§∀JL

Free (n + 1)-valued Modal Implicative Semilattices

María Cristina Canals Frau, Aldo V. Figallo and Gustavo Pelaitay

Abstract

The (n+1)-valued modal implicative semilattices (or MS_{n+1} -algebras) were introduced in the paper [1] by the first and second author. In this article, our main purpose is to investigate the subvariety of bounded MS_{n+1} -algebras. In particular, we describe a method to determine the structure of the bounded MS_{n+1} -algebras with a finite set of free generators.

Keywords: semilattice; modal implicative semilattice; free algebras.

Introduction

The implicative semilattices were defined by A. Monteiro [2] as algebras $\langle A, \wedge, \rightarrow, 1 \rangle$ of type (2,2,0) which satisfy the identities:

- 1. $x \to x = 1$,
- 2. $(x \to y) \land y = y$,
- 3. $x \wedge (x \rightarrow y) = x \wedge y$,
- 4. $x \to (y \land z) = (x \to y) \land (x \to z).$

This definition is equivalent to that given by Nemitz in [3]. For more details on the theory of implicative semilattices, see [4] and [5].

Iturrioz introduced in [6] the notion of modal operators on symmetric Heyting algebras and defined the class of SHn-algebras. In [1] Canals Frau and Figallo considered some reducts of this class. In particular, they introduced the following definition.

An (n+1)-valued modal implicative semilattice (or MS_{n+1} -algebra) is an algebra $\langle A, \rightarrow, \wedge, \sigma_1, \ldots, \sigma_n, 1 \rangle$ such that the reduct $\langle A, \rightarrow, \wedge, 1 \rangle$ is an implicative semilattice and $\sigma_1, \ldots, \sigma_n$ are unary operations on A satisfying the following axioms:

(M1) $(\sigma_1 x \to y) \to x = x$,

(M2)
$$\sigma_i(x \to y) \to (\sigma_i x \to \sigma_j y) = 1, \ 1 \le i \le j \le n+1,$$

(M3) $(\sigma_i x \to \sigma_i y) \to ((\sigma_{i+1} x \to \sigma_{i+1} y) \to \dots ((\sigma_n x \to \sigma_n y) \to \sigma_i (x \to y)) \dots) = 1,$

(M4)
$$\sigma_i(x \to \sigma_j y) = x \to \sigma_j y, \ 1 \le i, j \le n+1,$$

(M5)
$$\sigma_n x = (x \to \sigma_i x) \to \sigma_j x, \ 1 \le i \le j \le n+1.$$

1 Bounded (n+1)-valued modal implicative semilattices

In this section we will introduce the variety of bounded MS_{n+1} -algebras.

Definition 1.1 A bounded (n + 1)-valued modal implicative semilattice (or MS_{n+1}^0 -algebra) is an algebra $\langle A, \rightarrow, \wedge, \sigma_1, \ldots, \sigma_n, 0, 1 \rangle$ such that the reduct $\langle A, \rightarrow, \wedge, \sigma_1, \ldots, \sigma_n, 1 \rangle$ is an MS_{n+1} -algebra and it satisfies the following additional condition:

(M6) $0 \rightarrow x = 1$.

Example 1.2 Let be $C_{n+1} = \langle C_{n+1}, \rightarrow, \wedge, \sigma_1, \cdots, \sigma_n, 0, 1 \rangle$ where $C_{n+1} = \{0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}, 1\}$ considered as a sublattice of the real numbers, and the operations are defined by: $x \rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{if } x \leq y \end{cases}$, $x \wedge y = \min\{x, y\}$ and $\sigma_j(\frac{k}{n}) = \begin{cases} 0 & \text{if } k+j \leq n \\ 1 & \text{if } k+j \leq n \end{cases}$. Then C_{n+1} is a MS_{n+1}^0 -algebra.

Remark 1.3 The algebra C_{n+1} in Example 1.2 and its subalgebras are only simple MS_{n+1}^0 -algebras.

In what follows we will denote by \mathcal{MS}_{n+1}^0 the variety of MS_{n+1}^0 -algebras and by Con(A), Hom(A, B) and Epi(A, B) the set of MS_{n+1}^0 -congruences, MS_{n+1}^0 -homomorphisms from A into B and MS_{n+1}^0 -epimorphisms from A onto B, respectively. Moreover, we will denote by [G] the MS_{n+1}^0 -subalgebra of Agenerated by G.

Definition 1.4 Let $\langle A, \to, \wedge, \sigma_1, \dots, \sigma_n, 0, 1 \rangle$ be a MS^0_{n+1} -algebra. $D \subseteq A$ is a modal deductive system of A if it verifies:

(D1) $1 \in D$,

- (D2) if $x, x \to y \in D$ then $y \in D$,
- (D3) $x \in D$ implies $\sigma_1 x \in D$.

Hereafter, we will denote by $\mathcal{D}(A)$ ($\mathcal{E}(A)$) the set of all modal deductive systems (maximal modal deductive systems) of A, respectively.

Lemma 1.5 ([1]) Let $\langle A, \rightarrow, \wedge, \sigma_1, \dots, \sigma_n, 0, 1 \rangle$ be a MS_{n+1}^0 -algebra, then it satisfies:

- (i) $Con(A) = \{R(D) : D \in \mathcal{D}(A)\}, \text{ where } R(D) = \{(x, y) \in A^2 : x \to y, y \to x \in D\}.$
- (ii) If $h \in Hom(A, B)$ then the set ker $(h) = \{x \in A : h(x) = 1\}$, called kernel of h, is a modal deductive system of A.

If $D \in \mathcal{D}(A)$ then we will denote by A/D the quotient algebra A/R(D).

Definition 1.6 Let $\langle A, \to, \wedge, \sigma_1, \dots, \sigma_n, 0, 1 \rangle$ be a MS_{n+1}^0 -algebra. $D \subseteq A$ is an (k+1)-valued deductive system, $1 \leq k \leq n$ if A/D is isomorphic to C_{k+1} .

Lemma 1.7 Let $\langle A, \rightarrow, \wedge, \sigma_1, \ldots, \sigma_n, 0, 1 \rangle$ be a MS^0_{n+1} -algebra and $M \in \mathcal{D}(A)$. Then, the following conditions are equivalent:

- (i) M is a maximal modal deductive system,
- (ii) M is a (k+1)-valued deductive system, $1 \le k \le n$.

Proof. The following conditions are equivalent to each other:

- 1. M is a maximal modal deductive system,
- 2. A/M is simple,
- 3. $A/M \simeq C_{k+1}$,
- 4. *M* is an (k+1)-valued deductive system, $1 \le k \le n$.

Theorem 1.8 ([1]) \mathcal{MS}^0_{n+1} is semisimple.

2 Free MS_{n+1}^0 -algebras

The notion of free MS_{n+1}^0 -algebra is defined in the usual way as follows:

Definition 2.1 If m > 0 is an arbitrary cardinal number, then we say that $\mathcal{L}_{n+1}(m)$ is the MS_{n+1}^0 -algebra with m free generators if:

- (L1) there is $G \subseteq \mathcal{L}_{n+1}(m)$ such that $[G] = \mathcal{L}_{n+1}(m)$ and |G| = m,
- (L2) any mapping f from G into an arbitrary MS_{n+1}^0 -algebra A can be extended to a MS_{n+1}^0 -homomorphism $h: \mathcal{L}_{n+1}(m) \longrightarrow A$ such that $h_{|G} = f$.

Since MS_{n+1}^0 -algebras are equationally definable, for any cardinal number m > 0 there exists $\mathcal{L}_{n+1}(m)$ and it is unique up to isomorphisms. Moreover the MS_{n+1}^0 -homomorphisms h of Definition 2.1 is also unique.

In what follow m is a positive integer, and $G = \{g_1, g_2, \dots, g_m\}$ is a set of free generators of $\mathcal{L}_{n+1}(m)$.

Our next task will be to prove that the variety \mathcal{MS}_{n+1}^0 is locally finite.

Lemma 2.2 Let $f \in \mathcal{F}_{k+1}^* = \{f \in (C_{k+1})^G : [f(G)] = C_{k+1}\}$. Then $\ker(h_f) \in \mathcal{E}(\mathcal{L}_{n+1}(m))$, where $h_f : \mathcal{L}_{n+1}(m) \longrightarrow C_{k+1}$ is the homomorphism extending f.

Proof. Let $f \in \mathcal{F}_{k+1}^*$. Since $h_f(\mathcal{L}_{n+1}(m)) = [f(G)] = C_{k+1}$, we infer that h_f surjective and therefore $\mathcal{L}_{n+1}(m)/\ker(h_f) \simeq C_{k+1}$ from which we obtain that $\ker(h_f)$ is a (k+1)-valued modal deductive system. Then, from the above result and Lemma 1.7 we conclude that $\ker(h_f) \in \mathcal{E}(\mathcal{L}_{n+1}(m))$.

It is well known that all MS_{n+1} -algebras is a product subdirect of a family of chain C_{n+1} (see [1, Theorem 2.6, Theorem 2.7]), as many as maximal kernels have the algebra. We will obtain a number of maximal modal deductive systems that has finitely generated free algebra.

Proposition 2.3 $|\mathcal{E}(\mathcal{L}_{n+1}(m))| \le |(C_{n+1})^G|.$

Proof. Let $\varphi : (C_{n+1})^G \longrightarrow \mathcal{E}(\mathcal{L}_{n+1}(m))$, defined by $\varphi(f) = \ker(h_f)$. From Lemma 2.2, φ is well defined. Let's prove that φ is surjective. Indeed, let $M \in \mathcal{E}(\mathcal{L}_{n+1}(m))$. Then, from Lemma 1.7 we have that $\mathcal{L}_{n+1}(m)/M \simeq C_{k+1}$ is a subalgebra of C_{n+1} . Hence, if α_M is the isomorphism between $\mathcal{L}_{n+1}(m)/M$ and C_{k+1} and considered $\alpha_M \circ q_{M|_G} : G \longrightarrow C_{n+1}$ it follows that $\alpha_M \circ q_{M|_G} \in$ $(C_{n+1})^G$ and $\varphi(\alpha_M \circ q_{M|_G}) = M$. Then, φ is surjective, and therefore we have that $|\mathcal{E}(\mathcal{L}_{n+1}(m))| \leq |(C_{n+1})^G|$.

Proposition 2.4 $\mathcal{L}_{n+1}(m)$ is finite.

Proof. From Theorem 1.8 and well known results of universal algebras we have that (see [7]), $\mathcal{L}_{n+1}(m)$ is isomorphic to a subalgebra of

$$\prod_{M\in\mathcal{E}(\mathcal{L}_{n+1}(m))}\mathcal{L}_{n+1}(m)/M.$$

On the other hand, we have that $\mathcal{L}_{n+1}(m)/M \simeq C_{k+1}$ with $1 \leq k \leq n$. From this last statement and Proposition 2.3 we conclude that $\mathcal{L}_{n+1}(m)$ is finite.

Theorem 2.5 \mathcal{MS}_{n+1}^0 is a locally finite variety.

Proof. It is a direct consequence of Proposition 2.4 and [7].

Let $\mathcal{M}_{k+1} = \{M \in \mathcal{E}(\mathcal{L}_{n+1}(m)) : \mathcal{L}_{n+1}(m)/M \simeq C_{k+1}\}, 1 \leq k \leq n$. Then, taking into account that $\mathcal{L}_{n+1}(m)$ is finite it follows that

$$\mathcal{L}_{n+1}(m) \simeq \prod_{M \in \mathcal{M}_2} \mathcal{L}_{n+1}(m) / M \times \prod_{M \in \mathcal{M}_3} \mathcal{L}_{n+1}(m) / M \times \dots \times \prod_{M \in \mathcal{M}_{n+1}} \mathcal{L}_{n+1}(m) / M$$

On the other hand, from the Proposition 2.3 we have that \mathcal{M}_{k+1} is finite for all $k, 1 \leq k \leq n$.

Hence, if we denote with $p_{k+1} = |\mathcal{M}_{k+1}|$ we conclude that:

$$\mathcal{L}_{n+1}(m) \simeq \prod_{k=1}^{n} (C_{k+1})^{p_{k+1}}.$$

To calculate the cardinal of free algebra with a finite set of free generators we only need to determine the numbers $p_{k+1} = |\mathcal{M}_{k+1}|$.

Lemma 2.6 $|\mathcal{M}_{k+1}| = |Epi(\mathcal{L}_{n+1}(m), C_{k+1})|.$

Proof. Let $\alpha_{k+1} : Epi(\mathcal{L}_{n+1}(m), C_{k+1}) \longrightarrow \mathcal{M}_{k+1}$ the function definided by the prescription $\alpha_{k+1}(h) = \ker(h)$. For each $M \in \mathcal{M}_{k+1}$ let $h = \Theta \circ q_M$, where q_M is the canonical epimorphism and Θ is the isomorphism from $\mathcal{L}_{n+1}(m)/M$ to C_{k+1} . Then, $h \in Epi(\mathcal{L}_{n+1}(m), C_{k+1})$ and $\alpha_{k+1}(h) = M$. Indeed, $\alpha_{k+1}(h) =$ $\ker(\Theta \circ q_M)$. On the other hand the following conditions are equivalent:

- 1. $x \in \ker(\Theta \circ q_M),$
- 2. $\Theta \circ q_M(x) = 1$,

- 3. $\Theta(q_M(x)) = \Theta(1),$
- 4. $q_M(x) = 1$,
- 5. $x \in \ker(q_M)$.

Therefore, α_{k+1} is surjective. So, $|\mathcal{M}_{k+1}| \leq |Epi(\mathcal{L}_{n+1}(m), C_{k+1})|$. Moreover, if $M \in \mathcal{M}_{k+1}$ and $\alpha_{k+1}(h) = M$ then $\alpha_{k+1}^{-1}(M) = \{g \circ h : g \in Aut(C_{k+1})\}$, where $Aut(C_{k+1})$ is the set of all automorphism of C_{k+1} . Therefore,

$$|\mathcal{M}_{k+1}| = \frac{|Epi(\mathcal{L}_{n+1}(m), C_{k+1})|}{|Aut(C_{k+1})|}.$$

On the other hand, it is easy to see that the unique automorphism of C_{k+1} is the identity map. From which we conclude that $|\mathcal{M}_{k+1}| = |Epi(\mathcal{L}_{n+1}(m), C_{k+1})|$

Lemma 2.7 $|Epi(\mathcal{L}_{n+1}(m), C_{k+1})| = |\mathcal{F}_{k+1}^*|.$

Proof. Let $\phi : Epi(\mathcal{L}_{n+1}(m), C_{k+1}) \longrightarrow \mathcal{F}_{k+1}^*$ defined by $\phi(h) = h \mid_G$. Since G is a free generator system of $\mathcal{L}_{n+1}(m)$ we have that ϕ is injective. On the other hand, let $f \in \mathcal{F}_{k+1}^*$, then $f : G \longrightarrow C_{k+1}$ it is that $[f(G)] = C_{k+1}$. Hence, there is a unique extension h_f of f. So, $h_f \in Epi(\mathcal{L}_{n+1}(m), C_{k+1})$ and $\phi(h_f) = f$, from which we conclude that ϕ is surjective. Then, ϕ is bijective which completes the proof.

From the above it follows that

(I)
$$p_{k+1} = |\mathcal{F}_{k+1}^*|.$$

In order to determine $|\mathcal{F}_{k+1}^*|$ we note that from the definition of operations in C_{k+1} , the only subsets of this algebra that generate it are: $X_1 = \{\frac{1}{k}, \cdots, \frac{k-1}{k}\}, X_2 = \{0, \frac{1}{k}, \cdots, \frac{k-1}{k}\}, X_3 = \{\frac{1}{k}, \cdots, \frac{k-1}{k}, 1\}$ and $X_4 = \{0, \frac{1}{k}, \cdots, \frac{k-1}{k}, 1\}$.

Then, $\mathcal{F}_{k+1}^* = \bigcup_{i=1}^4 \mathcal{F}(G, X_i)$ where $\mathcal{F}(X, Y) = \{f : X \longrightarrow Y : f \text{ is surjective}\}.$ Since $\mathcal{F}(G, X_i), 1 \leq i \leq 4$, are disjoint two to two, then we have to:

(II)
$$|\mathcal{F}_{k+1}^*| = \sum_{i=1}^4 |\mathcal{F}(G, X_i)| = |\mathcal{F}(G, X_i)| + 2|\mathcal{F}(G, X_2)| + |\mathcal{F}(G, X_4)|.$$

We observed that if $|G| < |X_i|$, then $|\mathcal{F}(G, X_i)| = 0$. Moreover, taking into account that |G| = m, $|X_1| = k - 1$, $|X_2| = |X_3| = k$ and $|X_4| = k + 1$ we have that

(i)
$$|\mathcal{F}(G, X_1)| = \sum_{j=0}^{k-2} (-1)^j {\binom{k-1}{j}} (k-1-j)^m = (k-1)^m - (k-1)(k-2)^m + {\binom{k-1}{2}} (k-3)^m - {\binom{k-1}{3}} (k-4)^m + \dots + (-1)^{j-2} {\binom{k-1}{j-2}} (k-1)(k-2)^m + {\binom{k-1}{j-2}} (k-1)^{j-2} (k-$$

From (i), (ii) and (iii) we have that (III) $|\mathcal{F}(G, X_1)| + 2|\mathcal{F}(G, X_2)| + |\mathcal{F}(G, X_4)| = \left((k+1)^m - \binom{k+1}{1}k^m + \binom{k+1}{2}(k-1)^m - \binom{k+1}{3}(k-2)^m + \dots + (-1)^j\binom{k+1}{j}(k-(j-1))^m + \dots + \binom{k+1}{2!}2^m + (-1)^k(k+1)\right) + \left(2k^m - 2\binom{k}{1}(k-1)^m + 2\binom{k}{2}(k-2)^m - 2\binom{k}{3}(k-3)^m + \dots + 2(-1)^{j-1}\binom{k}{j-1}(k-(j-1))^m + \dots + 2(-1)^{k-2}\frac{k(k-1)}{2!}2^m + 2(-1)^{k-1}k\right) + \left((k-1)^m - (k-1)(k-2)^m + \binom{k-1}{2}(k-3)^m - \binom{k-1}{3}(k-4)^m + \dots + (-1)^{j-2}\binom{k-1}{j-2}(k-1)(k-(j-2))^m + \dots + (-1)^{k-3}\frac{(k-1)(k-2)}{2!}2^m + (-1)^{k-2}(k-1)\right) = (k+1)^m - \left(\left(\binom{k+1}{1}-2\binom{k}{2}k^m - \binom{k+1}{2}-2\binom{k}{1}+ \binom{k+1}{2}\binom{k-2}{2!}2^m + \binom{k-1}{2}\binom{k-1}{2!}(k-3)^m - \binom{k+1}{2}\binom{k}{2} - 2\binom{k}{1}\binom{k}{1} + \binom{k-1}{2}\binom{k-1}{2!}(k-3)^m + \binom{k+1}{3}\binom{k-2}{2!}\binom{k}{3} + \binom{k-1}{2}\binom{k-3}{k}\binom{k-1}{2!}(k-3)^m + \binom{k+1}{3}\binom{k-2}{2!}\binom{k}{3} + \binom{k-1}{2}\binom{k-3}{k}\binom{k+1}{3}\binom{k-2}{2!}\binom{k}{3} + \binom{k-1}{2}\binom{k-3}{k}\binom{k+1}{3}\binom{k-2}{2!}\binom{k}{3} + \binom{k-1}{2}\binom{k-3}{k}\binom{k+1}{3}\binom{k-2}{2!}\binom{k}{3} + \binom{k-1}{2}\binom{k-3}{k}\binom{k+1}{3}\binom{k-3}{k}\binom{k+1}{3}\binom{k-2}{2!}\binom{k}{3} + \binom{k-1}{2}\binom{k-3}{k}\binom{k-3}{k}\binom{k-3}{k}\binom{k-3}{k}\binom{k-1}{3}\binom{k-2}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{2!}\binom{k-3}{k}\binom{k-3}{k}\binom{k-3}{k}\binom{k-3}{k}\binom{k-3}{k}\binom{k-3}{k}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{k}\binom{k-1}{2!}\binom{k-3}{k}\binom$

$$\begin{pmatrix} (-1)^{j} \binom{k+1}{j} + (-1)^{j-1} 2\binom{k}{j-1} + (-1)^{j-2} \binom{k-1}{j-2} \end{pmatrix} (k-(j-1))^{m} + \\ \dots + \left((-1)^{k-1} \frac{(k+1)k}{2!} + (-1)^{k-2} 2\frac{k(k-1)}{2!} + (-1)^{k-3} \frac{(k-1)(k-2)}{2!} \right) 2^{m} + \\ \left((-1)^{k} \binom{k+1}{k} + (-1)^{k-1} 2k + (-1)^{k-2} (k-1) \right) \end{pmatrix}.$$
We note that, $(-1)^{k} (k+1) + (-1)^{k-1} 2k + (-1)^{k-2} (k-1) = 0$. Indeed,

(i) if k is even, (k+1) - 2k + k - 1 = 0,

(ii) if k is odd,
$$-(k+1) + 2k - (k-1) = 0$$
.

Therefore, the coefficient of 1^m is 0. In an analogous way we obtain that the coefficient of 2^m is -1 if k is even and it is 1 if k if odd, this is the coefficient of 2^m is $(-1)^{k+1}$.

We will discuss the general term:

$$(-1)^{j}\binom{k+1}{j} + (-1)^{j-1} 2\binom{k}{j-1} + (-1)^{j-2}\binom{k-1}{j-2} \binom{k-1}{j-2} (k-j-1)^{m}$$

If j is even, then $(-1)^j = 1$, $(-1)^{j-1} = -1$ and $(-1)^{j-2} = 1$ and we can write to this coefficient as $(-1)^{t+1}$ with $1 \le t \le k-1$. We develop the previous term and we have that:

$$\frac{(k+1)k(k-1)(k-2)\dots(k-(j-2))}{j(j-1)(j-2)!} - 2\frac{k(k-1)(k-2)\dots(k-(j-2))}{(j-1)(j-2)!} + \frac{(k-1)(k-2)\dots(k-(j-2))}{(j-2)!} = \frac{(k-1)(k-2)\dots(k-(j-2))\Big((k-1)k-2kj+j(j-1)\Big)}{j(j-1)(j-2)!}.$$

On the other hand,

$$((k-1)k - 2kj + j(j-1)) = (k - (j-1))(k-j),$$

from where we can express the general term as follows:

$$\frac{(k-1)(k-2)\dots(k-(j-2))\Big((k-(j-1))(k-j)\Big)}{j(j-1)(j-2)!}.$$

It is simple to verify that:

$$\frac{(k-1)(k-2)\dots(k-(j-2))\Big((k-(j-1))(k-j)\Big)}{j(j-1)(j-2)!} = \binom{k-1}{k-1-j}.$$

If j is odd, reasoning in an analogous way gives the same result. In short, we have:

(IV)
$$|\mathcal{F}(G, X_1)| + 2|\mathcal{F}(G, X_2)| + |\mathcal{F}(G, X_4)| = (k+1)^m - \sum_{j=1}^{k-1} (-1)^{j+1} {\binom{k-1}{k-1-j}} (k+1-j)^m$$

From (I), (II), (III) and (IV) we conclude that

$$p_{k+1} = (k+1)^m - \sum_{j=1}^{k-1} (-1)^{j+1} \binom{k-1}{k-1-j} (k+1-j)^m$$

Theorem 2.8 Let $\mathcal{L}_{n+1}(m)$ be a free MS_{n+1}^0 -algebra with m free generators. Then its cardinality is given by the following formula, for $m \ge k-1$,

$$\begin{aligned} |\mathcal{L}_{n+1}(m)| &= \prod_{k=1}^{n} (k+1)^{(k+1)^m} - \left(\sum_{j=1}^{k-1} (-1)^{j+1} \left(\binom{k-1}{k-1-j}\right)^{(k+1-j)^m}\right)^{-1} \\ &= 2^{2^m} \cdot 3^{(3^m-2^m)} \cdot 4^{(4^m-(2\cdot3^m-2^m))} \cdot \dots \cdot (n+1)^{(n+1)^m} - \left(\left(\sum_{j=1}^{n-1} (-1)^{j+1} \left(\binom{n-1}{n-1-j}\right)^{(n+1-j)^m}\right)^{-1} \right) \end{aligned}$$

References

- [1] M. C. Canals Frau and A. V. Figallo. (n + 1)-valued modal implicative semilattices. *Proceedings of the twenty second International Symposium on Multiple Valued Logic.* Sendai, Japon, 1992, 190–196.
- [2] A. Monteiro. Axiomes indépendants pour les algèbres de Brouwer. Rev. de la Unión Matemática Argentina, 27 (1955), 149–160.
- [3] W. C. Nemitz. Implicative semi-lattices. Trans. Amer. Math. Soc., 117 (1965), 128–142.
- [4] I. Chajda, R. Halaš and J. Kühr. Semilattice structures. Research and Exposition in Mathematics, 30. Heldermann Verlag, Lemgo, 2007.
- [5] H. Rasiowa. An algebraic approach to non-classical logics. Studies in Logic and the Foundations of Mathematics, Vol. 78. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974.

- [6] L. Iturrioz. Modal operators on symmetrical Heyting algebras. Universal algebra and applications (Warsaw, 1978). Banach Center Publications, 9.1 (1982), 289–303. http://eudml.org/doc/209233.
- [7] S. Burris and H. P. Sankappanavar. A Course in Universal Algebra. Graduate Texts in Mathematics vol. 78. Springer-Verlag, Berlin, 1981.

María Cristina Canals Frau Instituto de Ciencias Básicas Universidad Nacional de San Juan 5400, San Juan, Argentina *E-mail:* mcanalsfrau@gmail.com

Aldo V. Figallo Instituto de Ciencias Básicas Universidad Nacional de San Juan 5400, San Juan, Argentina *E-mail:* avfigallo@gmail.com

Gustavo Pelaitay Instituto de Ciencias Básicas Universidad Nacional de San Juan 5400, San Juan, Argentina *E-mail:* gpelaitay@gmail.com