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Abstract

In this paper we characterize the projective modules over an arbitrary quan-
tale, and then we apply such a characterization in order to define the K0 group
of a quantale. Then we study congruences of quantales and quantale modules by
means of their ideals and of saturated elements w.r.t. a binary relation.

Introduction

Since their introduction, in connection with the theory of C∗-algebras [13], quantales
proved to be extremely useful in various areas of pure and applied mathematics.

Although they are very often studied in connection with non-commutative topology
(see, e.g., [3–5,7]), in the last decades quantales are appearing more and more in other
areas’ literature. For example, Abramsky and Vickers introduced the concepts of obser-
vational logic and process semantics, and the algebraic notion of quantale module [1];
later on, quantales and quantale modules were used in the study of algebraic and logi-
cal foundations of Quantum Mechanics [1, 12, 16]. In [19], the author presented, as an
application, an approach to data compression algorithms by means of quantale module
homomorphisms.

For what concerns Mathematical Logic, Yetter [23] proved the connection of quan-
tales with Girard’s Linear Logic [10] and, in recent years, a quantale-theoretic approach
to propositional deductive systems has been developed [9,18,20], starting from the ob-
servation that any propositional deductive system can be represented as a quantale
module.

However, despite of their multiple applications, the first systematic studies on the
categories of quantale modules are rather recent [18–21]. On the other hand, the results
presented in [9] and [20] clearly suggest that the algebraic categories of quantales, unital
quantales, and quantale modules are worth to be further investigated.
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Aim of this paper is precisely to continue the study of quantales and their modules
following two main guidelines: the classical theory of ring modules, as a sort of set
course, and various classical logical problems, as a source of inspiration.

More precisely, we present the following results. First, we shall improve the re-
presentation of endomorphisms of free modules, presented in [19, Theorem 5.19], by
showing that the sup-lattice isomorphism between QX×X and EndQ(QX) of that re-
presentation is actually a quantale isomorphism if QX×X is equipped with a suitable
product (Theorem 2.3). Then, using such a result, we shall characterize projective mo-
dules by means of multiplicatively idempotent elements of QX×X (Theorem 2.4). We
will conclude Section 2 by observing that the construction of the K0 group of a semi-
ring, presented in [8], can be plainly applied to quantales, thus promisingly broadening
this topic’s horizons.

Sections 3 and 4 aim at answering the question of whether it is possible to represent
or, better, to recover quantale and quantale module congruences by using the congru-
ence class of the bottom element. This question naturally leads to the definition of
ideals in such structures, and Theorems 3.8 and 4.3 describe the relationship between
ideals and congruences in quantale modules and quantales respectively. Moreover, it
turns out that right, left, and two-sided ideals of a quantale are in one-one correspon-
dence, respectively, with its right-, left-, and two-sided elements. The results obtained
imply immediately an interesting consequence, namely, that semisimple integral quan-
tales are precisely the spatial frames (Corollary 4.5). The section is completed by a
description of quantale quotients by means of the so-called saturated elements w.r.t. a
binary relation. Such results are more or less known in more restricted or different con-
texts, such as unital commutative quantales, quantale modules, frames, and locales, but
apparently they have never been extended to the general case of arbitrary quantales.

Last, we conclude the paper with some final remarks, and an outline about current
related projects.

1 Preliminaries

Before introducing quantales we recall that the category SL of sup-lattices has complete
lattices as objects and maps preserving arbitrary joins as morphisms. The bottom
element of a sup-lattice shall be denoted by ⊥ and the top element by >. We also recall
that any sup-lattice morphism obviously preserve the bottom element while it may not
preserve the top.

Definition 1.1. A quantale is a structure 〈Q,
∨
, ·〉 such that

(Q1) 〈Q,
∨
〉 is a sup-lattice,

(Q2) 〈Q, ·〉 is a semigroup,
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(Q3) a ·
∨
B =

∨
b∈B

(a · b) and (
∨
B) · a =

∨
b∈B

(b · a) for all a ∈ Q, B ⊆ Q.

A quantale Q commutative if so is the multiplication. Q is said to be unital if there
exists 1 ∈ Q such that 〈Q, ·, 1〉 is a monoid. A unital quantale is called integral if 1 = >.

The morphisms in the categoryQ of (all) quantales are maps that are simultaneously
sup-lattice and semigroup homomorphisms. In the category Qu of unital quantales the
morphisms must also preserve the unit; in order to underline this fact we will use the
notation 〈Q,

∨
, ·, 1〉 for unital quantales.

Definition 1.2. Let Q be a unital quantale. A (left) Q-module M , or a module over Q,
is a sup-lattice 〈M,

∨
〉 with an external binary operation, called scalar multiplication,

∗ : (a, v) ∈ Q×M 7−→ a ∗ v ∈M,

such that the following conditions hold:

(M1) (a · b) ∗ v = a ∗ (b ∗ v), for all a, b ∈ Q and v ∈M ;

(M2) the external product is distributive with respect to arbitrary joins in both coor-
dinates, i.e.

(i) for all a ∈ Q and X ⊆M , a ∗ M
∨
X = M

∨
v∈X a ∗ v,

(ii) for all A ⊆ Q and v ∈M ,
(
Q
∨
A
)
∗ v = M

∨
a∈A a ∗ v,

(M3) 1 ∗ v = v.

In the case of non-unital quantales a left module is a sup-lattice with a scalar multiplica-
tion satisfying (M1) and (M2). Right modules are defined in the usual way. Moreover,
if R is another quantale, a sup-lattice M is a Q-R-bimodule if it is a left Q module, a
right R-module, and in addition (a ∗Q v) ∗R a′ = a ∗Q (v ∗R a′) for all a ∈ Q, a′ ∈ R,
and v ∈M .

Condition (M2) is equivalent to the following one.

(M2) The scalar multiplication is residuated in both arguments (with respect to the
lattice order in M), i.e. the maps

a∗− : v ∈M 7−→ a ∗ v ∈M and − ∗ v : a ∈ Q 7−→ a ∗ v ∈M

are residuated for all a ∈ Q and v ∈M respectively.

The proof of the following proposition is straightforward from the definitions of ∗,
\∗ and ∗/ and from the properties of quantales; however, it can be found in [9].
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Proposition 1.3. For any unital quantale Q and any Q-module M , the following hold.

(i) The operation ∗ is order-preserving in both coordinates.

(ii) The operations \∗ and ∗/ preserve meets in the numerator; moreover, they convert
joins in the denominator into meets. In particular, thew are both order-preserving
in the numerator and order reversing in the denominator.

(iii) (v∗/w) ∗ w ≤ v.

(iv) a ∗ (a\∗v) ≤ v.

(v) v ≤ a\∗(a ∗ v).

(vi) (a\∗v)∗/w = a\(v∗/w).

(vii) ((v∗/w) ∗ w)∗/w = v∗/w.

(viii) 1 ≤ v∗/v.

(ix) (v∗/v) ∗ v = v.

Note that some of the above inequalities are in M and some are in Q but we used
the same symbol for both. This will happen often throughout the paper since we can
rely on the context telling the two relations apart.

Remark 1.4. Henceforth, in all the definitions and results that can be stated both for
left and right modules, we will refer generically to “modules” — without specifying left
or right — and we will use the notations of left modules.

Given two Q-modules M and N , and a map f : M −→ N , f is a Q-module homo-
morphism if it is a sup-lattice homomorphism that preserves the scalar multiplication.
For any quantale Q we shall denote by Q-Mod and Mod -Q respectively the catego-
ries of left Q-modules and right Q-modules with the corresponding homomorphisms.
Moreover, if R is another quantale Q-Mod -R shall denote the category whose objects
are Q-R-bimodules and morphisms are maps which are simultaneously left Q-module
morphisms and right R-module morphisms.

For the basic properties of quantales and their modules we refer the reader re-
spectively to [11, 13, 14, 17] and to [11, 18, 19, 21]. In particular, we recall the following
well-known facts, whose proofs can all be found in [11, Sections 1 and 2].

Proposition 1.5. The following statements hold.

(a) Any quantale Q can be embedded into a unital quantale Q[e].
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(b) For any set X, the free quantale (respectively: unital quantale) over X is the power-
set of the free semigroup (resp.: free monoid) over X, equipped with the singleton
map, with set-theoretic union as join and the product defined by Y · Z := {yz | y ∈
Y, z ∈ Z}.

(c) For any unital quantale Q and for any set X, the free (left) Q-module over X is
the function module QX , equipped with the map

x ∈ X 7−→ ex ∈ QX , with ex(y) =

{
1 if y = x
⊥ if y 6= x

,

with pointwise join and scalar multiplication.

(d) For any non-unital quantale Q, the free (left) Q-module over X is precisely the free
(left) module over Q[e].

(e) The categories Q, Qu, Q-Mod and Mod-Q (for any Q in Q or Qu) are algebraic
categories.

For the sake of completeness, we briefly recall the construction presented in [11,
Lemma 1.1.11], which proves the (a) of Proposition 1.5. Given a quantale Q, let Q[e]
be defined as follows:

- e /∈ Q;

- Q[e] = {a ∨ ε | a ∈ Q, ε ∈ {⊥, e}};

- for any family {ax ∨ εx}x∈X of elements of Q[e];∨
x∈X

(ax ∨ εx) :=

{ (
Q
∨
x∈X ax

)
∨ e if ∃x εx = e

Q
∨
x∈X ax otherwise

;

- for all a ∨ ε, a′ ∨ ε′ ∈ Q[e],

(a ∨ ε) · (a′ ∨ ε′) :=


a ·Q a′ if ε = ε′ = ⊥
a ·Q a′ ∨Q a′ if ε = e and ε′ = ⊥
a ·Q a′ ∨Q a if ε = ⊥ and ε′ = e
(a ·Q a′ ∨Q a ∨Q a′) ∨ e if ε = ε′ = e

.

Then the embedding of Q into Q[e] is ιe : a ∈ Q 7−→ a ∨ ⊥ ∈ Q[e].
It is well-known that sup-lattice homomorphisms are precisely the residuated maps.

So, given two Q-modules M and N , a map f : M −→ N is a homomorphism if and
only if it is a residuated map that preserves the scalar multiplication. In addition, let us
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recall that for any sup-lattice 〈M,
∨
〉 the structure Mop := 〈M,

∧
〉 is again a sup-lattice

(w.r.t. to the dual order ≥) and, if M is a left (respectively: right) Q-module with scalar
multiplication ∗, then Mop is a right (resp.: left) Q-module with scalar multiplication \∗.
Such a correspondence, together with the properties of residuated maps and operations,
immediately gives the following relevant property (see also [1, Section 5]).

Proposition 1.6. For any quantale Q the categories Q-Mod and Mod-Q are dually
isomorphic.

Let M and N be Q-modules. The set homQ(M,N) of the Q-module morphisms from
M to N is naturally equipped with a sup-lattice structure defined pointwise. Moreover,
if Q is commutative, homQ(M,N) becomes a Q-module with the scalar multiplication
• defined, for all a ∈ Q and h ∈ homQ(M,N), by setting (a•h)(x) = a∗h(v) = h(a∗v),
for all v ∈M .

Remark 1.7. In the present paper we are mainly intersted in unital quantales and their
modules. However, some of the results that we present here either hold for all quantales
or can be suitably reformulated and proved in the general setting by means of (a), (b)
and (d) of Proposition 1.5.

In order to keep notations as light as possible, in the rest of the paper we shall
always deal with unital quantales and their modules without explicitly repeating it all
the times. At the end of each section we shall discuss the extensions of the results
presented to all quantales, whenever needed.

2 Projective quantale modules and K0 group of a

quantale

In what follows, for any subset S of QX , we shall denote by Q ·S the submodule of QX

generated by S.
Let Q ∈ Qu and X, Y be non-empty sets and let us consider the free Q-modules

QX and QY . We recall from [19] that, for any k ∈ QX×Y , the Qu-module transform
hk : QX −→ QY with kernel k is the defined by

hkf(y) =
∨
x∈X

f(x) · k(x, y), for all y ∈ Y. (1)

Its inverse transform λk : QY −→ QX is defined by

λkg(x) =
∧
y∈Y

g(y)/k(x, y), for all x ∈ X. (2)
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Remark 2.1. Recalling that we are using the notations of left modules, we observe
that, if we consider QX and QY as right modules, the direct and inverse transforms are
defined respectively by hkf(y) =

∨
x∈X k(x, y) · f(x) and λkg(x) =

∧
y∈Y k(x, y)\g(y).

Up to a suitable reformulation, all the results we will present hold for both left and
right modules.

Theorem 2.2. [19, Theorem 5.7] Let Q ∈ Qu, X, Y be two non-empty sets and k ∈
QX×Y . The following hold:

(i) (hk, λk) is an adjoint pair, i.e. hk is residuated and λk = hk∗;

(ii) hk ∈ homQ

(
QX , QY

)
;

(iii) λk ◦ hk is a nucleus over QX .

Let us now consider the case of endomorphisms of a given free Q-module. The set
EndQ(QX) has a natural structure of quantale with the pointwise join, the product of en-
domorphisms defined as the composition in the reverse order1 (h1h2 := h2 ◦h1), and the
identity ofQX as unit. Furthermore, we setMX(Q) to be the structure

〈
QX×X ,

∨
, ?, id

〉
,

where

• id is the map defined by id(x, y) =

{
1 if x = y
⊥ otherwise

,

•
∨

is the pointwise join,

• the operation ? is defined by (h ? k)(x, y) =
∨
z∈X h(x, z)k(z, y).

It is immediate to verify that MX(Q) is a quantale; moreover the following result holds.

Theorem 2.3. For any quantale Q and any non-empty set X the quantales MX(Q)
and EndQ(QX) are isomorphic.

Proof. By [19, Theorem 5.19], the map η : k ∈ MX(Q) 7−→ hk ∈ EndQ(QX) is a sup-
lattice isomorphism, so we just need to prove that η preserves the monoid structure.

First, it can be immediately observed that η(id) = idQX . Now, given a map k ∈
QX×X , for all f ∈ QX , hk(f)(y) =

∨
x∈X f(x)k(x, y). Hence

hk?l(f)(y) =
∨
x∈X f(x)

(∨
z∈X k(x, z)l(z, y)

)
=
∨
x∈X

∨
z∈X(f(x)(k(x, z)l(z, y)))

=
∨
z∈X

(∨
x∈X f(x)k(x, z)

)
l(z, y)

=
∨
z∈X hk(f)(z)l(z, y)

= (hl ◦ hk)(f)(y),

for all k, l ∈MX(Q) and f ∈ QX . Therefore η is a quantale isomorphism.

1Actually also the composition can be used. Here the other multiplication is needed in order to
establish Theorem 2.3
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Thanks to Theorem 2.3 we can now give a characterization of projective objects in
the category Q-Mod in terms of Q-valued maps.

Theorem 2.4. Let M be Q-module and X ⊆ M be a set of generators for M . M is
projective if and only if there exists a multiplicatively idempotent element k of MX(Q)
such that M ∼= Q · {k(x,− )}x∈X .

Proof. Let M be projective. Since X is a generating set for M and QX is free over
X, M is a retract of QX . More precisely, the identity map of X can be extended to
a unique Q-module homomorphism π : QX −→ M which is obviously onto. Then
the projectivity of M implies the existence of a morphism µ : M −→ QX such that
π ◦ µ = idM , and µ must be injective. So, if we set k(x,− ) = µ(x), for all x ∈ X, we
have M ∼= Q · {k(x,− )}x∈X = hk[Q

X ].
So hk is a retraction whose corresponding section is the inclusion map. Hence, for

any element f ∈ Q · {k(x,− )}x∈X , hk(f) = f . In particular, for all x ∈ X, k(x,− ) =∨
x∈X 1 ∗ k(x,− ) ∈ Q · {k(x,− )}x∈X and therefore hk(k(x,− )) = k(x,− ). Then we have

k(x,− ) = hk(k(x,− )) =
∨
y∈X

k(x, y) ∗ k(y,− )

for all x ∈ X, that is, k ? k = k in MX(Q).
Conversely, let M = Q·{k(x,− )}x∈X and k?k = k. Any element α ∈ Q·{k(x,− )}x∈X

can be written as
∨
x∈X ax ∗ k(x,− ), hence α = hk(a−). By Theorem 2.3 we have

hk(α) = hk(hk(a−)) = hk?k(a−) = hk(a−) = α.

It follows that the inclusion map of Q ·{k(x,− )}x∈X in QX is a section whose correspon-
ding retraction is hk. Then Q · {k(x,− )}x∈X is a retract of a free module and therefore
is projective.

It is immediate to see that finitely generated projective modules over a given quan-
tale 〈Q,

∨
, ·, 1〉 coincide with finitely generated projective semimodules over the idem-

potent semiring 〈Q,∨, ·,⊥, 1〉 [8]. More precisely, every finitely generated semimodule
M over Q is complete and the external multiplication over it distributes over arbi-
trary joins both in M and Q, hence M is also a quantale module, with the same
finite generating set, and is projective because Theorem 2.4, in that case, restricts to
the analogous characterization presented in [8]. Reciprocally, every finitely generated
projective Q-module is a finitely generated projective Q-semimodule, with the same ge-
nerating set. Moreover, products and coproducts of finitely many quantale modules and
of finitely many semimodules over semirings are constructed exactly in the same way.
As a consequence, the construction of the Grothendieck group of a semiring, presented
in [8, Section 6], immediately extends to quantales.

So we have
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Definition 2.5. Let Q be a quantale, 〈PF(Q),⊕, [{⊥}]〉 the Abelian monoid of isomor-
phism classes of projective left Q-modules and let J = FreeGAb(PF(Q)) the free Abelian
group generated by such isomorphism classes. For any projective left Q-module M , we
denote by [M ] its isomorphism class. Let H be the subgroup of J generated by all the
expressions of type [M ] + [N ]− [M ⊕N ], with M and N projective modules.

We define the Grothendieck group of a quantale Q to be the factor group J/H and
denote it by K0Q.

Theorem 2.6. K0 is a functor from Qu to GAb.

Theorems 2.2 and 2.3 hold for non-unital quantales too, but it is important to
underline that, if Q is a non-unital quantale, then the free modules over Q coincide
with the free modules over the unital quantale Q[e], exactly as in the case of ring
modules. So, both the results can be stated and proved for the (non-free) modules of
type QX as well as for the free Q-modules Q[e]X , by suitably using Q or Q[e].

Regarding the rest of the section, in the case of non-unital quantales, again, pro-
jective objects of Q-Mod coincide with those of Q[e]-Mod , and therefore everything
works the same way and the K0 group of a non-unital quantale Q coincide with the one
of Q[e].

3 Ideals and congruences of quantale modules

In this section we shall introduce ideals of quantale modules. Once observed that the
⊥-class of a module congruence is an ideal, we will show that, given a module M and
an ideal I of it, it is possible to define in a canonical way a congruence whose ⊥-class
is the given ideal, and that such a congruence is not unique in general. It is, indeed,
the largest congruence with that property.

Definition 3.1. Let I be a subset of a Q-module M . I is called a Q-ideal of M
provided

(i) X ⊆ I implies
∨
X ∈ I,

(ii) v ∈ I and w ≤ v imply w ∈ I,

(iii) v ∈ I implies a · v ∈ I, for all a ∈ Q.

By (i), since ∅ ⊆ I, ⊥ =
∨

∅ ∈ I for any ideal I; in addition, both M and {⊥} are
ideals.

As usual, for any subset S of aQ-moduleM , we will denote by (S] the ideal generated
by S, i.e., the smallest ideal containing S. An ideal is called principal if it is generated
by a singleton; in this case we will write (v] instead of ({v}]. Among other properties,
the following result shows that all ideals of quantale modules are indeed principal.
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Proposition 3.2. For any quantale Q and any Q-module M , the following properties
hold.

(i) For any Q-ideal I of M , I = [⊥,
∨
I]

(ii) For any subset S of M , (S] = [⊥,> ∗
∨
S]. So, in particular, (v] = [⊥,> ∗ v] for

all v ∈M .

(iii) The Q-ideals of M are precisely the intervals [⊥, v] with v such that > ∗ v = v.

(iv) Every Q-ideal of M is principal.

(v) If [⊥, v] is a Q-ideal of M , then [>, v]op := {w ∈M | > ≥ w ≥ v} is a Q-ideal of
Mop.

Proof. (i) Obvious.

(ii) By (i) and (iii) of Definition 3.1, > ∗
∨
S ∈ (S], hence [⊥,> ∗

∨
S] ⊆ (S] by (ii)

of the same definition.

Now we must prove that [⊥,> ∗
∨
S] is a Q-ideal. Since, for any v ∈ M , > ∗

(> ∗ v) = (>>) ∗ v = > ∗ v, we have that > ∗ v ≤ > ∗ (> ∗
∨
S) = > ∗

∨
S

whence > ∗ v ∈ [⊥,> ∗
∨
S] for all v ∈ [⊥,> ∗

∨
S]. Then, for all a ∈ Q and

v ∈ [⊥,> ∗
∨
S], a ∗ v ≤ > ∗ v ≤ > ∗

∨
S and, therefore, a ∗ v ∈ [⊥,> ∗

∨
S].

(iii) Let v ∈ M such that > ∗ v = v. As in the proof of (ii), it is easy to prove that
[⊥, v] is a Q-submodule of M and then, by (i), a Q-ideal. The converse also follows
from (i).

(iv) It follows immediately from (iii).

(v) Recall that the scalar multiplication on Mop is \∗. So, since [⊥, v] is a Q-ideal of
M , then > ∗ v = v and therefore v ≤ >\∗v =

∨
{w ∈ M | > ∗ w ≤ v}. On the

other hand, by Proposition 1.3 (ii), >\∗v ≤ 1\∗v = v. Then it follows from (iii)
that [>, v]op is an ideal of Mop.

Definition 3.3. Let Q be a quantale and M a Q-module. An element v ∈M satisfying
condition (iii) of Proposition 3.2, i.e., such that >∗v = v, will be called an ideal element.

Proposition 3.4. Let Q be an integral quantale and let M be a Q-module. Then every
element of M is ideal, i.e., [⊥, v] is a Q-ideal for all v ∈M .

Proof. If Q is integral, > = 1, hence > ∗ v = 1 ∗ v = v for any v ∈M .
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Proposition 3.5. The set Id(M) of all the ideal elements of a Q-module M is a sup-
sublattice of M . Moreover, if Q is commutative, Id(M) is a Q-submodule of M .

Proof. We know that ⊥ ∈ Id(M). If {ix}x∈X is a family of ideal elements, >∗
∨
x∈X ix =∨

x∈X(> ∗ ix) =
∨
x∈X ix, so

∨
x∈X ix ∈ Id(M) and Id(M) is a sup-sublattice of M .

Now let Q be commutative. For any a ∈ Q and i ∈ Id(M), > ∗ (a ∗ i) = (>a) ∗ i =
(a>) ∗ i = a ∗ (> ∗ i) = a ∗ i, hence a ∗ i ∈ Id(M) and the proposition is proved.

It is important to notice that a Q-module does not have necessarily maximal ideals,
as the following example shows.

Example 3.6. Let Q = 〈[0, 1],
∨
, ∗, 0, 1〉, where ∗ is any t-norm, and consider Q as a

module over itself. For any a ∈ [0, 1] the interval [0, a] is clearly a Q-ideal, then there
is no maximal Q-ideal of Q.

Let Q be a quantale and M a Q-module. For any v ∈ M and any Q-ideal I of M ,
we denote by iv the scalar

∨
I∗/v. It is easy to see that

iv =
∨{

a ∈ Q | a ∗ v ≤
∨

I
}

=
∨
{a ∈ Q | a ∗ v ∈ I} .

Lemma 3.7. Let I be a Q-ideal of M . For all v, w ∈ M , X ⊆ M and a ∈ Q the
following properties hold:

(i) aiv ≤ iv;

(ii) if 1 ≤ a, then aiv = iv;

(iii) if v ≤ w, then iw ≤ iv;

(iv) i
∨
X =

∧
v∈X i

v;

(v) ia∗v = iv/a.

Proof. (i) For any a ∈ Q, (aiv) ∗ v = a ∗ (iv ∗ v) ∈ I, hence aiv ∈ {b ∈ Q | b ∗ v ∈ I}
and iv is the supremum of this set. Therefore aiv ≤ iv.

(ii) By (i), aiv ≤ iv. On the other hand, from 1 ≤ a follows iv = 1iv ≤ aiv, whence
the equality.

(iii) By Proposition 1.3 (ii).

(iv) Again by Proposition 1.3 (ii).
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(v) For all b ∈ Q,

b ≤ iv/a = (
∨
I∗/v) /a ⇐⇒ ba ≤

∨
I∗/v ⇐⇒

ba ∗ v ≤
∨
I ⇐⇒ b ∗ (a ∗ v) ≤

∨
I ⇐⇒

b ≤
∨
I∗/(a ∗ v) = ia∗v.

Theorem 3.8. Let Q be a quantale, M a Q-module and θ a Q-module congruence on
M . Then ⊥/θ is a Q-ideal of M .

Conversely, for any Q-ideal I of M , the relation θI defined by

vθIw if and only if iv = iw (3)

or, that is the same,

vθIw if and only if iv ∗ w ∨ iw ∗ v ∈ I, (4)

is a Q-module congruence and ⊥/θI = I. Moreover, if θ is a congruence on M such
that ⊥/θ = I, then θ ⊆ θI , that is, θI is the largest congruence whose class of ⊥ is I.

Proof. Conditions (i) and (iii) of Definition 3.1 follow trivially from the fact that θ is
a module congruence; (ii) can be easily proved by observing that v ∈ ⊥/θ and w ≤ v
imply w/θ ≤ v/θ = ⊥/θ.

For the second part of the theorem, let us show first that the two definitions (3) and
(4) are equivalent. If iv = iw, then iv · w = iw · v ≤

∨
I, hence iv · w, iw · v ∈ I and, by

the definition of ideal, iv ·w∨ iw ·v ∈ I. Conversely, if v and w verify (4), iv ·w, iw ·v ∈ I,
therefore iv · w, iw · v ≤

∨
I. This means that iv ≤ iw =

∨
{q ∈ Q | a · w ≤

∨
I} and

iw ≤ iv =
∨
{q ∈ Q | a · v ≤

∨
I}, whence iv = iw.

The relation θI is obviously an equivalence, thus we must prove only that it preserves
the operations.

If vθIw, then iv = iw and, by Proposition 3.7 (v), ia∗v = iv/a = iw/a = ia∗w, for all
r ∈ Q. Hence a ∗ vθIa ∗ w for all r ∈ Q.

Let now {vx}x∈X and {wx}x∈X be two families of elements of M such that vxθIwx
for all x ∈ X, and let v =

∨
x∈X vx and w =

∨
x∈X wx. By Proposition 3.7 (iv),

iv =
∧
x∈X i

vx =
∧
x∈X i

wx = iw; then
∨
x∈X vxθI

∨
x∈X wx.

Now, vθI⊥ if and only if iv = i⊥ = >, i. e., if and only if v ∈ I, then ⊥/θI = I.
Last, we must prove that θI is the largest congruence such that the congruence class

of ⊥ is I. So, let θ be a congruence such that ⊥/θ = I; then, if vθw, iv · wθiv · v ∈ I,
namely iv · w ∈ I; analogously we have that iw · v ∈ I, hence vθIw and the theorem is
proved.

The congruence θI is, in general, not the unique one such that the class of ⊥ is
I as the following example (which refers to constructions and results presented in [9]
and [18]) shows.
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Example 3.9. Let L be the propositional language {→} and let ` be the substitution
invariant consequence relation on P(FmL) defined by no axioms and the Modus Ponens
α α→β

β
as the unique inference rule.

Then the powerset of the set of theorems (i. e., the congruence class of the empty
set) is the singleton of the empty set but, nonetheless, the inference rule makes the
consequence relation non-identical. Indeed, for any ϕ, ψ ∈ FmL, if ϕ 6= ψ then {ϕ, ϕ→
ψ} 6= {ϕ, ϕ→ ψ, ψ}, but their congruence classes coincide.

Combining Propositions 1.6 and 3.2 with Theorem 3.8, we have that an ideal [⊥, v]
is the class of ⊥ for as many distinct congruences as many distinct submodules of Mop

have v as the largest element (w.r.t. the dual order). Moreover, (M/θI)
op is the smallest

and [>, v]op the largest of such submodules of Mop.
All the results of this section hold for non-unital quantales too along with their

proofs, except the few ones which cannot even be stated in that case.

4 Quantale congruences

In the present section we shall use the results of the previous one in order to describe
quantale congruences, and their relationship with two-sided quantale ideals and two-
sided elements. Then we will characterize semisimple integral quantales, showing that
they are exactly the spatial frames and, at the end of the section, we shall describe
the quotient of a quantale w.r.t. the congruence generated by a set of pairs, by means
of the so-called saturated elements. Such a tool will give us the possibility to obtain
information also about the smallest congruence whose ⊥-class is a given ideal.

Definition 4.1. Let I be a subset of a quantale Q. I is called a left (respectively:
right) ideal of Q provided

(i) X ⊆ I implies
∨
X ∈ I,

(ii) x ∈ I and y ≤ x imply y ∈ I,

(iii) x ∈ I implies ax ∈ I (resp.: xa ∈ I), for all a ∈ Q.

I is a two-sided ideal or, simply, an ideal if it is both a left and a right ideal.

Another way to see quantale ideals is to consider them as Q-ideals of the free Q-
module structures of Q. So left ideals are basically ideals of the left Q-module Ql and
right ideals are ideals of the right Q-module Qr. Then the results achieved so far in this
section immediately apply to left and right ideals. For what concerns two-sided ideals,
the following Proposition 4.2 can be immediately obtained by adapting the proof of
Proposition 3.2.



418 C. Russo

Proposition 4.2. For any quantale Q the following properties hold.

(i) For any S ⊆ Q, (S] = [⊥,> · (
∨
S) · >]. In particular, for each a ∈ Q, (a] =

[⊥,> · a · >].

(ii) The ideals of Q are precisely the intervals [⊥, a] with a such that > · a · > = a
(that is, a is a two-sided element of Q).

(iii) Every ideal of Q is principal.

According to Proposition 4.2, the principal generators of ideals of a quantale Q are
precisely the two-sided elements2 of a quantale Q; we shall denote by Id(Q) the set of
all such elements and, as in the case of modules, we shall also call them ideal elements.
We observe explicitly that the unique two-sided element a such that 1 ≤ a is >. Indeed
from 1 ≤ a follows > = >1 ≤ >a = a, and therefore a = >.

The following result readily follows from Theorem 3.8.

Theorem 4.3. For any quantale Q and any ideal element i of Q, the relation θi defined
by

aθib if and only if i/a = i/b and a\i = b\i (5)

or, that is the same,

aθib if and only if (i/a)b ∨ (i/b)a ∨ b(a\i) ∨ a(b\i) ≤ i, (6)

is a quantale congruence and ⊥/θi = [⊥, i]. Moreover, if θ is a congruence on Q such
that ⊥/θ = [⊥, i], then θ ⊆ θi, that is, θi is the largest congruence whose class of ⊥ is
the downset of i.

Any element of an integral quantale is obviously two-sided, hence we have the fol-
lowing immediate corollaries.

Corollary 4.4. An integral quantale is simple if and only if it is either trivial (i.e. the
one-element quantale) or the two-element chain {⊥,>}.

Corollary 4.5. An integral quantale is semisimple if and only if it is a spatial frame.

Proof. It suffices to observe that Corollary 4.4 implies that a semisimple integral quan-
tale is isomorphic to a subframe of the frame reduct of a Boolean algebra of type
{⊥,>}X for some set X, that is, a spatial frame.

Theorem 4.6. The set Id(Q) of all the ideal elements of a quantale Q is a non-unital
subquantale of Q (i.e., it is closed under

∨
and ·). It is an integral quantale. Moreover

the following are equivalent:

2In fact, they are strictly two-sided since in unital quantales the two notions coincide.
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(a) Id(Q) is a unital subquantale of Q;

(b) Q is integral;

(c) Id(Q) = Q.

Proof. For any a ∈ Id(Q) obviously a = >a = a>. So, for all a, b ∈ Id(Q), >ab> =
ab ∈ Id(Q).

Now, if Id(Q) is a subquantale of Q then 1 ∈ Id(Q) and therefore 1 = >1> = >,
i. e., Q is integral. On the other hand, if Q is integral 1 = >, hence a = >a> for all
a ∈ Q and Id(Q) = Q. Last, it is obvious that (c) implies (a).

We conclude this section with a useful description of quantale quotients w.r.t. con-
gruence generated by a given binary relation, by means of the so-called saturated ele-
ments. The technique presented here already appeared in [2], in the contest of unital
commutative quantales, and in [15], for quantale modules, and is quite common in the
literature of frames and locales. However, to the best of our knowledge, a complete
presentation of the topic for quantales in general has never appeared.

Definition 4.7. Let Q be a (not necessarily unital) quantale, and R be a binary relation
on Q, i.e., a subset of Q2. An element s of Q is called R-saturated if, for all (a, b) ∈ R
and c, d ∈ Q, the following conditions hold:

(i) cad ≤ s iff cbd ≤ s;

(ii) ac ≤ s iff bc ≤ s;

(iii) ca ≤ s iff cb ≤ s;

(iv) a ≤ s iff b ≤ s.

We shall denote by QR the set of R-saturated elements of Q.

Remark 4.8. If Q is unital, conditions (ii–iv) of Definition 4.7 are redundant, since they
are all immediate consequences of (i). In the rest of this section, in order to keep the
presentation reasonably concise, we shall only deal with unital quantales, and therefore
only condition (i) will be used. Anyway, all of the results hold for non-unital quantales
too, up to a trivial (but somewhat lenghty) extension of the proofs.

Proposition 4.9. For any quantale Q and for all binary relation R on it, QR is closed
w.r.t. arbitrary meets. Moreover, for all s ∈ QR and for all q ∈ Q, both s/q and q\s
belong to QR.
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Proof. Let S ⊆ QR, (a, b) ∈ R, and c, d ∈ Q. We have

cad ≤
∧

S ⇐⇒ ∀s ∈ S(cad ≤ s) ⇐⇒ ∀s ∈ S(cbd ≤ s) ⇐⇒ cbd ≤
∧

S.

Similarly, if Q is non-unital, we get a ≤
∧
S iff b ≤

∧
S, whence

∧
S ∈ QR for all

S ⊆ QR.
Now let c, d, q ∈ Q, (a, b) ∈ R, and s ∈ QR. Then

cad ≤ s/q ⇐⇒ cadq ≤ s ⇐⇒ cbdq ≤ s ⇐⇒ cbd ≤ s/q,
cad ≤ q\s ⇐⇒ qcad ≤ s ⇐⇒ qcbd ≤ s ⇐⇒ cbd ≤ q\s,
a ≤ s/q ⇐⇒ aq ≤ s ⇐⇒ cbdq ≤ s ⇐⇒ cbd ≤ s/q,
cad ≤ q\s ⇐⇒ qcad ≤ s ⇐⇒ qcbd ≤ s ⇐⇒ cbd ≤ q\s,

So the assertion is proved.

Lemma 4.10. If R ⊆ R′ ⊆ Q2, then QR′ ⊆ QR.

Proof. Trivially, if s ∈ Q is R′-saturated, then conditions (i–iv) of Definition 4.7 hold
for all (a, b) ∈ R′ and, therefore, for all (a, b) ∈ R. Hence s ∈ QR′ implies s ∈ QR.

Lemma 4.11. Let Q and Q′ be quantales, and f : Q → Q′ a homomorphism with
residuum f∗ : Q′ → Q and associated nucleus γ = f∗ ◦ f . Then Qγ coincide with the
set of (ker f)-saturated elements of Q.

Proof. First, recall that the properties of residuated maps guarantee that, for all q ∈ Q,
γ(q) = max{x ∈ Q | f(x) ≤ f(q)}. By definition, an element s of Q is (ker f)-saturated
if, for all a, b, c, d ∈ Q such that f(a) = f(b), cad ≤ s iff cbd ≤ s. Now, if f(a) = f(b)
and cad ≤ γ(q) for some c, d, q ∈ Q, then f(cad) ≤ f(γ(q)) = f(f∗(f(q))) = f(q)
and therefore f(cbd) = f(c)f(b)f(d) = f(c)f(a)f(d) = f(cad) ≤ f(q), from which
we deduce cbd ≤ γ(q). The inverse implication is completely analogous, hence γ(q) is
(ker f)-saturated, for all q ∈ Q, namely, Qγ ⊆ Qker f .

Conversely, let s ∈ Qker f . Since f(s) = f(f∗(f(s))) = f(γ(s)), (s, γ(s)) ∈ ker f and
therefore we have s ≤ s iff γ(s) ≤ s, form which we get immediately γ(s) ≤ s. On
the other hand, a ≤ γ(a) for all a ∈ Q, hence s = γ(s) ∈ Qγ, and the assertion is
proved.

Theorem 4.12. Let Q be a quantale, R ⊆ Q2, and

ρR : a ∈ Q 7→
∧
{s ∈ QR | a ≤ s} ∈ Q.

Then ρR is a quantic nucleus whose image is QR. Moreover, QR, with the structure
induced by ρR, is isomorphic to the quotient of Q w.r.t. the congruence generated by R.
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Proof. By Proposition 4.9, ρR[Q] ⊆ QR. On the other hand, obviously, ρR(s) = s for all
s ∈ QR, and therefore ρR[Q] = QR. It self-evident also that ρR is monotone, extensive,
and idempotent w.r.t. composition, i.e. it is a closure operator. So, in order to prove
that ρR is a quantic nucleus, we only need to show that ρR(a)ρR(b) ≤ ρR(ab) for all
a, b ∈ Q.

Let s ∈ QR and let a, b ∈ Q. We have ρR(ab) ≤ s iff ab ≤ s iff a ≤ s/b iff
ρR(a) ≤ s/b iff ρR(a)b ≤ s iff b ≤ ρR(a)\s iff ρR(b) ≤ ρR(a)\s iff ρR(a)ρR(b) ≤ s. Then
ρR(a)ρR(b) ≤ ρR(ab) for all a, b ∈ Q.

Now, once proved that ρR is a quantic nucleus, we can consider QR with its quantale
structure induced by ρR, and we have that the mapping a ∈ Q 7→ ρR(a) ∈ QR is
an onto homomorphism (that we will still denote by ρR). By Lemma 4.11, we get
Q/ ker ρR ∼= QρR = QR = Qker ρR . Since R ⊆ ker ρR, if θ is the congruence generated by
R, then θ ⊆ ker ρR. Denote by pθ the natural projection of Q over Q/θ and by γ the
quantic nucleus on Q induced by pθ. Then, by Lemma 4.11, Qθ = Qγ

∼= Q/θ. Hence,
by Lemma 4.10 and the first part of this proof, we obtain Q/ ker ρR ∼= QρR = Qker ρR ⊆
Qθ ⊆ QR = Qker ρR . The assertion follows.

Next result is an easy consequence of Theorem 4.12. Dually to Theorem 4.3, it
points out the smallest congruence associated to a given ideal.

Corollary 4.13. Let Q be a quantale, i ∈ Id(Q), and R = {(⊥, i)}. Then QR is
isomorphic to the quotient of Q w.r.t. the smallest congruence whose ⊥-class is [⊥, i].
In other words, such a congruence is precisely ker ρR.

Now observe that, according to Definition 4.7, given i ∈ Id(Q) and R = {(⊥, i)}, an
element s of Q is R-saturated if and only if, for all c, d ∈ Q, ⊥ = c⊥d ≤ s iff cid ≤ s,
from which we have that s ∈ QR iff cid ≤ s for all c, d ∈ Q. On the other hand, since
i ∈ Id(Q), we have that cid ≤ >i> = i for all c, d ∈ Q. This means that i ∈ QR, and
s ∈ QR iff i ≤ s. So we have

Corollary 4.14. For all i ∈ Id(Q), the set of {(⊥, i)}-saturated elements of Q is
precisely [i,>].

5 Conclusion

The results of the present work, and especially the ones of Section 4, represent, in
our opinion, a step in the direction of a description of the lattices of congruences of
quantales. Such a description, on its turn, could be extremely useful for a representation
theorem for quantales which could be more handy than the few known ones (see, e.
g., [6] and [22]).

The interest for the relationship between congruences and ideals was actually sugge-
sted also by the results of [9] and [20], and by Example 3.9. Indeed, in the representation
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of deductive systems by means of quantale modules, consequence relations correspond
to module congruences, and the set of theorems of a given deductive system to the
congruence class of the bottom element, i. e., to an ideal.

Therefore one can ask which consequence relations definable on a given propositi-
onal language do correspond to the congruences defined in Theorem 3.8. During the
workshop in honour of Francisco Miraglia, the present author conjectured some relation
between such congruences and the consequence relations which satisfy the Deduction
and Detachment Theorem. As a remark, Miraglia himself suggested to try to cha-
racterize also those congruences which correspond to consequence relations satisfying
Craig Interpolation. Both these questions do not have a definitive answer yet, and are
currently object of study by the author.
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