g., “human”, “woman”, “horse”,
“white”, etc. The word “universal” is said katholou, which in a more literal
translation means “of a whole”, as opposed to kath’hekaston, “of a particular”
(De Int., 17a 38-39). Subjects can be both, but predicates are only universal:
“Socrates is human”, “Carolina is a woman”, “Horses are animals”, “The wall
is white”, etc. In apophantic discourses, one can affirm or deny universally
(“all men are white” or “no man is white”, the predicate is affirmed or denied
for all items denoted by the subject); particularly, or partially (“some men are
white” or “some man is not white”—the same as “not every man is white,”
that is, the predicate is affirmed or denied of a part of the items denoted by

3On this point, see especially M. Correia 2003 and 2011; also D. Londey and C. Johanson
1984.
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the subject); or indefinitely (“man is a beast” or “man is not a beast”, so there
is not a specification of the subject, and the declaration can be interpreted as
being either an universal or partial assertion). In any case, just the subject
term is quantified, which means only the universe of items denoted by the
subject term is capable of specification. From this, let us pass to the following
quote:

I call an affirmation and a negation contradictory opposites when
what one signifies universally the other signifies not universally,
e.g., “every man is white” and “not every man is white”, “no man
is white”. But I call the universal affirmation and the universal
negation contrary opposites, e.g. “some man is just” and “no man
is just”. So these cannot be true together, but their opposites may
both be true with respect to the same thing, e.g. “not every man
is white” and “some man is white”. Of contradictory statements
about a universal taken universally it is necessary for one or the
other to be true or false; similarly if they are about particulars,
e.g., “Socrates is white” and “Socrates is not white”. But if they
are about a universal not taken universally it is not always the case
that one is true and the other false. For it is true to say at the
same time that a man is white and that a man is not white, or that
a man is noble and a man is not noble [. . . ] (De Int., 17b 17-29).

First, for didactic reasons, let us call as the medievals did universal and par-
ticular affirmative propositions respectively by A and I—from AffIrmo—and
universal and particular negatives by E and O—from nEgO. Next, if we try to
make a diagram for the text above, we might get something like:

Figure 1: The traditional square of oppositions
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This diagram—a possible representation of the square— is constructed only
for evidencing the relations between propositional forms. Contradictories can-
not be true and false together, as the philosopher says. For instance, if A is
true, one infers that O is false, and vice-versa. So, if it is true all cats are
mammals, and then it is false to deny some is not. Contraries in turn cannot
be both simultaneously true, but they can be simultaneously false: if it is true
all cats are mammals, to assert no cat is a mammal is obviously false. But
from the falsity of the affirmation that all cats are hedonists one cannot rule
out the possibility that no cat is an hedonist is also false, for it is still possible
that some cat is an hedonist, or yet that not every cat is an hedonist. From
this, several other relations can be inferred. Two are particularly important:

• I and O are subalterns of A and E respectively. This means that if the
universals are true, their correspondent subalterns also are;

• I and O are subcontraries, that is, since they are contradictories of the
contraries, I and O cannot be both simultaneously false, but they can be
simultaneously true.

These are immediate inferences, that is, they do not need any argumentation
to be justified. In other words, some logical equivalences between the proposi-
tions can be pointed.4 From these, more complex reasonings can be made by
combining different assertions: if I affirm the truth of the proposition that all
men are mortals, then I immediately allow for the conclusion that some man
is also a mortal, as well as the falsity that some may not be.

But by being categorical, Aristotelian propositions present some difficul-
ties. A true proposition “is similar to facts” inasmuch as its articulations—its
syntax, so to say—denote the articulations of beings themselves. The word
“man”, for instance, is not like the being man is; but the assertions we make
about the subject man make it possible to understand its relations, necessary
or not, with other beings, or with other qualities, be they essential to it or
not. The act of composition, or combination defining a proposition is what
allows us to understand how facts happen in the word. This is not because
propositions are like maps or images of worldly facts, but because a proposition
reveals factual articulations and distinctions. Words are not like things, but
the syntactical relations between words within a true proposition allow us to
say without contradiction that the proposition is “similar to facts”. Thus, in
Aubenque’s words, it is in judgments and assertions that “discourse in a sense
overcomes itself to go towards things in themselves”.5

4There are others, but not relevant for the discussion here. See Peri Hermeneias, chapter
X. These relations are also discussed in the Topics (e.g., II, 1, 109a 11ff.; II, 8, 113b 15–26),
as well as other passages in the Analytics and the Sophistical Refutations.

5P. Aubenque 1962, pp. 110-112, our translation.
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Aristotelian propositions, then, seem to always assume some existence. In
other words, the assertion of “some” would assume at least one.6 For instance,
if we say “some horse is fast”, the subject term and the predicate term are
categorical, that is, they denote classes, groups or sets of items sharing some
common character. The proposition is then true because at least one fast horse
exists. However, how we should consider the following propositions is not clear:

α] All unicorns are single-horned horses.

β] No vampire is not a hematophagus.

The problem is that unicorns and vampires do not exist. The subject terms
of both propositions denote empty classes, and then the at least one clause is
devoid of sense. Does this mean the propositions should be classified as false?
Not necessarily. See that by definition they are true, so that they are indeed
tautologies: all unicorns are unicorns; no vampire is not a vampire. But as
those classes are empty—categories “unicorn” and “vampire” do not find to
what refer in the world—does it make any difference whether they are true or
not?

Now, considering the possibility of building categorical propositions with
terms denoting empty classes, [α] and [β] have to be classified evidently as false.
But if we abandon the assumption of an existential import, then [α] and [β]
can be considered as true by definition, even if there is not a single unicorn and
not even one vampire. In other words, not all categorical propositions describe
classes or genera of entities, what in Aristotelian philosophy is impossible.

Lack of existential import leads to abandoning some immediate inferences.
Propositions A and E cease to be contraries, as Aristotle thought, for they can
be both true with subjects denoting empty classes. And, among others, sub-
alternation also becomes invalid. Take the following propositions for instance:

[A] All cyclopses are stupid. [I] Some cyclopses are stupid.

[E] No cyclops is stupid. [O] Some cyclopses are not stupid.

If there are no cyclopses: I and O can both be false and in certain cases
not even subcontraries they are. And how can something be simultaneously a
cyclops and a stupid? If I is necessarily false, subalternation is impossible, and
so forth.

Here, the problem is that it is impossible to decide if propositions are true
or false only from a logical-linguistic analysis. Before that, one has to inquiry

6But the O form, if translated as “not every S is P”, would not. See T. Parsons 2017, for
this point.
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into the world to find out if there are cyclopses at all! Now, for cyclops, this
may not be a big problem. But and for angels? And for God?

Leaving theology aside, there are some strategies to avoid this problem.
One of them is to interpret universal categorical propositions as if they were
formally equivalent to conditionals. Thus, “all S is P” should be understood
as saying that “if there is some S, then it will be a P”; and “no S is P” as
“if there is some S, then it will not be a P”. Now, to say, “if there is” does
not involve a compromise with existence or inexistence of any items, and thus
nothing is stated about the propositional truth-content.

This strategy will be Boole’s, and, then it will become a sort of common-
place. Besides that, the identity relation between subject and predicate estab-
lished by the Aristotelian copula will also be modified, mainly by De Morgan
and later on by Peirce. To this we pass now.

1.2 The algebra of logic and the calculus of classes

The liberation of modern algebra from the theory of numbers is a major de-
velopment in mathematics in the 19th century. The general idea that certain
symbolic operations can be extended to other elements than positive entire
numbers has uncountable and far-reaching consequences. One can say that
in logic this is the most important idea for the renewing of the discipline,
that is, the very reason for Kant’s dictum on the completeness of logic since
Aristotle’s times becoming but a hasty and unfortunate exercise of futurology
(notwithstanding Kant could never guess what was to come).7

Historians of mathematics usually refer to the pioneering works of G. Pea-
cock (1791-1858) and D. F. Gregory (1813-1844) as the starting points of the
liberation of algebra, a liberation taken farther in the seminal works of W. R.
Hamilton (1805-1865) and H. G. Grassmann (1809-1877).8 For our concerns,
suffice it to say that Gregory defines “symbolical algebra” as “the science which
treats of the combination of operations defined not by their nature, that is, by
what they are or what they do, but by the laws of combination to which they
are subject” [Gregory 1840, 208]. The main idea is here quite clear: the in-
terpretation of mathematical symbols does not need to follow the definition
of numbers and numerical operations. The main question is about the very
nature of algebra: was it only a theory of equations, having numbers as the
solution, or would it be like a formal discipline concerned with the study of
symbols used in certain operations under certain well defined rules? Is logic
superior to mathematics or dependent upon it? This is Boole’s starting point,

7There are entire libraries on the subject. For a very brief account of the development of
logic specially related to the subject of this article, see N. Houser 1994.

8See H. Eves 1990, chap. 13-10 for a succinct account of this liberation.
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as well as De Morgan’s, as will be clear. Let us begin with Boole.
A self-taught person, Boole became professor at the Queen’s College, in

Cork, Ireland, without having obtained any academic qualification. This meant
nothing in fact, for his knowledge of the then state of art discussion on algebra
could hardly be paralleled. Boole formulated his own algebra for expressing
logical relations, initiating the inquiry on an algebraic symbolic system for
expressing logical reasonings. This is his algebra of logic, or “Boolian algebra”,
as Peirce nicely used to call it. Boole thought this was the right approach to
establish the precise relation between logic and mathematics in general, on the
one hand, and between logic and algebra specifically, on the other. A precise
definition of the nature of each science would then be reached.

For Boole, the key idea is that extension is more important than intension,
that is, classes are more important to logic than propositions. Another point
of contact between logic and algebra comes from other two very widespread
ideas among English logicians in the first half of the 19th century, to wit, the
quantification of the predicate, due to such names as J. Bentham, R. Whately,
W. Hamilton and A. De Morgan, and the notion of universe of discourse Boole
developed from De Morgan. Let us see this latter one first, and then return to
the relations between logic and mathematics later.

In the Aristotelian tradition, negation was considered to hold exclusively
for the copula, for in syllogistic theory a negative term like “not-human” is
considered as an indefinite term. However, if by the universe of discourse we
understand the domain of what is talked about, we have another possibility.
The positive term determined, the negative is immediately determined as well,
and so the universe is divided into two distinct and complementary classes,
symmetrically defined. For instance, if we are talking about “humans” as a
specific class of animals, then the universe of discourse is the class of all ani-
mals, with the term “not-human” designating the class of non-human animals.
This procedure makes it possible to negate the predicate, something totally
unpredicted in syllogistic. Now, Aristotelian logicians distinguished between
universal, particular and singular propositions by quantifying the subject-term.
The idea of a universe of discourse however allows us to apply the same op-
eration to the predicate-term, so that we obtain propositions with both the
subject and the predicate quantified, such as “All humans are some mortals”
for instance, where there is a universal subject and a particular predicate. Such
formulation makes it possible to interpret the relation of predication as one of
identity, giving to the proposition the form of an equation: “All humans =
some mortals”. The same applies to negative propositions.

The idea of negating the predicate is not originally Boole’s, it was part
of the Zeitgeist, if I am allowed to use this expression. For instance, Richard
Whately, whose works were studied by G. Boole and years later decisively
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influenced C. S. Peirce to dedicate his life to the study of logic,9 considers
whether conversion can be made valid for all propositions of the square, in-
cluding O. Aristotle famously considered conversion valid only for propositions
A, E, and I. Whately gives the following example of a conversion by negation,
or “by contra-position”: the proposition “Some members of the university are
not learned” can be interpreted to mean “Some who are not learned are mem-
bers of the University”. Whately says although the terms are not exactly the
same, the propositions are “aequipollent”, that is, they convey the same mean-
ing [1849, p. 36]. Now, Boole understood this in the form of equations, and
this is exactly what makes his logic a sort of algebra. The way to abandon the
propositional form relating one subject to one predicate is therefore wide open.

2 Algebra and logic according to George Boole

In his 1847 book, The Mathematical Analysis of Logic, and mainly in his 1854
The Laws of Thought, Boole explains his ideas on a “new system” of logic.
He radically breaks with undoubted ideas at his times, claiming, “logic forms
no part of [philosophy]” and that “we ought no longer to associate Logic and
Metaphysics, but Logic and Mathematics” [1847, Introduction, p. 10]. By
taking what he considers to be essential from algebra, namely, the combination
of different symbols apt to receive specific meanings with the purpose to devise
a calculus, Boole claims:

They, who are acquainted with the present state of the theory of
Symbolic Algebra, are aware, that the validity of the processes of
analysis does not depend upon the interpretation of the symbols
employed, but solely upon the laws of their combination. Every
system of interpretation which does not affect the truth of the rela-
tions supposed, is equally admissible, and it is thus that the same
process may, under one scheme of interpretation, represent the so-
lution of a question on the properties of numbers, under another,
that of a geometrical problem, and under a third, that of a problem
of dynamics or optics. [Boole, 1847, p. 3,].

Boole’s aim is to show that reasoning obeys the laws of algebra. To show
that it is so, Boole applies the algebraic calculus to logic in a purely formal way.
In fact, Boole recovers the Leibnizian ideal of a calculus ratiocinator, but with-
out a lingua characterica universalis. Adding that the study of numbers and

9Richard Whately (1787-1863) was an English logician and theologian. The quotes above
are from his Logic (1849), which became the first volume of the Encyclopaedia Metropolitana,
edited by Samuel T. Coleridge and projected to compete with Encyclopaedia Britannica. On
the influence of Whately’s Elements of Logic (1855) over C. S. Peirce see W 1: xviii-xix.
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quantities is not essential to mathematics, he claims something much stronger
indeed: there is more than a close analogy between the “operations of the
mind in general reasoning and its operations in the science of Algebra”, there
is indeed “to a considerable extent an exact agreement in the laws by which
both the two classes of operations are conducted” [1854, chap. 1, § 6]. This
is the reason why Boole comes to think of the ultimate forms and processes of
the science of logic as necessarily mathematical. He says:

That Logic, as a science, is susceptible of very wide applications
is admitted; but it is equally certain that its ultimate forms and
processes are mathematical. Any objection à priori which may
therefore be supposed to lie against the adoption of such forms
and processes in the discussion of a problem of morals or of general
philosophy must be founded upon misapprehension or false analogy.
It is not of the essence of mathematics to be conversant with the
ideas of number and quantity [1854, chap. 1, § 11].

In the Mathematical analysis of logic, chapter 2, Boole quotes [1847: 20]
from Whately, when expressing the basic categorical propositions – A, E, I, O
– with algebraic symbols. At this time, his own way of understanding those
propositions is very innovative: “A logical proposition is, according to the
method of this Essay, expressible by an equation the form of which determines
the rules of conversion and of transformation, to which the given proposition is
subject” [1847: 8]. Boole is already perfectly aware of the revolutionary charac-
ter of his claims, but at this time he only symbolizes the traditional categorical
propositions. The step further will be given only in the 1854 book, when he
assumes the task to formulate in a mathematical way the processes of human
reasoning. To accomplish this task, Boole adapts a “tool”, an “instrument”,
to wit, a symbolic language conceived more algebrico, that is, following the
rules of algebra, and with each of its sign arbitrarily defined with one meaning.
He expects with this to fulfill something modern philosophers thought to be
possible, which is to exhibit the very logical structure of mental operations,
that is, the movement of thought itself. From this, Boole expects to be able
to express the laws that are common to algebra and to human reasoning re-
gardless of a human subject (dismissing the kind of subjectivism or empiricism
philosophers like J. S. Mill, for instance, argued for). Those are the famous
laws of thought.10 See:

10L. Couturat’s statement that Leibniz had already anticipated all of Boole’s (and of
Schroeder’s) logic principles in more or less 150 years, even going beyond Boole, is well
known. It is not possible to go deeper into this here. The reader may find it useful to see V.
Peckhaus 2012; W. Lenzen 2004.
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All the operations of Language, as an instrument of reasoning, may
be conducted by a system of signs composed of the following ele-
ments, viz.: 1st. Literal symbols, as x, y, &c., representing things
as subjects of our conceptions. 2nd. Signs of operation, as +, −, ×,
standing for those operations of the mind by which the conceptions
of things are combined or resolved so as to form new conceptions
involving the same elements. 3rd. The sign of identity, =. And
these symbols of Logic are in their use subject to definite laws,
partly agreeing with and partly differing from the laws of the cor-
responding symbols in the science of Algebra. [1854, chap. 2, §4,
p. 27].

How Boole interprets syllogistic using the calculus, thus naming the new
formal language thereby derived algebra of logic is what we are going to see
next.

2.1 A calculus and a logic of classes

Boole’s algebra of logic is an abstract calculus that should be interpreted in a
double way, as he himself reminds us: first, as an algebraic calculus, but also
as a calculus of classes. According to this latter interpretation the symbols are
thus defined: “x”, “y”, “z” are variables representing propositions; the signs
“+” and “×” respectively stand for exclusive disjunction and conjunction; the
sign “−” corresponds to the negation of the predicate; the sign “=” as sign of
identity means in fact equality, i.e., to say “x = y” means x and y are classes
with the same members; and “1” and “0” stand for True and False, which are
the only two possible values assignable to propositions. Take then, for instance,
the formula x2 = x. It expresses a logical law of the propositions: x ∧ x = x
(x symbolizes any proposition p). Then, if x and y respectively refer to two
propositions p and q whatsoever, the equation x(1− y) + y(1− x) = 1 means
that either p is true or q is true, that is, only one of them two is true, not both.

The last passage quoted above showed that the Boolean sign “=” kept ex-
clusively one function of the Aristotelian copula, that is, the identity function.
This gives Boolean logic its extensional nature, meaning that each instance of
elementary reasoning is expressed as an equation, just like in algebra. The
symbols of the first group can be interpreted in terms of classes – Boole favors
this interpretation naturally – and those of the second group correspond to the
operations upon classes. For instance, if one writes x = y, then it is possible
to understand that “xy” represents the class of the members of x that are also
the members of y and vice-versa, that is to say, xy represents the intersection
of both classes x and y.
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This is exactly what makes Boole’s logic a calculus.11 The table below
shows some analogies between some laws of algebra and some laws of logic (of
course, not strictly expressed in ordinary language).

Laws of algebra Translation in ordinary language

xy = yx human things = things human

x+ y = y + x either violets or roses = either roses or violets

z(x+ y) = zx+ zy flowers (either violets or roses) = either violets
flowers or roses flowers

z(x–y) = zx–zy flowers (violets, but not roses) = violets flowers,
but not roses flowers

(x = y + z) = (x–z = y) flowers are roses and violets = flowers, but violets,
are roses

Figure 2: Translation of Boolean equations to natural language

There is, however, no perfect analogy between the laws of logic and the laws
of algebra, no “exact equivalence”, as Boole himself reminds several times. For
instance, every time we have in algebra x2 = x, we have a problem in Boole’s
logic: if x stands for the class of horses, xx, or x2, standing for the class
of horses that are horses also stands for the class of all horses. In algebra,
this equation is valid only for numbers, 0 and 1, the solutions for the equation
x2 = x, wherein x(1–x) = 0. Boole’s algebra of logic is, then, a specific algebra,
a binary one, wherein the only possible numerical values are 0 and 1 (T and F).
In sum, we can truly say that Boole’s algebra is characteristically distinguished
by the idempotent law: x2 = x.12 There remains the task to find the laws of
such an algebra and an acceptable logical interpretation for 0 and 1.

The first point would lead us too far stray. Suffice it to say that Boole’s
algebra satisfies the majority of the laws of common algebra, as will be clear
soon: commutativity of multiplication and sum, distributivity of multiplica-
tion over sum and subtraction, rule over “change of member” in an algebraic
equation etc.

On the second point, let us remember how Boole interpreted the categor-
ical propositions of syllogistic, borrowing one of De Morgan’s idea he himself

11See W. Kneale and M. Kneale 1962, p. 407.
12According to C. Polcino Millies and S. Sehgal (2002, p. 127), the very conception of

idempotency as used in current ring theory was firstly introduced by Charles S. Peirce’s
father, Benjamin Peirce, in his Linear Associative Algebra, published as litograph in 1870
and then posthumously edited in 1881 by his son Charles himself.
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renamed as universe of discourse. The Boolean universe of discourse circum-
scribes the limited domain of what is talked about (so to say):

Now, whatever may be the extent of the field within which all
the objects of our discourse are found, that field may properly be
termed the universe of discourse.

Furthermore, this universe of discourse is in the strictest sense the
ultimate subject of the discourse. The office of any name or descrip-
tive term employed under the limitations supposed is not to raise in
the mind the conception of all the beings or objects to which that
name or description is applicable, but only of those, which exist
within the supposed universe of discourse [1854, chap. III, §§ 4-5,
p. 42].13

The universe of discourse is denoted by 1 and it is called “the Universe”,
for it represents “the only class in which are found all the individuals that
exist in any class”. This is assumed on the basis that 1 × y = y (or 1y = y)
[1854, chap. III, §13, p. 47]. The symbol 0, for its turn, represents the empty
class, called “Nothing”, that is, the class talked about that has no members.
This is assumed on the basis that 0 × y = 0 (or 0y = 0) [id., ibid.]. All of
this is of considerable novelty, since it is the first time that extensional logic
explicitly considers the empty class. As Boole says, “Nothing and Universe are
the two limits of class extension”, “the limits of the possible interpretations
of general names” [id.]. From this, the result is that if x denotes a class of
objects that do belong to the universe of discourse, 1− x denotes the class of
objects that do not belong to x, that is, its complement.14 Moreover, Boole
is seems to be convinced that human beings are apt to “mentally selecting”
[1847, Introduction, p. 5] the objects that belong and the ones that do not
belong to a given class. For instance, if the universe of discourse is the class
of animals and if v represents vertebrates, 1 − v represents the invertebrates,
or the animals without a backbone. Therefore, we have: v + (1− v) = 1 (that
is, the union of vertebrates and invertebrates is the universe of discourse); and
v × (1 − v) = 0 (that is, the classes of vertebrates and of invertebrates are
mutually exclusive).

Now, the symbolization Boole offers for the basic categorical propositions
of syllogistic logic can be presented in the following table:

13Boole is indeed considered the first to ever have used this expression, in the passage just
quoted above. See S. Nambiar (2000), p. 230.

14As Boole himself states [1847, p. 20], the more precise formulation is that class X is
denoted by the symbol x, which selects from the universe of discourse the individuals that
belong to X (the individuals that are Xs). But Boole is inconsistent in using this distinction,
as can be easily shown by the reading of the very same chapter.
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A All Xs are Ys a x(1− y) = 0 a’ xy = x

E No Xs are Ys b xy = 0 b’ x = v(1− y)

I Some Xs are Ys c v = xy c’ vx = vy

O Some Xs are not Ys. d v = x(1− y) d’ vx = v(1− y)

Figure 3: Categorical propositions in Boolean form

Take proposition A. Boole’s reasoning is as follows [1847, p. 21]: since all
existing Xs are in class Y, it is evident that to select all the Xs from the Ys and
that to select all those Ys from the universe is equal to selecting all the Xs from
the universe of discourse at a single time. That is why we should write xy = x.
And next, from the law of distribution and the law of transposition (not stated
in this book), Boole writes xy = x in form (a). For proposition I, the reasoning
is as follows: if some Xs are Ys, there are some common terms to classes X
and Y. Let those terms be members of a distinct class, the class V, symbolized
by v, and, then, v = xy. As v includes all the terms that are common to
classes X and Y, we can interpret it both as Some X or as Some Y. With this
interpretation, Boole claims all equations expressing particular truths can be
understood as necessary deductions from a single general proposition of the
form

x = y.

If we multiply this formula by x, we shall have x2 = xy, therefore x = xy.
That is truly form (a): x(1 − y) = 0. Next, he considers this latter formula
as an equation, where x should be determined in terms of y, saying that its
“general solution” is that x = vy, that is, form (a′). According to Boole, this
can be verified by a simple replacement by (a). And last but not at all least, by
multiplying (a′) by v, which is implicitly assumed as a not-empty class, Boole
obtains form (c′), which itself implies that “Some Ys are Xs and some Xs are
Ys” [id., pp. 22-24].

In the next chapters, Boole employs this calculus to questions of traditional
logic, more often than not preferring formulas (a′), (b′), (c′), and (d′). This way
of proceeding truly has several weak–or rather problematic points. The most
important one for our concerns here is that the replacement of form (a) by
(a′) alters the existential content of proposition A.15 This point will be made
clearer if we first consider the some aspects of the use of Boolean algebra for
complete syllogisms. Let us take two of Boole’s formulas that value as laws
and follow from the laws he himself formulated.

15This is not the only weak point, but it is impossible to discuss all of them here. Some
difficulties will nevertheless be presented soon ahead. For a deeper take on the subject, see
J. Corcoran and S. Wood 1980.
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[α] x+ (1− x) = 1

[β] x× (1− x) = 0

Formula [α] expresses the law of the excluded middle and formula [β] the
contradiction law. Both derive from the single most important innovation in
Boole’s 1847 book, which is his “index law”: “The result of a given act of
election performed twice, or any number of times in succession, is the result
of the same act performed once” [1847, p. 17]. With “election”, Boole seems
to mean something like picking up one element of the class. So, the law of
the excluded middle says the union of the class of x s with the class of not-x s
is the universal class, that is, it is completely saturated, if we want to speak
in a Peircean jargon [see Boole 1997 (c. 1860), p. 141]; and, accordingly,
the contradiction law says the intersection of the class of x s with the class of
not-x s is empty, i.e., its value is zero, that is, in a Peircean jargon, completely
unsaturated. In other words, the empty class means that it is impossible to
be simultaneously x and not-x. In this way in Boole’s logic of classes, the
principle of contradiction follows from the idempotent law. In other words,
this law says that choosing property x n times is the same of choosing x once.
Or else, the index law is the only peculiarly logical law, the basic law of Boole’s
system [see, e.g., Boole 1854, p. 35; Pantecki 2000, p. 195]. According to this
interpretation, + symbolizes the reunion of two disjunct classes, × represents
their intersection and = their equality. The sign − allows the passage from one
class to its complement. In this way, Boolean algebra of logic is ideally suitable
to extensional interpretation, according to which its symbols are combined to
form formally solvable algebraic equations, that is, equations solvable under its
laws and the solutions of which can be thereby interpreted in terms of classes.
Such a procedure permits the examination of all possible combinations in a way
that we can derive for a syllogism all the conclusions that are also coherent
with traditional syllogistic deduction. For instance, the following syllogism:

1. No god is mortal.

2. All men are mortal.

3. So, no god is a man or No man is a god.

Next, x represents the class of Xs (gods), y represents the class of Ys
(mortals) and z represents the class of Zs (men).

1. xy = 0: the class of individuals that are at once Xs and Ys is empty.

2. z(1–y) = 0: the class of individuals that are Z without being Y is empty.
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3. From (1) and (2), according to the laws of Boole’s algebra, we derive by
deduction that: [xy = 0, thereby y = 1 − x, thereby 1 − y = x, thereby
z(1− y) = zx = 0] : xz = zx = 0.

The class of individuals that are Xs and Zs at the same time is empty.
However, Boole’s algebra is not valid for all Aristotelian logic, let alone all

syllogistic. This is an important point. To avoid the problems of implying an
existential content to categorical propositions, Boole interprets the propositions
of the logical square in a way that suppresses certain aspects of Aristotelian
negation. This obliges him to completely modify the traditional propositions
and their mutual relations. For instance, propositions A, such as “All men
are mortal” become something like “Nothing exists that it is at the same time
a man and not-mortal”. The same applies to propositions E, like “No man
is immortal”, which becomes something like “Nothing exists that it is a man
and at the same time it is immortal”. As a result, only one opposition of the
traditional square, namely, the one of contradiction, can be maintained. All the
others – subalternation, contrariety, sub-contrariety – have to be dismissed, as
well as the operations on the propositions themselves – conversion, obversion
and contraposition.

Let us see more about this. In Boole’s calculus, whether possessing existen-
tial content or not, each traditional categorical proposition is to be interpreted
as the product of the intersection of classes of items represented by the subject
term and the predicate term. Then if the class of the subject term is empty,
that is, if there are no items under it, it does not possess existential content
and is represented by the equation S = 0; if it possesses existential content,
that is, if it is not empty, then S = 1 represents it. Now, if SP represents the
categorical proposition “S is P”, we have two possibilities: either (a) SP = 0;
or (b) SP 6= 0. Even though Boole himself, as we will shortly see, does not
use the symbol 6=, that is what he means. If (a), then there is nothing that is
member of the class S and at the same time is a member of the class P. If (b),
then there is some item that is at the same time a member of class S and a
member of the class P. All the traditional categorical propositions of syllogistic
can be reformulated thereby. Let us use a more up-to-date symbolism. In the
first place, it is clear that E: (S ∧ P = 0); and also I: (S ∧ P = 1). Besides,
a proposition A can no longer merely state that “All Ss are Ps”, for it can be
that the class is empty and there is no S. It must be rewritten in a negative
way, in E form: “There is no S that is a P”. Now, as such, this form means that
the intersection between S and P is empty. Hence A: (S ∧ P = 0). Finally, the
proposition O states that there is at least one item that is S and not-P, hence O:
(S ∧ P = 1).

It is clear then that while the existential content of the universal proposi-
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tions disappear, the particular propositions keep theirs.16 The consequences
of this for the traditional syllogistic theory we have already seen: the so-called
immediate inferences of the traditional square are not valid anymore, but for
contradiction. Besides, propositions A and E can now be considered as true
at the same time, I and O can be false at the same time. As this happens at
the cost of a complete reformulation of the propositions, a totally new way of
conceiving logic itself arises and needs to be fully developed.

Boole accomplished what Leibniz only slightly grasped, namely, he devel-
oped a system where the isomorphism between the calculus of classes and the
calculus of propositions can be clearly seen. Underlining though that both
calculi are contrasted but for the interpretation of the symbols, Boole him-
self was nevertheless well aware the formal analogy between the two fields is
not satisfactory enough when it comes to quantifying the subject and also the
predicate of a proposition.

By this way of conceiving logic operations, Boole was obliged to introduce
an auxiliary operator, symbolized with v, to avoid the more arithmetical and
not algebraic symbol 6= to express “some”, for to “some x is a y” would be
rendered as xy 6= 0 according to his rules. As seen, this v operator can be
explained in different ways: the propositions “all Xs are some Ys” (or more
simply “all Xs are Ys”, etc.), “Some Xs are some Ys”, “Some not-Xs are some
not-Ys” are possible interpretations of the following equations (respectively):
x = vy, vx = vy and v(1 − x) = v(1 − y). This is imprecise, though, and the
elimination of the sign is desired for an improvement in the system. Boole
nevertheless does not accomplish this.

2.2 Some difficulties of Boolean logic

From such abstract calculus, Boole derives a logic of classes and finds a lot of
problems. For our concerns here, some difficulties related to symbolism are to
be examined.

First, let us return to symbol v, which is of an imprecise nature, as just
mentioned. Its vagueness allows it to represent that an indefinite quantity of
individual items pertaining to the class it is attached is retained: if x repre-
sents class X, vx represents a subclass containing one, several or all the X
individuals. Thus denoting an indeterminate class, or more precisely an “op-
erator”, the symbol satisfies the idempotent law. It can be assimilated to a
quantifier, but not in the sense we understand now. Attached to a class, it does

16A myth in logical theory appears here: since Boole to present days it is believed that
there is no assumption of existential import in contemporary logic. But J. Corcoran and H.
Masoud 2015 have recently showed that universalized conditional sentences assume existential
import in some cases.



432 C. T. Rodrigues

not mean “for all” or “there is”. Second, the symbol “+” brings problems for
propositional logic. The sign is used in Boolean algebra of logic to express ex-
clusive disjunction and aptly corresponds to numerical sum, but not to logical
sum, for inclusive disjunction is the more precise analogue for the conjunction
found in logical product. And third, the symbol “−” (minus) imperfectly sym-
bolizes negation. Not only the predicate needs to be negated, but the whole
proposition. And finally, there is no logical equivalent to algebraic division.
Boole’s firm adherence to the latter distances him from logic and prevents the
articulation of propositional calculus with predicate calculus, which will be in-
vented simultaneously but independently by Frege and Peirce only about 40
years later.

Such difficulties make a flaw in Boolean logical calculus quite evident:
the adequacy between logic and algebra is imperfect, for propositions are not
classes. Boolean algebra of logic does efficiently solve more complex problems
than Aristotelian syllogistic, but it seems to be more an instrument for logi-
cians than a logic proper in itself. Boole meant to develop a general theory of
deductive reasoning, but his algebra does not represent all elementary logic.
Boole gives much value to an ideal of symmetry he finds in the algebraic in-
terpretation of logical operations, but a fundamental character of the study of
logic does not meet this ideal: while a logician uses formal languages to study
inferences and make deductions, an algebraist solves equations by manipulating
signs. Later on, Peirce will stress this point, as we shall soon see.17

These few critical remarks cannot make us forget Boole’s remarkable contri-
bution: he showed syllogistic does not exhaust the whole of logic and invented
mathematical and formal logic indeed, definitely changing the discipline and
opening a whole new and vast field of research for the 20th century. Boole’s
interest was to develop a symbolic universal method highly abstract for work-
ing with differential equations, “a genuine and complete method”.18 He might
have not accomplished his goal, but started notwithstanding a revolution in
logic. His failure is the measure of his success: by not being able to symbolize
in a clear and defined way the very specific character of logical operations,
Boole left the way open for others to complete this revolution after him. As
any Google user nowadays may know, Boole’s work is indispensable.

17This is just one of the aspects distinguishing Peirce from Frege. It is impossible to tackle
this comparison in depth here, but we will briefly see why Peirce is not a logicist, that is, why
he considers mathematics cannot be founded upon logical notions. See I. Anellis 2012 for a
deeper account of the subject, as well as the editor’s introduction to M. Moore 2010, and V.
Peckhaus 1999 and 2004, for some very illuminating clarifications and reinterpretations.

18Boole’s letter to W. Thomson, April 1847, apud M. Panteki 2000, p. 202
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3 Augustus De Morgan and the birth of the logic of
relations

Teaching mathematics at the then recently founded London University (Lon-
don College University nowadays), De Morgan was interested both in a renew-
ing of algebra as in a renewing of logic. His first work in that direction was
published in 1847 entitled Formal logic: or, the calculus of inference, neces-
sary and probable. While Boole himself presented his new algebra of logic as
groundbreaking, De Morgan’s aim was not to construct a revolutionary calcu-
lus. His purpose instead is to find a more adequate symbolism for traditional
Aristotelian syllogistic (or what he understands it to be). In pursuing his aim,
De Morgan in fact discovered some very radical innovations, accomplishing in-
deed a reformulation of the old formulas of reasoning and amplifying the scope
of logic to encompass more reasoning forms than the known syllogistic ones.
These innovations culminated in his 1847 Formal Logic, where De Morgan pre-
sented his full account of the generalization of the copula, recognizing relations
other than identity as objects for logical study.

Two crucial points can be singled out. First, the recognition just mentioned
leads to considering relations as objects of logical study in their own right, no
matter if there is some identity established between terms or not. Rather than
that, inferences performed by means of transitive and convertible relations
(which we call symmetric relations, following E. Schroeder’s vocabulary), are
just as good for logical inquiry as a any sort of syllogistic reasoning. As pointed
out by Merrill, “any relational terms will satisfy the syllogistic laws, as long as
the ‘formal’ properties of transitivity and convertibility apply to them” [Merrill
1990, p. 48]. Logic, then, is not anymore just the study of syllogisms, but the
study of the ways one can draw consequences from the mere formal properties
of relations between terms. For instance, equality can be considered in terms
of transitivity, so that the following argument form is valid:

a is a brother of b.
b is a parent of c.

Therefore, a is an uncle of c.

This can be symbolized as: ((a = b) ∧ (b = c)) ` (a = c). Note that the
relation of term a to term c is inferred from the relation of a to b and of b to
c, so that it is a compound relation. This is the basic assumption that led De
Morgan to develop a formal logic of relations.

The second point comes from that. De Morgan came to recognize that not
all inferential relations are reducible to syllogistic forms. In fact, it is just the
opposite: the whole of syllogistic can be derived from the logic of relations. De
Morgan says:



434 C. T. Rodrigues

There is another process which is often necessary, in the formation
of the premises of a syllogism, involving transformation which is
neither done by syllogism, nor immediately reducible to it. It is
the substitution, in a compound phrase, of the name of the genus
for that of the species, which the use of the name is particular.
For example, “man is animal, therefore the head of a man is the
head of an animal” is inference, but not syllogism. And it is not
mere substitution of identity, as would be “the head of a man is the
head of a rational animal” but a substitution of a larger term in a
particular sense [De Morgan 1847, p. 114].

By the quote above we understand that De Morgan’s concern is with defin-
ing some logical rule to work with universal and particular terms: the sub-
stitution of a general term – the name of the genus – for a particular one –
the name of the species – makes a reasoning, or an inference, as he says. The
problem is that he remains with no criteria for defining when a term is used
as a genus or as a species, that is, when it is used universally or particularly.
In other words, could we reformulate De Morgan’s dictum in a way to include
quantification? For instance, take the following inference

Every man is an animal, therefore every head of some man is
the head of some animal.19

Is it valid or not? De Morgan claims it is, and to prove so he resorts
to algebra, as early as 1844 claiming the laws of his logical system greatly
resemble those of algebra.20 He did not understand this in the same sense as
Boole, though, but only in the general sense that the semantics of the terms
is given by the syntax of their combination.21 This understanding is basic for
his attempts to generalize the copula.

Besides, there four advantages for adopting a symbolic notation are stated
by De Morgan in the preface:

19The example is not exactly what De Morgan writes. We will see later on how Peirce
deals with this problem. See D. Merrill 1990, p. 79. De Morgan is of course aware of the
problem, but only in his second article on the syllogism (1850) he deals with such quantified
expressions without quantifiers, not yet in his 1847 Formal Logic.

20As De Morgan claims, in a paper read in 1844 for the Cambridge Philosophical Society,
the idea of “a distinct system of unit-symbols, and investigating or assigning relations which
define their mode of action on each other” first came to him through a paper W. R. Hamilton
on quaternions. The difference between Hamilton’s and his own system is that his’s is triple
and not quadruple, “and as preserving, in their laws, a greater resemblance to those of
ordinary Algebra” [De Morgan, 1844, p. 241].

21Of course, a full analogy between the laws of logic and the laws of algebra does not always
work. See Merrill 1990, p. 84 ff. for more on this.
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A simple notation, which includes the common one, gives the means
of representing every syllogism by three letters, each accented above
or below. By inspection of one of these symbols it is seen immedi-
ately, 1. What syllogism is represented, 2. Whether it be valid or
invalid, 3. How it is at once to be written down, 4. What axiom
the inference contains, or what is the act of the mind when it makes
that inference [1847, Preface, p. iv].22

De Morgan clearly wants to preserve syllogistic, but nevertheless makes
innovative claims that lead far beyond it. He thinks of the symbolism as
an instrument, and an adequate auxiliary tool for studying inferences. The
subject itself, of course, should not be misidentified with the instrument, but
symbolism is an active instrument that modifies the theory and allows for
the understanding of inferential relations that are not explicit. This is an
important notion De Morgan bequeaths to the next generation of logicians,
especially Peirce, as we will see. The quotation above makes it very clear
that symbolism has the advantage of exhibiting what otherwise would remain
hidden, that is, what kind of reasoning is being performed.

Another important conception developed by De Morgan concerns the al-
ready mentioned idea of universe of discourse. Its more famous definition says:
“universe of a proposition or of a name23” . Let us quote for more context:
“The whole extent of the matter of thought under consideration I call the
universe. In common logic, hitherto, the universe has always been the whole
universe of possible thought” [1860, §122, p. 39]. “Common logic, hitherto”,
says De Morgan, meaning logic since Aristotle, through the Middle Ages till
the 19th century, the universe of discourse has always been conceived as a the
fixed universe of all things conceivable. But De Morgan’s definition has an ap-
parent originality, which is to limit the universe to what is under consideration,
the domain of what is being talked about so to say, the items upon which it is
possible to make assertions. His argument for this restriction is that logicians
always thought of the universe not as a universe of discourse, but of everything
that there is. For instance, considering the universe of all men, then everything
is put under the overarching umbrella of not-men, from women to umbrellas,
including aliens and “everything imaginable or real” [1847, p. 37]. This is of
little or in fact no use at all, since no one uses any language like this. When
talking about a class of items, for instance, the class of vertebrate animals, I
limit myself to consider that part of the general class of animals that have a

22A thorough presentation of De Morgan’s logical system is out of the scope of this article.
The best study on the subject till the day seems to still be D. D. Merrill’s (1990).

23This quote is from the 1846 paper, “On the syllogism, I: on the structure of the syllogism”,
which is previous to Boole’s work, then. Apud Anellis & Abeles 2016, p. 76.
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backbone, the contrary of which is the class of animals called invertebrate. I
do not ponder of qualifying a star, a theorem or a football game as vertebrate
or invertebrate. So, the conception of universe means the whole whose parts
are being considered. As De Morgan says:

The universe is the whole sphere of thought within which the matter
at hand is contained: usually not the whole possible universe of
thought, but a limited part of it [1858, p. 208]. Thus, the universe
being mankind, Briton and alien are contraries, as are soldier and
civilian, male and female, &.: the universe being animal, man and
brute are contraries, &c. [1847, 38].

Boole’s notation tries to express this. The use of 1 and 0 shows that the
universe of discourse is thought of as a truly universal class, that is, if we
are talking about animals, 1 means the universal class of all animals and 0
means the empty class of everything that is not an animal (angels, cabinets,
planets, whatever). De Morgan’s notation conveys a different idea. By re-
ferring to every so-called “positive” notion in the universe with an uppercase
letter, and to its complementary with a lowercase letter, it obliterates the dis-
tinction between affirmative and negative propositions, thus avoiding Boole’s
stratospheric universality. As a matter of fact, as he understands them, the
categorical propositions of the tradition are to be interpreted in terms of de-
grees of extension and intension, as it was usual to say in those times [1858, p.
208]; or, in other words, inclusion or exclusion of a class into another. The table
below shows how the categorical propositions of the square of oppositions are
understood and symbolized by De Morgan in his own“spicular” notation. Be-
ing a formalist, De Morgan devises a whole symbolic system made up of letters,
dots, parentheses and converted parentheses, brackets and converted brackets,
and exponents, calling it spicular for that reason, that is, because formed with
punctuation signs (from the Latin spiculum, point). He explains the name
was chosen first in derision, but then decided it worth keeping because better
than “parenthetic” [De Morgan 1858, 198]. Then, explicitly stating categorical
propositions as expressing relations of inclusion and exclusion between classes,
the spicular notation brings:
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Proposition of assertion
or denial (Mathematical
form)

Arithmetical
form

De Morgan’s
spicular nota-
tion rendering

A Assertion of X contained in Y Every X is Y X))Y

O Denial of X contained in Y Some Xs are not Ys X(·(Y

E Assertion of X excluded from Y No X is Y X)·(Y

I Denial of X excluded from Y Some Xs are Ys X( )Y

Figure 4: De Morgan’s rendering of the categorical propositions, published in
De Morgan 1858

It is evident he conceives of those propositions as expressing relations be-
tween a whole and its parts, and this is the meaning of “onymatic”. Each
term – subject and predicate – represent a distinct class, a different part of the
whole, and the copula defines the quality of the relation, whether inclusive or
exclusive. As he himself says:

Taking the mathematical form first, and dichotomizing the uni-
verse in two ways, by classes X and not-X (x), and Y and y, the
onymatic relations of class to class can be predicated without any
explicit dichotomy of class, whether vague or definite. The relations
are inclusion and exclusion (inclusion in contrary); the judgments,
assertion and denial [1858, p. 195].

In short, this means that, for any universe U, the uppercase letters X and
Y represent different delimited classes within U, and x and y represent their
complementaries, e.g., respectively not-X and not-Y. The universe can then
be considered as equivalent to (X,x), that is, the class of all things that are
of a certain class and of those that are not. De Morgan can thereby say the
universe is the maximum of extension and the minimum of intension, that
is, “in extension, [the universe] contains everything; in intension, it belongs
to everything” [1858, 208]. For instance, if the universe considered is that of
animals, and if X stands for the notion of human, x will stand for the notion of
not-human animal ; if Y stands for the notion of vertebrate, y will stand for the
complementary notion of invertebrate. Then, negation refers to the predicate
and is implicit in the symbolism. A negative proposition, such as “No X is a Y”,



438 C. T. Rodrigues

becomes the affirmative one “All X is not-Y”. So, in the universe of animals,
“No human is not a vertebrate” becomes “All humans are invertebrates” (both
false propositions).

Figure 5: Facsimile of page 211 from A. De Morgan’s “On the syllogism, III”,
published in the Transactions of the Cambridge Philosophical Society, vol. X,
1858.

As D. Merrill stresses, this is a crucial point warranting De Morgan a place
in the history of logic, that is, “his emphasis on the necessity of specifying the
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universe of discourse in interpreting any proposition, and requiring that for
any X, both ‘X’ and ‘x’ name something” [1990, p. 153]. Thus, it becomes
clear De Morgan’s assumption of existential import, breaking with the idea of
erasing away all reference to existence. In fact, that is what is currently done
in logic: logicians assume existence, they do not deny it or talk about empty
classes all the time.

Although De Morgan corrects a limitation of Aristotelian logic here, another
of his contributions is of a still higher significance. Namely, the discovery – or
rediscovery – of the laws of duality between logical sum and logical product.24

Calling logical sum “aggregate”, and logical product “compound”, De Morgan
expressed these concepts in the following manner:

The contrary of an aggregate is the compound of the contraries of
the aggregants: the contrary of a compound is the aggregate of the
contraries of the components. Thus (A, B) and AB have ab and
(a,b) for contraries.25

Since De Morgan’s spicular notation is quite idiosyncratic, as can be seen
by his symbolic rendering of the propositions of the square, the relations he is
describing in the quote above can be expressed in a more up-to-date notation
like the following:

[α] A+B = A×B

[β] A×B = A+B

Or, in a Boolean manner:

[α] 1− (x+ y) = (1− x)× (1− y)

[β] 1− (x× y) = (1− x) + (1− y)

24It may be argued that Peter Abelard (c. 1079-1142) had already discovered, or at least
laid down the grounds for the discovery, of what we call De Morgan’s laws. See P. Boehner
1951. But the most common view is that those laws were commonplace knowledge in the

13th century. The classical reference on the subject is E. Moody 1953. See E. Gomes and I.
M. L. D’Ottaviano 2017, pp. 223-249, for how they appear in the context of a demonstration
of the ex falso by the Pseudo-Scotus. El-Rouayehb 2016 shows De Morgan’s laws were known
for Arabian logicians.

25From the third paper on syllogistic, “On the syllogism, no III, and on logic in general”,
in: Transactions of the Cambridge Philosophical Society, v. 10 (1864), pp. 173-230, this
quote p. 208. The date of its presumptive final version is written at the end of the piece,

August 3rd, 1857, with final corrections and additions in June 25th, 1858.
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The general idea can be defined, then, as following: the complement of the
intersection of two classes is the union of the complements of those classes.26

In propositional logic, those laws hold good for weak disjunction and for
conjunction as well, the calculus of classes being isomorphic to the calculus of
propositions:

[α] the negation of disjunction is equivalent to the conjunction of the
propositions negated, that is:

¬(p ∨ q)↔ ¬p ∧ ¬q.

[β] the negation of conjunction is equivalent to the disjunction of the
propositions negated, that is:

¬(p ∧ q)↔ ¬p ∨ ¬q.

The recognition of this duality – holding good exclusively for weak disjunc-
tion – is one of the reasons most of later logicians will adopt it (but for Boole).
Today, the whole idea may seem very simple, but at that time the expression
of these relations in the logic of classes uncovered centuries of forgotten logical
work.

Maybe for those same reasons, and maybe mainly for them, more or less
20 years later Peirce will say: “De Morgan was one of the best logicians that
ever lived and unquestionably the father of the logic of relatives” . And it
is true, De Morgan gets to the conclusion that certain valid and very simple
inferences could not be expressed with syllogisms by reflecting on Aristotle’s
logic, mainly on the difficulties raised by the use of the verb “to be” as the
copula. In short, De Morgan identified at least three senses of the copula that
are not clearly separated in syllogistic. First, convertibility, that is, “A is B”
and “B is A” must have the same meaning, that is, they must be either both
true or both false. Second, transitivity, that is, “the connexion is, existing
between one term and each of two others, must therefore exist between those
two others”, such that “A is B” and “A is C” must imply “B is C”. And third,
contrariety (considered as a synonym for contradiction), that is, “is and is
not are contradictory alternatives, one must, both cannot, be true” [1850, p.
103ff]. He indeed claims that syllogistic is but one instance of the “composi-
tion of relations” [1850, p. 109ff.; 1860, p. 331], meaning that affirmation or

26A is the class of individuals of the universe of discourse that are not in A. A set-theoretic
notation has also been used to express De Morgan’s laws: A ∪B = A∩B and A ∩B = A∪B.
For the spicular notation, see F. Cajori 1993, §677.
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denial are only special cases of identity between subject and predicate, other
relations being possible. De Morgan’s interest, then, is to show how identity
can be transformed by conversion or transitivity. In his words, “a relation
is convertible (though it should rather be said that the subject and predicate
are convertible) when it is its own converse”, that is, when it is symmetrical,
as we say today. And a relation is transitive “when a relative is a relative of
the same kind” [1860, p. 345-346]. For instance, respectively: “If a man is
an animal, then the head of a man is the head of an animal”; and, “if 12 is a
multiple of 3, then 3 is a divisor of 12”. This latter instance shows that to some
relation its converse can be associated: here, “to be a divisor of” and “to be a
multiple of”. Or still: “If John is Mary’s brother and Mary is Peter’s mother,
then John is Peter’s uncle”. Although De Morgan’s findings are not totally
new, his conclusions are nevertheless not usual: from the relation between the
terms “brother” and “mother”, we get “mother’s brother”, that is, “uncle”. In
other words, the relations can be composed so we get the relative product of
the related terms. Once this kind of relation is introduced, innumerable other
forms of inference can be made. The instances below show De Morgan’s sym-
bolism used to express the kind of relations just mentioned. Uppercase letters
X and Y represent definite singular terms, L is for any relation whatsoever,
two sequential dots one after the other is for affirmation, a single dot is for
negation [1860, p. 336]:

• X..LY means X is a L of Y ;

• X.LY means X is not some L of Y (negation);

• X..lY means X is a not-L of Y (contrariety, or contradiction ).

• Y..L−1X means Y is a L-converse of X (conversion, or symmetry).

In this way, the formulas above could correspond in the universe of natural
integers that are different from 1 – with L meaning “being a multiple of” – to
the following propositions:

• “12 is a multiple of 3”.

• “5 is not the multiple of any number”.

• “5 is not a multiple of 2”.

• “3 is a divisor of 12”.

Notwithstanding its small expressiveness, the treatment of syllogisms was
elevated to a superior level by De Morgan’s highly idiosyncratic system of sym-
bolization. And, most importantly, with the help of this system De Morgan



442 C. T. Rodrigues

was able to initiate the logic of relations, expressing different kinds of reasoning
than the known syllogistic ones. He was quite aware of his accomplishments:
“And here the general idea of relation emerges, and for the first time in the
history of knowledge, the notions of relation and relation of relation are sym-
bolised” [1860, p. 358]. With this, he believes we could see more clearly the
differences between “the invented syllogism of the logicians and the natural
syllogism of the external world” [1850, p. 111].

So, maybe De Morgan’s contribution to the history of logic is the one of
an explorer: to open a field of exploration in the study of non-syllogistic forms
of inference, the roads it opened leading far beyond the visible horizon of the
those times. Hobart and Richards (2008, p. 329), make a bold claim: “The
conceptual core of De Morgan’s deep conservatism harbored the belief that
everything we conceive, think, or imagine in the universe of our logic, sensa-
tions, or psychology takes us outside ourselves, into another, parallel universe,
that ‘natural syllogism’ of the outside world”. Maybe the opinion of Charles S.
Peirce [W 2: 449-450] is not totally overcome till today, and the final judgment
of De Morgan’s system is yet to come.

4 The birth of quantification, or Peirce between Boole
and De Morgan

Besides de algebraic context of the 19th century, another important element
to understand C.S. Peirce’s logic and philosophy of logic is his father’s, Ben-
jamin Peirce, definition of mathematics. For B. Peirce, mathematics is a purely
hypothetical activity, the science that draws necessary consequences from hy-
potheses. This is also influenced by the previous liberation of algebra from
arithmetic: if the interpretation of symbols is freed from fixed numerical de-
terminations, algebra itself can be conceived as a sheer deductive-hypothetical
discipline. This is a crucial point for C. S. Peirce, as we will see.

Chemist by original formation (the first Harvard summa cum laude de-
gree), astronomer and geophysicist by profession, philosopher, mathematician
and above all else a passionate logician, Peirce is a polymath of a rare scope.
His most important works on logic can be circumscribed to a short period of
5 years, from 1880 to 1885, roughly corresponding to the only period he was
hired as lecturer at the then recently inaugurated Johns Hopkins University.
However short the period of Peirce’s single academic position, his contributions
to logic and mathematics were nonetheless numerous and variegated. For di-
verse reasons though he was not able to develop all his theoretical projects – in
any areas – to full achievement; besides this fact, a great part of his writings is
practically unedited till today, yet in manuscript form. This situation makes
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it the more difficult to fairly assess the value of his contributions.27

Developing his own logic of relatives, Peirce started from Boole’s system,
trying then to apply it to De Morgan’s logic of relations. Indeed, Peirce’s aim
is to include the logic of relations into the calculus of algebra using his own
system of algebraic signs. As a mathematician, Boole was not concerned with
the development of a specific mathematical notation, so the task of devising
a sound symbolic notation for the logic of relations was taken up by others,
the younger Peirce included. De Morgan’s symbolism may be functional, but
it is very idiosyncratic, besides lacking the expressive power of Boole’s algebra
of logic especially when dealing with binary relations. So, Peirce was indeed
the first to successfully combine the algebraic calculus of logic – as he calls it
– devised by Boole with the logic of relations initiated by De Morgan28.

Peirce himself told De Morgan what an algebraic calculus à la Boole, being
a much more powerful appliance than the spicular notation, could do in logic.
In 1870, 31 years old Charles Peirce visited the then 65 years old De Morgan
in London, one year before his death in 1871. Carrying a letter from his
father Benjamin to introduce him, the younger Peirce hand-delivered to the
old English logician a copy of his paper “Description of a notation for the logic
of relatives, resulting from an amplification of Boole’s calculus of logic”, which
is the culmination of his early developments in algebraic logic.29

Now, Peirce departs both from Boole’s and De Morgan’s systems in his
long and difficult article from 1870, adopting there a meta-theoretical approach
clearly stated in the very beginning:

I think there can be no doubt that a calculus, or art of drawing
inferences, based upon the notation I am to describe, would be

27It is a hard task even to edit Peirce’s writings. For an introduction to the matter, see
N. Houser 1992. The article was written when the author was still working at the Peirce
Edition Project (PEP), whose main aim was to publish 30 volumes, called Peirce’s Chrono-
logical Writings. Till the day only 7 volumes were published (1-6 and 8). For a more recent
assessment on the same history and newer difficulties and challenges, see the PEP ’s cur-
rent editor-in-chief A. De Tienne’s 2014 paper. The PEP website is also very informative:
http://peirce.iupui.edu/index.html (access July 20th, 2017).

28It is indeed a question to ascertain if Peirce developed his logic of relatives before and
independently from De Morgan or not. E. Michael 1974 shows that Peirce’s own recollections
on when he came to know of De Morgan’s work are not reliable, and also that Peirce got inter-
ested in the logical study of relations via the distinction between equiparant and disquiparant
propositions. For D. Merrill 1990, p. 46, De Morgan is “the father of the logic of relations”,
and exerted but a minimal influence over Peirce’s own development of the subject [Merrill,
1978]. Be it as it may, it seems sure to say that Peirce’s conjunction of algebraic calculus and
relational logic is his original contribution. For more on this, see I. Grattan-Guinness 1997b,
A. Walsh 1999, R. Dipert 2004.

29I. Grattan-Guinness 1997b gives a vivid description of the meeting. The transcription of
the letter is taken from http://www.unav.es/gep/BPeirce17.06.70En.html, which is slightly
different from Grattan-Guinness’s. Access date 16/08/2016.



444 C. T. Rodrigues

perfectly possible and even practically useful in some difficult cases,
and particularly in the investigation of logic. [W 2: 360].

To Professor Augustus De Morgan
etc – etc – etc –
U. S. Coast Survey Office
Washington 17/6/1870
My Dear Sir -
I presume upon the unseen brotherhood of
science to introduce to you my son Charles
S. Peirce Esq. who is a devoted student
of Logic and I think that he has original
thoughts which you may regard as deserv-
ing your consideration. He carries with
him a memoir which he has written upon
one of the subjects of your own learned
investigations and also one which his fa-
ther has written upon Linear Algebra and
which was not printed without a careful
perusal of this [?] and [of a] previous
treatise upon the same subject, which was
printed by yourself in the Memoirs of the
Cambridge Philosophical Society. My son
is now my private and confidential aid in
my most important investigations in the
U. S. Coast Survey, and I sincerely com-
mend him to your favorable notice

Very respectfully
and with great admiration

Yours truly

Benjamin Peirce
Superintendent U. S.
Coast Survey

Figure 6: Letter by Benjamin Peirce to introduce his son Charles S. Peirce to
Augustus De Morgan.
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Although he regretfully confesses he is not able to perform this task, yet he
thinks he has laid the ground for it. And let my reader allow me to stress he
says “investigation of logic”, in support of the claim for the meta-theoretical
approach. Peirce even introduces different letters for different logical terms, in
order to make it clear that he understands his system is functional to repre-
senting classes.30 This will be clarified further on.

In what follows, I will first deal with Peirce’s own way of generalizing the
copula, in connection with his criticisms to Boole’s system. Only then I will
deal with his theory of quantifiers – a term he seems to have invented – as
connected to his criticisms to De Morgan’s logic.

4.1 Peirce contra Boole, or illation as fundamental

Notwithstanding claiming a place for himself in the Boolean tradition of the
algebra of logic, Peirce assumes a critical perspective about Boole, trying to
combine the Boolean calculus with the logic of relations. Already in 1867, in
a paper called “On an improvement on Boole’s calculus of logic”, Peirce de-
clares: “[Boole’s calculus of logic] consists, essentially, in a system of signs to
denote the logical relations of classes” [W 2: 12]. He then criticizes Boole for
the insufficiencies of his calculus. We will soon see more specifically what is
the issue, but, in general, for Peirce Boole had excessively subjected logic to
mathematics. So, Peirce tried to devise a system of signs of his own by improv-
ing Boole’s notation, in order to clearly distinguish logical from mathematical
operations.31 For Peirce, logical and mathematical operations are distinct:
mathematics is for him a sort of pre-logical science; its arguments are evident
in such a way that it does not have any need to seek help in logic. Besides,
Peirce thinks of the calculus of classes only as an instrument for deduction, to
be integrated into or even sometimes identified with semiotics, the quasi -formal
and necessary doctrine of all signs. Peirce’s philosophy of logic and its relation
to mathematics will reappear in the end of this paper. First, let us see how
Peirce developed his own logic.

Peirce identified a serious problem in Boole’s algebraic calculus of logic: the
subjection of logic to algebra increases the quantity of equations, of equalities.
A conditio sine qua non for equality is the existence of two relations: two
quantities are equal whenever one is less than the other and vice-versa. But in
logic the same does not hold: inclusion between classes is previous to identity,

30I basically follow A. Walsh 1999 in this understanding. She clearly shows that Peirce
does not confuse relative terms with relations, but this confusion is due to his use of absolute
terms and relative terms interchangeably.

31Let us also note that Peirce’s modifications already at that time meet the criticisms
made by Frege to Boole’s calculus. See H. Putnam 1982; H. Sluga 1987; N. Houser 1994; V.
Peckhaus 1999; I. Anellis 2012.
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and, in a deeper manner, implication is previous to both. This is why Peirce
finds it necessary to use a specific sign for the fundamental subsumptive logical
operation. Then, replacing the identity sign “=” Boole employed by the sign
“≺”, Peirce states it stands for illation, which is explained by an example of
inclusion as follows:

I use the sign ≺ in place of 5. My reasons for not liking the
latter sign are that it cannot be written rapidly enough, and that it
seems to represent the relation it expresses as being compounded of
two others which in reality are complications of this. [. . . ] Now all
equality is inclusion in, but the converse is not true; hence inclusion
in is a wider concept than equality, and therefore logically a simpler
one [W 2: 360 n. 1, 1870].

Peirce then goes to prove that being as small as, being equal to, being less
than, and being greater than all can be defined by means of transitivity and
inconvertibility, in his vocabulary, or asymmetry, in today’s vocabulary.32 For
instance, to say that x = y is to say that x ⊃ y and y ⊃ x. Thus the sign “=” is
clearly unable to express class inclusion, since it does not express which is more
or less, if x or y. In another case, to say that x < y is to say that x ⊃ y is true
and that y ⊃ x is false. This reveals Peirce’s Philonian understanding of the
illative relation, which, by the way, is just as nowadays material implication is
conceived. In 1896, Peirce elucidates the point in the following manner:

Now it is to be observed that the illative relation is not simply
convertible; that is to say, that “from A necessarily follows B” does
not necessarily imply that “from B necessarily follows A.” [. . . ]
Consequently, the copula of inclusion, which is but the ergo freed
from the accident of asserting the truth of its antecedent, is equally
inconvertible. For though “men include only mortals,” it does not
follow that “mortals include only men,” but, on the contrary, what
follows is “mortals include all men” [CP 3.474].

Peirce holds this Philonian understanding since very early [W 2: 295, 1869;
W 2: 349, 1869-1870]. Worth noticing, also the idea of a “leading principle”
of any logical argument is defined by Peirce in the same general spirit: the
leading principle is a rule of inference warranting transitivity from the truth
of the premises to the truth of the conclusion [W 2: 295, 1869; see also W 4:

32Today’s vocabulary comes from Ernst Schroeder. But Schroeder’s preference to use
“symmetry” rather than “convertibility” did not pass uncriticized by Peirce, who, following
principles of his ethics of terminology, blamed Schroeder of disregarding previous work by
elder logicians (presumably his own), and also of confounding convertibility with commuta-
tivity. See CP 3.474, n. 1, 1896; see also Houser 1991.
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165, 1880].33 Thereby, the more abstract or, better said, the more general a
logical relation, the simpler it is: because implication is not convertible, it is
a simpler relation, being thus more general than inclusion, which in its turn is
simpler and more general than equality [W 2: 360, 1870].

In 1870, Peirce does not seem to think it necessary to go much further
to prove this idea. But even if he does not prove it, what he means and the
importance of it is not difficult thing to grasp. To understand this, let us
notice that from a = b one can infer that aRb and also that bRa, but that is
valid only for classes with equal quantities, not for anything else. Any other
possible relation R could signify cannot be inferred from a = b. Now, by
identifying the copula with illation, Peirce understands propositions as forms
of inferences. Indeed, propositions of identity, e.g., “A is B”, can be interpreted
as a sort of reasoning, say, any A is B and any B is A [W 2: 60, 1867]. This
understanding goes along with one of Peirce’s most strong positions in logic,
namely, that there is no logical difference between categorical and hypothetical
propositions [W 1: 337, 1866; W 2: 174, 1868; W 2: 208, 1868; W 2: 257, 1869;
W 5: 169-170, 1885]. The demonstration that conditionals are basic forms of
more developed inferences becomes equivalent to the demonstration that all
propositions are in fact rudimentary forms of inference, so that even terms can
be so considered.34 Indeed, this is the crucial point of Peirce’s criticism to
Boole’s calculus: “That which first led me to seek for the present extension
of Boole’s logical notation was the consideration that as he left his algebra,
neither hypothetical propositions nor particular propositions could be properly
expressed” [W 2: 421, 1870]. This will be a point to return soon.35

Now, all this shows that the sign “≺” is understood by Peirce as a sort
of “subsumption operator”, according to Dipert:36 it subsumes the logical

33Two other things are also worth noticing. First, implication can be either material or
formal, which distinction Peirce understands as such: a formal consequence states a fact only
about the relation between the expressions; a material consequence states a fact about the
relation of the very “matters in question”, and not merely about their expressions [W 2:
348-349, 1869/1870]. Second, Frege and Russell also did understand implication in Philonian
terms, as well known. But Peirce seems to be more influenced by the medieval treatment
of conditionals as expressing inferential relations. His use of consequence-vocabulary is not
the only indication of such an understanding, as I hope my argumentation shows. See J.
Boler 1963, p. 70-71: “consequence [for Peirce] is the prototype of argument”. For a history
of implication emphasizing Frege’s propositional understanding, but acknowledging Peirce’s
pioneering efforts, see J.  Lukasiewicz 1934.

34As claimed by P. Castrillo Criado 1988, p. 19. Peirce gives the proof in W 2: 423-424,
1870.

35To particular propositions, that is. Dealing with Peirce’s understanding of hypothetical
propositions would lead me too far beyond the scope of this article. Suffice it to say that
Peirce was well aware of the paradoxes of implication, as the 20th century nomenclature says.
See W 5: 169-170, 1885. For an account, see J. Zeman 1997.

36R. Dipert 2004, p. 288. See also F. Cajori 1993, §§678-683 for a bit of context.
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relations of conditional (→), inclusion (⊆) and logical consequence (�) under
a single logical notion. This shows Peirce’s interest in using an abstracter
calculus for both “propositional logic, the logic of classes, or a metalogical
theory of logical consequence”.37 All logical relations can be defined solely
upon the formal characters of this fundamental relation.

According to Merrill, although the substitution of illation for identity “may
have been primarily dictated by formal considerations, it was an important step
on the road to a less algebraic approach to the logic of classes”.38 This subject
marks a constant in Peirce’s refusal to consider logic as a lingua characterica.
This is a point never abandoned indeed. Take, for instance, this very clarifying
remark from 1880:

Logic supposes inferences not only to be drawn, but also to be
subjected to criticism; and therefore we not only require the form
P∴C to express an argument, but also a form, Pi ≺ Ci, to express
the truth of its leading principle. Here Pi denotes any one of the
class of premises, and Ci the corresponding conclusion. The symbol
≺ is the copula, and signifies primarily that every state of things
in which a proposition of the class Pi is true is a state of things in
which the corresponding propositions of the class Ci are true [W 4:
166, 1880].

Then, even tough Boole’s influence was in 1870 still very strong, an impor-
tant difference was marked and one can say it was never subsequently aban-
doned. Such a departure may also be considered an influence of De Morgan’s
Formal Logic, actually quoted in 1870 in this very context [W 2: 367]. But
it is also true that the generalization of the copula already concerned Peirce
since at least 1867 [W 2: 68-69].39

Peirce’s studies on implication led him to discover central elements for
contemporary logic. The most famous of those discoveries was quantification
theory. Now, the specific point Peirce identifies as a failure in Boole’s calculus
is the v operator, already discussed in section 2 [W 2: 21, 1867]. The 1870
article is at the same time the culmination of his early attempts to surpass
Boole’s inadequacies as well as the starting point for the subsequent develop-

37R. Dipert 1981, p. 580.
38D. D. Merrill, “The 1870 logic of relatives memoir”, included as part of the introduction

to Peirce’s W 2: xlii.
39It is not certain if he had any knowledge of De Morgan’s writings at that time. See

references in note 28 above. Also A. J. Iliff 1997, p. 201 shows that Peirce’s expertise in
algebra was decisive for his logical development, his theory of quantification being much more
than a simple generalization of Boole’s algebra of logic. Peirce’s mathematical background is
also emphasized in M. Murphey 1961.
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ment of quantifiers.40 With this, we also find Peirce reservations concerning
De Morgan’s approach to the logic of relations.

4.2 Peirce contra De Morgan, or quantification as operational

Working with dual relations, even if the generalization of the copula makes this
restriction unnecessary, De Morgan defined the notion of a relative product,
which is just a compound relation: brother + father = uncle, for instance.
Now, Peirce devised a way to deal with n-adic expressions – for three or a
n number of terms. In fact, more than recognizing there is no need to work
within the limits De Morgan restricted himself, Peirce goes further and declares
one of his most famous thesis, namely, that all relations of degree higher than
three can be constructed out of and are reducible to a triadic relation. This
point will reappear in the presentation of his relative terms.41

Maybe the most important point is Peirce’s concern with the composition
of relations with classes, and not the strictly relational composition, that is,
the composition of a relation with another. For instance, while De Morgan
analyzes expressions like “X is a lover of a servant of Y”, Peirce prefers to
work with expressions like “lover of every woman”, or yet “lover of a servant of
a woman”, thereby combining both kinds of composition, thus making quan-
tifications explicit.42 The 1870 article presents several ways of dealing with
quantified expressions, but does not have specific signs for the existential and
universal quantifiers. The introduction of relational expressions with gaps for
the insertion of variables, from one to three gaps, or more, allows for that.
These relational expressions are what Peirce calls “logical terms”, and this is
why he prefers to say logic of relatives than logic of relations. Logical relative
terms can then be classified in three kinds:

1. “Absolute terms” are one-gaped terms, like “a ”: “They regard an
object as it is in itself as such (quale); for example, as horse, tree, or
man.” Absolute terms are, then, like single functional terms, possible
expressions of individuals. Absolute terms are symbolized in his calculus
by letters of the Roman alphabet, a, b, c etc.

2. “Simple relative terms” are also one-gaped terms, but they do not refer
to a single object, rather expressing dual relations, like “father of ”
or “lover of ”: “They regard an object as over against another, that

40J.  Lukasiewicz 1930, p. 147, attributes the use of the word “quantifier” to Peirce for the
first time in the history of logic.

41This point is also impossible of deep development here. See J. Brunning 1997.
42This can be interpreted as another sign of Boole’s influence, of course. Cf. D. Merrill,

op. cit., W 2: xliv.
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is as relative”. Later on, Peirce will say that, if this kind of term includes
the copula, it is called in his semiotic vocabulary a rhema, that is, a
term “somewhat closely analogous to a chemical atom or radicle with
unsaturated bonds. A relative rhema is like a multivalent radicle” [CP
3.421, 1892]. The reason he gives for this is that the relation between
two things as exclusively expressed by a specific verb can only make
sense in certain idioms, so that it is not a logical relation proper, but a
grammatical one [EP 2: 308-310, c. 1904]. Relative terms are symbolized
in 1870 by italicized letters, a, b, c etc.

3. “Conjugative terms” are at least two-gaped terms, and their distinctive
character is that “they regard an object as medium or third between two
others, that is, as conjugative”. For instance, “giver of to ”,
or “buyer of to from ” [W 2: 365, all quotes above].
Peirce specifies a typeface called Madisonian for these terms: a, b, c etc.

Later on, he identified conjugative terms with predicates themselves. Pred-
icates and rhemas are nothing but “blank forms of propositions” [EP 2: 221;
299, 1903;427, 1907]. Because they are mere forms, they are iconic, according
to Peirce’s semiotic vocabulary, and especially fit for representing relations [EP
2: 20-21, 1895]. A further denomination clarifies an important point:

Copulants, which neither describe nor denote their Objects, but
merely express universally the logical sequence of these latter upon
something otherwise referred to. Such, among linguistic signs, as
“If then ”, “ is ”, “ causes ”,
“ would be ” , “ is relative to for ”
, “Whatever”, etc. [EP 2: 484, 1908].

The quote clearly shows Peirce’s understanding that the blank forms are
schematic patterns for various other possible formulas. This is the basics for
Peirce’s syntax: unsaturated gaps in logical terms are places to introduce de-
ictics that function as individual variables, that is, individual letters or even
other terms to denote the subject within a specific universe of discourse, or, as
Peirce said in 1870, individuals of a certain class “about which alone the whole
discourse is understood to run” [W 2: 366]. In Peirce’s semiotic jargon, such a
deictic, or denotative sign, works like an index.43 Also notice Peirce prefers—at

43Kneale and Kneale praise Peirce for this clarifying way to relate the new logic of relations
to the old syllogistic terminology. Kneale and Kneale 1971, p. 432. Peirce’s semiotic jargon
is not really consistent and underwent several changes as Peirce searched for the best possible
words for his conceptualizations. The crucial concepts themselves, however, did not change
but for details. For instance, in a letter to Lady Victoria Welby dated from Christmas 1908, he
uses designative, denotative, indicative, and denominative as synonyms for index. Predicates
and rhemas as synonyms for copulants is just another example.
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least in 1870—expressions like “lover of ”, or “giver to of ”
, rather than “ loves ” or “ gives to ”, which
are expressions with verbs, more common today. So, Peirce is not dismissing
the traditional interpretation of propositions as subject-predicate structures,
he is just inventing another way of interpreting this structure, not restricted
to the predication of only one subject. Peirce’s preferred way of explaining a
proposition as a blank-predicate-form, from which the subject-indexical-terms
were dropped of, reveals his adherence to the tradition, even after his semiotic
conceptions were more developed [EP 2: 172-173, 1903].

So, in 1870 Peirce develops a logic fully functional to represent both the
class operations of Boole and the relational operations of De Morgan. Peirce
claims conjugative terms “consider an object as a means or a third between two
others” [1870: 365]. Although in the 1870 paper the way to use these kind of
expressions is not yet fully worked out, this represents a clear advancement, if
compared both to De Morgan’s expressions with only two gaps and to Boole’s
way of representing quantified expressions.

Now, at that time Peirce did not yet have specific signs for quantifiers
themselves. And he also does not present any full-fledged theory of multiple
quantification. The paper in question only presents ways to work with monadic
quantification, that is, single quantification for relative terms within the limits
of Boolean algebra of logic. As an instance of existential quantification44, let us
see the particularly important operation of multiplication, which is how Peirce
combines relations by means of their relative product.

Multiplication is defined as “the application of a relation” [W 2: 369]. Let
s be used for “servant of”, and l for “lover of” (they are simple relative terms,
then); m stands for “men”, just as “w” for “women” (absolute terms, then,
denoting classes, if we follow Peirce’s vocabulary). So, lw means whatever is a
lover of a woman. From this,

s(m +,w)

means whatever is servant of anything of the class composed of men and
women together. So that:

s(m +,w) = sm +, sw.

Next, (l +, s)w is used for whatever is lover or servant to a woman, so that

(l +, s)w = lw +, sw.

44I take the following from Merrill in W 2. See also A. J. Iliff 1997, p. 200, quoting
exactly the multiplication technique. But see J.-Y Béziau 2012 for the idea that Peirce did
not develop a sufficiently abstract mathematical conception of truth-values.
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And then:

(sl)w will denote whatever stands to a woman in the relation of
servant of a lover,
and

(sl)w = s(lw) [W 2: 370].

This shows the operation of multiplication in Peirce’s algebra is associa-
tive.45 Indeed, lw is the product of a simple relative and an absolute term,
being itself an absolute term, that is, it can denote a class, so that what we
have here is a relative product of a relation and a class: a given individual i can
be a member of the class lw iff i loves some woman w [W 2: 369-370]. Peirce
further explains that adding a comma after the term extends the arity of the
term, so that l, sw means a lover of a woman that besides that is a servant of
that woman. Accordingly, an absolute term such as “man” can be transformed
into a relative, so that “m,∞” means some man, since the infinity symbol is
interpreted in the sense of indetermination [W 2: 374].

Peirce understands multiplication in a way that it implicitly contains ex-
istential quantification, that is, quantified expressions are the result of a rela-
tional operation. For instance, let 1 denote any individual of a possible class,
so that 1∞ means “something” and 10 means “anything”. Thence, l1,m∞
can be interpreted as something that is a lover of some man. This is indeed
the relative product of the simple relative term “lover of ” and the abso-
lute term “something”. Peirce introduces universal quantification as a relation
of involution, which is De Morgan’s preferred word for exponentiation. The
operation is defined as follows:

I shall take involution in such a sense that xy will denote everything
which is an x for every individual of y. Thus lw will be a lover of
every woman. Then (sl)w will denote whatever stands to every
woman in the relation of servant of every lover of hers; and s(lw)

will denote whatever is a servant of everything that is lover of a
woman. So that

(sl)w = s(lw) [W 2: 377].46

So, there is always some term in the formulas working as a quantifier, but
there are no specific signs for the quantifiers themselves.

45Distributive of addition on both sides, as the formulas show, and non-commutative. See
G. Brady 2000, p. 30 for B. Peirce’s influence over C. S. Peirce on this point.

46G. Brady 2000, p. 40-41 provides a proof of Peirce’s claim that (sl)w = s(lw).
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Peirce was totally aware of the insufficiency of dealing with quantification
in this manner. One of his remarks is truly interesting in this respect:

As for particular propositions, Boole could not accurately express
them at all. He did undertake to express them, and wrote

Some Y’s are X’s: v, y = v, x
Some Y’s are not X’s: v, y = v, (1− x).

The letter v is here used, says Boole, for an “indefinite class sym-
bol.” This betrays a radical misapprehension of the nature of a
particular proposition. To say that some Y’s are X’s, is not the
same as saying that a logical species of Y’s are X’s. For the logical
species need not be the name of anything existing. It is only a
certain description of things fully expressed by a mere definition,
and it is a question of fact whether such a thing really exist or
not. St. Anselm wished to infer existence from a definition, but
that argument has long been exploded. If, then, v is a mere logical
species in general, there is not necessarily any such thing, and the
equation means nothing. If it is to be a logical species, then, it
is necessary to suppose in addition that it exists, and further that
some v is y. In short, it is necessary to assume concerning it the
truth of a proposition, which, being itself particular, presents the
original difficulty in regard to its symbolical expression [W 2: 422,
1870. The commas in the formulas are Peirce’s].

Now, what Peirce means is that, in Boole’s notation, from v, y = v, (1− x)
one could infer that v, x = v, (1 − y), that is, some X’s (that) are not Y’s,
which is not a valid inference (remember that illation is inconvertible). This is
a remarkable observation indeed, for it implies that the search for an adequate
way for dealing with quantified expressions led to the logic of relatives, and
not that the logic of relatives led to quantification. Tackling the problem of
existential import, Peirce claims that Boole’s system cannot properly express
neither hypothetical nor particular propositions. We saw how Peirce dealt
with both. In fact, Peirce’s claim, here, is just that existential quantification is
needed to express Boole’s algebra in relative terms. In other words, to properly
express hypothetical and particular propositions, an existential condition is
needed: a relative term for case of the existence of ; or for what exists
only if there is not ; or else case of the non-existence of ; or still
what exists only if there is not [W 2: 423]. These relatives are required
to properly symbolize monadic relative terms, or absolute terms, and allowed
Peirce to avoid negating an equation to represent particular propositions, as did



454 C. T. Rodrigues

Boole, using equations instead. The operation depends on Peirce’s involution,
and the crucial passage is the following:

Particular propositions are expressed by the consideration that they
are contradictory of universal propositions. Thus, as h,(1 — b) = 0
means every horse is black, so Oh,(1 — b) = 0 means that some
horse is not black; and as h,b = 0 means that no horse is black,
so Oh,b = 0 means that some horse is black. We may also write
the particular affirmative 1(h,b) = 1, and the particular negative
1(h,nb) = 1 [W 2: 424].47

So, superscripts are used to indicate universal quantification. But, again,
there is no specific sign for a universal quantifier. Peirce will take a bit longer
to separate quantifiers both from Boolean relatives and from predicates, thus
completely overcoming Boole’s notational difficulties. The introduction of spe-
cific signs for the universal and existential quantifiers48 happened only in 1883.
In this year, Peirce organized a volume with contributions from his students at
Johns Hopkins and two others of his own, wherein the treatment of quantifiers
was developed from his student O. H. Mitchell’s contribution to the volume.49

The very first time Peirce uses a specific notation for the universal and the
existential quantifiers is in a letter to Mitchell, indeed. The letter is dated
from December 21, 1882, and there it reads:

The notation of the logic of relatives can be somewhat simplified by
spreading the formulae over two dimensions. For instance suppose
we write

47See D. Merrill 1997, p. 164. Merrill says this idea points to the opposite the direction in
the history of logic, maybe thinking of the usual narrative of it, dominant in the 20th century,
as stemming almost exclusively from the arithmetical work of Frege.

48For a more thorough analysis of the path trodden by Peirce, from the logic of relatives to
quantification theory, see: D. Merrill 1997; J. v. Evra 1997; G. Brady 2000. For the historical
place of Peirce’s theory of quantification, see D. Bonevac 2012.

49The volume was entitled, Studies on logic by the members of the Johns Hopkins Uni-
versity. Peirce’s contributions were in fact two final “notes” to the book: “Note A” deals
with syllogisms and statistics, without special mention to quantifiers; “Note B” elaborates
quantification theory from Mitchell’s work. Mitchell introduces subscripts as the universal
and existential quantifiers, respectively 1 and u, but does not have a concept of well formed
formula, therefore neither of bound or free occurrences of variables. For a more detailed
comparison of Peirce’s and Mitchell’s treatments of quantifiers, see G. Brady 2000, chapter
4; A. Walsh 1999, chapter 5.
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to express the proposition that something is at once benefactor and
lover of something. That is,

∑
x

∑
y bxylxy > 0.

[. . . ] In the same way

will mean that everything is a lover of itself∏
x lxx > o. [W 4: 394; 396].

Apart the graphical representation, which is a subject by itself, Peirce’s
linear notation is very original, with a strength none of his predecessors was
able to develop. As a first distinctive feature, notice the use of juxtaposed
subscript letters to the side of the operative sign. These subscripts function
as specific deictic signs for indicating the specific items within the universe of
discourse should. They are indeed indexes, or signs functioning like “a pointing
finger” [W 5: 163, 1885]. In this 1883 article, tough without this name, the
subscripts reappear and serve to indicate which terms are linked by a certain
relation and in which specific order, solving a preoccupation of Peirce since at
least 1870 [W 2: 370; W ]. For instance, if l denotes the relation of loving, then
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lij signifies “i loves j”, with “i” and “j” as indexes for whatever individuals
are in this love relation. Indeed, indexes function here as what now would be
considered individual variables.

This much simple symbolism allows for the easy expression of some situ-
ations: first, the reflexivity of a relation, in which case lii represents “i loves
it/her/him-self”. Second, the symbolization of convertibility, in which case we
have the following:

lij = lji : “j is loved by i”.

And finally, the symbolism allows for the visualization of binary or higher-
level relations or predicates, as for instance (Peirce’s favorite example of a
relation):

gijk : “i gives j to k” .

But how to symbolize propositions like “Everybody loves Chaplin”; or:
“Everyone loves someone”? To deal with propositions like these, Peirce intro-
duces Greek letters

∏
– for product – and

∑
– for sum – to designate the

universal quantifier and the existential quantifier respectively. In the letter to
Mitchell, Peirce still retains the Boolean algebraic inequality: “> 0” clearly in-
dicates the universe is not empty, and “< 0” presumptively would indicate just
the opposite, that is, that there is nothing the given property can be predicated
upon. In 1883, the inequality sign and 0 were for the most part abandoned,
but Peirce still retained a Boolean numerical coefficient (l)ij , indicating the
existence of the relative term l,, so that the value of (l)ij “is 1 in case I is
a lover of J , and 0 in the opposite case” [W 4: 454; in 464 the inequalities
reappear, but only as a sort of explanation]. As the reader might be already
guessing, the universal quantifier is defined with the help of conjunction, or
logical product, and the second with the help of weak disjunction, or logical
sum. For instance, if x denotes whatever property:

1. Be
∏

i xi = xsxpxcxmxy . . . , etc.
∏

i xi means x is a property of all the
individuals denoted by i. For instance, “All men are mortals” means that
Socrates, and Pelé, and Chaplin, and me, and you. . . . are all mortals.

2. Be
∑

i xi = xs + xg + xc + xy . . . , etc.
∑

i xi means x is a property of at
least one of the individuals denoted by i. For instance, “Some men are
philosophers” means that Socrates, or Gramsci, or Chaplin, or you, . . .
are philosophers. [W 5: 180, 1885].

The propositions “Everybody loves Chaplin” and “Everyone loves someone”
can then be respectively expressed as follows:

∏
i liC (C as an index for the
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individual Chaplin) and
∏

i

∑
j lij (j for jemand, German for someone). So, the

coefficient and the signs for quantifiers are enough to represent all propositions
of traditional logic. In fact, much more.

A noteworthy observation is made in the famous paper from 1885, “On the
algebra of logic: A contribution to the philosophy of notation”. There, Peirce
remarks, the symbols

∏
and

∑
were chosen to make the notation as iconic

as possible. And the quantifiers are defined in terms of potentially infinite
conjunctions and disjunctions, with the care not to straightforwardly identify
them with sum and product, since “the individuals of the universe may be
innumerable” [W 5: 180]. Peirce’s symbolism, then, is very useful, for it allows
for the representation of very complex quantified relations, elevating the logic
of relations to a much superior level. Only one of his examples is enough to
show its power:

Let us express this: one or other of two theories must be admitted,
1st, that no man is at any time unselfish or free, and some men
are always hypocritical, and at every time some men are friendly
to men to whom they are at other times inimical, or 2 , at each
moment all men are alike either angels or fiends. Let

uij mean the man i is unselfish at the time j,
fij ” ” ” free ” ”,
hij ” ” ” hypocritical ” ”,
aij ” ” ” an angel ” ”,
dij ” ” ” a fiend ” ”,
pijk ” ” ” friendly ” ”,
to the man k,
eijk the man i is an enemy at the time j to the man k,
1jm the two objects j and m are identical.
Then the proposition is

∏
i

∑
h

∏
j

∑
k

∑
l

∑
m

∏
n

∏
p

∏
q(ūij f̄ijhhjpkjlekml1̄jm+apn+dqn).

[W 5: 180].

Worthy of mention is also that although Peirce isolated quantifiers just a
few years after G. Frege, who is known as the inventor of modern quantification
theory as we use it, it was an independent achievement. And notwithstanding
the historical fact of Frege’s precedence, Peirce’s system is a complete system
for first-order predicate calculus. But there are differences, the most manifest
of which is that Peirce wanted to avoid any understanding of his logic as a
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universal language, “like that of Peano”, he says [CP 4.424, c. 1903]. This will
be clarified in the next section.

One can say the invention of modern quantification theory in logic has
multiple origins, and not only one. There’s a whole discussion in the 19th
century about problems emerged from different interpretations of syllogisms.
Without intending to sound too metaphysical, but running the risk of a freer
expression, I hold those problems were part of the mood of the times, part of
the Zeitgeist – not a single problem, several of them. Be it as it is, that neither
Peirce nor Frege knew of each other’s work is nowadays widely accepted.50

Now, it is necessary to say that the Peircean conception of logic is quite
different from the propositional understanding of it that dominated the 20th
century till today. Peirce’s very original – and reasonable, so to say – under-
standing of the discipline stands out in its history. Some of this originality will
be presented in what follows.

4.3 Peirce’s conception of logic: for a quasi-formal activity

Let us from the start remark that Peirce’s conception of logic is not as Frege’s a
linguistic one. For instance, quantification is not conceived in a propositional
way, as in contemporary logic. Of course, there is the understanding that
propositional truth-values are of central concern. But Peirce’s take on the
subject may today be regarded as a more heterodox position, for it emphasizes
properties in predicate logic instead of the possibility of assigning a definite
truth-value to a proposition.51 Nevertheless, this means no fault of Peirce’s
logic if compared to more widespread notions. As soon will be clear, Peircean
quantifiers, for instance, do range over bound variables, but not only that.
Besides working for “first-intentional logic”, or first-order logic as we call it,
Peirce expects his notation also to work for “second-intentional logic”, that

50For a similar point-of-view, see A. Molczanow 2012. The hypotheses of Peirce being
aware of Frege’s work is also plausible, for his student C. Ladd-Franklin quotes Frege in her
bibliography for the article on the algebra of logic published in the volume Peirce edited
in 1882 while at Johns Hopkins. And Frege also might have had knowledge of Peirce by
Schroeder’s review of the Begriffsschrift published in the Zeitschrift für Mathematik und
Logik in 1880. But it seems that neither of them had the interest to check out the references.
See Appendix A for Ladd-Franklin’s bibliography. The most interesting approach to the
subject still seems to be the one by I. Anellis 2012. Anellis seeks to show how Peirce’s logic
satisfies all the criteria commonly assigned to—and are considered to be originally defined
by—Frege’s works, and, in my opinion, he does this successfully. For the link with Peirce’s
wider conception of logic as a normative science and as semiotic inquiry, see Tiercelin 1991.

51This can be evidenced from his treatment of the law of excluded middle and the law
of contradiction. It is impossible to deal with this here, but see R. Lane 1997 and 2001;
C. T. Rodrigues 2016. Peirce’s approach can arguably be seen as harmonious with more
contemporary work in fuzzy logic. On this, see S. Haack 1996, p. 109ff for a critical view of
Peirce’s logic of vagueness.



Squaring the unknown 459

is, a second-order logic [W 2: 56, 1867; W 5: 185, 1885]. The point is that
he understands his own work in model-theoretic terms: one thing is to make
inferences, but we are also capable of interpreting the inferences we make in
more than a few ways.52 Some qualifications are needed in order to properly
understand this point.

Peirce’s adherence to the algebraic tradition informs his approach to logic
from a whole-part perspective rather than the set-theoretical and axiomatic
approach that became dominant in the 20th century. It is not my intention
to pursue this point much deeper, but it is important at least to stress that
neither Boole, nor De Morgan, and not even Peirce were much concerned with
axiomatization. Particularly for Peirce, this point is clarified when put in
context within the background of his broader conception of logic, which is also
a way of understanding the history of discipline. Logic, then, can emerge as
less formal than might at first blush seem. It is to this conception we now turn.

For Peirce, logic can be conceived both in a strict and in a broader sense.
The strict sense is just formal logic, logic written with a mathematical lan-
guage, which he calls exact logic following Schroeder. But in the general sense,
logic is a normative science, of a higher rank than and not to be confused with
exact logic, because it is truly the general and quasi -necessary doctrine of signs,
which Peirce idiosyncratically calls semeiotic [e.g., CP 2.227, 1897; EP 2: 79,
1901; 198, 1903; 327ff., 1904]. As such, logic cannot be reduced to mathemat-
ics, although being a less general science it uses mathematical principles and
methods in its inquiries, and we have just seen how Peirce uses mathematics to
build his own algebraic notation. This of course is not a näıf anti-logicism, but
a completely original conception of the aims and purposes of different scientific
activities.

In Rodrigues (2007) I have provided a deeper presentation of Peirce’s phi-
losophy of mathematics, showing how it is important for his conception of
philosophy as a science of discovery. Now, suffice it to highlight just the cen-
tral idea in order to clarify how Peirce thinks of the nature of logical inquiry
itself. First, Peirce adopts his father’s Benjamin definition of mathematics as
the science that draws necessary conclusions from purely hypothetical ideal
constructions [CP 4.239, 1902]. This is important, because in contrast to
drawing conclusions—which is the business of deductive logic—mathematics
seeks the most economic—elegant, so to say—way to reach the conclusions.
Mathematics obeys a sort of principle of parsimony: the less steps it takes

52The model-theoretic approach of Peirce’s logic is most famously argued for by J. Hintikka
1997 and I. Grattan-Guinness 1997, who take the nomenclature from J. v. Heijenoort 1967,
but arguing for the universality of the model-theoretical approach, which Heijenoort denied.
But, as said, Peirce may not fit so well within this categorization. See J. Legris 2016, for
instance.
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reach the conclusions, the better. So, the dissection of reasoning in as many
different steps as are required to establish a conclusion is not of a mathemati-
cian’s concern, but a logician’s. While the mathematician sees algebra as just
a calculus, that is, a mechanism for “unravelling a complicated question”, the
logician in turn “demands that the algebra shall analyze a reasoning into its
last elementary steps” [id.].53

Second, mathematics is not just a matter of tracing out necessary conse-
quences, but also of framing hypothesis – it is truly “the study of the substance
of hypotheses, or mental creations, with a view to the drawing of necessary con-
clusions” [NEM 4: 268, On Quantity, c. 1896]. In other words, mathematics
is not defined neither by means of the specificity of its objects, nor by the
nature of its propositions, nor even by the kinds of truths it may exhibit. Hav-
ing nothing to say about any truth of fact, mathematics deals with ideally
constructed hypothesis in the highest level of abstraction, structures that are
truly entia rationis [EP 2: 352]54 . What defines mathematics is the way the
mathematician works with the abstractions, experimenting with them: math-
ematical reasoning is “a transformation of our diagrams that characters of one
diagram may appear in another as things. A familiar example is where in anal-
ysis we treat operations as themselves the subject of operations.” [EP 2: 213,
1903]. The mathematician, then, not only reasons from abstract hypothesis,
he also constructs the hypothesis from which he reasons. The process of math-
ematical reasoning can thus be defined as a double process of construction and
experimentation upon ideal formal structures.55

Given this definition of mathematics, it is possible that even Frege would
not fully disagree with Peirce’s anti-logicism.56 Once the degree of generality
reached by mathematical reasoning is unattainable by any other science, even
logic would be a science under mathematics. But it is also true Peirce never
accepted any form of logicism. About his later system of existential graphs,
he claims: “this system is not intended to serve as a universal language for
mathematicians or other reasoners, like that of Peano” [CP 4.424, 1903]. In-
deed, only if strictly conceived as a deductive science logic can be said to be
under mathematics. In fact, “it is impossible to reason necessarily concerning
anything else than a pure hypothesis” [CP 4.232, 1902]. Logicians then study
the very forms of mathematical reasoning mathematicians themselves use, but
do not necessarily reflect upon [CP 1.417, 1902].

53A. Walsh 1999, pp. 278-279 claims the younger Peirce in fact influenced the elder Peirce
on this respect.

54On this point, see C. Tiercelin 2010.
55In C. T. Rodrigues 2007 Peirce’s distinction between theorematic and corollarial kinds of

deductions is explained, where the reader can find other references on the subject. But see
also D. Campos 2010 for the relation of this distinction with imagination in mathematics.

56I take this suggestion from M. Moore 2010.
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A passage from Peirce deserves to be quoted in full, taken from J. Baldwin’s
1902 Dictionary of Philosophy and Psychology entry on logic:

If symbolic logic be defined as logic – for the present only deductive
logic – treated by means of a special system of symbols, either
devised for the purpose or extended to logical from other uses, it
will be convenient not to confine the symbols used to algebraic
symbols, but to include some graphical symbols as well.

The first requisite to understanding this matter is to recognize the
purpose of a system of logical symbols. That purpose and end is
simply and solely the investigation of the theory of logic, and not at
all the construction of a calculus to aid the drawing of inferences.
These two purposes are incompatible, for the reason that the sys-
tem devised for the investigation of logic should be as analytical as
possible, breaking up inferences into the greatest possible number
of steps, and exhibiting them under the most general categories
possible; while a calculus would aim, on the contrary, to reduce
the number of processes as much as possible, and to specialize the
symbols so as to adapt them to special kinds of inference. It should
be recognized as a defect of a system intended for logical study that
it has two ways of expressing the same fact, or any superfluity of
symbols, although it would not be a serious fault for a calculus to
have two ways of expressing a fact [CP 4.372, 473].

Mathematical logic is in fact the strictly formal logical field of inquiry of
applying mathematics to logic in order to lend exactness to the latter (CP
3.615, 1901). This is Boole’s and De Morgan’s logic, as seen. This is not the
whole of logic, though. The distinctive logical activity is in the study and the
analysis of reasoning, and not in its practice. Peirce also spells this theoretical
point in his famous distinction—taken from his medieval sources—between
logica utens and logica docens [CP 2.182, 1902; EP 2: 188, 1903]57 . The
fundamental difference between the logic of first intentions and the logic of
second intentions resurfaces here in another way: a mathematician reasons,
a logician studies reasoning as an object, or, better said, analyses forms of
reasoning [CP 4.134, 1893]. Then, a logician’s task is also to analytically
reconstruct the argumentative and semantic framework of reasoning itself, and
not only of propositions, for this framework frequently escapes language.58 But

57For the distinction, see A-V. Pietarinen 2005. Bellucci and Pietarinen 2016 also stress
this point for Peirce’s diagrammatic logic.

58Which can indeed be an interesting way of understanding the distinction between saying
and showing, a most prominent topos in Wittgenstein’s Tractatus Logic-Philosophicus, as
widely known.
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we can always compare the way we think with assumed norms of good thinking,
and then to try to change our form of thinking. An idea of logic emerges then
as a kind of experimentation upon reasoning processes—breaking them up
into the greatest possible number of steps, and then comparing them with the
rules of our logica utens—showing Peirce intended his logics mainly in a meta-
theoretic fashion. This is the reason why Hintikka calls Peirce’s approach as
“model-theoretic” in the first place.59

This is crucial for the amplification of logic as semiotic. Indeed, De Mor-
gan’s influence over Peirce can be measured by how logic can be extended to
include not only necessary deductive forms of reasoning, but also induction and
abduction, central as they are for scientific inquiry.60 If logical analysis should
not be taken for a mere calculus, this means the principle of parsimony—or
simplicity, let us say—does not hold here. Rather, logic follows the principle
of complexity—the passage from the complex to the simple is a logician’s task.

5 Conclusion

As rightly remarked by I. Grattan-Guinness, as typical in the 19th century,
Boole, De Morgan and Peirce consider the mathematization of logic useful for
the study of probabilities, not possibilities. Necessity then is thought of as
the other side of probability, and not of possibility, as nowadays we usually
think.61 The theory of probabilities is considered to provide the best analytic
apparatus for studying multiple forms of reasoning. This also throws a light
on how mathematics and logic should be conceived.

Boole was the first to advocate for a closer association of logic with mathe-
matics, thus generalizing the discipline’s scope. He indeed devised a universal
language with algebraic signs capable of expressing the traditional categorical
propositions of Aristotelian syllogistic, but his main interest was in providing
a functional symbolic language for expressing the universal laws of thought.
With this, Boole in fact accomplished to devise a calculus of classes, which is
indeed the first algebraic approach to logic. Valid syllogism forms could now be
obtained dismissing the complicated mnemonics invented by medieval logicians
(Barbara, Celarent, Baroco etc.). Using Boole’s algebra, logical reasonings can
be performed by employing basic mathematical techniques, in a more efficient

59J. Hintikka 1997; see also V. Peckhaus 2004. In fact, Hintikka generalizes the Leibnizian-
inspired position by Heijenoort 1967. But De Morgan also stresses that logic is both an art
and a science, the art being called logica utens. De Morgan 1858, p. 181. For a historical
overview of the algebra of logic tradition, including E. Schroeder’s contributions in dialogue
with Peirce, which are lacking here but I cannot provide now, see N. Houser 1994 and 1991;
V. Peckhaus 2009.

60I have discussed this subject in detail in C. T. Rodrigues 2011.
61I. Grattan-Guinness 1997, p. 35.
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and general way. After Boole, logicians were able to abandon the “catalog of
syllogisms”62 , because being in possession of an exact calculus to establish
necessary conclusions.

But it was De Morgan the first to perceive that logic could not remain
restricted to syllogistic reasonings, and he also trying to devise a logical sym-
bolism without using mathematical signs to express these other forms of rea-
soning. He lays a strong claim about the need of a proper symbolism for logic:
“Every science that has thriven has thriven upon its own symbols; logic, the
only science which is admitted to have made no improvements in century after
century, is the only one which has grown no symbols”[De Morgan 1858, p. 184].
Symbols in logic are useful for they are able to exhibit how we think, that is,
“the form of thought, the law of action of its machinery”[De Morgan, 1858, p.
179]. And this is the reason De Morgan advances for why algebra should be
taken as a “branch” of thought, and not vice-versa: algebra is just the visible
expression of the logical operations of thinking [id.].

If for Boole syllogisms were used as instances to show the functionality of
the calculus, De Morgan took them as the main object and starting point of his
researches. For Boole, it was a matter of devising a calculus based on algebra,
but different from it, as the idempotent law shows. Although agreeing with
Boole that human reasoning could be depicted with algebraic signs and opera-
tions, De Morgan did not want to devise a formal algebraic calculus. Instead,
he was more interested in symbolizing logical relations the traditional syllogis-
tic could not show were valid, in order to make forms of thought that usually
pass “under cover” could be exhibited. This is De Morgan’s main objective for
his spicular notation. Although it is perfectly possible to translate De Mor-
gan’s notation into Boolean algebra, as Peirce showed De Morgan himself, it
was not the latter’s intention to conflate mathematics and logic.

Peirce established a distinction of aims between the two activities of logic
and of mathematics elevating the discussion to another level. As said, accord-
ing to his approach, one thing is to reason, the other is to study reasoning
itself. While the distinction between language as a calculus and language as a
universal medium may be useful to understand Frege’s logicist project, when
applied to Peirce a few more grains of salt are needed to take it. Since his early
criticism to the confusion of logical and psychological processes, Peirce argues
for the thesis that thought is a function of signs, either internal or external.
P. Skagestad calls this the thesis of virtuality of mind63: mind is what acts

62L. Suguitani, P. Viana and I. D’Ottaviano’s expression, in Tarski 2016, p. 15.
63For instance, see P. Skagestad 2004, p. 249. The author claims Peirce advocates a sort

of dispositional conception of thought, such as K. Popper’s, and such as echoing the famous
Sapir-Whorf hypothesis on the nature of language, that is, thinking is a sort of exosomatic
process capable of embodiment in whatever sign vehicles are available.
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like a mind, so that mind can be virtually efficient in or outside the brain. In
fact, it can be found everywhere there are means for expressing thoughts, or
signs, for short. This is an idea Peirce held from his youth. In 1865, the argu-
ment ran like this: logic makes no distinction whatsoever between symbols and
thoughts, for it examines symbols as objects of some possible thought, and not
as actually thought of. The nature of thought is symbolic, and only as such
can thought be an object of logical study [W 1: 166, 1865]. Indeed, logical
forms can be actualized in different ways, in various meaningful processes, ei-
ther in representations of an internal and psychological nature, or embodied in
material signs of an objective, external nature. So, in the one hand, the form
of thought is independent of the sign system used, but, on the other, signs
are virtually interpretable as conveyers of thought, so a sign’s specific material
qualities enable it to function in a specific manner, thus enabling in turn a
specific form of reasoning. All thought could then be logically analyzed and
interpreted independently of its specific manifestation, as a semiotic manifes-
tation of some form of logical reasoning – without need for any psychological
subjective interpreter, since it is a sign functionality that defines a mind64.
With Peirce, the generalization of the syllogistic copula passes to a whole new
level. Logic itself becomes a more general inquiry not restricted to the study of
forms of deduction in symbolic languages, but of thought as a semiotic process
in the world.65

Pursuing Peirce’s comparison of logic with mathematics a little further, a
rigid distinction between a “pure” and an “applied” science of mathematics
makes no sense at all. Mathematics, as the old Benjamin Peirce held, is the
science that draws necessary conclusions, and logic, as his son Charles Peirce
stresses, is the science of drawing conclusions. And, as we have, this does
not mean Peirce adopted any sort of logicism, quite on the contrary. By an
extreme simplification of relations, a mathematician frames ideally universal
and abstract forms upon which to experiment. Mathematics, then, can be
conceived as a sort of formal logic of relations.66 But the logician’s interest
is primarily in what the mathematician in a certain way despises, which is
the rhetorical character of reasoning.67 Depending on the mathematician’s

64This is Peirce’s central argument against any form of psychologism in logic, setting the
question indeed one year before the very word Psychologismus was coined by J. E. Erdmann
in Germany. This I assume is because Peirce is critical of J. S. Mill. The German logicians
who set anti-psychologism agenda were all heavily influenced by Mill. See M. Kush 1995, p.
2-3; p. 101.

65See J. Legris 2016 for a similar line of argumentation. Legris argues for contextualizing
Peirce’s work in a symbolic medieval tradition of logic, and not in the more modern linguistic
tradition.

66This is more deeply developed in Rodrigues 2007.
67If I am allowed this expression. On the point, see V. Colapietro 2007.
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interests, logical constructions can even be superfluous, since a calculus however
important is purely instrumental, since it is directed to make deductions in
the most expedient and safest way.68 Indeed, when Peirce criticizes Boole
and De Morgan (and others), this is because they try to draw philosophical
(ontological) conclusions from calculi, which Peirce himself conceives of but as
tools for computing purposes. A logician’s genuine activity is not to reach the
conclusions, but to study how the conclusions are related to the premises, and
which are the necessary steps of this link.

Peirce’s claim in favor of a logical inquiry into all kinds of signs, “and
not only of symbols”—as in his youth he claimed—is unequivocal [EP 2: 387,
1906]. In this respect, logic becomes semiotic.69 This can also be claimed
as a reason why Peirce never bothered with the axiomatization of his logic
of relatives. In fact, axiomatization only became a major concern after the
works of the Bourbaki group, in the 20th century70, emphasizing the need for
exactness in pure mathematical analysis. It is false that Peirce did not care for
axiomatization at all, but he thought it was possible only for arithmetic, and
not for the whole of mathematics.71 Mathematics does not need any sort of
justification, be it in logic, intuition or by constructing completeness proofs. As
seen, for Peirce even the very difference between pure and applied mathematics
makes not much sense. Two points in this respect are worthy of mention.

First, mathematical reasoning is par excellence diagrammatic, or iconic
[EP 2: 219-220]. But since the most abstract and general form of thinking
is mathematical, we can say all reasoning in one sense or another is diagram-

68Peirce repeats this point more times than countable, but he was not always properly
understood. See, for instance, CP 3.364, 1885, and CP 4.553, 1906, as he argues for the same
idea in different times.

69A minimally informed analysis of Peircean semiotic is impossible to be given here. For a
systematic overview, any of the following is excellent: L. Santaella 1995; L. F. B. da Silveira
2007; T. L. Short 2007; D. Savan 1956. The same goes for Peirce’s logical graphs, so see:
A-V. Pietarinen 2007; D. D. Roberts 1973; C. Legg 2013; I. Anellis and F. Abeles 2016; J.
Queiroz and L. Moraes (eds.) 2013; from the same authors, see 2001 and 2004.

70See T. Roque 2012, p. 374ff. The author claims the excessive emphasis on Cantor’s work
also has to be taken into account in the contemporary preference for the story of a purely
abstract mathematics.

71In 1881, Peirce provided the first successful axiomatization for natural numbers in a
paper entitled “On the logic of number”. Peirce eventually sent Dedekind a copy of that
paper, even believing—erroneously—that Dedekind’s axiomatic system was developed from
his own, since the latter’s “Was sind und was sollen die Zahlen?” was published only in 1888.
But Peirce did not know Dedekind was already working in his conclusions since 1872. For a
full comparison of Peirce’s and Dedekind’s theories of arithmetic, see P. Shields 1981. See R.
Maddux 1991 for a critical overview. For the reconstruction of the philosophical context in
Germany in contrast to the mathematical English context, see V. Peckhaus 1999. Of course
Peirce’s disagreements with Dedekind have to be put against a richer reconstruction of the
international intellectual context, but that is impossible to give here.
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matic. Although Peirce more usually discusses diagrams and diagrammatic
reasoning in the context of deductive mathematical reasoning, this restriction
can in principle be softened. The point is that by obeying logical rules for
constructing and experimenting upon diagrams, one reasons from contingency
and casualness to necessity [NEM 4: 105, c. 1886]. Diagrams of all sorts are
more than just auxiliary devices for the analysis of logical languages; in fact
they exhibit the very logical movement of thought:

Suppose a man to reason as follows: The Bible says that Enoch and
Elijah were caught up into heaven; then, either the Bible errs, or
else it is not strictly true that all men are mortal. What the Bible
is, and what the historic world of men is, to which this reasoning
relates, must be shown by indices. The reasoner makes some sort
of mental diagram by which he sees that his alternative conclusion
must be true, if the premise is so; and this diagram is an icon or
likeness. The rest is symbols; and the whole may be considered as a
modified symbol. It is not a dead thing, but carries the mind from
one point to another. The art of reasoning is the art of marshaling
such signs, and of finding out the truth. [EP 2: 10, 1894].

Peirce’s move towards a diagrammatic logic can then be conceived as a sort
of generalization of his early work in algebraic notation: instead of remaining
restricted to linear notations or propositional languages, logicians should also
inquiry into ways of constructing diagrams. The letter to Mitchell quoted
before plainly shows this concern, and even tough Peirce’s full system of logical
graphs is not yet there, it is a clear illustration of how to combine a linear
notation with a diagrammatic representation of relations.

Second, logic is for Peirce a normative science. Without going deep into
this subject, suffice it by now to say to reason is to act in a specific way. As a
way of acting, reasoning is nothing but self-controlled and deliberate thought,
the only one capable of being criticized, and, therefore, corrected:

Reasoning essentially involves self-control ; so that the logica utens
is a particular species of morality. Logical goodness and badness,
which we shall find is simply the distinction of Truth and Falsity in
general, amounts, in the last analysis, to nothing but a particular
application of the real general distinction of Moral Goodness and
Badness, or Righteousness and Wickedness” [EP 2: 188, 1903].

Logic emerges as the science of the ends deliberate and self-controlled
thought should attain. A symbolic language is useful for logical inquiry in
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that signs are instrumental for the ideally best representation of logical good-
ness and badness, or validity and invalidity, as we would say today [CP 5.534,
1905]. As a quasi -necessary science, its purpose is to say what ought to be
the characters of signs so they can be experimentally used for our learning.
The development of a calculus, then, is only one of task of semiotic, which
in itself should not be confounded with a formal science of calculus, for the
exactness logic employs in calculations is mathematical. Calculi are useful “in
the investigation of logic”, as initially quoted, to study reasoning, surveying
signs of all kinds as embodiments and conveyers of thought. As all sciences less
general than mathematics, quasi -formal logic is also fallible: the necessity of
the conclusion is just as much necessity there is in the premises. Any further
necessity is, of course, of an unknown nature.
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Appendix A

Bibliographical references from Christine Ladd-Franklin. On the Algebra of
Logic. In: Studies in Logic by members of the Johns Hopkins University.
[Org.] by C. S. Peirce. Boston: Little, Brown, and Company, 1883, pp. 70-71.
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A note on the Internet

Over recent years, the Internet has transformed scholarly research. Not
only books became easier to find (and buy, as far as money goes), but mainly
the amount of known bibliography on almost any subject-matter has become
practically impossible to master by a single person as almost everything can be
found online, either at subscription services or at open-access databases. This
was the case with the majority of works I have used and quoted here: almost
everything I could find online. And as the amount of available bibliography
increases incessantly day by day, this of course put a limit to my work, and
accordingly the bibliography is not at all exhaustive.

But this is only part of the story. In the case of Peirce, I resorted to the
modern scholarly editions of his writings, but in the case of the other authors
all of the 19th century works I used are available online, either at their original
publication form or another. I am especially indebted to Archive.org, wherein
I could find all of the Transactions of the Cambridge Philosophical Society
volumes with De Morgan’s papers on the syllogism as well as all the other
works by the British logicians I quote. So, even if I do not provide a DOI
for everything I quote, anyone can check my references with a quick Internet
search on the sources.

As this paper is the result of a research that did not received any kind of
funding from any agency at all, I thought it would be worth mentioning the
fact. This is the cultural feature of the Web that seems as one of the most
interesting. Of course sometimes I felt as if I was in J. L. Borges’ labyrinth –
but that is part of the fun, isn’t it? I hope others may think so as well.
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tor through Russell to Gödel. Princeton, NJ: Princeton University Press.

. 1997a. Benjamin Peirce’s Linear Associative Algebra (1870): New
light on its preparation and ‘publication’. In: Annals of Science, 54
(1997), 597-606.

. 1997b. Peirce between logic and mathematics. In: Studies in the
Logic of Charles Sanders Peirce. Edited by Nathan Houser, Don D.
Roberts, and James van Evra. Bloomington and Indianapolis: Indiana
University Press, 1997, 23-42.

Gregory, Duncan Farquharson. 1840. On the real nature of symbolic algebra.
In: Transactions of the Royal Society of Edinburgh. Vol. XIV, Part I
(1840), 208-216.

Haack, Susan. 1996. Deviant logic, fuzzy logic: beyond the formalism. Chicago,
IL: The University of Chicago Press.

Haaparanta, Leila (ed.). 2009. The development of modern logic. Oxford:
Oxford University Press.

Hintikka, Jaakko. 1997. The place of C. S. Peirce in the history of logical
theory. In: Jacqueline Brunning and Paul Forster (eds.). The Rule of
Reason: The philosophy of Charles Sanders Peirce. University of Toronto
Press, 1997, 13-33.

Hobart, Michael E. and Joan L. Richards. 2008. De Morgan’s Logic. In:
Handbook of the history of logic. Vol. 4: British logic in the nineteenth
century. Dov M. Gabbay and John Woods (eds.). Amsterdam et al.:
Elsevier; North-Holland, 2008, 283-329.



Squaring the unknown 475

Houser, Nathan et al. (ed.). 1997. Studies in the Logic of Charles Sanders
Peirce. Edited by Nathan Houser, Don D. Roberts, and James van Evra.
Bloomington and Indianapolis: Indiana University Press, 1997.

. 1994. Algebraic logic from Boole to Schröder. In: Companion
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Rodrigues, Cassiano T. 2007. Matemática como ciência mais geral: forma
da experiência e categorias. In: Cognitio-estudos: revista eletrônica de
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