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Abstract

Let £ be a first order relational language with identity and let L,g
be the usual infinitary extension of £. Given an L-structure £ and two
substructures Fp, F2 of £; an L,p-strong isomorphism of F; and F3 is
an isomorphism f : F; — JF> which preserves the intersections of the
L,p-definable relations of £ (Definition 4.1). For a suitable choice of
«, B; a necessary and sufficient condition for f to be extendable to an
automorphism of £ is that f be L,g-strong (Theorem 4.2). If every
isomorphism between substructures of £ is L,g-strong for an adequate
choice of a and g, it follows that £ is homogeneous (Theorem 4.5). The
result is used to prove that, for any L-structure £, quantifier elimination
in a suitable language L, implies homogeneity, whatever the cardinality
of € (Corollary 5.3).
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1 Infinitary languages

Let «a, 8 be infinite cardinal numbers, a being a regular cardinal and 8 < .
By L,p we denote an infinitary first order relational language, whose formulas
are sequences of less than « symbols and which admits sequences of less than
a conjunctions and blocks of sequences of less than 3 instantiations.

In order to fix our notation, we recall the rules of formation of formulas.
We denote by |A| the cardinal of a set A and by p(A) its power set and use
freely the notion of concatenation of sequences. (See [2].)

The symbols of L,z are the logical symbols -, A\, 3, relation symbols includ-
ing = and symbols of variables. We use the abbreviations V, \/ and the standard
convention for the use of parenthesis. We assume that the cardinal of the set
V' of variables is « and that we have a fixed enumeration y : 1 € @ — x; € V
of V' and consider V' as an ordered set: z; < x; if and only if ¢ < j. The set of
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relation symbols is denoted by R; to each relation symbol R € R is associated
a natural number ar(R) called the arity of R.

The set of formulas of L, is the smallest set of sequences of symbols of
length less than « satisfying the following conditions:

1.1) If R is a relation symbol of arity n and 7 : n — V is a sequence of
variables, then R7 is a formula;

1.2) If ¢ is a formula, -y is a formula;

1.3) If v < o is an ordinal number and (¢;)i<y is a sequence of formulas,
then A(pi)i<y is a formula;

1.4) If ¢ is a formula, v < (3 is an ordinal number and n : v — V is a
sequence of variables, then dny is a formula.

We also use the notation £,g to denote the set of formulas of the language
Lapg. The set V() of free variables of a formula ¢ is defined as usual. The arity
of ¢ is by definition the ordinal number of V() endowed with the order induced
by the order of V. If ¢ is a formula of arity v, we denote by o, : v = V(¢)
the order preserving bijection. The language L, is the standard finitary first
order relational language and will be denoted simply by L.

2 Relational structures

Given a set F and an ordinal v, a v-tuple of points of F is a sequence p : v — F
of elements of F defined on . We refer to y-tuples also as «-points or points
of arity v defined on E. Denote by E7 the set of all y-points defined on FE; a
relation of arity - is a subset of E7.

Given an L,g-language and a non empty set F, an L,g-relational structure
€ defined on E is a pair (E,R¢) such that Rg is a map that assigns to each
predicate symbol R € R of arity n a relation Rg of arity n defined on E; E is
the domain of £.

If a finitary relational language £ has been fixed and given cardinals «, 3,
a regular and 8 < o, we shall denote by £,3 the infinitary language which has
the same predicate symbols as £ and whose ordered set of variables extend the
set of variables of £, that is , if @; , ¢ < «, are the variables of L,g, then x;,
i < w, are the variables of £. We call L,z the extended language of L. If £ is
an L-structure, then £ is also an L,g-structure.

An interpretation of the variables of an L,g-structure £isamapZ : V — E.
We recall the notion of an interpretation Z of variables satisfying a formula ¢
in an L,g-structure &£, denoted by 7 F¢ ¢, using our notation:

21)If pis RT,then ZTEg p & T o7 € Rg;

2.2) If ¢ is =), then Z F¢ ¢ < T F¢ ¢ (Z does not satisfy ¢ in £);

2.3) If v is A(@i)i<y, then ZFEg ¢ & T g ; for all i < v;
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2.4) If ¢ is Imp, then T E¢ o if and only if there exists Z/ : V — E such
that Z' g ¢ and Z(x;) = I'(x;) for every z; € V(p), that is, Zoo, =7' 0 g,,.
Let ¢ € L,3 be a formula of arity v of an L,g-structure £. The relation
[p]e defined by ¢ in the structure £ is the set of all points p € E? for which
there exists an interpretation Z of the variables satisfying ¢ and p = 7 o oy,
that is:
ple ={Z oo, € E7 : T F¢ p}.

A relation R defined on E is definable in the L,g-structure & if there exists a
formula ¢ € L, such that R = [p]¢.

3 Invariance and definability

Let £ be an L-structure over the domain E and denote by G the group of
automorphisms of £ and by § the cardinal of the set p(J) where § = |E].

The action of G on E extends to an action of G on E7, where ~ is any
ordinal. If g € G and p € E7, g-p = gop. For any choice of a, 3, any relation
definable in the extended L,g-structure £ is invariant under G.

Theorem 3.1 Let p € E° be a bijection of § onto E. The orbit G -p of p
under the action of G is the intersection S of all Lsz-definable relations that
contains p.

Proof. Since S is invariant by G and p € S, it follows that G - p C S.
Let N C E? be the set of all bijections of § onto E. The following formula
of L5, where y is a variable distinct from all z;,7 < J, defines N,

Y\ (=2l AL N\ (i # 2))):

<8 1,7 <8,i#]

Hence S C N.

Let ¢ be any point of S and consider the bijection g =¢-p~' : E — E. We
have g - p = ¢; we shall prove that g € G.

Since § is a regular cardinal, |Lz5| < 6. Hence, the power of the set of
definable relations of arity < § in the Lgz-structure £ is less then §, yielding
that S is definable in the L35-structure. Let ¢ € L55 be a formula that defines S
and assume that the free variables of ¢ are (z;);<s. Let R be a relation symbol
of L of arity n and denote also by R C E™ the relation represented by the
symbol R. Given a point a € R, we define the map n = (x|§)op™toa:n =V
and consider the following formula of Ls;:

P =@ A Rn.
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Let Z : V — FE be an interpretation of variables satisfying, for i < §, Z(x;) = p;.
Since o, = x|d, we have Z o 0, = p and from p € [p]¢ it follows that Z =¢ .
From Zon =po (x|6) " o(x|6)op~toa € R it follows that T |=¢ Rn; hence,
T =¢ 9. From oy = x|6 and p = Z o o, we have that p € [¢)]¢. Thus, there
exists 7/ : V — E such that g =T o |6 and ' o = Z' o (x|6) op L oa € R;
hence, gop~' oa € R or, equivalently, g - a € R. This proves that g - R C R;
interchanging the rules of p and ¢ we have for ¢! = p~logq, ¢! R C R.
Therefore, g - R = R. Since R is any primitive relation of &, this proves that
g € G. Since q is any point of S, we have G - p D S, completing the proof that
G-p=S5S. [ |

Corollary 3.2 Letp: v — E,v <6, be an injection. The orbit G -p C E7 of
p is Lsz-definable.

Proof. If vy =06 and p:J — FE is a bijection, by theorem 3.1 the orbit G- p is
L55-definable. If v < §, the injection p can be extended to a bijection ¢ : § — E.
Let ¢ € Lz; be a formula which defines G' - ¢ and assume that the free vari-
ables of ¢ are (;);<s. Then, the formula 3(x;),<i<s 1 defines the orbit G-p. B

Remark 3.3 Based on corollary 3.2, it is not difficult to prove that the orbit
of any point p € EV,v < ¢ is Lsz-definable. Since any relation of E7, invariant
under the action of G is a union of orbits of G, it follows that every invariant
relation of € of arity v < § is Lss-definable. See [4] and [1].

4 Strong isomorphisms and homogeneity

Let &; be L-structures defined on domains F;; and let J; be substructures of
&; defined on domains F; C Ej;, such that |F;| < |E;|, ¢ = 1,2. We consider &;
also as L,g-structures where L, is the extended language of L.

If v is an ordinal number, for any map f : £y — FEs, we denote by f7 :
E] — EJ the natural extension of f to E}; if p € E], f7(p) = f op.

Definition 4.1 An isomorphism f : Fy — Fb of the L-structures F1 and Fa
is Log-strong if for all formulas ¢ € Lopg of arity v we have

Fleles N FY) = [ple, N FY 2)

If f is the restriction to F} of an isomorphism f' : By — FEy of the £-
structures &1 and &, then f is L,g-strong for any choice of a, 8.
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Theorem 4.2 Let & be isomorphic L-structures with domains E;, and let F;
be a substructure of &, with domains F;, i = 1,2. Denote by § the cardinal
of the set ©(0) where 6 = |Ei| = |Es|. If |Fi| < 0, then any Lsz-strong
isomorphism of F1 and Fa can be extended to an isomorphism of £ and &s.

Proof. Let f : Fi — F» be an Ljs-strong isomorphism of F; and F.
Consider an isomorphism h : E1 — FEs of & and & and a bijection p : v — F1,
where v = |F}|. We extended p to a bijection ¢ : 6 — Fj. By theorem 3.1,
there are formulas ¢, € Lz which define the orbits G - p,G - ¢ of p and ¢
under the action of the group G of automorphisms of £. We assume that
Vip) ={z;:i <~} and V(¢) = {x; : i < d}. Consider the following formula
of Lss:
Y= 3(%)1‘66—7(80 N@).

Clearly p € [¢]g,. By definition of strong isomorphism, we have:

fv([w]&mFl’Y): [w]&mF;'

It follows that fY(p) € [¢]g,- Hence, for each i, v < i < ¢, there ex-
ists ¢(i) € Ep verifying the condition that the sequence ry : § — Ej de-
fined by r2(i) = f(q(7)) if i < v and rao(i) = ¢c(i) if v < i < 0 belongs
to [@le,. Since h® maps [@le, onto [Ple,, there exists 1 € [@lg, such that
h¥(r1) = 3. By definition of (@, there exists g € G satisfying g - ¢ = ry.
Consider the isomorphism f = hog : E1 — FEy of & and &. For ev-
ery element a € Fy, there exists i < « verifying p(i) = ¢(i) = a. Then,
fla) = h(g(a)) = h(g(q(i))) = h(r1(i)) = r2(z) = f(q(i)) = f(a). Therefore, f
extends f. ]

Definition 4.3 Let £ be an L-structure defined on the domain E, assume
|E| = 6. We say that £ has the property of strong isomorphisms if every
isomorphism between substructures of £ is Lz5-strong.

Definition 4.4 Let £ be an L-structure defined on the domain E and assume
that |[E| = §. £ is homogeneous if any isomorphism of substructures of £, of
cardinal less than §, can be extended to an automorphism of €.

Theorem 4.5 An L-structure £ has the property of strong isomorphism if and
only if £ is homogeneous.

Proof. Immediate from theorem 4.2. [ |

Theorem 4.5 states a different form to characterize homogeneous L-structures
considering infinitary entensions of L.
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5 Quantifier elimination and categoricity

Let £ be an L-structure and consider two formulas ¢ and 1 of the extended
language L,3. We say that ¢ and 1 are equivalent in the Lqg-structure € (or
E-equivalent) if [ple = [¢]e.

We say that £ has quantifier elimination in L,g if every formula of L.z
which has free variables is £-equivalent to an L,g-formula without quantifiers.

Theorem 5.1 Let & be isomorphic L-structures, i = 1,2. Given cardinals
a, B, assume that E1 has quantifier elimination in Log. Then, every isomor-
phism f : Fy — Fy of substructures F; of &, 1= 1,2, is L,g-strong.

Proof. By definition of substructures, equality (Z), see definition 4.1, holds
for every atomic formula ¢ of £. It is easily proved that if (Z) holds for a
formula ¢, then it holds also for —p. Let ¢;, i < v < «a be a sequence of
quantifiers-free formulas for which (Z) holds; we shall prove below that (=)
also holds for A(¢;)icy and \/(¥i)i<y-

To prove that (Z) holds for ¢ = A(¢s)i<y, denote by V; the set of free
variables of ¢; and by V = (J,_. V; the set of free variables of . For each
i < 7, consider the formula

1<y

gi=oih N wk=ap,
rLeV-V;
and assume that the arity of ¢ is 7g. It is easily verified that (Z) holds for ;.
Then, we have:

W ([ple, NFY?) = W([Aiey piles N FY°)

h%(ﬂiq([@i]&) nE°)
(ﬂi<»y([902]51 Fvo))

Nicy W0 ([@i]e, N FT°)

= ni<7([¢i]52 N FJO)

= (M) ([@i]e)) N "

[Nicy pile, N F5°
[Ple, N FY".

The proof for \/(y;)i< is similar and will be ommited. |

The next theorem is a model-theoretical generalization of well known the-
orems of theories of algebraically closed fields and differentially closed fields of
characteristic zero. For instance, the Steinitz’s isomorphism theorem: Let K
and K' be fields, and let L, L' be, respectively, algebraic closures of K and K'.
Then, every isomorphism from K to K' is extendible to an isomorphism from
LtolL.
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Theorem 5.2 Let & be isomorphic L-structures over domains E;, i = 1,2;
that have quantifier elimination in Lg5, 6 = |p(E1)|. Assume that F; is a
substructure of & whose domain F; satisfies |F;| < |E;|, i = 1,2. Any isomor-
phism of substructures Fi and Fa admits an extension to an isomorphism of

81 and 52.

Proof. Theorem 5.2 is a straightforward consequence of the theorems 4.2
and 5.1. |

Corollary 5.3 An L-structure £ is homogeneous if it has quantifier elimina-
tion in L5, 0 = |p(E)|.

We recall that an L-structure £ is categorical if any L-structure &', |E| =
|E’|, which is elementary equivalent to &, is isomorphic to &.

The following theorem is easily proved using compacity. If the cardinality
of E is w, the proof can be found in [3], corollary 3.1.3 and proposition 3.1.6.

Theorem 5.4 Let £ be a homogeneous L-structure. If either |R| is finite or
|R| < |E| and & is categorical, then € has quantifier elimination.

The theorem bellow is a consequence of theorems 4.5 and 5.4.

Theorem 5.5 Let € be an L-structure. If either |R| is finite or |R| < |E| and
£ is categorical, then the following statements are equivalent:

1. € has quantifier elimination in Lgs, 0 = |p(F)|;

2. € has the property of strong isomorphisms;

3. &€ is homogeneous.

6 Final remarks

As far as the authors know, the notion of strong isomorphisms, stated in a set
theoretical way, is due to J. S. e Silva. See [5].

Although Silva did not have the notion of infinitary languages, his result in
[5], pp 112-113 is, in essence, equivalent to theorem 4.2. See also [1], theorem
7.1 p 23.
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