Free ($n+1$)-valued Modal Implicative Semilattices

María Cristina Canals Frau, Aldo V. Figallo and Gustavo Pelaitay

Abstract

The ($n+1$)-valued modal implicative semilattices (or $M S_{n+1}$-algebras) were introduced in the paper [1] by the first and second author. In this article, our main purpose is to investigate the subvariety of bounded $M S_{n+1}$-algebras. In particular, we describe a method to determine the structure of the bounded $M S_{n+1}$-algebras with a finite set of free generators.

Keywords: semilattice; modal implicative semilattice; free algebras.

Introduction

The implicative semilattices were defined by A. Monteiro [2] as algebras $\langle A, \wedge$, $\rightarrow, 1\rangle$ of type $(2,2,0)$ which satisfy the identities:

1. $x \rightarrow x=1$,
2. $(x \rightarrow y) \wedge y=y$,
3. $x \wedge(x \rightarrow y)=x \wedge y$,
4. $x \rightarrow(y \wedge z)=(x \rightarrow y) \wedge(x \rightarrow z)$.

This definition is equivalent to that given by Nemitz in [3]. For more details on the theory of implicative semilattices, see [4] and [5].

Iturrioz introduced in [6] the notion of modal operators on symmetric Heyting algebras and defined the class of $S H n$-algebras. In [1] Canals Frau and Figallo considered some reducts of this class. In particular, they introduced the following definition.

An ($n+1$)-valued modal implicative semilattice (or $M S_{n+1}$-algebra) is an algebra $\left\langle A, \rightarrow, \wedge, \sigma_{1}, \ldots, \sigma_{n}, 1\right\rangle$ such that the reduct $\langle A, \rightarrow, \wedge, 1\rangle$ is an implicative semilattice and $\sigma_{1}, \ldots, \sigma_{n}$ are unary operations on A satisfying the following axioms:
(M1) $\left(\sigma_{1} x \rightarrow y\right) \rightarrow x=x$,
$(\mathrm{M} 2) \quad \sigma_{i}(x \rightarrow y) \rightarrow\left(\sigma_{i} x \rightarrow \sigma_{j} y\right)=1,1 \leq i \leq j \leq n+1$,
(M3) $\left(\sigma_{i} x \rightarrow \sigma_{i} y\right) \rightarrow\left(\left(\sigma_{i+1} x \rightarrow \sigma_{i+1} y\right) \rightarrow \ldots\left(\left(\sigma_{n} x \rightarrow \sigma_{n} y\right) \rightarrow \sigma_{i}(x \rightarrow\right.\right.$ $y)) . ..)=1$,
$(\mathrm{M} 4) \quad \sigma_{i}\left(x \rightarrow \sigma_{j} y\right)=x \rightarrow \sigma_{j} y, 1 \leq i, j \leq n+1$,
(M5) $\sigma_{n} x=\left(x \rightarrow \sigma_{i} x\right) \rightarrow \sigma_{j} x, 1 \leq i \leq j \leq n+1$.

1 Bounded ($n+1$)-valued modal implicative semilattices

In this section we will introduce the variety of bounded $M S_{n+1}$-algebras.
Definition 1.1 A bounded $(n+1)$-valued modal implicative semilattice (or $M S_{n+1}^{0}$-algebra) is an algebra $\left\langle A, \rightarrow, \wedge, \sigma_{1}, \ldots, \sigma_{n}, 0,1\right\rangle$ such that the reduct $\left\langle A, \rightarrow, \wedge, \sigma_{1}, \ldots, \sigma_{n}, 1\right\rangle$ is an $M S_{n+1}$-algebra and it satisfies the following additional condition:
(M6) $0 \rightarrow x=1$.
Example 1.2 Let be $C_{n+1}=\left\langle C_{n+1}, \rightarrow, \wedge, \sigma_{1}, \cdots, \sigma_{n}, 0,1\right\rangle$ where $C_{n+1}=$ $\left\{0, \frac{1}{n}, \frac{2}{n}, \cdots, \frac{n-1}{n}, 1\right\}$ considered as a sublattice of the real numbers, and the operations are defined by: $x \rightarrow y=\left\{\begin{array}{ll}1 & \text { if } x \leq y \\ y & \text { if } x \not \leq y\end{array}, \quad x \wedge y=\min \{x, y\} \quad\right.$ and $\sigma_{j}\left(\frac{k}{n}\right)=\left\{\begin{array}{ll}0 & \text { if } k+j \leq n \\ 1 & \text { if } k+j \not \leq n\end{array}\right.$. Then C_{n+1} is a $M S_{n+1}^{0}$-algebra.

Remark 1.3 The algebra C_{n+1} in Example 1.2 and its subalgebras are only simple $M S_{n+1^{-}}^{0}$ algebras.

In what follows we will denote by $\mathcal{M} \mathcal{S}_{n+1}^{0}$ the variety of $M S_{n+1}^{0}$-algebras and by $\operatorname{Con}(A), \operatorname{Hom}(A, B)$ and $E p i(A, B)$ the set of $M S_{n+1}^{0}$-congruences, $M S_{n+1}^{0}$-homomorphisms from A into B and $M S_{n+1}^{0}$-epimorphisms from A onto B, respectively. Moreover, we will denote by $[G]$ the $M S_{n+1}^{0}$-subalgebra of A generated by G.

Definition 1.4 Let $\left\langle A, \rightarrow, \wedge, \sigma_{1}, \ldots, \sigma_{n}, 0,1\right\rangle$ be a $M S_{n+1}^{0}$-algebra. $D \subseteq A$ is a modal deductive system of A if it verifies:
(D1) $1 \in D$,
(D2) if $x, x \rightarrow y \in D$ then $y \in D$,
(D3) $x \in D$ implies $\sigma_{1} x \in D$.
Hereafter, we will denote by $\mathcal{D}(A)(\mathcal{E}(A))$ the set of all modal deductive systems (maximal modal deductive systems) of A, respectively.

Lemma $1.5([1])$ Let $\left\langle A, \rightarrow, \wedge, \sigma_{1}, \ldots, \sigma_{n}, 0,1\right\rangle$ be a $M S_{n+1}^{0}$-algebra, then it satisfies:
(i) $\operatorname{Con}(A)=\{R(D): D \in \mathcal{D}(A)\}$, where $R(D)=\left\{(x, y) \in A^{2}: x \rightarrow y, y \rightarrow\right.$ $x \in D\}$.
(ii) If $h \in \operatorname{Hom}(A, B)$ then the set $\operatorname{ker}(h)=\{x \in A: h(x)=1\}$, called kernel of h, is a modal deductive system of A.

If $D \in \mathcal{D}(A)$ then we will denote by A / D the quotient algebra $A / R(D)$.
 an $(k+1)$-valued deductive system, $1 \leq k \leq n$ if A / D is isomorphic to C_{k+1}.

Lemma 1.7 Let $\left\langle A, \rightarrow, \wedge, \sigma_{1}, \ldots, \sigma_{n}, 0,1\right\rangle$ be a $M S_{n+1}^{0}$-algebra and $M \in \mathcal{D}(A)$. Then, the following conditions are equivalent:
(i) M is a maximal modal deductive system,
(ii) M is a $(k+1)$-valued deductive system, $1 \leq k \leq n$.

Proof. The following conditions are equivalent to each other:

1. M is a maximal modal deductive system,
2. A / M is simple,
3. $A / M \simeq C_{k+1}$,
4. M is an $(k+1)$-valued deductive system, $1 \leq k \leq n$.

Theorem 1.8 ([1]) $\mathcal{M} \mathcal{S}_{n+1}^{0}$ is semisimple.

2 Free $M S_{n+1}^{0}$-algebras

The notion of free $M S_{n+1}^{0}$-algebra is defined in the usual way as follows:
Definition 2.1 If $m>0$ is an arbitrary cardinal number, then we say that $\mathcal{L}_{n+1}(m)$ is the $M S_{n+1}^{0}$-algebra with m free generators if:
(L1) there is $G \subseteq \mathcal{L}_{n+1}(m)$ such that $[G]=\mathcal{L}_{n+1}(m)$ and $|G|=m$,
(L2) any mapping f from G into an arbitrary $M S_{n+1}^{0}$-algebra A can be extended to a $M S_{n+1}^{0}$-homomorphism $h: \mathcal{L}_{n+1}(m) \longrightarrow$ A such that $h_{\mid G}=f$.

Since $M S_{n+1}^{0}$-algebras are equationally definable, for any cardinal number $m>0$ there exists $\mathcal{L}_{n+1}(m)$ and it is unique up to isomorphisms. Moreover the $M S_{n+1}^{0}$-homomorphisms h of Definition 2.1 is also unique.

In what follow m is a positive integer, and $G=\left\{g_{1}, g_{2}, \cdots, g_{m}\right\}$ is a set of free generators of $\mathcal{L}_{n+1}(m)$.

Our next task will be to prove that the variety $\mathcal{M} \mathcal{S}_{n+1}^{0}$ is locally finite.
Lemma 2.2 Let $f \in \mathcal{F}_{k+1}^{*}=\left\{f \in\left(C_{k+1}\right)^{G}:[f(G)]=C_{k+1}\right\}$. Then $\operatorname{ker}\left(h_{f}\right) \in$ $\mathcal{E}\left(\mathcal{L}_{n+1}(m)\right)$, where $h_{f}: \mathcal{L}_{n+1}(m) \longrightarrow C_{k+1}$ is the homomorphism extending f.

Proof. Let $f \in \mathcal{F}_{k+1}^{*}$. Since $h_{f}\left(\mathcal{L}_{n+1}(m)\right)=[f(G)]=C_{k+1}$, we infer that h_{f} surjective and therefore $\mathcal{L}_{n+1}(m) / \operatorname{ker}\left(h_{f}\right) \simeq C_{k+1}$ from which we obtain that $\operatorname{ker}\left(h_{f}\right)$ is a $(k+1)$-valued modal deductive system. Then, from the above result and Lemma 1.7 we conclude that $\operatorname{ker}\left(h_{f}\right) \in \mathcal{E}\left(\mathcal{L}_{n+1}(m)\right)$.

It is well known that all $M S_{n+1}$-algebras is a product subdirect of a family of chain C_{n+1} (see [1, Theorem 2.6, Theorem 2.7]), as many as maximal kernels have the algebra. We will obtain a number of maximal modal deductive systems that has finitely generated free algebra.

Proposition $2.3\left|\mathcal{E}\left(\mathcal{L}_{n+1}(m)\right)\right| \leq\left|\left(C_{n+1}\right)^{G}\right|$.
Proof. Let $\varphi:\left(C_{n+1}\right)^{G} \longrightarrow \mathcal{E}\left(\mathcal{L}_{n+1}(m)\right)$, defined by $\varphi(f)=\operatorname{ker}\left(h_{f}\right)$. From Lemma 2.2, φ is well defined. Let's prove that φ is surjective. Indeed, let $M \in \mathcal{E}\left(\mathcal{L}_{n+1}(m)\right)$. Then, from Lemma 1.7 we have that $\mathcal{L}_{n+1}(m) / M \simeq C_{k+1}$ is a subalgebra of C_{n+1}. Hence, if α_{M} is the isomorphism between $\mathcal{L}_{n+1}(m) / M$ and C_{k+1} and considered $\alpha_{M} \circ q_{\left.M\right|_{G}}: G \longrightarrow C_{n+1}$ it follows that $\alpha_{M} \circ q_{\left.M\right|_{G}} \in$ $\left(C_{n+1}\right)^{G}$ and $\varphi\left(\alpha_{M} \circ q_{\left.M\right|_{G}}\right)=M$. Then, φ is surjective, and therefore we have that $\left|\mathcal{E}\left(\mathcal{L}_{n+1}(m)\right)\right| \leq\left|\left(C_{n+1}\right)^{G}\right|$.

Proposition $2.4 \mathcal{L}_{n+1}(m)$ is finite.
Proof. From Theorem 1.8 and well known results of universal algebras we have that (see $[7]), \mathcal{L}_{n+1}(m)$ is isomorphic to a subalgebra of

$$
\prod_{M \in \mathcal{E}\left(\mathcal{L}_{n+1}(m)\right)} \mathcal{L}_{n+1}(m) / M
$$

On the other hand, we have that $\mathcal{L}_{n+1}(m) / M \simeq C_{k+1}$ with $1 \leq k \leq n$. From this last statement and Proposition 2.3 we conclude that $\mathcal{L}_{n+1}(m)$ is finite.

Theorem $2.5 \mathcal{M S}_{n+1}^{0}$ is a locally finite variety.
Proof. It is a direct consequence of Proposition 2.4 and [7].
Let $\mathcal{M}_{k+1}=\left\{M \in \mathcal{E}\left(\mathcal{L}_{n+1}(m)\right): \mathcal{L}_{n+1}(m) / M \simeq C_{k+1}\right\}, 1 \leq k \leq n$. Then, taking into account that $\mathcal{L}_{n+1}(m)$ is finite it follows that
$\mathcal{L}_{n+1}(m) \simeq \prod_{M \in \mathcal{M}_{2}} \mathcal{L}_{n+1}(m) / M \times \prod_{M \in \mathcal{M}_{3}} \mathcal{L}_{n+1}(m) / M \times \cdots \times \prod_{M \in \mathcal{M}_{n+1}} \mathcal{L}_{n+1}(m) / M$
On the other hand, from the Proposition 2.3 we have that \mathcal{M}_{k+1} is finite for all $k, 1 \leq k \leq n$.

Hence, if we denote with $p_{k+1}=\left|\mathcal{M}_{k+1}\right|$ we conclude that:

$$
\mathcal{L}_{n+1}(m) \simeq \prod_{k=1}^{n}\left(C_{k+1}\right)^{p_{k+1}}
$$

To calculate the cardinal of free algebra with a finite set of free generators we only need to determine the numbers $p_{k+1}=\left|\mathcal{M}_{k+1}\right|$.

Lemma $2.6\left|\mathcal{M}_{k+1}\right|=\left|\operatorname{Epi}\left(\mathcal{L}_{n+1}(m), C_{k+1}\right)\right|$.
Proof. Let $\alpha_{k+1}: \operatorname{Epi}\left(\mathcal{L}_{n+1}(m), C_{k+1}\right) \longrightarrow \mathcal{M}_{k+1}$ the function definided by the prescription $\alpha_{k+1}(h)=\operatorname{ker}(h)$. For each $M \in \mathcal{M}_{k+1}$ let $h=\Theta \circ q_{M}$, where q_{M} is the canonical epimorphism and Θ is the isomorphism from $\mathcal{L}_{n+1}(m) / M$ to C_{k+1}. Then, $h \in \operatorname{Epi}\left(\mathcal{L}_{n+1}(m), C_{k+1}\right)$ and $\alpha_{k+1}(h)=M$. Indeed, $\alpha_{k+1}(h)=$ $\operatorname{ker}\left(\Theta \circ q_{M}\right)$. On the other hand the following conditions are equivalent:

1. $x \in \operatorname{ker}\left(\Theta \circ q_{M}\right)$,
2. $\Theta \circ q_{M}(x)=1$,
3. $\Theta\left(q_{M}(x)\right)=\Theta(1)$,
4. $q_{M}(x)=1$,
5. $x \in \operatorname{ker}\left(q_{M}\right)$.

Therefore, α_{k+1} is surjective. So, $\left|\mathcal{M}_{k+1}\right| \leq\left|\operatorname{Epi}\left(\mathcal{L}_{n+1}(m), C_{k+1}\right)\right|$. Moreover, if $M \in \mathcal{M}_{k+1}$ and $\alpha_{k+1}(h)=M$ then $\alpha_{k+1}^{-1}(M)=\left\{g \circ h: g \in \operatorname{Aut}\left(C_{k+1}\right)\right\}$, where $\operatorname{Aut}\left(C_{k+1}\right)$ is the set of all automorphism of C_{k+1}. Therefore,

$$
\left|\mathcal{M}_{k+1}\right|=\frac{\left|E p i\left(\mathcal{L}_{n+1}(m), C_{k+1}\right)\right|}{\left|A u t\left(C_{k+1}\right)\right|}
$$

On the other hand, it is easy to see that the unique automorphism of C_{k+1} is the identity map. From which we conclude that $\left|\mathcal{M}_{k+1}\right|=\left|\operatorname{Epi}\left(\mathcal{L}_{n+1}(m), C_{k+1}\right)\right|$

Lemma 2.7 $\left|\operatorname{Epi}\left(\mathcal{L}_{n+1}(m), C_{k+1}\right)\right|=\left|\mathcal{F}_{k+1}^{*}\right|$.
Proof. Let $\phi: \operatorname{Epi}\left(\mathcal{L}_{n+1}(m), C_{k+1}\right) \longrightarrow \mathcal{F}_{k+1}^{*}$ defined by $\phi(h)=\left.h\right|_{G}$. Since G is a free generator system of $\mathcal{L}_{n+1}(m)$ we have that ϕ is injective. On the other hand, let $f \in \mathcal{F}_{k+1}^{*}$, then $f: G \longrightarrow C_{k+1}$ it is that $[f(G)]=C_{k+1}$. Hence, there is a unique extension h_{f} of f. So, $h_{f} \in \operatorname{Epi}\left(\mathcal{L}_{n+1}(m), C_{k+1}\right)$ and $\phi\left(h_{f}\right)=f$, from which we conclude that ϕ is surjective. Then, ϕ is bijective which completes the proof.

From the above it follows that

$$
\text { (I) } p_{k+1}=\left|\mathcal{F}_{k+1}^{*}\right|
$$

In order to determine $\left|\mathcal{F}_{k+1}^{*}\right|$ we note that from the definition of operations in C_{k+1}, the only subsets of this algebra that generate it are: $X_{1}=$ $\left\{\frac{1}{k}, \cdots, \frac{k-1}{k}\right\}, X_{2}=\left\{0, \frac{1}{k}, \cdots, \frac{k-1}{k}\right\}, X_{3}=\left\{\frac{1}{k}, \cdots, \frac{k-1}{k}, 1\right\}$ and $X_{4}=\left\{0, \frac{1}{k}, \cdots\right.$, $\left.\frac{k-1}{k}, 1\right\}$.

Then, $\mathcal{F}_{k+1}^{*}=\bigcup_{i=1}^{4} \mathcal{F}\left(G, X_{i}\right)$ where $\mathcal{F}(X, Y)=\{f: X \longrightarrow Y: f$ is surjective $\}$. Since $\mathcal{F}\left(G, X_{i}\right), 1 \leq i \leq 4$, are disjoint two to two, then we have to:
(II) $\left|\mathcal{F}_{k+1}^{*}\right|=\sum_{i=1}^{4}\left|\mathcal{F}\left(G, X_{i}\right)\right|=\left|\mathcal{F}\left(G, X_{i}\right)\right|+2\left|\mathcal{F}\left(G, X_{2}\right)\right|+\left|\mathcal{F}\left(G, X_{4}\right)\right|$.

We observed that if $|G|<\left|X_{i}\right|$, then $\left|\mathcal{F}\left(G, X_{i}\right)\right|=0$. Moreover, taking into account that $|G|=m,\left|X_{1}\right|=k-1,\left|X_{2}\right|=\left|X_{3}\right|=k$ and $\left|X_{4}\right|=k+1$ we have that
(i) $\left|\mathcal{F}\left(G, X_{1}\right)\right|=\sum_{j=0}^{k-2}(-1)^{j}\binom{k-1}{j}(k-1-j)^{m}=(k-1)^{m}-(k-1)(k-$ $2)^{m}+\binom{k-1}{2}(k-3)^{m}-\binom{k-1}{3}(k-4)^{m}+\ldots+(-1)^{j-2}\binom{k-1}{j-2}(k-$ $1-(j-2))^{m}+\ldots+(-1)^{k-3} \frac{(k-1)(k-2)}{2!} 2^{m}+(-1)^{k-2}(k-1)$.
(ii) $\left|\mathcal{F}\left(G, X_{2}\right)\right|=\sum_{j=0}^{k-1}(-1)^{j}\binom{k}{j}(k-j)^{m}=k^{m}-\binom{k}{1}(k-1)^{m}+\binom{k}{2}(k-$ $2)^{m}-\binom{k}{3}(k-3)^{m}+\ldots+(-1)^{j-1}\binom{k}{j-1}(k-(j-1))^{m}+\ldots+(-1)^{k-2}\binom{k}{k-2} 2^{m}+$ $(-1)^{k-1}\binom{k}{k-1}$.
(iii) $\left|\mathcal{F}\left(G, X_{4}\right)\right|=\sum_{j=0}^{k}(-1)^{j}\binom{k+1}{j}(k+1-j)^{m}=(k+1)^{m}-\binom{k+1}{1} k^{m}+$ $\binom{k+1}{2}(k-1)^{m}-\binom{k+1}{3}(k-2)^{m}+\ldots+(-1)^{j-1}\binom{k+1}{j-1}(k-j)^{m}+$ $\ldots+(-1)^{k-1} \frac{(k+1) k}{2!} 2^{m}+(-1)^{k}(k+1)$.

From (i), (ii) and (iii) we have that
(III) $\left|\mathcal{F}\left(G, X_{1}\right)\right|+2\left|\mathcal{F}\left(G, X_{2}\right)\right|+\left|\mathcal{F}\left(G, X_{4}\right)\right|=\left((k+1)^{m}-\binom{k+1}{1} k^{m}+\right.$ $\binom{k+1}{2}(k-1)^{m}-\binom{k+1}{3}(k-2)^{m}+\ldots+(-1)^{j}\binom{k+1}{j}(k-(j-1))^{m}+\ldots+$ $\left.(-1)^{k-1} \frac{(k+1) k}{2!} 2^{m}+(-1)^{k}(k+1)\right)+\left(2 k^{m}-2\binom{k}{1}(k-1)^{m}+2\binom{k}{2}(k-2)^{m}-\right.$ $2\binom{k}{3}(k-3)^{m}+\ldots+2(-1)^{j-1}\binom{k}{j-1}(k-(j-1))^{m}+\ldots+2(-1)^{k-2} \frac{k(k-1)}{2!} 2^{m}+$ $\left.2(-1)^{k-1} k\right)+\left((k-1)^{m}-(k-1)(k-2)^{m}+\binom{k-1}{2}(k-3)^{m}-\binom{k-1}{3}(k-\right.$ $4)^{m}+\ldots+(-1)^{j-2}\binom{k-1}{j-2}(k-(j-2))^{m}+\ldots+(-1)^{k-3} \frac{(k-1)(k-2)}{2!} 2^{m}+$ $\left.(-1)^{k-2}(k-1)\right)=(k+1)^{m}-\left(\left(\binom{k+1}{1}-2\right) k^{m}-\left(\binom{k+1}{2}-2\binom{k}{1}+\right.\right.$ $)(k-1)^{m}+\left(\binom{k+1}{3}-2\binom{k}{2}+(k-1)\right)(k-2)^{m}-\left(\binom{k+1}{4}-2\binom{k}{3}+\right.$ $\left.\binom{k-1}{2}\right)(k-3)^{m}+\left(\binom{k+1}{5}-2\binom{k}{4}+\binom{k-1}{3}\right)(k-4)^{m}+\ldots+$

$$
\begin{aligned}
& \left((-1)^{j}\binom{k+1}{j}+(-1)^{j-1} 2\binom{k}{j-1}+(-1)^{j-2}\binom{k-1}{j-2}\right)(k-(j-1))^{m}+ \\
& \ldots+\left((-1)^{k-1} \frac{(k+1) k}{2!}+(-1)^{k-2} 2 \frac{k(k-1)}{2!}+(-1)^{k-3} \frac{(k-1)(k-2)}{2!}\right) 2^{m}+ \\
& \left.\left((-1)^{k}\binom{k+1}{k}+(-1)^{k-1} 2 k+(-1)^{k-2}(k-1)\right)\right)
\end{aligned}
$$

We note that, $(-1)^{k}(k+1)+(-1)^{k-1} 2 k+(-1)^{k-2}(k-1)=0$. Indeed,
(i) if k is even, $(k+1)-2 k+k-1=0$,
(ii) if k is odd, $-(k+1)+2 k-(k-1)=0$.

Therefore, the coefficient of 1^{m} is 0 . In an analogous way we obtain that the coefficient of 2^{m} is -1 if k is even and it is 1 if k if odd, this is the coefficient of 2^{m} is $(-1)^{k+1}$.

We will discuss the general term:

$$
\left.(-1)^{j}\binom{k+1}{j}+(-1)^{j-1} 2\binom{k}{j-1}+(-1)^{j-2}\binom{k-1}{j-2}\right)(k-(j-1))^{m}
$$

If j is even, then $(-1)^{j}=1,(-1)^{j-1}=-1$ and $(-1)^{j-2}=1$ and we can write to this coefficient as $(-1)^{t+1}$ with $1 \leq t \leq k-1$. We develop the previous term and we have that:

$$
\begin{aligned}
& \frac{(k+1) k(k-1)(k-2) \ldots(k-(j-2))}{j(j-1)(j-2)!}-2 \frac{k(k-1)(k-2) \ldots(k-(j-2))}{(j-1)(j-2)!}+ \\
& \frac{(k-1)(k-2) \ldots(k-(j-2))}{(j-2)!}= \\
& \frac{(k-1)(k-2) \ldots(k-(j-2))((k-1) k-2 k j+j(j-1))}{j(j-1)(j-2)!}
\end{aligned}
$$

On the other hand,

$$
((k-1) k-2 k j+j(j-1))=(k-(j-1))(k-j)
$$

from where we can express the general term as follows:

$$
\frac{(k-1)(k-2) \ldots(k-(j-2))((k-(j-1))(k-j))}{j(j-1)(j-2)!}
$$

It is simple to verify that:

$$
\frac{(k-1)(k-2) \ldots(k-(j-2))((k-(j-1))(k-j))}{j(j-1)(j-2)!}=\binom{k-1}{k-1-j} .
$$

If j is odd, reasoning in an analogous way gives the same result.
In short, we have:
(IV) $\left|\mathcal{F}\left(G, X_{1}\right)\right|+2\left|\mathcal{F}\left(G, X_{2}\right)\right|+\left|\mathcal{F}\left(G, X_{4}\right)\right|=$

$$
(k+1)^{m}-\sum_{j=1}^{k-1}(-1)^{j+1}\binom{k-1}{k-1-j}(k+1-j)^{m} .
$$

From (I), (II), (III) and (IV) we conclude that

$$
p_{k+1}=(k+1)^{m}-\sum_{j=1}^{k-1}(-1)^{j+1}\binom{k-1}{k-1-j}(k+1-j)^{m} .
$$

Theorem 2.8 Let $\mathcal{L}_{n+1}(m)$ be a free $M S_{n+1}^{0}$-algebra with m free generators. Then its cardinality is given by the following formula, for $m \geq k-1$,

$$
\begin{aligned}
& \left|\mathcal{L}_{n+1}(m)\right|=\prod_{k=1}^{n}(k+1)^{(k+1)^{m}-\left(\sum_{j=1}^{k-1}(-1)^{j+1}\left(\binom{k-1}{k-1-j}\right)(k+1-j)^{m}\right)} \\
& =2^{2^{m}} \cdot 3^{\left(3^{m}-2^{m}\right)} \cdot 4^{\left(4^{m}-\left(2.3^{m}-2^{m}\right)\right)} \ldots .(n+1)^{(n+1)^{m}-}\left(\left(\sum_{j=1}^{n-1}(-1)^{j+1}\left(\binom{n-1}{n-1-j}\right)(n+1-j)^{m}\right)\right.
\end{aligned}
$$

References

[1] M. C. Canals Frau and A. V. Figallo. $(n+1)$-valued modal implicative semilattices. Proceedings of the twenty second International Symposium on Multiple Valued Logic. Sendai, Japon, 1992, 190-196.
[2] A. Monteiro. Axiomes indépendants pour les algèbres de Brouwer. Rev. de la Unión Matemática Argentina, 27 (1955), 149-160.
[3] W. C. Nemitz. Implicative semi-lattices. Trans. Amer. Math. Soc., 117 (1965), 128-142.
[4] I. Chajda, R. Halaš and J. Kühr. Semilattice structures. Research and Exposition in Mathematics, 30. Heldermann Verlag, Lemgo, 2007.
[5] H. Rasiowa. An algebraic approach to non-classical logics. Studies in Logic and the Foundations of Mathematics, Vol. 78. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1974.
[6] L. Iturrioz. Modal operators on symmetrical Heyting algebras. Universal algebra and applications (Warsaw, 1978). Banach Center Publications, 9.1 (1982), 289-303. http://eudml.org/doc/209233.
[7] S. Burris and H. P. Sankappanavar. A Course in Universal Algebra. Graduate Texts in Mathematics vol. 78. Springer-Verlag, Berlin, 1981.

María Cristina Canals Frau
Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400, San Juan, Argentina
E-mail: mcanalsfrau@gmail.com
Aldo V. Figallo
Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400, San Juan, Argentina
E-mail: avfigallo@gmail.com
Gustavo Pelaitay
Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400, San Juan, Argentina
E-mail: gpelaitay@gmail.com

