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Abstract

The (n+1)-valued modal implicative semilattices (or M S, 1-algebras)
were introduced in the paper [1] by the first and second author. In this
article, our main purpose is to investigate the subvariety of bounded
M S, 1-algebras. In particular, we describe a method to determine the
structure of the bounded M S,,;1-algebras with a finite set of free gener-
ators.
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Introduction

The implicative semilattices were defined by A. Monteiro [2] as algebras (A, A,
—, 1) of type (2,2,0) which satisfy the identities:

1.z —>x=1,

2. (x =y Ay =y,

3.z AN(x—=y)=xANy,

4. 2= (yYNz)=(x =y N(z— 2).

This definition is equivalent to that given by Nemitz in [3]. For more details
on the theory of implicative semilattices, see [4] and [5].

Iturrioz introduced in [6] the notion of modal operators on symmetric Heyt-
ing algebras and defined the class of SHn-algebras. In [1] Canals Frau and
Figallo considered some reducts of this class. In particular, they introduced
the following definition.

An (n+1)-valued modal implicative semilattice (or M S, 1-algebra) is an al-
gebra (A, —,A\,01,...,0n,1) such that the reduct (A, —, A, 1) is an implicative
semilattice and o1, ..., o, are unary operations on A satisfying the following
axioms:
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(M1) (012 = y) = x ==z,
: ’ N=l1<i<j< |
(M2) oi(z = y) = (oix —ojy) =1,1<i<j<n+1

(Mg) (O'Z'.T — aiy) — ((0’,‘_}_111 — ai+1y) — ((onx — any) — UZ‘(.T —

y)...) =1,

(M4) oi(z = ojy) =2 = o5y, 1 <i,j <n+1,

(M5) opz=(r = o) = ojo, 1 <i<j<n+1.

1 Bounded (n+1)-valued modal implicative semilat-
tices

In this section we will introduce the variety of bounded M S, -algebras.

Definition 1.1 A bounded (n + 1)-valued modal implicative semilattice (or
MSY, | -algebra) is an algebra (A,—, A,01,...,0,,0,1) such that the reduct
(A, =, N\, 01,...,0n,1) is an MS,+1-algebra and it satisfies the following ad-
ditional condition:

(M6) 0 — = = 1.

Example 1.2 Let be Cpy1 = (Cpy1,—,A\,01,-++ ,0,,0,1) where Cpyq =

{0,%,%,'-- ,”T_l,l} considered as a sublattice of the real numbers, and the
, ) 1 ifx<y .
operations are defined by: T — y = { v ifzgy’ x Ay =min{z,y} and
0 ifk+j5<n .
gj(%) = { i k +j, % " Then Cpi1 18 a M5’2+1—algebm.

Remark 1.3 The algebra Cy41 in Example 1.2 and its subalgebras are only
simple M52+1-algebras.

In what follows we will denote by MS? 11 the variety of M S 1-algebras
and by Con(A), Hom(A, B) and Epi(A, B) the set of MSY,-congruences,
M 52 1-homomorphisms from A into B and M Sg 1-epimorphisms from A onto
B, respectively. Moreover, we will denote by [G] the M S? 41-subalgebra of A
generated by G.

Definition 1.4 Let (A, —,A,01,...,0p,0,1) be a MS?LH—algebm. D C A s
a modal deductive system of A if it verifies:

(D1) 1€ D,
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(D2) if z,x —y € D theny € D,

(D3) x € D implies o1x € D.

Hereafter, we will denote by D(A) (£(A)) the set of all modal deductive
systems (maximal modal deductive systems) of A, respectively.

Lemma 1.5 ([1]) Let (A, —,A,01,...,0,,0,1) be a M52+1—algeb7"a, then it
satisfies:

(i) Con(ﬁ) ={R(D): D € D(A)}, where R(D) = {(z,y) € A%2: 2 — y,y —
x € D}.

(i1) If h € Hom(A, B) then the set ker(h) = {x € A : h(x) = 1}, called kernel
of h, is a modal deductive system of A.

If D € D(A) then we will denote by A/D the quotient algebra A/R(D).

Definition 1.6 Let (A, —,A,01,...,0,,0,1) be a M52+1—algebra. D CAis
an (k + 1)-valued deductive system, 1 < k <n if A/D is isomorphic to Cl41.

Lemma 1.7 Let (A, —, A, 01,...,0,,0,1) bea M52+1-algebra and M € D(A).
Then, the following conditions are equivalent:

(i) M is a mazimal modal deductive system,
(ii) M is a (k+ 1)-valued deductive system, 1 < k < n.
Proof. The following conditions are equivalent to each other:
1. M is a maximal modal deductive system,
2. A/M is simple,
3. A/M ~ Cjyq,

4. M is an (k + 1)-valued deductive system, 1 < k <n.

Theorem 1.8 ([1]) MSY., is semisimple.
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2  Free MSY,  -algebras
The notion of free M S ;-algebra is defined in the usual way as follows:

Definition 2.1 If m > 0 is an arbitrary cardinal number, then we say that
Lyp11(m) is the M32+1—algebra with m free generators if:

(L1) there is G C Lyy1(m) such that [G] = Lyp11(m) and |G| = m,

(L2) any mapping f from G into an arbitrary M52+1—algebra A can be ex-
tended to a M S} | -homomorphism h : L 1(m) — A such that hig = f.

Since M SY, ;-algebras are equationally definable, for any cardinal number
m > 0 there exists £, +1(m) and it is unique up to isomorphisms. Moreover
the M SY 1-homomorphisms A of Definition 2.1 is also unique.

In what follow m is a positive integer, and G = {g1, 92, ,gm} is a set of
free generators of L,11(m).

Our next task will be to prove that the variety MS2 11 is locally finite.

Lemma 2.2 Let f € Fi = {f € (Ck41)? : [f(G)] = Cry1}. Thenker(hy) €
E(Lpg1(m)), where hy : Lni1(m) — Ciyq is the homomorphism extending f.

Proof. Let f € F,,. Since hy(Lny1(m)) = [f(G)] = Cry1, we infer that
hy surjective and therefore L, 41(m)/ker(hy) ~ Ci41 from which we obtain
that ker(hy) is a (k+1)-valued modal deductive system. Then, from the above
result and Lemma 1.7 we conclude that ker(hy) € E(Ly41(m)). |

It is well known that all M S,,41-algebras is a product subdirect of a family
of chain Cj, 11 (see [1, Theorem 2.6, Theorem 2.7]), as many as maximal kernels
have the algebra. We will obtain a number of maximal modal deductive systems
that has finitely generated free algebra.

Proposition 2.3 |£(L,11(m))] < |[(Cnt1)C].

Proof. Let ¢ : (Cny1)? — E(Lp41(m)), defined by ¢(f) = ker(hy). From
Lemma 2.2, ¢ is well defined. Let’s prove that ¢ is surjective. Indeed, let
M € E(Lp+1(m)). Then, from Lemma 1.7 we have that L, 41(m)/M ~ Cii1
is a subalgebra of C,41. Hence, if aps is the isomorphism between £,,41(m)/M
and Cy41 and considered ajps o Mg : G — Cp41 it follows that aps o qm|e €
(Cpi1)® and @(ap o qum|;) = M. Then, ¢ is surjective, and therefore we have
that [€(Lns1(m))] < |(Cos1)C].

]
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Proposition 2.4 £, 1(m) is finite.

Proof. From Theorem 1.8 and well known results of universal algebras we
have that ( see [7]), L,+1(m) is isomorphic to a subalgebra of

[I  conmr

Me&(Ln+1(m))

On the other hand, we have that £,,41(m)/M ~ Cj41 with 1 < k < n. From
this last statement and Proposition 2.3 we conclude that £,,11(m) is finite. W

Theorem 2.5 MS?L_H is a locally finite variety.

Proof. It is a direct consequence of Proposition 2.4 and [7]. [

Let Mk+1 = {M S 5(£n+1(m)) : En+1(m)/M ~ Ck;—i—l}a 1 < k <n. Then,
taking into account that £,1(m) is finite it follows that

Lopi(m)~ [ Lanm)/Mx J] Lusa(m)/Mx--x [ Lopa(m)/M
M€M2 MGM?, MGM'rH»l

On the other hand, from the Proposition 2.3 we have that My is finite
forall k, 1 <k <n.
Hence, if we denote with pgi1 = [Mpy41| we conclude that:

n

Loyr(m) = [[(Crra)e.
k=1

To calculate the cardinal of free algebra with a finite set of free generators
we only need to determine the numbers pgy1 = | Mgyl

Lemma 2.6 |(Mj.;| = |Epi(Ly+1(m), Cry1)].

Proof. Let ajy1: Epi(Ly+1(m), Cky1) — Mj1 the function definided by
the prescription ag41(h) = ker(h). For each M € M1 let h = © o gpr, where
qp is the canonical epimorphism and © is the isomorphism from £,,+1(m)/M to
Ck+1. Then, h € Epi(Ly+1(m),Cry1) and agyq(h) = M. Indeed, apiq(h) =
ker(© o gpr). On the other hand the following conditions are equivalent:

1. z € ker(© o qpr),
2. Ooqu(z) =1,
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3. O(qu(x)) = O(1),
4. qp(x) =1,
5. x € ker(qum).

Therefore, a4 is surjective. So, |[Myy1| < |Epi(Lyy1(m), Cis1)|. Moreover,
if M € Myy1 and agy1(h) = M then a;il(M) ={goh:g e Aut(Cit1)},
where Aut(Cy41) is the set of all automorphism of Cy1. Therefore,

|Epi(Lns1(m), Cry1)|
|Aut(Cry1)]
On the other hand, it is easy to see that the unique automorphism of C1 is

the identity map. From which we conclude that [My1| = [Epi(Lyt1(m), Cri1)|
|

(Miy1| =

Lemma 2.7 [Epi(Ly11(m), Crr1)| = [Fil-

Proof. Let ¢ : Epi(Lyy1(m), Cry1) — Fj,, defined by ¢(h) = h |g. Since
G is a free generator system of £,,11(m) we have that ¢ is injective. On the
other hand, let f € F; ,, then f : G — Cgyy it is that [f(G)] = Cpy1.
Hence, there is a unique extension hy of f. So, hy € Epi(Ly41(m), Crq1) and
¢(hy) = f, from which we conclude that ¢ is surjective. Then, ¢ is bijective
which completes the proof. |

From the above it follows that

(1) pr+1 = [Frpal-

In order to determine |F}, ;| we note that from the definition of opera-
tions in Ck+17 the only subsets of this algebra that generate it are: X; =
{%a ) 1} X2_{07k7 o 7%}7)(3:{%7"' ak 1 1}andX4_{0ak7"' )

Then, Fi | = U F(G, X;) where F(X,Y) ={f: X — Y : f is surjective}.

Since F(G, X;), 1 < © < 4, are disjoint two to two, then we have to:
4
(ID) [Fial = ; [F(G, Xa)| = |F(G, Xo)| + 2|F(G, Xo)| + [ F(G, Xa)l.
We observed that if |G| < |X;|, then | F(G, X;)| = 0. Moreover, taking into

account that |G| =m, | X1| =k —1, | Xo| = |X3| = k and |X4| = k+ 1 we have
that
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0 17X = 5 0 (K )y = e e e

=0
2)m+(k;1)(l~c—3) <k51>(k 4)m +(—1)'(§_;)(k—
1—(—2)"+...+ (1) (k= Dk =2) 1)( 2) g + (=) 2(k - 1).
. k=l k e
(i) [F(G. Xa)| = T (-1 () )= =k () ()
2)’”—( g )(k—3)m+...+(—1)]’1( jfl )(k—(j—l))m+...+(—1)"”’2( kﬁz )2m+
(_1)’%1( k— ' 1
k kE+1 o m E+1N, .,
(iii) |F(G, Xq)| = jX_)O( 1)J ( i )(k+1—j) =(k+1) —( 1 )k +
( "”gl )(k:—l) _ ( kgl )(k—2)m+...+(—1)j—1( ’;fi )(k:—j)m+
...+(—1)k1W2m+(—1)k(k+1).

From (i), (ii) and (iii) we have that
(1) |F(G, X1)| + 2|F(G, Xa)| + |F (G, Xa)| = ((k o (PP Y

( "";1 ) k=1 ( k;:l =2y (=17 kjl ==y
(et ;1)""2%(1)k<k+1)>+<2km2( ) )k
2("7)< 21 (j'“1 ) (kG- 1>>m+-.-+2(—1)“k(k2!_ Dymy
v ) “oma (Mo (U e
4™ (~1)i 2( k- ;)(k (j—2)" +...+(—1)k—3(k_1)2(!k_2)2m+

(~1)F2(k - 1) (k+1)" (( (")~ 2)1@’”—((’“;1)—2(’;
) ((k )- ( )+ (k )>(’f 2)™ ((k11>_2(/§>+
(5w (45125 + (45 ames
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(@4y<kf1>+w—nfb(.k1>+04yﬂ<@_1)>w—@—4»m+

J— J—2

((—1ﬁ< k:;l)-+(—4)”42k4-@—nk—2@+—1))).

We note that, (—1)¥(k+1) + (=1)*"12k + (=1)*2(k — 1) = 0. Indeed,
(i) if kiseven, (k+1)—2k+k—1=0,
(i) if kisodd, —(k+1)+2k—(k—1)=0.

Therefore, the coefficient of 1™ is 0. In an analogous way we obtain that
the coefficient of 2™ is —1 if k is even and it is 1 if k if odd, this is the coefficient
of 2™ is (—1)F+1,

We will discuss the general term:

o k+1 ; k , k—1 .
—i () et (CF )i (5D ) =G -

Cop ()L e ew(50,) Ja-G-)

If j is even, then (=1)/ = 1, (—=1)’~! = —1 and (—=1)’~2 = 1 and we can
write to this coefficient as (—1)**! with 1 <t < k—1. We develop the previous
term and we have that:

k+Dk(k— D)k —-2)...(k— (G —2) k(k—1)k—2)...(k—(j—2))

3G -1 -2)! 2 G- -2 +
(k=1)(k—=2)...(k—(j—2) _
(7 —2)!
(k—D%—%”(k—U—%K%—l%—2M+jU—D)
JG- DG -2 |

On the other hand,

(0= 1)k = 265+ = 1) = (k = (G = ) (k = j),

from where we can express the general term as follows:

(k= 1)k =2).. (k= G = 2) (k= (G = D)k = )
G =D -2 |

It is simple to verify that:
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(k—1><k—2>...<k—(j—2>>(<k—<j—1>><k—j>)_( o
—(, |

3G =10 = 2)! —1=7

If j is odd, reasoning in an analogous way gives the same result.
In short, we have:

(IV) [F(G, X1)[ + 2| F (G, X2)| + | F(G, Xa)| =

(k+1)m™ — (_1)j+1< .

el k—1

i )k +1—j)m

j=1
From (I), (II), (III) and (IV) we conclude that

k—1 . _
per =t ) = S (T e —gm

Theorem 2.8 Let L,,11(m) be a free MS?LH—algebm with m free generators.
Then its cardinality is given by the following formula, for m > k — 1,

Loam)] = 16+ 1)

— 2™ 3(8M—2"™) (4™ —(2.3"—2"™))

o= (S e () werm)

(n+1)<n+1>m((:§<w‘“ ((nﬁ;ij)) <n+1fj>m) |
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