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Abstract

The (n+1)-valued modal implicative semilattices (orMSn+1-algebras)
were introduced in the paper [1] by the first and second author. In this
article, our main purpose is to investigate the subvariety of bounded
MSn+1-algebras. In particular, we describe a method to determine the
structure of the bounded MSn+1-algebras with a finite set of free gener-
ators.
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Introduction

The implicative semilattices were defined by A. Monteiro [2] as algebras 〈A,∧,
→, 1〉 of type (2, 2, 0) which satisfy the identities:

1. x→ x = 1,

2. (x→ y) ∧ y = y,

3. x ∧ (x→ y) = x ∧ y,

4. x→ (y ∧ z) = (x→ y) ∧ (x→ z).

This definition is equivalent to that given by Nemitz in [3]. For more details
on the theory of implicative semilattices, see [4] and [5].

Iturrioz introduced in [6] the notion of modal operators on symmetric Heyt-
ing algebras and defined the class of SHn-algebras. In [1] Canals Frau and
Figallo considered some reducts of this class. In particular, they introduced
the following definition.

An (n+1)-valued modal implicative semilattice (orMSn+1-algebra) is an al-
gebra 〈A,→,∧, σ1, . . . , σn, 1〉 such that the reduct 〈A,→,∧, 1〉 is an implicative
semilattice and σ1, . . ., σn are unary operations on A satisfying the following
axioms:
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(M1) (σ1x→ y)→ x = x,

(M2) σi(x→ y)→ (σix→ σjy) = 1, 1 ≤ i ≤ j ≤ n+ 1,

(M3) (σix → σiy) → ((σi+1x → σi+1y) → . . . ((σnx → σny) → σi(x →
y)) . . .) = 1,

(M4) σi(x→ σjy) = x→ σjy, 1 ≤ i, j ≤ n+ 1,

(M5) σnx = (x→ σix)→ σjx, 1 ≤ i ≤ j ≤ n+ 1.

1 Bounded (n+1)-valued modal implicative semilat-
tices

In this section we will introduce the variety of bounded MSn+1-algebras.

Definition 1.1 A bounded (n + 1)-valued modal implicative semilattice (or
MS0

n+1-algebra) is an algebra 〈A,→,∧, σ1, . . . , σn, 0, 1〉 such that the reduct
〈A,→,∧, σ1, . . . , σn, 1〉 is an MSn+1-algebra and it satisfies the following ad-
ditional condition:

(M6) 0→ x = 1.

Example 1.2 Let be Cn+1 = 〈Cn+1,→,∧, σ1, · · · , σn, 0, 1〉 where Cn+1 =
{0, 1n ,

2
n , · · · ,

n−1
n , 1} considered as a sublattice of the real numbers, and the

operations are defined by: x→ y =

{
1 if x ≤ y
y if x 6≤ y , x ∧ y = min{x, y} and

σj(
k
n) =

{
0 if k + j ≤ n
1 if k + j 6≤ n . Then Cn+1 is a MS0

n+1-algebra.

Remark 1.3 The algebra Cn+1 in Example 1.2 and its subalgebras are only
simple MS0

n+1-algebras.

In what follows we will denote by MS0n+1 the variety of MS0
n+1-algebras

and by Con(A), Hom(A,B) and Epi(A,B) the set of MS0
n+1-congruences,

MS0
n+1-homomorphisms from A into B and MS0

n+1-epimorphisms from A onto
B, respectively. Moreover, we will denote by [G] the MS0

n+1-subalgebra of A
generated by G.

Definition 1.4 Let 〈A,→,∧, σ1, . . . , σn, 0, 1〉 be a MS0
n+1-algebra. D ⊆ A is

a modal deductive system of A if it verifies:

(D1) 1 ∈ D,
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(D2) if x, x→ y ∈ D then y ∈ D,

(D3) x ∈ D implies σ1x ∈ D.

Hereafter, we will denote by D(A) ( E(A) ) the set of all modal deductive
systems (maximal modal deductive systems) of A, respectively.

Lemma 1.5 ([1]) Let 〈A,→,∧, σ1, . . . , σn, 0, 1〉 be a MS0
n+1-algebra, then it

satisfies:

(i) Con(A) = {R(D) : D ∈ D(A)}, where R(D) = {(x, y) ∈ A2 : x→ y, y →
x ∈ D}.

(ii) If h ∈ Hom(A,B) then the set ker(h) = {x ∈ A : h(x) = 1}, called kernel
of h, is a modal deductive system of A.

If D ∈ D(A) then we will denote by A/D the quotient algebra A/R(D).

Definition 1.6 Let 〈A,→,∧, σ1, . . . , σn, 0, 1〉 be a MS0
n+1-algebra. D ⊆ A is

an (k + 1)-valued deductive system, 1 ≤ k ≤ n if A/D is isomorphic to Ck+1.

Lemma 1.7 Let 〈A,→,∧, σ1, . . . , σn, 0, 1〉 be a MS0
n+1-algebra and M ∈ D(A).

Then, the following conditions are equivalent:

(i) M is a maximal modal deductive system,

(ii) M is a (k + 1)-valued deductive system, 1 ≤ k ≤ n.

Proof. The following conditions are equivalent to each other:

1. M is a maximal modal deductive system,

2. A/M is simple,

3. A/M ' Ck+1,

4. M is an (k + 1)-valued deductive system, 1 ≤ k ≤ n.

�

Theorem 1.8 ([1]) MS0n+1 is semisimple.
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2 Free MS0
n+1-algebras

The notion of free MS0
n+1-algebra is defined in the usual way as follows:

Definition 2.1 If m > 0 is an arbitrary cardinal number, then we say that
Ln+1(m) is the MS0

n+1-algebra with m free generators if:

(L1) there is G ⊆ Ln+1(m) such that [G] = Ln+1(m) and |G| = m,

(L2) any mapping f from G into an arbitrary MS0
n+1-algebra A can be ex-

tended to a MS0
n+1-homomorphism h : Ln+1(m) −→ A such that h|G = f.

Since MS0
n+1-algebras are equationally definable, for any cardinal number

m > 0 there exists Ln+1(m) and it is unique up to isomorphisms. Moreover
the MS0

n+1-homomorphisms h of Definition 2.1 is also unique.
In what follow m is a positive integer, and G = {g1, g2, · · · , gm} is a set of

free generators of Ln+1(m).
Our next task will be to prove that the variety MS0n+1 is locally finite.

Lemma 2.2 Let f ∈ F∗k+1 = {f ∈ (Ck+1)
G : [f(G)] = Ck+1}. Then ker(hf ) ∈

E(Ln+1(m)), where hf : Ln+1(m) −→ Ck+1 is the homomorphism extending f .

Proof. Let f ∈ F∗k+1. Since hf (Ln+1(m)) = [f(G)] = Ck+1, we infer that
hf surjective and therefore Ln+1(m)/ ker(hf ) ' Ck+1 from which we obtain
that ker(hf ) is a (k+1)-valued modal deductive system. Then, from the above
result and Lemma 1.7 we conclude that ker(hf ) ∈ E(Ln+1(m)). �

It is well known that all MSn+1-algebras is a product subdirect of a family
of chain Cn+1 (see [1, Theorem 2.6, Theorem 2.7]), as many as maximal kernels
have the algebra. We will obtain a number of maximal modal deductive systems
that has finitely generated free algebra.

Proposition 2.3 |E(Ln+1(m))| ≤ |(Cn+1)
G|.

Proof. Let ϕ : (Cn+1)
G −→ E(Ln+1(m)), defined by ϕ(f) = ker(hf ). From

Lemma 2.2, ϕ is well defined. Let’s prove that ϕ is surjective. Indeed, let
M ∈ E(Ln+1(m)). Then, from Lemma 1.7 we have that Ln+1(m)/M ' Ck+1

is a subalgebra of Cn+1. Hence, if αM is the isomorphism between Ln+1(m)/M
and Ck+1 and considered αM ◦ qM |G : G −→ Cn+1 it follows that αM ◦ qM |G ∈
(Cn+1)

G and ϕ(αM ◦ qM |G) = M . Then, ϕ is surjective, and therefore we have

that |E(Ln+1(m))| ≤ |(Cn+1)
G|.

�
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Proposition 2.4 Ln+1(m) is finite.

Proof. From Theorem 1.8 and well known results of universal algebras we
have that ( see [7]), Ln+1(m) is isomorphic to a subalgebra of∏

M∈E(Ln+1(m))

Ln+1(m)/M.

On the other hand, we have that Ln+1(m)/M ' Ck+1 with 1 ≤ k ≤ n. From
this last statement and Proposition 2.3 we conclude that Ln+1(m) is finite. �

Theorem 2.5 MS0n+1 is a locally finite variety.

Proof. It is a direct consequence of Proposition 2.4 and [7]. �

Let Mk+1 = {M ∈ E(Ln+1(m)) : Ln+1(m)/M ' Ck+1}, 1 ≤ k ≤ n. Then,
taking into account that Ln+1(m) is finite it follows that

Ln+1(m) '
∏

M∈M2

Ln+1(m)/M×
∏

M∈M3

Ln+1(m)/M×· · ·×
∏

M∈Mn+1

Ln+1(m)/M

On the other hand, from the Proposition 2.3 we have that Mk+1 is finite
for all k, 1 ≤ k ≤ n.

Hence, if we denote with pk+1 = |Mk+1| we conclude that:

Ln+1(m) '
n∏

k=1

(Ck+1)
pk+1 .

To calculate the cardinal of free algebra with a finite set of free generators
we only need to determine the numbers pk+1 = |Mk+1|.

Lemma 2.6 |Mk+1| = |Epi(Ln+1(m), Ck+1)|.

Proof. Let αk+1 : Epi(Ln+1(m), Ck+1) −→Mk+1 the function definided by
the prescription αk+1(h) = ker(h). For each M ∈Mk+1 let h = Θ ◦ qM , where
qM is the canonical epimorphism and Θ is the isomorphism from Ln+1(m)/M to
Ck+1. Then, h ∈ Epi(Ln+1(m), Ck+1) and αk+1(h) = M . Indeed, αk+1(h) =
ker(Θ ◦ qM ). On the other hand the following conditions are equivalent:

1. x ∈ ker(Θ ◦ qM ),

2. Θ ◦ qM (x) = 1,
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3. Θ(qM (x)) = Θ(1),

4. qM (x) = 1,

5. x ∈ ker(qM ).

Therefore, αk+1 is surjective. So, |Mk+1| ≤ |Epi(Ln+1(m), Ck+1)|. Moreover,
if M ∈ Mk+1 and αk+1(h) = M then α−1k+1(M) = {g ◦ h : g ∈ Aut(Ck+1)},
where Aut(Ck+1) is the set of all automorphism of Ck+1. Therefore,

|Mk+1| =
|Epi(Ln+1(m), Ck+1)|

|Aut(Ck+1)|
.

On the other hand, it is easy to see that the unique automorphism of Ck+1 is
the identity map. From which we conclude that |Mk+1| = |Epi(Ln+1(m), Ck+1)|

�

Lemma 2.7 |Epi(Ln+1(m), Ck+1)| = |F∗k+1|.

Proof. Let φ : Epi(Ln+1(m), Ck+1) −→ F∗k+1 defined by φ(h) = h |G. Since
G is a free generator system of Ln+1(m) we have that φ is injective. On the
other hand, let f ∈ F∗k+1, then f : G −→ Ck+1 it is that [f(G)] = Ck+1.
Hence, there is a unique extension hf of f . So, hf ∈ Epi(Ln+1(m), Ck+1) and
φ(hf ) = f, from which we conclude that φ is surjective. Then, φ is bijective
which completes the proof. �

From the above it follows that

(I) pk+1 = |F∗k+1|.

In order to determine |F∗k+1| we note that from the definition of opera-
tions in Ck+1, the only subsets of this algebra that generate it are: X1 =
{ 1k , · · · ,

k−1
k }, X2 = {0, 1k , · · · ,

k−1
k }, X3 = { 1k , · · · ,

k−1
k , 1} andX4 = {0, 1k , · · · ,

k−1
k , 1}.

Then, F∗k+1 =
4⋃

i=1
F(G,Xi) where F(X,Y ) = {f : X −→ Y : f is surjective}.

Since F(G,Xi), 1 ≤ i ≤ 4, are disjoint two to two, then we have to:

(II) |F∗k+1| =
4∑

i=1
|F(G,Xi)| = |F(G,Xi)|+ 2|F(G,X2)|+ |F(G,X4)|.

We observed that if |G| < |Xi|, then |F(G,Xi)| = 0. Moreover, taking into
account that |G| = m, |X1| = k− 1, |X2| = |X3| = k and |X4| = k+ 1 we have
that
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(i) |F(G,X1)| =
k−2∑
j=0

(−1)j
( k − 1

j

)
(k − 1 − j)m = (k − 1)m − (k − 1) (k −

2)m +
( k − 1

2

)
(k − 3)m −

( k − 1
3

)
(k − 4)m + . . . + (−1)j−2

( k − 1
j − 2

)
(k −

1− (j − 2))m + . . .+ (−1)k−3
(k − 1)(k − 2)

2!
2m + (−1)k−2(k − 1).

(ii) |F(G,X2)| =
k−1∑
j=0

(−1)j
( k
j

)
(k − j)m = km −

( k
1

)
(k − 1)m +

( k
2

)
(k −

2)m−
( k

3

)
(k−3)m+. . .+(−1)j−1

( k
j − 1

)
(k−(j−1))m+. . .+(−1)k−2

( k
k − 2

)
2m+

(−1)k−1
( k
k − 1

)
.

(iii) |F(G,X4)| =
k∑

j=0
(−1)j

( k + 1
j

)
(k+ 1− j)m = (k+ 1)m−

( k + 1
1

)
km +( k + 1

2

)
(k − 1)m −

( k + 1
3

)
(k − 2)m + . . .+ (−1)j−1

( k + 1
j − 1

)
(k − j)m +

. . .+ (−1)k−1
(k + 1)k

2!
2m + (−1)k(k + 1).

From (i), (ii) and (iii) we have that

(III) |F(G,X1)| + 2|F(G,X2)| + |F(G,X4)| =

(
(k + 1)m −

( k + 1
1

)
km +( k + 1

2

)
(k−1)m−

( k + 1
3

)
(k−2)m+. . .+(−1)j

( k + 1
j

)
(k−(j−1))m+. . .+

(−1)k−1
(k + 1)k

2!
2m+(−1)k(k+1)

)
+

(
2km−2

( k
1

)
(k−1)m+2

( k
2

)
(k−2)m−

2
( k

3

)
(k−3)m+. . .+2(−1)j−1

( k
j − 1

)
(k−(j−1))m+. . .+2(−1)k−2

k(k − 1)

2!
2m+

2(−1)k−1k

)
+

(
(k−1)m−(k−1)(k−2)m+

( k − 1
2

)
(k−3)m−

( k − 1
3

)
(k−

4)m + . . .+ (−1)j−2
( k − 1
j − 2

)
(k− (j−2))m + . . .+ (−1)k−3

(k − 1)(k − 2)

2!
2m +

(−1)k−2(k−1)

)
= (k+1)m−

((( k + 1
1

)
−2

)
km−

(( k + 1
2

)
−2
( k

1

)
+)

(k−1)m+

(( k + 1
3

)
−2
( k

2

)
+(k−1)

)
(k−2)m−

(( k + 1
4

)
−2
( k

3

)
+

( k − 1
2

))
(k − 3)m +

(( k + 1
5

)
− 2
( k

4

)
+
( k − 1

3

))
(k − 4)m + . . . +
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(
(−1)j

( k + 1
j

)
+ (−1)j−12

( k
j − 1

)
+ (−1)j−2

( k − 1
j − 2

))
(k − (j − 1))m +

. . . +

(
(−1)k−1

(k + 1)k

2!
+ (−1)k−22

k(k − 1)

2!
+ (−1)k−3

(k − 1)(k − 2)

2!

)
2m +(

(−1)k
( k + 1

k

)
+ (−1)k−12k + (−1)k−2 (k − 1)

))
.

We note that, (−1)k(k + 1) + (−1)k−12k + (−1)k−2(k − 1) = 0. Indeed,

(i) if k is even, (k + 1)− 2k + k − 1 = 0,

(ii) if k is odd, −(k + 1) + 2k − (k − 1) = 0.

Therefore, the coefficient of 1m is 0. In an analogous way we obtain that
the coefficient of 2m is −1 if k is even and it is 1 if k if odd, this is the coefficient
of 2m is (−1)k+1.

We will discuss the general term:

(−1)j
( k + 1

j

)
+ (−1)j−1 2

( k
j − 1

)
+ (−1)j−2

( k − 1
j − 2

))
(k− (j− 1))m

If j is even, then (−1)j = 1, (−1)j−1 = −1 and (−1)j−2 = 1 and we can
write to this coefficient as (−1)t+1 with 1 ≤ t ≤ k−1. We develop the previous
term and we have that:

(k + 1)k(k − 1)(k − 2) . . . (k − (j − 2))

j(j − 1)(j − 2)!
− 2

k(k − 1)(k − 2) . . . (k − (j − 2))

(j − 1)(j − 2)!
+

(k − 1)(k − 2) . . . (k − (j − 2))

(j − 2)!
=

(k − 1)(k − 2) . . . (k − (j − 2))
(

(k − 1)k − 2kj + j(j − 1)
)

j(j − 1)(j − 2)!
.

On the other hand,(
(k − 1)k − 2kj + j(j − 1)

)
= (k − (j − 1))(k − j),

from where we can express the general term as follows:

(k − 1)(k − 2) . . . (k − (j − 2))
(

(k − (j − 1))(k − j)
)

j(j − 1)(j − 2)!
.

It is simple to verify that:
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(k − 1)(k − 2) . . . (k − (j − 2))
(

(k − (j − 1))(k − j)
)

j(j − 1)(j − 2)!
=
( k − 1
k − 1− j

)
.

If j is odd, reasoning in an analogous way gives the same result.
In short, we have:

(IV) |F(G,X1)|+ 2|F(G,X2)|+ |F(G,X4)| =

(k + 1)m −
k−1∑
j=1

(−1)j+1
( k − 1
k − 1− j

)
(k + 1− j)m.

From (I), (II), (III) and (IV) we conclude that

pk+1 = (k + 1)m −
k−1∑
j=1

(−1)j+1
( k − 1
k − 1− j

)
(k + 1− j)m.

Theorem 2.8 Let Ln+1(m) be a free MS0
n+1−algebra with m free generators.

Then its cardinality is given by the following formula, for m ≥ k − 1,

|Ln+1(m)| =
n∏

k=1

(k + 1)
(k+1)m−

(
k−1∑
j=1

(−1)j+1

(
( k−1
k−1−j)

)
(k+1−j)m

)

= 22
m

.3(3
m−2m).4(4

m−(2.3m−2m)) . . . .(n+1)
(n+1)m−

((
n−1∑
j=1

(−1)j+1

(
( n−1
n−1−j)

)
(n+1−j)m

)
.
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