
South American Journal of Logic

Vol. 3, n. 1, pp. 25–57, 2017

ISSN: 2446-6719

Logical Analysis of Cyber Vulnerability and
Protection

Esther David, Dov Gabbay, Guy Leshem and Students of CS Ashkelon

Abstract

The growth in IoT will far exceed that of other connected devices.
In contrast to the rapid assimilation of the IoT devices and interfaces,
the technology that ensures these systems are safe and secure is left be-
hind. The IoT safety, security and privacy is composed of several key
aspects. Attention has already been given to vulnerabilities associated
with networked systems as authentication and encryption. However there
exist more vulnerabilities issues in IoT systems for which we aim to de-
velop a detection methodology and propose possible solutions. Specifi-
cally, here we propose techniques for security verification of an IoT sys-
tem that mainly involves inconsistency and vulnerability. The proposed
methods are logic based techniques that were developed especially for the
new challenges that the IoT environment is facing.

1 Motivation

The Internet of Things (IoT), which excludes PCs, tablets and smartphones, is
the network of physical objects that contain embedded technology to communi-
cate and sense or interact with their internal states or the external environment
[2, 6]. Peter Middleton, research director at Gartner said: “The growth in IoT
will far exceed that of other connected devices. By 2020, The number of PCs,
smartphones, and tablets in use will reach about 7.3 billion units, in contrast,
the IoT will have expended at a much faster rate, resulting in a population
of about 26 billion units at that time”. In response to this phenomena, the
Industry develops universal protocols and interfaces (e.g., AllJoyn [3], Thread
[7]) to allow these devices to communicate and inter-operate.

In contrast to the rapid assimilation of the IoT devices and interfaces, the
technology that ensures these systems are safe and secure is left behind [4, 8].
The current available security solutions including hardware and software for
non IoT devices as PCs is not adequate for IoT devices mainly for limited
computational resources and capabilities reasons [5]. Namely, the IoT systems

26 E. David et al.

are in common usage, but without the safety guarantees. This becomes critical
when we consider medical care base IoT devices as an insulin pump that may
directly affect humanity [6]. Moreover, since IoT devices will typically be
embedded deep inside networks, they are attractive attack targets and may
become the “weakest-link” for breaking into a secure IT infrastructure and
leaking sensitive information [8].

This sensitive situation according to [8] is due to the fact that most ven-
dors only deal with parts of IoT ecosystem and, typically, their priorities have
been providing novel functionality, getting their products to market soon, and
making them easy to use, while the security issues are of lower priority.

The IoT safety, security and privacy is composed of several aspects. At-
tention has already been given to vulnerabilities associated with networked
systems as authentication and encryption [6]. However there exist more vul-
nerabilities issues [8] in IoT systems for which we aim to develop a detection
methodology and propose possible solutions.

Against this background in this paper we propose techniques for security
verification of an IoT system that mainly involves inconsistency and vulnera-
bility. For both aspects we assume the system is defined by a set of rules that
describe the desirable progressing of the system. To illustrate an inconsistency,
consider the case of two IoT devices that are controlling the door of a house
and under certain condition simultaneously, one devices command to open the
door while the second command to close the door. To illustrate a vulnerability
situation assume the existence of the following rule: “if the temperature goes
over 30 Celsius degrees, open the door”. Under these circumstances, a hacker
may compromise the controlling unit of an air conditioner to heat the house
and indirectly cause the door to be open.

Interestingly we discover that the classic logic theory is not appropriate
for this problem for three main reasons: (i) the assumption that rules are
transitive in the classic logic theory does not hold in IoT since all the rules
must be performed simultaneously rather than sequentially, (ii) the rules are
not a simple “if then” structure but rather “if then do”, namely we define action
rather condition, (iii) the predicates are no longer Boolean values that may be
just “true” or “false” but rather it also include the case of an “unknown” value.

The most relevant research belongs to Liang et al. [6]. They propose to
translate the rules to a programming language while we propose algorithm
and logic model that will directly be applied on the rules that are written
in a way that is easy for human to understand. Moreover, according to our
proposed algorithms we are able to detect loops while their algorithm runs K
fixed iterations. Specifically they state as follows:

“The Safety Engine adopts a bounded model checking flavor of
solution. It begins by unrolling the control flow graph of the IoT

Logical Analysis of Cyber Vulnerability and Protection 27

app for a fixed number steps (k). Conceptually checking for unsafe
situations extends within this number of k steps. To perform this,
C] code is generated where each rule becomes multiple statements
including an IF statement along with a set of supporting additional
ones”.

Next we provide a use case study to build up the model we propose. Next
we provide the techniques for detecting inconsistency and the vulnerability of
the IoT system.

2 Orientation and a Case Study

This section gives a simple example to explain our language, our problem and
our remedies.

1. The programming language is a time-action-logic language studied in
Ashkelon Academic College in 2015. Call it ATAL – Ashkelon Time
Action Logic.

2. The sample problem is very simplified but adequate for presenting our
model in principle.

We have a structure in a very cold area collecting important and sensitive
data. The structure contains important computers and data. It has to
be kept at a temperature range 0 ≤ T ≤ 20.

It has a heating system controlled by a computer program which ad-
justs the temperature by switching the heating system on and off. If the
heating does not respond then in addition the program sends a signal
to maintenance which then comes to check within a short time. If the
malfunction in the heating system is that it is not switching off and the
temperature rises above 20, then the computer opens a window to cool
the place down.

3. The time action logic language describing the above scenario has a set
of atoms {a, b, c, . . .} representing statements of positive facts. Some of
them may be determined by sensors not under our control, such as “the
temperature is 15 degrees” and some are under our control such as “the
window is open”. To be able to completely handle facts which are under
our control, we also use a symbol “∼” for forming more sentences out of
atoms, the strong negation of facts, i.e. the definite negation of the fact,
e.g. ∼window open = window closed, which can be put in databases. We
expect databases of facts to be consistent, so a database of facts cannot

28 E. David et al.

contain x and ∼ x together but it may not contain any of them, i.e.
neither x nor ∼ x. We can also query a factual database, say database
∆. We can query ∆?x, and answer yes iff x ∈ ∆, or ∆? ∼ x and answer
yes iff ∼ x ∈ ∆. We also have a symbol “¬” which can be used only
in queries from databases. The answer to the query ∆?¬x is yes iff x
is not in ∆. Similarly for the query ?¬ ∼ x. Thus ¬a reads that a is
not included in the database, so we may have that neither window open
nor ∼window open are recorded in the database, and thus the answer
to both the queries ?¬window open and to ?¬ ∼window open may be
affirmative. Finally we also have the action symbol “⇒” which can be
used to formulate rules. The arrow ⇒ is not logical implication but an
action symbol so for example we may write

(¬window open) and (¬ ∼window open) ⇒ window open

which reads

If the database does not record anything about the window then open
the window.

Exact formal definitions will be given later. Meanwhile, let us write what
we have:

(a) atomic sentences a, b,

(b) negation for forming sentences ∼ a from atoms a.

(c) databases ∆ containing both types of sentence of the form x and
∼ x.

(d) using the symbol ¬, we can form queries of the form ?¬a, ?¬ ∼ a, . . .
(e) we also use the conjunction symbol to form conjunction of queries

Q ∧Q′

(f) we use the action arrow ⇒ to form action rules.

The structure of the rule is conjunction of queries of facts ⇒ fact
data item. Since the facts appearing to the left of the “⇒” are
queries, we need not write the question mark.

The meaning of, say,

a∧ ∼ b ∧ ¬ ∼ c ∧ ¬d⇒ e

is the following, when applied to a given database ∆:

If it is confirmed that a and ∼ b are in ∆ (i.e. the answer to each of the
queries ∆?a and ∆? ∼ b is yes and ∼ c and d are not in ∆ (i.e. the answer
to each of the queries ∆?¬ ∼ c and ∆?¬d is yes) then execute/make true

Logical Analysis of Cyber Vulnerability and Protection 29

that e is in ∆, namely add e to ∆ as additional data. This is an operation
that changes ∆ into a new ∆′.

If ∼ e already happens to be in ∆ when we want to add e to the data as a
result of the application of a rule, then to maintain consistency, we take
the already existing ∼ e out of the database ∆ and insert and keep only
e in ∆. Similarly if we want to add ∼ e to the database (after executing
a rule of the form Q ⇒∼ e), then we take out from the database e
and replace it by ∼ e. Let us understand the sequence ∼∼ x as x, i.e.
∼∼ x = x, then we can write for any fact x which we want to put into the
database ∆ after execution of a rule to obtain ∆′: ∆′ = (∆−{∼ x}∪{x}).

4. Data can come into the database also as input from sensors e.g. T = 15
(temperature is 15). In this case the new temperature value naturally
over-writes the old value. We do not have to execute anything ourselves
just read the number from the sensor.

5. We have a starting database ∆0.

6. Time moves in clock ticks t = 0, 1, 2, Action rules are all fired in
parallel at each tick of time t, updating the database from ∆t to ∆t+1

and sensors report at each tick.

7. A set of rules and a starting database are inconsistent if at some stage
tick i we try to execute the rules in parallel on ∆i and we get a demand
to execute both an x and a ∼ x at the same time.

We shall formally define all of this in the next section. Meanwhile, we
have enough to present the problem.

A program is a pair of an initial database and a set of rules.

Let us write a simple program.

Initial Database ∆0.

∆0 = {T = 10 (i.e. the sensor for temperature shows the number 10),
the window is closed, heating is off} = {T = 10,∼W,∼ H}

If we want to be very mathematical and formal we should say the expres-
sion “T = 10” is a fact in the database. So the language contains sensor
statements of the form “T = 1”, “T = 2”,. . . . Call these sensor facts.
These are not allowed to be negated and are not allowed to appear in the
right hand side of the double arrow “⇒”. We might allow the symbol
T =? in the right hand side, in this case its execution is performed by
reading the temperature sensor and inserting the appropriate fact in the
database.

30 E. David et al.

We can also allow for facts of the form “T < 0” and “T > 20”, etc.

W = window open
∼W = window is closed
H = heating on
∼ H = heating off

¬x means that

¬x = we look at the database and do not find x, i.e. x is not recorded
in the database.

M = send message to maintenance.

8. Let ∆ be a database and x ∈ {a,∼ a,¬a,¬ ∼ a}, then we write ∆ ` x
to mean as follows ∆ ` x is not a proof theoretic symbol, but another
suggestive way of writing membership in ∆. We do not have logical
implication, the ⇒ is not logical implication but an action symbol:

∆ ` a iff a ∈ ∆
∆ `∼ a iff ∼ a ∈ ∆
∆ ` ¬a iff a 6∈ ∆
∆ ` ¬ ∼ a iff ∼ a 6∈ ∆
∆ ` x ∧ y iff ∆ ` x and ∆ ` y

9. Rules R for our example program (so the program will be (∆0, R)):

(a) T ≤ 0⇒ H

(b) T ≤ 0 ∧ ¬H ⇒M

(c) T ≥ 20⇒∼ H
(d) T ≥ 20 ∧ ¬ ∼ H ⇒M

(e) T ≥ 20 ∧H ⇒W

(f) T ≤ 0 ∧W ⇒∼W

Recall that a program is a pair (∆0, R). We can let time run, t =
0, 1, 2, . . . and apply all the rules repeatedly in parallel at each stage
to obtain a sequence of databases, ∆0,∆1,∆2,

10. A program is consistent (correct) if we cannot have at any stage time t
when we apply the rules to ∆t, we get the demand from the rules for
some x , to put both x and ∼ x into the database ∆t+1.

Logical Analysis of Cyber Vulnerability and Protection 31

11. Let us check consistency correctness of the above program (∆0, R).

(a) Let us agree that the temperature is read from a sensor and at any
time t, there is exactly one number n such that T = n ∈ ∆t.

(b) We check that at any t we cannot have for any x that we are asked
to execute both x,∼ x, i.e. we are asked to put both into ∆t.

For ∆0 this is true. Assume true for ∆t. Check ∆t+1.

If we understand the rule (where y in the rule has the form y = a, or ∼ a
but not the form ¬z)

k∧
i=1

xi ⇒ y

to mean that we look at ∆t and see that ∆t ` xi, i = 1, . . . , k then we
put y in ∆t+1 and take out ∼ y from ∆t if it is there, and let ∆t+1 =
{y} ∪∆t − {∼ y}, where

∼ y =∼ a if y = a
∼ y = a if y =∼ a

(i.e. ∼∼ a = a).

Following the above meaning of “⇒”, the above program is consistent/correct.

12. Checking cyber vulnerability

(a) Define vulnerability. By vulnerability we mean certain conjunctions
of sentences we do not want to be in any database ∆t. If the pro-
gram is correct then this will not happen, but if the program is
cyber hacked into, the hacker might make it happen. So we want
to identify what a hacker might do. In this case we do not want to
have for any t,

∆t ` ¬M ∧H ∧W ∧ T ≥ 20

call this V . (We need to assume that the temperature needs for the
time clock to move forward more than two time ticks for it to drop
one degree!) V says that there is no record of a message sent to
maintenance and the heating is on and the window is open and the
temperature is 20 or above.

When the temperature reaches 20 degrees, the program should switch
off the heating (rule c). If the heating does not switch off then in the
next time tick (d) and (e) will activate. If (d) is also not activated
then in the next time tick we will have ¬M ∧H ∧W ∧ T ≥ 20.

32 E. David et al.

(b) Now that we have identified vulnerability, we pretend we are cyber
hackers and ask what is needed to achieve the vulnerable set up?
This we find by the process of abduction. We shall discuss abduction
later on in the paper, but for the purpose of this orientation discus-
sion, think of the vulnerability V as a goal, and of Abduction as a
Planning System for achieving the goal. The Abduction/Planning
will tell us what we need and this way we expect the cyber hacker
to hack our program to make it possible to get what is needed.

Question. What can give me

V = [¬M ∧H ∧W ∧ T ≥ 20] at stage ∆t?

i. We need T ≥ 20

ii. To get W we need (e) to activate. So we need (c) not to activate.
So we need to delete it.

iii. To get ¬M we need (d) not to activate. So we need to delete
rule (d) because if (e) activates then also (d) will activate.

Answer to the question. So a cyber attack for the V vulnera-
bility will delete rules (c) and (d). We must protect these rules or
at least be informed if they are interfered with.

Remedy. Set up an automaton sending message if a rule is deleted.

3 A formal model, basic concepts

Definition 3.1 (Syntax)

1. (a) Let Q = {a, b, c, . . .} be a set of distinct atoms.

(b) Let “∼” be a unary operator symbol.

(c) The expression ∼ x for x ∈ Q is referred to as “negated atom”.

(d) By the word “literal” we mean either an atom or a negated atom.

(e) We let ∼∼ x be identical to x.

2. (a) A literal is also referred to as a “fact”

(b) A database ∆ is a finite set of literals.

(c) ∆ is consistent iff it does not contain any x and ∼ x together.

Logical Analysis of Cyber Vulnerability and Protection 33

(d) Let ∆1,∆2 be two databases. We use the notation

∆1 + ∆2 = ∆1 ∪∆2 = {y | y ∈ ∆1 or y ∈ ∆2}.

(e) Let ∆1 −∆2 be {y | y ∈ ∆1 and y 6∈ ∆2}.
(f) Let Θ be a database. Define ∼ Θ to be {∼ y | y ∈ Θ}.

Definition 3.2 (Queries)

1. Let ∆ be a database and x be a literal. The expression ∆?x indicates a
query of x from ∆.

We write
∆?x = 1 iff x ∈ ∆
∆?x = 0 iff x 6∈ ∆

2. Let ∆,Θ be two databases. The query ∆?Θ means as follows

∆?Θ = 1 iff Θ ⊆ ∆
∆?Θ = 0 iff Θ 6⊆ ∆

Definition 3.3 (Action rules)

1. Let “⇒” be a special symbol for action. By an action rule we mean an
expression of the form Θ⇒ x, where Θ is a finite set of literals and x is
a literal.

2. By a program we mean a pair P = (∆,R) where ∆ is a database and R
is a finite set of action rules.

4 Checking for consistency

When we are given a program, as defined in the previous section, we need to
check that this program is consistent. This means that the initial database is
consistent and also as we execute the rule, we remain consistent. To make sure
of that we need to define exactly how the rules are executed forward, be able
to track inconsistencies and be able to fix them as we go forward. We also need
to check vulnerability when our program is consistent but we leave this for the
next section.

Definition 4.1 (Forward execution for inconsistency detection)

1. A database ∆ is inconsistent, if for some y, we have that both y and ∼ y
are in ∆. Otherwise ∆ is consistent.

34 E. David et al.

2. Let P = (∆,R) be a program. We define a sequence of databases ∆0,∆1 . . .
generated by the program P in parallel:

(a) Let ∆0 = ∆. This is the initial data. If it is inconsistent , then stop
and declare P as inconsistent.

(b) Assume ∆n has been defined and is consistent. Let ∆R
n be the set

of all x such that for some rule Θ⇒ x we have Θ ⊆ ∆n.

Case 1. ∆R
n is not consistent. Then stop and declare that P is not

consistent.

Case 2. ∆R
n is consistent, then let ∆n+1 = (∆n− ∼ ∆R

n) + ∆R
n .

Proposition 4.2 Let P = (∆,R) be a program and let ∆0,∆1,∆2, . . . be a
sequence of databases generated by P.

Then either the sequence is finite or for some m,n,m 6= n,∆m = ∆n.

Proof. Let Q be the set of all literals appearing in P. Since both ∆ and
R are finite then Q is finite. If the number of elements in Q is k then Q can
generate at most 2k different databases. Therefore, since {∆n} is infinite, the
proposition follows. �

Example 4.3
1. Let ∆ = {a, b}.

Let R contain:
(r1) {a} ⇒∼ b
(r2) {a,∼ b} ⇒ b.

We compute the sequence of databases that P = (∆,R) generates in par-
allel.

Step 1. ∆1 = ∆

Step 2.

∆R
1 = {∼ b}
∼ ∆R

1 = {b}

∆R
1 is consistent.

Therefore

∆2 = (∆1− ∼ ∆R
1) ∪∆R

1

= ({a, b} − {b}) ∪ {∼ b}
= {a,∼ b}.

Step 3. ∆R
2 = {∼ b, b}.

∆R
2 is not consistent. So we stop.

Logical Analysis of Cyber Vulnerability and Protection 35

2. Let ∆ = {a}.
Let R contain

(r1) : {a} ⇒∼ a
(r2) : {∼ a} ⇒ a.

We compute the sequence of databases generated by this program. We get

∆1 = ∆

∆R
1 = {∼ a}

∆2 = {∼ a}
∆R

2 = {a}
∆3 = {a}

We have that the program is consistent and ∆1 = ∆3, and it oscillated
between {a} and {∼ a}.

We now want to discuss how to resolve and correct inconsistencies. We need
auxiliary definitions.

Definition 4.4 ((∆,R) support) Let ∆ be a database and let R be a set of
rules. Write the rules as a sequence enumerated as

(r1) : Θ1 ⇒ x1
...
(rn) : Θn ⇒ xn

Let x ∈ {x1, . . . , xn}. We define the (∆,R) support of x to be the set

S(∆,R, x) = {ri ∈ R | Θi ⊆ ∆ and ri is Θi ⇒ x}.

In other words, it is all the rules which “generate” x from ∆.

Definition 4.5 (Inconsistency resolution rules) The following is a list of
Inconsistency Resolution Rules (IRR) which can be used when needed.

Let ∆ be a database and let R = {r1, . . . , rn} be a set of rules. Let ∆R = {y |
for some rule (r) : Θ⇒ y, we have Θ ⊆ ∆}.

Let S(∆,R, y) be the support of y.
We list the following inconsistency resolution rules:

1. Do nothing IRR.

Whenever both y and ∼ y are in ∆R then delete both y and ∼ y.1

1Remember that we are dealing with action rules here, and so the inconsistency arises
from opposing instructions, one to add y to the database and one to add ∼ y. So IRR-Do
Nothing says “do nothing”.

36 E. David et al.

2. Specificity IRR.

Whenever y and ∼ y are in ∆R and the support for y is more specific

than the support for ∼ y, then take ∼ y out of ∆R.

Where we say the support of y is more specific than the support for ∼ y
iff whenever (ri) : Θi ⇒∼ y is activated (i.e. Θi ⊆ ∆) then for some
(rj) : Θj ⇒ y we have Θj % Θi and Θj ⊆ ∆, i.e. Θj is more specific than
Θi.

3. Strength IRR.

Whenever y and ∼ y are in ∆R and |S(∆,R, y)| > |S(∆,R,∼ y)| then
take out ∼ y. Where for a set A, |A| is the number of elements in A.

4. Priority IRR.

We have a priority ordering on pairs {y,∼ y} and whenever both y,∼
y ∈ ∆R, we take out the literal of lower priority.

Definition 4.6 (Algorithm for resolving inconsistency using IRR rules)

1. We have a preference ordering on the IRR rules. Whenever we detect an
inconsistency, we apply the rules in the order of preference. Note that

because of the do nothing rule, any inconsistent ∆R becomes a consis-

tent ∆R
Con after applying the rules, because even if all the other rules are

inconclusive, the do nothing rule is always conclusive.

2. We can modify the forward sequence of Definition 4.1 by modifying the
inductive definition of ∆n+1 to be

∆n+1 = (∆n− ∼ ∆R
n,Con) + ∆R

n,Con.

Example 4.7 We revisit item 1 of Example 4.3. We have ∆ = {a, b} and the
rules

(r1) : {a} ⇒∼ b
(r2) : {a,∼ b} ⇒ b

In this case we get that ∆R
2 is {∼ b, b}.

We note: b has a more specific support. If we use this fact then ∆R
2,Con =

{b} and the database ∆3 would be {a, b} as ∼ b ∈ ∆2 will be over-written by b.
If we use the do nothing IRR then ∆3 would be the same as ∆2 = {a,∼ b}.

Logical Analysis of Cyber Vulnerability and Protection 37

5 Checking for vulnerability

By vulnerability we mean certain conjunctions of sentences we do not want to
be in any database ∆n, for any n. To achieve this, we need to check whether
any of these sentences do appear at any stage, in which case we must take steps
to ensure that they fail, probably by amending the initial data or the rules.

If these vulnerability sentences do not succeed we must identify what changes
might reasonably make them succeed, and take measures to guard against hack-
ers making these changes.

From the technical point of view, we need algorithms that can tell us the
following:

Vulnerability checking case 1. Given c, does c succeed and exactly in what
ways (data and rules) does it succeed, and how can we make it not succeed.

Vulnerability Checking case 2. Given c, does c not succeed and whether
there exist some sensor data that will make it succeed.

5.1 Motivating example

Example 5.1 Consider the database ∆ = {a, b}. Consider the five rules:

(r0) : {a,∼ b} ⇒ c
(r1) : {a} ⇒∼ a
(r2) : {b} ⇒∼ b
(r3) : {∼ a} ⇒ a
(r4) : {∼ b} ⇒ b.

We ask: can we go forward and get c in some step?
Going forward we find that the database oscillates between ∆1 = ∆ = {a, b}

and ∆2 = {∼ a,∼ b}. We never get c.
If we go goal directed, we can ask: can we get c at some stage n for some

n? Well, if c ∈ ∆, then n = 1 would get c. But c 6∈ ∆, however rule (r0) can
give us c if activated at stage n− 1. So we need to ask whether both a and ∼ b
can succeed at stage n− 1.

Let us draw a tree (see Figure 1):

38 E. David et al.

Figure 1:

The tree shows success of the query ?c in both branches, one of depth 2 and
one of depth 1, giving the impression that the query ?c should be successful. The
backward computation tree, however, is wrong. We know it is wrong because if
we go forward with the rules, we oscillate between {a, b} and {∼ a,∼ b}, We
never get {a,∼ b}, and so we never get c. So what did we do wrong? We must
get all final success nodes all at the same stage. Here ?a succeeds at stage n−1
but ?b succeeds at stage n− 2.

5.2 Vulnerability checking case 1

Let us try a different policy.

1. Compute goal directed backwards until all branches succeed.

2. Check how many steps backwards you need for the longest path. Let it
be n. (In our case it is n = 2).

3. Go forward n+ 1 steps and you either get the goal and succeed or alter-
natively you get inconsistency or failure or loop in which case you will
know you will never get the goal.

So the backward computation serves to tell you how many steps to go forward
to get a definite answer. This strategy, of course, yet has to be proved correct.
This can be proved by induction.

Logical Analysis of Cyber Vulnerability and Protection 39

Definition 5.2 (Non-deterministic success tree) Let P = (∆,R) be a pro-
gram and let y be a literal. We define the notion of y succeeds in at most
n-steps.

1. y succeeds in one step if y ∈ ∆

2. y succeeds in exactly (respectively in at most) n + 1 steps if for some
rule Θ ⇒ y ∈ R. We have that for all x ∈ Θ, x succeeds in exactly
(respectively in at most) n steps.

3. P is inconsistent if for some y and ∼ y both succeed in exactly n steps.

Remark 5.3 The previous definition gives us a non-deterministic goal directed
algorithm for finding whether P is inconsistent. It is a conceptual definition.
We need practical deterministic Algorithms.

We can approach it as follows:
Let Q0 be a set of literals that we suspect are involved in an inconsistency.

We need to find an n and a y in Q0 such that y and ∼ y both succeed in exactly
n steps.

Since we do not want to guess, we must for each y and ∼ y in Q0 find how
many backward steps we need to succeed, take the maximal number of backward
steps needed for any such y or ∼ y to succeed and collect the set Q1 containing
Q0, of all letters appearing in the computation tree of all q, from Q0. We now
go forward using only rules of the form Θ ⇒ y with Θ from Q0. We then go
forward up to n + 1 steps to find if for some m, both y and ∼ y are obtained
at the same forward step.

The perceptive reader will understand that this algorithm is cheaper then
just going forward with all the letters in Q. We go forward just with the letters
which are suspect and a minimal number of required steps, suggested by the
backward trees.

Note also that a y can succeed in several n steps. For example, let ∆ = {a}.

(r1) : {a} ⇒ b
(r2) : {b} ⇒ a.

then a can succeed in 1 step but also in 3 steps.
This is important because we may also have

(r3) : {a} = c
(r4) : {c} ⇒ d
(r5) : {a, d} ⇒ y.

y succeeds in 4 steps. For that we need a to succeed in 3 steps.

40 E. David et al.

We now proceed with a series of concepts leading to the definition of deco-
rated tree. Such trees are used in defining algorithms for finding inconsistencies
and/or vulnerabilities. We need to overcome the problem of looping, and hence
the need to include the history in the decoration.

Let us begin:

Definition 5.4 (Trees) We define the notion of a finite tree (T,<) of depth
≤ n (resp. exactly n) by induction on n. This tree describes the computation.
The nodes of the tree represent steps in the computation and the pair (x, y) ∈<
means that x is a next step in the computation to y, and y is the father of x.
We have < ⊆ T × T .

1. Let T∞ be an infinite set of distinct atoms which we use as nodes.

2. Let x, y be nodes in the tree and assume x < y. We say that x is an
immediate descendant of y.

3. A tree of depth exactly one has the form

T1 = {t}, < = ∅, t ∈ T∞

We say t is the root of the tree as well as a bottom leaf of the tree.

4. Assume the notions of a tree of depth ≤ n and of depth exactly n have
been defined for n ≥ 1. Let (T 1, <1), . . . , (T k, <k) be k trees of depth ≤ n
(resp. depth exactly n) and assume that T j ∩ T i = ∅, for i 6= j. Let
t ∈ T∞ be a new point not appearing in any T j , j = 1, . . . , k and let ti be
the root of (T i, <i). We define a new tree of depth ≤ n+ 1 (resp. depth
exactly n+ 1) as follows:

T = {t} ∪
⋃k

i=1 T
i

< = {(ti, t) | i = 1, . . . , k} ∪
⋃k

i=1 <
i

5. We say t is the root of the new tree and its bottom leaves are all the
bottom leaves of all the T i.

6. Notice the trees are going downwards.

Definition 5.5 (History)

1. Let P = (∆,R) be a program. We define the notion of a sequence H =
((x1, r1), (x2, r2), . . . , (xm, rm)) being a legitimate history for P, where
the pairs (xi, ri) are comprised of a literal xi which is a goal and ri is a
rule with head xi used to get xi in the respective step.

Logical Analysis of Cyber Vulnerability and Protection 41

(a) Any unit sequence ((y,∅)) or the empty sequence ∅ is a legitimate
history, for y a literal.

(b) A sequence H = ((x1, r1), . . . , (xn, rn)), n ≥ 2 is a legitimate history
if ((x1, r1), . . . , (xn−1, rn−1)) is a legitimate history and for some
r : Θ⇒ xn−1 in R we have that xn ∈ Θ and rn = r.

Definition 5.6 (Decorated tree) A decorated tree has the form (T,<, δ),
where (T,<) is a tree and δ is a function giving for each t ∈ T a decoration of
the form

δ(t) = (y,H,Z,A)

where t is a node in the tree indicating a step in the computation. At this step
t we want to get the goal/literal y. y is a literal, H is a legitimate history
and Z ∈ {success, failure, loop} and A is a set of literals (the literal Abductive
Set). The set A is the set of literals we would need in order to succeed when
the computation reaches the end of the tree. Of course we do not know A at
this stage but we would know A when we reach the end of the tree and identify
the nodes descendants of t which fail or loops because of the literals decorating
them at the end nodes. So to construct A in practice we have to first construct
the tree without instantiating the A decoration and then move up the tree and
give the accumulation of values to the A decoration.

Remark 5.7 (Explaining the decoration) The trees are supposed to be com-
putation trees for queries of the form P = (∆,R)?y.

So the decoration δ(t) records y, the current query at t. It also records the
history of the queries up to t and what rules were used at each node above t.
This is H. It also records whether the computation tree eventually succeeds or
fails or loops. If it succeeds, the abduction set is ∅. If it fails or loops the
abductive set A tells us what literals are missing from ∆, which are needed to
make the query succeed. To be able to have an A we need the tree to be of
exactly depth n. We need H also to know if we are looping. We use the history
to terminate the tree and make it finite.

Look at the Example 5.1 to appreciate how we might loop.
The tree of Figure 2 describes the goal directed computation for the goal

query ?c for this example: we record the history

42 E. David et al.

Figure 2:

We omitted to record the rules used to keep the history simple and also
because each goal can use exactly one rule.

Note that the tree is of exact depth 4 and so we can find an abductive set.
We need all end leaves to immediately succeed. So that we need both a and ∼ b
to be in the database. So A = {a,∼ b}. The original database was ∆ = {a, b}.
So we cannot just add ∼ b, it will be inconsistent. So let us delete b and
add ∼ b. So our database is now ∆A = {a,∼ b}. Would ?c succeed? Yes,
immediately from the rule (r0) : {a,∼ b} ⇒ c.

Now that we have the concept of decorated tree, we can define the algorithm
looking for inconsistencies and/or vulnerabilities.

Definition 5.8 (Abduction for trees of depth 1) Let P = (∆,R) be a pro-
gram and let y be a literal. We define the set of decorated computation trees
with success/failure/loop, for P?y together with their literal abductive sets A
and history H.

Case 1. y ∈ ∆.
We have a tree of depth 1 of the form ({t},∅), t ∈ T∞, with the decoration
δ(t) = (y,H, success,∅). P?y succeeds, since y ∈ ∆. There is no abductive
set, but there is history and we may even have y appears in H.

Logical Analysis of Cyber Vulnerability and Protection 43

This is a case of success and was used to define the non-deterministic trees
of success in Definition 5.2.

The abductive set is ∅. There is nothing to abduce. We mention this
case for completeness. It is the fail and loop cases that are of interest for the
construction of the abductive set. We do not need an abductive set in case of
success.

Case 2. y 6∈ ∆ and there is no rule in R with head y (i.e. no rule of the
form Θ ⇒ y ∈ R). So the tree is ({t},∅) and the decoration is δ(t) =
(y,H, failure, {y}). P?y immediately fails, since y 6∈ ∆ and there is no possi-
bility of continuing the computation and searching for a success tree since there
is no rule Θ⇒ y ∈ R.

The abductive set is {y}, since this is the only way to make ?y succeed – to
add y to ∆.

Case 3. y 6∈ ∆ and there are rules in R with head y. The tree has one point
(t,∅) with decoration δ(t) = (y,H, loop, {y}) and we have that some z appears
in H twice with the same rule, i.e. (z, δ) appears twice in the sequence H.

(To explain what this case does, consider the rule r : {a} ⇒ a. We ask ?a
and we get the situation of Figure 3.)

Figure 3:

In this case there is no possibility of immediate success since y 6∈ ∆ but also
there is no certainty of immediate failure since we have k rules we can use and
may succeed. So our annotation would be: reserve judgement and continue the
computation until one stops.

44 E. David et al.

Remark 5.9 (Abduction continued, for the inductive case; trees of
depth n ≥ 2) We first explain this case. Consider the query P?y with y 6∈ ∆
and there are some Θ1 ⇒ y, . . . ,Θk ⇒ y in R with head y.

We can non-deterministically choose one of the Θi ⇒ y and continue the
computation and if we continue to choose favourably we will get a depth n
success tree according to Definition 5.2. Our tree will be annotated, but for this
case of success we do not need the annotation.

The other possibility is that there is no success tree. This means that for
all our non-deterministic choices, the tree will not be a success tree.

Of course we need to use the history as a loop checker to make the tree stop.
There are two possibilities.

1. The tree is finite with depth ≤ n but not with depth exactly n. In this
case there is no abductive set of literals. There is nothing to add to the
database to make the original goal query succeed, except possibly to add
the goal query itself.

2. The tree stops with depth exactly n. In this case the abduction set A is
the set of all queries in the bottom leaves. Some of the queries in the end
leaves are not immediate success (that is why the original query is not a
success). So these unsuccessful leaf queries either fail or loop. So if we
add these queries literals to the database, we will have success. So we
know what is the abduction set to add.

Note that for each such failed attempt of a tree of depth exactly n we get a
(probably different) abduction set. We are now ready for the inductive defini-
tion.

Definition 5.10 (Abductive set for the non-deterministic failure/loop
annotated tree) Let P = (∆,R) be a program and y be a literal. We define
the notion of a failure/loop tree for y from P in exactly n steps. Note that we
do not claim such a tree exists for P?y. We are just going to say what it looks
like if it exists.

1. Case n = 1.
The definition as in Definition 5.8, case 2.

2. Case n+ 1.
This is the case where y 6∈ ∆ but there are rules Θi ⇒ y in R with head
y. Then our tree is built from a sequence of non-deterministic choices,
the first one being choosing one of these rules, say (r) : {x1, . . . , xn} ⇒ y
and continuing with choices promised by the inductive hypothesis of trees
T i
n depth n for the queries P?xi as in Figure 4.

Logical Analysis of Cyber Vulnerability and Protection 45

Figure 4:

δ(t) = (y,∅, Zt, At)
δ(ti) = (xi, (y, (r)), Zti , Ati)

where the trees with roots ti are all distinct and assumed to be correct
and of depth n. For each node s in any tree we have As = set of all
literal queries at the bottom leaves below s. Further, Z(t) is failure iff
the annotation of at least one leaf node is failure and Z(t) = loop iff the
annotation of at least one leaf is loop. Note that we have loop annotation
if we have both failure leaves and loop leaves.

Remark 5.11 Definition 5.8 and Remark 5.9 defined non-deterministic com-
putation tree. We would like to define a complete single computation tree devel-
oping all computation options and addressing both disjunctive and conjunctive
tree options. We explain through an example.

Consider the following database and rules.

∆ = {a, b, x}
(r1) a ∧ b⇒ c
(r2) x ∧ y ⇒ c

our query is ?c.
A non-deterministic successful tree will choose rule (r1) and succeed. This

option can be described by the tree of Figure 5

46 E. David et al.

Figure 5:

If we want a full deterministic tree showing all options including those which
fail, we need to explore all the options in the same tree. So we get Figure 6. To
build this tree properly we need to add two more annotations, “∨” and “∧” for
the subtrees being disjunctive or conjunctive and we need also to record which
rule is being used.

Figure 6:

Logical Analysis of Cyber Vulnerability and Protection 47

Definition 5.12 (Full deterministic computation tree with full anno-
tation of nodes) The definition is by induction. We are given a database ∆,
rules R and we ask a goal ?x. The induction is on the depth of annotated tree.
We define the notion of a correct computation tree.

1. Tree with one node t and annotation as follows is correct.

t?x,H,Z, rule, boolean symbol

(a) x ∈ ∆, Z = immediate success.

(b) x 6∈ ∆, Z = immediate failure, and there are no rules in ∆ of the
form Θ⇒ x.

(c) x 6∈ ∆, Z = loop, and for every rule (r) : Θ ⇒ x in ∆ the pair
(x, (r)) is in the history H.

2. Induction step, tree with depth n+ 1.

(a) The top node t in the tree is annotated

?x,H,Z, “∨”

(Note that there is no rule annotation) and x is the head of rules
(ri) : Θi ⇒ x, i = 1, . . . , k and the immediate descendant nodes of
t are s1, . . . , sk and these nodes are annotated ?x,Hi, Zi, (ri), and
Z = success (resp. Z = failure, Z = loop) and at least one Zi is
success (resp. all Zi = failure, resp. one Zi at least is loop and all
others are failure or loop) and the subtrees below si are correct.

(b) The top node t is annotated x,H,Z, (r),∧

(r) is the rule x1∧, . . . ,∧xk ⇒ x

and the immediate descendants of t are the nodes s1, . . . , sk and si is
decorated by xi, H∗(x, (r)), Zi,∨ and Z = success (resp. Z = failure,
resp. Z = loop) and all Zi = success (resp. some Zi = failure, resp.
some Zi = loop and all other Zi = failure or loop) and the tree below
si is correct.

Theorem 5.13 Let k be a maximal length of any path in the tree of Definition
5.12 , for the goal ?x. Then it takes k + 1 steps of forward execution to know
for this literal x whether it is in, out or looping.

48 E. David et al.

Proof. Obvious by induction on k. �

Remark 5.14 Note that in Theorem 5.13, we will just know that after k + 1
forward steps that the goal ?x is settled. So for example suppose x gets into
the data at step k + 1. This does not guarantee that x will stay there. It is
quite possible that at a later step, say k + 3, the goal ? ∼ x is settles with ∼ x
required to be in the data, and this will override x. In order to know exactly
what is the status of x Vs. ∼ x in with respect to the database we must apply
Theorem 5.13 to each of ?x and ? ∼ x and then go forward enough steps to
settle both of them.

Remark 5.15 Following the previous Remark 5.14, we note that for the pur-
pose of vulnerability, we are interested only to find the steps where ?x is im-
plemented, in case x is a vulnerable node of the system. For example if x =
window open, we do not want ?x to succeed at any point. It does not matter if
the window closes at some later stage, the important point to us is that it does
not open in the presence of other literals, for example when no one at home.

Note that in general we need to define vulnerability. It may be that we
do not mind if the window opens briefly only, as there is not enough time to
be vulnerable. So we need a module defining/identifying vulnerability for the
program.

6 Comparison with the Literature

Our system uses a temporal operator of the form

x1 ∧ . . . xn ⇒ y

where xi are entries in a database and if they are indeed in the data, we proceed
the next step and (impose and) put y in the data. The question to be asked
is how does this system compare with traditional temporal logic, as used for
program verification.

If “→” denotes classical implication and “O” denotes the next operator
and “�” denotes the always operator (see [10] for a survey of temporal logic
for computer science), then x⇒ y, the action binary operator we used earlier
in this paper, can be written descriptively (by describing what “⇒” actually
does) as �(x→ Oy).

The best way to give an orientation and explain the differences is to work
on a simple example and illustrate how the different points of view manifest
themselves on this example.

Logical Analysis of Cyber Vulnerability and Protection 49

1. The language
So let our language contain two atoms.

h = it is too hot
∼ h = it is not too hot
W = window is open
∼W = window is closed

We imagine a house in the very cold north with a sensor h which deter-
mines the temperature every 10 minutes and updates the value {0 = not
too hot and 1 = too hot}, of h.

2. The program
Based on the value of h a program P controls a window. If at step n
(i.e. 10 × n minutes from the start of the program) we have the sensor
reporting that it is too hot, then the program opens the window. If the
sensor reports that it is not too hot then the program closes the window.

3. The rules
Let us write the rules for this program.

(r1): h ∧ ∼W ⇒W

(r2): h ∧W ⇒W

(r3): ∼ h ∧W ⇒ ∼W
(r4): ∼ h ∧ ∼W ⇒ ∼W

Since the operational meaning of these rules is to impose action, we can
write only two rules:

(rr1): h⇒W

(rr2): ∼ h⇒ ∼W

It does not matter what the state of the window is at state n. At state
(n + 1) we impose the consequent of the rule. We close the widow or
open the window as required.

These rules are not descriptive, they are temporal action rules.

4. The automaton
We now show that we can look at this system as specifying at automaton
A.

The automaton gets input from the language L(h) which are numbers
in {0, 1}. The automaton states are {W,∼ W}. Let us say the initial
state is W . Figure 7 shows the transition system, corresponding to rules
(r1)–(r4).

50 E. David et al.

Figure 7:

Note that this is a finite automaton. There is no final state. The input
is infinite stream. We need not give, for our purpose, a condition of
acceptance for such streams.

5. Sample runs
Let us give a sample run for this automaton. Assume an infinite input
vector of “heat” beginning with “0” and then keeping the rest of the
values constant at “1”, i.e. the vector (0, 1, 1, . . .) or (∼ h,h,h, . . .), where
0 means “not too hot” and 1 means “too hot”.

The corresponding sequence of states is (W,∼W,W,W, . . .).
Figure 8 describes this scenario.

Time Time 1 Time 2 Time 3 Time 4

Input 1 =heat ? ∼ h h h Continue as fixed h

States = window ? W ∼W W Continue as fixed W

Figure 8:

We can also have the pair of vectors of Figure 9

Time 1 2 3 4

heat ∼ h h h . . .

window W W W . . .

Figure 9:

The sample run of Figure 9 does not satisfy the specification. At time 1
it was not hot ad yet the window was not closed at time 2.

Imagine we gave the specification to a student to implement in Java.
The student came up with a Java program JP for our specification. We

Logical Analysis of Cyber Vulnerability and Protection 51

give the package to a temporal logic verification company, who discovers a
possible run (of Figure 9) which does not satisfy the specification, namely
�(∼ h → O ∼ W) (meaning “always if it is not too hot then next the
window is closed”) does not hold in this run. What does this mean?

6. Temporal logic
We have atoms like h and W and we have the logical connectives of
classical logic, say {¬,∧,∨,→} and temporal future connectives {O,�},
say next O and always �. We can have infinite runs, which we can
describe as a function ρ which gives for each n, values ρ(W,n) ∈ {0, 1}
and ρ(h, n) ∈ {0, 1}. We define satisfaction ρ �n A, for any wff A as
follows:

For the atoms h and W , we have:
ρ �n h if ρ(h, n) = 1
ρ �n W if ρ(Wn) = 1.

For the complex formulas we have:
ρ �n ¬A if ρ 6�n A
ρ �n A ∧B if ρ �n A and ρ �n B
ρ �n A ∨B if ρ �n A or ρ �n B
ρ �n A→ B if ρ 6�n A or ρ �n B
ρ �n OA if ρ �n+1 A
ρ �n �A if for all m > n, ρ �m A.

7. Temporal logic verification
To check and verify whether an implementation JP of a specification P
satisfies the specification we need to take the following steps:

(a) write IP into a program in temporal logic theory in the temporal
logic language.

(b) write a description of the runs of JP in temporal logic.

(c) check whether (ii) satisfies (i) (or (ii) can prove (i)), or whatever
method program verification uses.

8. Comparison
Note that P of our item (2) above is our program written in action tem-
poral logic. It is not descriptive. The program P is

(rr1): h⇒W

(rr2): ∼ h⇒∼W

The temporal descriptive equivalent is

ΘP = �(h→ OW) ∧�(∼ h→ O ∼W).

52 E. David et al.

Note that temporal logic expressions describe runs, they are not pro-
grams. So stress that the above formula is descriptive and it merely
describes the runs of the action program.

9. Security
If the program is written in some programming language, to analyse what
it does we look at its runs. In our case we look at the formula ΘP. We
define runs satisfying ΘP which are also suspicious. So if we have a run
where the window is always open and it is always hot, i.e. ϕ = �h∧�W ,
then something is wrong. Here we use knowledge of the world common
sense. This is wrong because in cold weather with the window always
open we should not have always too hot.

So security using temporal logics of program verification examines suspi-
cious run.

In our case the program itself is written in temporal action logic, so we
can examine P directly. We can ask, as we did in previous sections, what
keeps the window open and apply our algorithms to discover that h can
cause it. We can apply security measures to ensure h works correctly
and not easily hackable.

10. Other papers
The following list of references [9, 10, 11], use temporal logic or other
means to detect suspicious runs. They differ from our methods. Paper
[10] is a survey of temporal logic and how it is used for program verifi-
cation. It is included in the references for the benefit of the reader. The
other two papers, [9] and [11], are sample papers showing how they ap-
proach the subject of security by looking at traces. We first quote from
[9] (references omitted):

“The theory of trace properties, which characterizes correct
behavior of programs in terms of properties of individual exe-
cution paths, developed out of an interest in proving the cor-
rectness of programs. Practical model- checking tools, now
enable automated verification of correctness. Verification of
security, unfortunately, isn’t directly possible with such tools,
because some important security policies require sets of execu-
tion paths to model. But there is reason to believe that similar
verification methodologies could be developed for security: The
self-composition construction reduces properties of pairs of ex-
ecution paths to properties of single execution paths, thereby
enabling verification of a class of security policies.

Logical Analysis of Cyber Vulnerability and Protection 53

The theory of hyperproperties generalizes the theory of trace
properties to security policies, showing that certain classes of
security policies are amenable to verification with invariance
arguments and with stepwise refinement. Prompted by these
ideas, this paper develops an automated verification methodol-
ogy for security. In our methodology, security policies are ex-
pressed as logical formulas, and a model checker verifies those
formulas.”

We now quote from [11] (references omitted):

“Despite great progress in research on computer security, fully
secure computer systems are still a distant dream. Today any
large and complex computer system has many security flaws.
Intrusion detection involves monitoring the system under con-
cern to identify the misuse of these flaws as early as possible
in order to take corrective measures.

There are two main approaches to intrusion detection: signature-
based and anomaly-based. In the signature-based approach,
system behavior is observed for known patterns of attacks,
while in the anomaly-based approach an alarm is raised if an
observed behavior deviates significantly from pre-learned nor-
mal behavior. Both these approaches have relative advantages
and disadvantages. The signature-based approach has a low
false-alarm rate, but it requires us to know the patterns of secu-
rity attacks in advance and previously unknown attacks would
go undetected. In contrast, the anomaly-based approach can
detect new attacks, but has a high false-alarm rate.

In this paper, we adopt a temporal logic approach to signature-
based intrusion detection. One can naturally specify the ab-
sence of a known attack pattern as a safety formula φ in a
suitable temporal logic. Such a temporal logic based approach
was considered using a variant of linear temporal logic (LTL)
with first order variables. However we consider a more ex-
pressive logic in which one can also express attack signatures
involving real-time constraints and statistical properties. We
show how to automatically monitor the specification φ against
the system execution and raise an intrusion alarm whenever the
specification is violated. We also show how this technique can
be used for simple types of anomaly-based intrusion detection.
The idea is to specify the intended behavior of security-critical
programs as temporal formulas involving statistical predicates,

54 E. David et al.

and monitor the system execution to check if it violates the
formula. If the observed execution violates the formula then
an intrusion has occurred, and thus attacks can be detected
even if they are previously unknown.”

7 Conclusion

Today’s IT security ecosystem, which relies on a combination of static perime-
ter network defence (e.g., firewalls) the use of end-host based defences (e.g.
antivirus), and software patches from vendors, is fundamentally inadequate
to handle IoT deployments. Against this background in this paper we have
tried to face some of the challenges that the emerging IoT devices encoun-
tered. Specifically, here we defined a novel logic model to suit the special IoT
characteristics and we developed novel techniques for security verification of
an IoT system that mainly involves inconsistency and vulnerability.

We now proceed, describing our future research directions.

1. Notice that our consideration of the algorithms so far assume a unique
initial state ∆. In practice we may not know what the initial state is as
this may depend on the users or circumstances. We therefore need to
apply our method for each allowable initial state. However, in order to
avoid explosive computation we may restrict the set of allowable initial
state.

2. Our language contained classical literals a, b, c, their negations ∼ a,∼
b,∼ c and the failure symbol ¬.

Our action symbols used only the current state and told us what to do
for the next state. So if we wrote a rule of the form W ⇒∼W , it means
if the window is open then in the next step close it. What if we want
to say if the window is open now and at the previous step then close it?
We have no memory of previous steps once we update. So we need a
yesterday operator symbol Y a, reading ‘a’ was in the data in the previous
yesterday step.

We can now form more atomic statements like Y a, Y Y a, Y Y Y a,

We can now write rules of the form W ∧ YW ⇒∼ W , reading if the
window has been opened for the two last steps, then close it.

3. Using First Order Logic (FOL) language to enable more complicated
rules in the data base: we can allow for quantifiers (All x) and (Some x)
and variables x, y ranging over facts a, b, c,∼ a,∼ b,∼ c, . . . (Remember
that ∼∼ x = x.)

Logical Analysis of Cyber Vulnerability and Protection 55

We can write rules: (some x) (some y) [x ∧ Y ∼ x ∧ y ∧ Y ∼ y) ⇒ call
supervisor this is a safety rule, if too many literals (in this case 2 literals)
change (indicated by the Yesterday Operator) then something is wrong.

From the implementation point of view we need to pay attention and
remember two data steps, if we use only one iteration of Y or more.

4. We can add a contradiction seeking module. In an intelligent home, there
may be many rules. We can now detect a contradiction only if we are
required to execute a and ∼ a. But what if we need to execute a and b,
where a and b are different but physically impossible facts? For example,
in my home I cannot switch at the same time both the toaster and the
kettle, it requires too much electrical current on the circuit. So in the
morning, I want toast and tea, I need to do the toast first and then the
tea. Sometimes I forget and discovered that the electricity is blown after
3 time ticks, not immediately. Anyway we need to record that: a =
toaster on and b = kettle on, are contradictory. This means we need to
use a classical logic proof theoretical module for detecting inconsistencies,
see (4).

This needs to be incorporated into our algorithms. We cannot avoid
this and write say a ⇒ ∼ b because the two sides of ⇒ are at different
steps/times.

5. The contradictions can be described, implemented and identified within
the framework of ABA — Assumption Based Argumentation [12]. This
framework basically adds another implication symbol to the system (clas-
sical implication). We can write for example, a→∼ b.
Referring to the example in (3) of the toaster and kettle, we can now
write a → ∼ b meaning if the toaster is “on” then the kettle should not
be “on” at the same time.

Acknowledgement

This research is funded by the Israeli Ministry of science Technology and Space.

References

[1] Alain Beauvieux. A method to check database consistency. In K Nori
and S Kumar, eds. Foundations of Software Technology and Theoretical
Computer Science, Springer 1988, pp 455-469.

56 E. David et al.

[2] Gartner. Gartner Says the Internet of Things Installed Base Will Grow
to 26 Billion Units By 2020 http://www.gartner.com/newsroom/id/

2636073

[3] https://www.alljoyn.org/

[4] HP. Internet of Things Security: State of the Union, 2014. http://www.
hp.com/go/fortifyresearch/iot

[5] http://www.electronicproducts.com/Computer_Peripherals/

Communication_Peripherals/AES_vs_SSL_TLS_Encryption_for_

the_internet_of_things.aspx

[6] Liang, Chieh-Jan Mike and Karlsson, Börje F and Lane, Nicholas D and
Zhao, Feng and Zhang, Junbei and Pan, Zheyi and Li, Zhao and Yu,
Yong. SIFT: building an internet of safe things. In Proceedings of the 14th
International Conference on Information Processing in Sensor Networks,
ACM, p. 298–309, 2015.

[7] http://threadgroup/org.

[8] Yu, Tianlong and Sekar, Vyas and Seshan, Srinivasan and Agarwal, Yuvraj
and Xu, Chenren. Handling a trillion (unfixable) flaws on a billion devices:
Rethinking network security for the Internet-of-Things. In Proceedings of
the 14th ACM Workshop on Hot Topics in Networks, ACM, p. 5, 2015.

[9] Masoud Koleini, Michael R. Clarkson and Kristopher K. Micinski. A tem-
poral logic of security. https://arxiv.org/abs/1306.5678

[10] Stéphane Demri and Paul Gastin. Specification and Verification using
Temporal Logics. World Scientific Review Volume. Chapter 15 in Mod-
ern Applications Of Automata Theory, Paperback 24 May 2012.

by Deepak D’souza (Editor), Priti Shankar (Editor), pp 457-495

[11] Prasad Naldurg, Koushik Sen, and Prasanna Thati. A Temporal Logic
Based Framework for Intrusion Detection. In Proceedings of the 24th IFIP
WG 6.1 International Conference on Formal Techniques for Networked
and Distributed Systems (FORTE), 2004.

[12] F. Toni. A tutorial on assumption-based argumentation, Argument and
Computation, Vol: 5, 89–117, 2014.

[13] M.-C. Fiazza, M. Peroli and L. Viganò. Defending vulnerable security
protocols by means of attack interference in non-collaborative scenarios.
ICT 2:11, 2015. doi: 10.3389/fict.2015.00011

Logical Analysis of Cyber Vulnerability and Protection 57

[14] Ruggero Lanotte, Massimo Merro, Riccardo Muradore, and Luca Vigano.
A Formal Approach to Cyber-Physical Attacks. arXiv:1611.01377v2
[cs.CR], 2016.

Esther David
Department of Computer Science
Ashkelon Academic college
Ashkelon, Israel
E-mail: astrdod@acad.ash-college.ac.il

Dov Gabbay
Department of Computer Science, Faculty of Exact Sciences
Bar-Ilan University
Ramat-Gan, Israel
E-mail: dov.gabbay@kcl.ac.uk

Guy Leshem
Department of Computer Science
Ashkelon Academic college
Ashkelon, Israel
E-mail: leschemg@cs.bgu.ac.il

Students of CS Ashkelon
Department of Computer Science
Ashkelon Academic college
Ashkelon, Israel

