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Abstract

We present a number of recent results on MV-algebras and Lukasiewicz logic
pertaining to a wider mathematical area than algebraic logic.
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1 Foreword

The aim of this paper is to highlight some categorical, geometric, topological and algo-
rithmic properties of MV-algebras. This is intended as a tribute to Chico Miraglia and
his multiform work on lattices, ordered algebraic structures, nonclassical logic, number
theory, K-theory, algebraic geometry, category theory, homological algebra, in the hope
of drawing his attention to an interesting class of lattice-ordered algebraic structures
for nonclassical (many-valued) logic.

We refer to [22, 53] for background on MV-algebras and Lukasiewicz logic.

2 Finitely presented MV-algebras and polyhedra

Given a polyhedron P in euclidean n-space, how to decide in a finite number of steps
whether P is homeomorphic to, say, the 4-sphere? For a precise formulation of this
decision problem, P must be presented to a Turing machine R as a finite string of
symbols. To this purpose, we first assume P to be a rational polyhedron in R", i.e., a
finite union of simplexes Si, ..., S, C R™ with rational vertices. Next we equip P with
a triangulation whose simplexes have rational vertices. P is then presented to R as the
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list of the coordinates of the vertices of all these simplexes. Without loss of generality,
[34], in the statement of our recognition problem we may replace homeomorphism by
rational PL-homeomorphism, i.e., an invertible continuous PL-map ¢ such that every
linear (in the sense of “affine linear”) piece of both ¢ and its inverse has rational
coefficients. In this way, the set H of pairs of rationally PL-homeomorphic rational
polyhedra P, ) becomes recursively enumerable. However, as proved by A.A. Markov
(see [64], [34] and references therein) the complementary set of H is not: The rational
PL-homeomorphism problem of rational polyhedra is undecidable. The classical program
of recognizing manifolds via a computable set of invariants thus fails in general.

One may refine the recognition problem by further restricting the notion of a rati-
onal PL-homeomorphism to that of an integer PL-homeomorphism. To this purpose,
following [53], let us say that a continuous piecewise linear map (: P — @ is a Z-map if
every linear piece of ¢ has integer coefficients. Let M ([0, 1]") denote the MV-algebra of
n-variable McNaughton functions, i.e., [0, 1]-valued Z-maps defined on [0, 1]" . McNaug-
hton’s theorem, [22, 9.1.5], states that M([0, 1]™) is the free n-generator MV-algebra.
More generally, for any nonempty closed set X C [0, 1]", let M(X) denote the MV-
algebra of restrictions to X of the functions of M([0,1]™). Let the functor M be defined
as follows:

OBJECTS : For all rational polyhedra P C [0, 1|, M(P)={f[P | f € M([0,1]")}.

ARROWS : For all rational polyhedra P C [0, 1]™ and @) C [0, 1]", and Z-map n: P —
Q, M(n) is the function that transforms every f € M(Q) into the homomorphism
fon: M(Q) — M(P). For short, M(n) = —on.

In this category, “homeomorphisms” (called Z-homeomorphisms) are those inverti-
ble maps 7 from a rational polyhedron P C R™ onto a rational polyhedron ¢ C R™
such that both n and its inverse are Z-maps.

Recall that a finitely presented MV-algebra is an isomorphic copy of the quotient of
a free MV-algebra M([0,1]") by a finitely generated ideal. Note that the image of a
finitely presented MV-algebra under a homomorphism is finitely presented.

The following theorem was proved in [48, 4.12], building on previous work. See, for
instance, [60, 35|, [46, 5.1,5.2,6.4], [14], and [53].

Theorem 2.1 The functor M is a duality between rational polyhedra in euclidean space
(with Z-maps) and finitely presented MV-algebras (with homomorphisms).

The category of rational polyhedra with Z-maps yields a new geometry, where the
isometry group in euclidean space is replaced by the affine group over the integers, [17].
In this geometry, rational polyhedra turn out to possess a wealth of new computable
invariants. The proof of Theorem 2.1 also shows:
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Theorem 2.2 The isomorphism problem for finitely presented MV-algebras is decidable
iff so is the Z-homeomorphism problem for rational polyhedra.

Owing to their dual polyhedral counterpart, finitely presented MV-algebras are en-
dowed with a wealth of geometric extra structure, which is generally not available in
general MV-algebras. This is the subject matter of the next sections in this paper.

3 Bases, valuations and Euler characteristic

We refer to [50] for the categorical equivalence I" between MV-algebras and unital (-
groups. For any MV-algebra A we let pu(A) denote its maximal spectral space, [22, 53].
The following is a key tool for the study of finitely presented MV-algebras, [53, 6.1]:

Definition 3.1 Let A be an MV-algebra. A generating set B = {by,...,b,} C A\ {0}
is said to be a basis of A if, in the corresponding unital /-group of A, the unit arises as
a linear combination of the b; with integer coefficients ¢; > 0, and for each k = 1,2, ...
and k-element subset C' of B with A{b|b € C} # 0 the set {m € p(A) |m 2 B\ C}
is homeomorphic to a (k — 1)-simplex.

It follows that the ¢; are uniquely determined, [53, p. 70]. In [13] and [53, 6.3] the
following characterization theorem is proved:

Theorem 3.2 An MV-algebra is finitely presented iff it has a basis.

By [53, 4.16], for every maximal ideal m € p(A) the quotient MV-algebra A/m is
uniquely isomorphic to a subalgebra J of the standard MV-algebra [0, 1]. Identifying
A/m and J, for any a € A, the element a/m becomes a real number. We write

supp(a) = {m € p(4) | a/m > 0}.

As we have seen in the foregoing section, when A is finitely presented it is isomorphic to
an MV-algebra of the form M P) for some rational polyhedron in some unit cube [0, 1]" .
Then supp(a) is homeomorphic to a set of the form P\ R for some rational polyhedron
R C P, (see [53, §4.5, 6.2]). By definition, the Fuler characteristic x(supp(a)) is the
alternating sum of the Betti numbers of supp(a), as given by singular homology theory.
This is homotopy invariant.

In [56] one can find a proof of the following result:

Theorem 3.3 For any finitely presented MV-algebra A let the map E: A — 7Z be given
by E(a) = x(supp(a)), for alla € A. Then E has the following properties:

(i) E(0) = 0.
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(7i) (Normalization) E(b) = 1 for each element b of A that belongs to some basis.
(111) (Idempotency) For all p,q € A, E(p® q) = E(p V q).
(iv) (Additivity) E is a valuation : for all p,q € A, E(pV q) = E(p) + E(¢) —E(p A q).

Conversely, properties (1)-(iv) uniquely characterize E among all real-valued functions

defined on A.

4  Special case: Finitely generated projective MV-
algebras

As a particular case of a general definition, an MV-algebra A is projective if whenever
Y: B — C'is a surjective homomorphism and ¢: A — C is a homomorphism, there
is a homomorphism #: A — B such that ¢ = ¢ o . Finitely generated projective
MV-algebras are an interesting subclass of finitely presented MV-algebras: among ot-
hers, they provide an algebraic-geometric clarification of such notions as exactness and
admissibility in the proof-theory of Lukasiewicz logic, [9, §4.5]. The characterization of
finitely generated projective MV-algebras took several years, and today appears as an
interesting chapter of algebraic topology:

Theorem 4.1 (L.M.Cabrer, D.M. [14]) Let A be an n-generator projective MV-
algebra. Then A is isomorphic to the MV-algebra M(P) obtained by restricting to P
the functions of M([0,1]™), for some contractible rational polyhedron P C [0,1]" that
contains a vertez of the cube [0,1]" and has the following “strong reqularity” property:
For every regular triangulation A of P and maximal simplex T" of A, the greatest com-
mon divisor of the denominators of the vertices of T is equal to 1.

(L.M.Cabrer [10]) The above conditions on P are also sufficient for M(P) to be
isomorphic to an n-generator projective MV-algebra.

The strong regularity of P is called “anchoredness” in [37], meaning that the affine
hull of 7" contains an integer point of R™. Combining the foregoing theorem with
Theorem 2.1 one sees that, while every finitely generated projective MV-algebra is
finitely presented, the converse is not true in general. Baker and Beynon [1, 5, 6]
showed that an f-group G is finitely generated projective iff it is finitely presented. As
shown by the foregoing theorem, the situation for unital ¢-groups and MV-algebras is
quite different.
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The projectivity indez.

In view of McNaughton’s representation theorem for free MV-algebras, [22], a folklore
result in universal algebra states that an n-generator MV-algebra A is projective iff there
is an idempotent endomorphism p of M ([0, 1]™) onto an isomorphic copy R C M([0, 1]")
of A.

Let us consider the following problem: What is the number of idempotent endomor-
phisms of M([0, 1]™) onto R? Note that this number is > 1 iff A is projective. For every
finitely generated projective MV-algebra C' we define the (projectivity) index (C) as
the sup of the number of idempotent endomorphisms of M([0,1]™) onto C’, where n is
the smallest number of generators of C', and C’ ranges over arbitrary isomorphic copies
of C which are the image of an idempotent endomorphism of M (][0, 1]™).

For every n-generator MV-algebra B, the construction of [53, Corollary 4.18] yields
a canonical (Yosida) homeomorphism of the maximal spectral space pup onto a closed
subset M of [0,1]™. If M = cl(int(M)) then following Kuratowski, we unambiguously
say that pp is a closed domain in [0, 1]™.

Theorem 4.2 (L.M.Cabrer, D.M. [18]) Let A be a finitely generated projective MV-
algebra. Let n be the smallest number of generators of A. Then the index of A is finite
iff the mazimal spectral space of A is a closed domain in [0, 1]™.

The proof uses Theorem 4.1 along with the properties of the rational measure of the
maximal spectral space of A, [53]. In [18] several examples are given of two-generator
projective MV-algebras with arbitrarily high finite index, and with an infinite index.
In particular, «(M([0,1]")) =1 foralln=1,2,....

5 A generalization: Hopfian MV-algebras

An algebra R is hopfian if every homomorphism of R onto R is an automorphism. In
the category of sets, the hopfian property amounts to finiteness.

In the light of the results of the previous section, the following result, proved in
[55], shows that hopfian MV-algebras are a vast generalization of finitely presented
MV-algebras:

Theorem 5.1 The following MV-algebras are hopfian:

(i) Any finitely presented, any finitely generated projective, whence in particular, any
finitely generated free MV-algebra.

(i) Simple MV-algebras.

(111) Finitely generated MV-algebras with only finitely prime ideals.
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(iv) For any rational point w lying in the interior of the cube [0,1]", the germinal
MV-algebra A = M([0,1]™) /o, [19].

(v) Finitely generated semisimple MV-algebra A with a dense set of finite rank maz-
1mal ideals

(vi) Every one-generator semisimple MV-algebra

Theorem 5.2 ([55]) Let A be a semisimple MV-algebra with its mazimal spectral space
p(A).
(i) If w(A) is an n-dimensional manifold without boundary then A is hopfian.

(i1) If p(A) is an n-manifold with boundary, and A has a generating set with n
elements, then A is hopfian.

(iii) More generally, A is hopfian if A has a generating set of n elements and p(A)
is homeomorphically embeddable onto a subset X of [0,1]" coinciding with the closure
of its interior.

Interesting counterexamples of the hopfian property are given by the following re-
sults:

Theorem 5.3 ([55]) The following MV-algebras are not hopfian:

(i) Free MV-algebras over infinitely many free generators.
(i) The free product CII C.
(11i) All countable boolean algebras.

(iv) Let L be an n x n matriz with integer entries and determinant equal to £1. Sup-
pose L has a one-dimensional linear eigenspace E with eigenvalue 0 < X\ < 1, and
E has a nonempty intersection with the interior of [0,1]". Then the semisimple
n-generator MV-algebra M(E N [0,1/2]™) is not hopfian.

Corollary 5.4 ([55]) Each of the following classes of MV-algebras contains a hopfian
and a non-hopfian member:

(abc) Non-semisimple, finitely generated MV-algebras whose mazimal ideals of finite
rank are dense (in the mazximal spectral space).

(abe) Semisimple not finitely generated MV-algebras whose mazimal ideals of finite rank
are dense.

(abc) Semisimple, finitely generated MV-algebras where mazximals of finite rank are not
dense.
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6 More general presentations of MV-algebras

A formula 7 = 7(Xy,...,X,) of Lukasiewicz infinite-valued propositional logic L.,
is a string of symbols obtained from the variable symbols X; by a finite number of
applications of the Lukasiewicz connectives —, @, ®, precisely as boolean formulas are
obtained from the variables and the boolean connectives =, V, A. Following [53, 2.5] we
write FORM,, for the set of formulas in the variables X1, ..., X,,. Following [53, 1.3], the
map sending X; to the ith coordinate function x;: [0,1]" — [0, 1] canonically extends
to a map interpreting each MV-term 7 as a McNaughton function 7 € M([0, 1]™). The
function 7 is said to be “associated” to 7 and, 7 is said to “represent” T.

Fix a recursively enumerable set ® C FORM,,. The decidability of L., [22, 4.5.3],
immediately implies the recursive enumerability of the set ® of (syntactic) consequences
of ®.

Any set © C FORM,, generates the ideal ig = {—¢ | ¥ € ©} C M([0,1]") as
well as the quotient MV-algebra M([0,1]") /ig, called the Lindenbaum algebra of ©.
An MV-algebra is finitely presented iff it is the Lindenbaum algebra of some finitely
axiomatizable theory.

Generalizing the classical definition for finitely axiomatizable theories and their
associated finite presentations, [22, p.100], the word problem of ® can be defined as
follows:

INSTANCE: A formula ¢ € FORM,,.
QUESTION: Does 1 belong to ®?

From [8, Theorem 3.1] we have:

Theorem 6.1 Let ® C FORM,, and ¥ C FORM,,, be recursively enumerable sets of for-
mulas such that M([0,1]™) /ie is isomorphic to M([0,1]") /ix. Then the word problem
of ® is decidable iff so is the word problem of W.

Thus, given a finitely generated MV-algebra A one may naturally say that A is deci-
dable, undecidable, or Géddel incomplete (i.e., undecidable and recursively enumerable)
if so is the word problem of some (equivalently, by Theorem 6.1 of every) recursively

enumerable © C M([0,1]™) such that A = M([0,1]™) /ig. Table 1 shows that Gddel
incomplete MV-algebras in the literature are more the exception than the rule.

Example: A one-generator Godel incomplete MV-algebra. One easily con-
structs a Godel incomplete one-generator MV-algebra A. By Table 1 (line 3), A neces-
sarily has infinitely many maximal ideals.

Let N={0,1,2,...}. Fix throughout a recursive enumeration v: N — N of the set
of Godel numbers of all first-order tautologies in the language of one binary relation
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FINITELY GENERATED MV-ALGEBRA A A 1S NOT GODEL INCOMPLETE
1 chain see [52]
2 with finitely many prime ideals as a corollary of 1
3 one-generator, with finitely many maximal ideals from 2 and [53, 5.13]
4 simple see [50]
5 finitely presented A is decidable, [53, 18.2]
6 finite special case of 5
7 generated by an irrational (Effros-Shen), [53] special case of 4
8 | correspondent of the Behnke-Leptin AF algebra, [51] see [51]
9 Chang algebra, [53] A is decidable
10 finite-valued, (Grigolia) [22] A is decidable
11 Post MV-algebra of order n, [22] A is decidable
12 free A is decidable, [22, 53]

Table 1: Most finitely generated MV-algebras in the literature are not Godel incomplete. An
infinitely generated example of a Gddel incomplete MV-algebra was given in [50].

symbol. Then range(v) is a well known Godel incomplete subset of N. Without loss of
generality, 0 and 1 do not belong to the range of v.

For each k € range(v) let by be the Schauder hat at 1/k whose open support
supp(b,) = {x € [0,1] | bg(x) > 0} is the open interval with extremes and

Ic(lcz—i—l) k:(k:z—l)
(see Figure 1, and refer to [53, 5.7] for details on Schauder hats.) For every [ ¢ range(v)
let b; be the constant function 0 over [0,1].

For each n € Nlet B, = bgV ---V b,. Since L., is closed under the V opera-
tion and Schauder hats are definable, (][22, 53]), there is a formula ¢, (X) such that
gzgn = B,. Let ® = {¢1,¢2,...}. The recursive enumerability of ® follows from
the recursive enumerability of the set of first-order tautologies (the latter property
being a consequence of the Godel completeness theorem) along with the recursive enu-
merability of range(r). Since L., is decidable [53, 18.3], then the deductive closure
® = {+) € FORM, | ¢ is a syntactic consequence of ®} is recursively enumerable.

The undecidability of range(r) entails the undecidability of ®. Thus ® is a Gédel
incomplete theory in one variable, and its associated Lindenbaum algebra is also Godel
incomplete.

7 MV-algebras outside algebraic logic

As mentioned above, MV-algebras are categorically equivalent to unital abelian ¢-
groups, [50]. Further, finitely presented MV-algebras are dually equivalent to rational
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- o) . —
Yke1)  2/(kike1)) Lk 2/(k(k-1)) 1/(k-1)

Figure 1: The Schauder hat by, with vertex at 1/k, where k is the Gédel number of a tautology.

polyhedra, [48]. It is also known that locally finite MV-algebras are dually equiva-
lent to multisets, [23]. These, and other functors constructed in recent years, make
MV-algebras applicable to diverse areas of mathematics. In what follows we present a
selection of recent developments, well beyond the geometric algebraic and algorithmic
issues that have been touched upon in this note:

— Algebraic geometry, [4]

— Categories, duality, sheafs, [20], [21], [26], [32], [33], [44], [47], [48], [49]
— Differential geometry, [7], [11], [16], [56]

— Discrete dynamical systems, [17]

— Games, [38], [39], [40], [41], [43], [45]

— Interval Algebras, [15]

— Modal logic, Belief, [30], [31], [35], [43]

— Multisets, [21], [59]

— Probability, [28], [29], [42], [63]
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Proof-theory of Lukasiewicz logic, [9], [12], [36], [37]
Quantum structures, [27], [61], [62]

Riesz spaces, [16], [24]

Semantics of Lukasiewicz logic, [19], [54], [57]

Semirings, tropical and idempotent mathematics, [2], [3], [25]

Topology, [47], [65], [66].
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