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Abstract

In this work, we will be interested in the results in model theory which can
be proven inside sheaf models over a frame. We know that these sheaf models
generalize classical models, Kripke models, topological models and Beth models.
The results in model theory with sheaf models are intuitionistic results. We will
explain how to define sheaf models and give an overview over the model theoretic
results obtained so far in the context explained.
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Introduction

The point of investigation is a generalization of intuitionistic models as Kripke, Beth,
topological and algebraic models, for these models see for example [15, 35, 38]. We will
not work inside a topos theoretic model but in sheaf models over a fixed frame or if
necessary in sheaves over a (fixed) topological space. Working in a special topological
space has some advantages which we will see in the following. Topological properties of
the space considered can help proving theorems in model theory, see sections 2 and 5.
Working in sheaf models over a fixed frame Ω, we are able to use the rather algebraic
definition of complete Ω-set. On the other side, we have clearly the disadvantage that
these sheaf models could be strictly generalized: The sheaf models over topological
spaces are generalized by sheaf models over a frame and the latter are generalized by
the topos theoretic models, i.e., models in a general topos, cf. [28].

This article is to be intended as a survey presenting results obtained so far in models
of sheaves from Chico Miraglia and the author. Most of the results presented here are
due to Chico Miraglia. The author had the honor and pleasure to work and to learn
with Chico in the second half of the 1990’s. In occasion of Chico Miraglia’s 70th
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birthday in september 2016, the author gave a talk about these results at University
of São Paulo. We resume all these results in this article. The author hopes that this
article helps for a further understanding of intuitionistic model theory. It seems that
today this branch of mathematical logic has only a few researchers, nevertheless the
author thinks that the research subject is very interesting and helps to understand
intuitionistic logic. We generalize model theory for intuitionistic logic and in a first
approach we do not use topos theory. Also, we consider classical logic in the meta
theory. Chico Miraglia always said to me as I learned with him: ”Only if we have
a clear sight of intuitionistic results in this way we can think to start generalization
of these obtained results, for example, with an intuitionistic meta theory or in topos
theory.” Clearly, whenever possible, we always use in the meta theory constructive
arguments in the sense of Brouwer’s constructive reasoning, cf [3, 19, 38]. In section
4 we are able to prove the generalization of the method of constants for sheaf models
with a constructive meta theory. A very good overview of the origin and philosophy of
Brouwer’s intuitionistic and constructive reasoning is given in [1], which can be accessed
online.

The seminal paper of model theory in sheaves over a frame Ω, named as complete
Ω-set by the authors, is to the best of the authors knowledge the 1979 paper of Fourman
and Scott, cf. [16]. We think that this paper gives a kind of new foundation and origin
of the research in model theory using sheaf models over a frame Ω. Clearly, before and
after Fourman and Scott, there were research in model theory using sheaf models over
a topological space, see for example the results of [8, 9, 11, 12, 14, 26, 33, 39]. The idea
of Fourman and Scott was to introduce sheaf models using Ω-sets, finitely complete
and complete Ω-sets, where Ω is a frame. This approach seemed to be very interesting
because we do not use the definitions of presheaves and sheaves known and used so far:
presheaf as a functor and sheaf as functor with the additional property of the existence
of gluings for compatible sections. The value of a formula interpreted in a sheaf model
so far was given by sub-(pre-)sheaf of the interpreting (pre-)sheaf. After Fourman and
Scott’s work, we were be able to see sheaf in a kind of algebraic way and the value
of a formula is given by a characteristic function, and this characteristic function is in
general easier to treat as the sub-(pre-)sheaves. Also we are working a little bit more
general as in sheaves over a topological space1 using these complete Ω-sets.

The paper is divided in the following way. In the next section, we recall some
definitions and basic facts important for understanding the model theoretic results
obtained in the other sections. We define frame, Ω-set, complete Ω-set, presheaf over
a frame. We recall the notion of characteristic maps, important for interpretation of
the formulas. We give the ideas of sheafification and the interpretation of terms and
formulas. In the third section, we present two model existence theorems, cf. [4, 6] and
the  Loś theorem for a restricted language L], cf. [31] – a language without the universal

1About the history of sheaf theory see [18].
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quantifier. In section three, we sketch the downward Löwenheim Skolem Theorem in
presheaf structures over a certain frame, having countable determined meets and joins,
cf. [30]. Section four, gives a generalizing method of diagrams in the sense of A.
Robinson. We have basically two versions, one in our usual (total) language L and
the other in an extended language L2, cf. [5]. In this section, we are able to argue
constructively in the meta theory. The last section treats an intuitionistic version of
the Omitting Types Theorem, there a restriction to the language L] and sheaf models
over topological spaces2 is made, cf. [6].

1 Previous Definitions and Results about Sheaf The-

ory

We do not assume the reader is familiar with the basic notions of Ω-sets, presheaves
and sheaves over Ω, where Ω is a frame. We try to give all preliminaries to a good
understanding of the following results. For further information the reader can take
a look in the following books or articles: [4, 16, 28, 29, 30, 38]. In all that follows,
notation and terminology will be that of [4] and [29]. Almost all definitions and results
of this section are due to [29]. We hope to make the article independent, by giving
these definitions and results in the following.

We begin with the following standard notation.

Notation 1.1 We shall adhere to standard notation for lattice operations. Thus, we
write ≤, ∧,

∧
, ∨,

∨
, for the partial order, binary and arbitrary meets and joins,

respectively. By > and ⊥ we indicate the largest (top) and least (bottom) elements of a
lattice.

The following remark is fundamental for the following.

Remark 1.2 a) Recall that a frame3 is a complete lattice, Ω, such that for all S ⊆ Ω
and a ∈ Ω :

[∧,
∨

] a ∧
∨
S =

∨
s∈S a ∧ s.

In a frame Ω we always have implication, i.e., for all p, q ∈ Ω, implication and
negation are defined by

p → q :=
∨
{x ∈ L : x ∧ p ≤ q} and ¬ p := p → ⊥.

Also the adjunction between ∧ and → is easily verified in a frame :
[ad] ∀ x ∈ Ω, x ∧ p ≤ q iff x ≤ p → q.

In the following the symbol Ω will always stand for a frame.

2Sometimes called simply topological sheaves.
3For some more information about frames the reader is asked to consult [22, 34].
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b) If Ω, Λ are frames, a map Ω
f−→ Λ is a frame morphism if it preserves finite meets

and arbitrary joins. So, we can consider the category of frames.
c) If X is a topological space, its topology, Ω(X), is a classical example of a frame,
under the inclusion partial order. For {U , V } ∪ {Ui : i ∈ I} ⊆ Ω(X), we have, where
int is the interior operation and (·)c is the set theoretic complementation:∧
i∈I Ui := int

⋂
i∈I Ui;

∨
i∈I Ui :=

⋃
i∈I Ui; U → V := int (U c ∪ V ); ¬U := int U c.

Let A be the topological closure of A ⊆ X. Then, for U ∈ Ω(X) we have, ¬¬U = int U .

We next introduce the important notion of complete Ω-set, which is equivalent to
the notion of sheaf.

Definition 1.3 a) A Ω-set, A, consists of a non-empty set |A| (its domain), together
with a map,

[[· = ·]]A : A × A −→ Ω, the equality of A, verifying, for all a, b, c ∈ |A|
[eq 1] : [[a = b]]A = [[b = a]]A; [eq 2] : [[a = b]]A ∧ [[b = c]]A ≤ [[a = c]]A.

Whenever A is clear from context, we drop its mention from the notation. The elements
of A are called sections of A. For x ∈ |A|, Ex : = [[x = x]]A is the extent or
domain of x. It is straightforward that for all x, y ∈ |A|,
[E] [[x = y]]A ≤ Ex ∧ Ey.
We say that A is separated or extensional if for all x, y ∈ |A|,
[ext] Ex = Ey = [[x = y]]A ⇒ x = y.
b) For p ∈ Ω, A(p) = {x ∈ |A| : Ex = p} is the set of sections of extent p. In
particular, A(>) is the set of global sections of A.
c) Let A be an Ω-set; a subset S ⊆ |A| is compatible if for all s, s′∈ S, Es ∧ Es′ =
[[s = s′]]. If S is a compatible set of sections in A, a gluing of S is a section t ∈ |A|
such that

[glu 1] : Et =
∨
s∈S Es; [glu 2] : For all s ∈ S, Es = [[s = t]].

It can be shown that if A is separated, gluings are unique (whenever they exist).
d) An Ω-set D is complete or a sheaf if all compatible sets of sections of D have a
unique gluing in D.

e) (Morphisms) If A, B are Ω-sets, a morphism, A
f−→ B, consists of a map, f : |A|

−→ |B|, such that for all x, y ∈ |A|
[mor 1] : EBfx = EAx; [mor 2] : [[x = y]]A ≤ [[fx = fy]]B.

Ω-sets, separated Ω-sets and sheaves over Ω, with the notion of morphism defined above
are categories, written Ω-set, εΩ-set and Sh(Ω), respectively.
f) Whenever clear from context, we omit the mention of the Ω-set from the notation.

Example 1.4 It is easy to see that given a topological space X and considering C(X;R) :=
{f | f : X → R is continuous } is a complete separated Ω(X)-set.
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As a special case of Lemma 25.21, cf. [29] we have the next

Lema 1.5 For morphism in Ω-set, A
f−→ B, with A separated, the following are

equivalent:
(1) f is an injection of |A| into |B|; (2) For all x, y ∈ |A|, [[x = y]]A = [[fx = fy]]B.

The next definition gives the notion of presheaf introduced by Fourman and Scott,
cf. [16].

Definition 1.6 a) A presheaf over Ω, A, is a set, |A| (its domain), together with
two maps

·|· : |A| × Ω −→ |A| (restriction) and E : |A| −→ Ω (extent),

satisfying the following axioms, for all x ∈ |A| and p, q ∈ Ω :
[psh 1] : E(x|p) = Ex ∧ p; [psh 2] : x|Ex = x; [psh 3] : x|(p∧ q) = (x|p)|q.
b) A presheaf A is separated if for all x, y ∈ |A| and D ⊆ Ω

∀ p ∈ D, x|p = y|p and Ex = Ey =
∨
D ⇒ x = y.

c) If A, B are presheaves over Ω, a presheaf morphism, A
f−→ B, is a (set-theoretic)

map, f : |A| −→ |B|, such that for all x ∈ |A| and p ∈ Ω,
[pmor 1] : EBf(x) = EAx; [pmor 2] : f(x|p) = f(x)|p.

d) (Restriction of a presheaf) If A is a presheaf over Ω and p ∈ Ω, the restriction of
A to p, A|p, is the presheaf whose domain is

⋃
q≤p A(q) and whose restriction map is

that induced by A. Thus, the elements of |A|p| are the sections of A of extent ≤ p.

Write pSh(Ω) for the category of presheaves over Ω.

In case of topological presheaves A, we can introduce the stalk of A in a given point
y, which is important in theorem 5.2. For this, see also the localization of a Ω-set, cf.
2.5. We explain in the next definition how to do this.

Definition 1.7 Let Y be a topological space, A a topological presheaf over Y , i.e., a
presheaf over Ω(Y ) and y ∈ Y a point.
a) We say that νy is the set of open neighborhoods of y in Y , νy := {u ∈ Ω(Y ) : y ∈
u}.
b) Let Ay := {a ∈ |A| : y ∈ Ea} = {a ∈ |A| : Ea ∈ νy} be the set of sections of
A whose extent (or domain) is a neighborhood of y.
c) Define a binary relation θy in Ay by a θy b iff y ∈ [[a = b]]A.
d) The equivalence class of a ∈ Ay by θy is indicated by ay and called germ of a in y.
For ~a = 〈a1, . . . , an〉 ∈ (Ay)n, write ~ay := 〈a1y, . . . , any〉, the sequence of corresponding
germs.
e) The set of equivalence classes of Ay by θy is the stalk of A in the point y, written
Ay.

4

4The stalk Ay is therefore the direct limit of A(p), p ∈ νy.
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Clearly, every presheaf can be associated a Ω-set, which is described in the next
remark.

Remark 1.8 If A is a presheaf over Ω and x, y ∈ |A|, define
[[x = y]]

A
=
∨
{p ∧ Ex ∧ Ey : x|p = y|p}.

Then, [[· = ·]]
A

is an equality on |A|, with which it becomes an Ω-set, the Ω-set asso-
ciated to the presheaf A. Whenever A is clear from context, we omit its mention
from the notation.

The relations between restriction, extent and the equality associated with a presheaf
over Ω are described in the next result:

Proposition 1.9 Let A be a presheaf over Ω, let x, y ∈ |A| and let p, q ∈ Ω.
a) (i) Ex = [[x = x]];

(ii) [[x|p = y|q]] = p∧ q∧ [[x = y]];

(iii) x|[[x = y]] = y|[[x = y]];

(iv) A is an separated as a presheaf iff A is separated as an Ω-set.
b) Let P , Q be presheaves over Ω and let f : |P | −→ |Q| be a map and consider the
following conditions:

(i) f is a presheaf morphism; (ii) f is a Ω-set morphism.
Then, (i) ⇒ (ii) and these conditions are equivalent if Q is extensional.
c) Let P , Q be extensional presheaves over Ω. For a presheaf morphism, f : P −→ Q,
the following are equivalent:

(i) f is an injection of |P | into |Q|; (ii) For all x, y ∈ |P |, [[x = y]]A =
[[fx = fy]]B.

Proof: Immediate from proof of Theorem 26.8, [29].
Every Ω-set can be transformed without loss of information into a separated Ω-set,

which is the content of the next remark.

Remark 1.10 a) The process of extensionalization, i.e., making a presheaf separated,
of a presheaf of first-order structures is described in Theorem 23.21, [29]. The method
is the analogue using equivalence relation for inducing a partial order in a preorder.
b) The assumption that presheaves and Ω-sets be separated, simplifies many argu-
ments. From the point of view of Model Theory of first-order structures in the category
pSh(Ω), nothing is lost by considering only separated presheaves. Therefore, we may
assume that all Ω-sets and presheaves over Ω are separated.

The next definition introduce the product of Ω-sets, which is essential for the inter-
pretation of our formulas in the following. It is the same as in [29].
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Definition 1.11 If Ai, i ∈ I, are Ω-sets, their product,
∏

i∈I Ai, is the Ω-set given by:
(i) |

∏
i∈I Ai| = {〈xi〉 ∈

∏
i∈I |Ai| : ∀ i, j ∈ I, Exi = Exj};

(ii) [[〈xi〉 = 〈yi〉]] =
∧
i∈I [[xi = yi]].

Note the distinction between |
∏

Ai| and
∏
|Ai|; the restriction to |

∏
Ai| of the

canonical projections of
∏
|Ai| onto its coordinates yield Ω-set morphisms from

∏
Ai

to Ai, written πi. The same construction works in the categories pSh(Ω) and Sh(Ω).

We will use the following

Notation 1.12 If A is a Ω-set, n ≥ 1 is an integer and ~a = 〈a1, . . . , an〉, ~c = 〈c1, . . . , cn〉
∈ |A|n, define
∗ E~a :=

∧n
i=1 Eai; ∗ [[~a = ~c ]] :=

∧n
i=1 [[ai = ci]];

∗ If A is a presheaf and p ∈ Ω, ~a|p := 〈a1|p, . . . , an|p〉, where ·|· is the restriction

of A.

The notion of density and dense elements in Ω-sets is used in the model theoretic
results, see the sections 3 and 4.

Definition 1.13 Let A be a Ω-set.
a) A subset D ⊆ |A| is dense in A if for all a ∈ |A|, Ea =

∨
d∈D [[a = d]].

b) The density of A, d(A), is the least cardinal κ such that A has a dense subset of
cardinal κ. We say that A is separable if d(A) ≤ ℵ0.
c) For p, q ∈ Ω, we say that q is dense in p iff q ≤ p ≤ ¬¬q. In case q is dense
in > (i.e., ¬¬ q = >), we say that q is dense in Ω.

The notion of density seems to be the reasonable analogue of set-theoretic cardinality
in the sheaf-theoretic context, as illustrated by the Löwenheim-Skolem results in [30],
see also section 3. If A is a presheaf, then D is dense in A iff every section of A locally
coincides with one in D, or, more precisely, for all a ∈ |A|, there is {〈di, pi〉 ∈ D × Ω :
i ∈ I} such that Ea =

∨
i∈I pi and ∀i ∈ I, a|pi = di|pi , where ·|· is the restriction map

of A (see definition 1.6 and [29]). We have the next Lemma whose proof can be found
in [29], more precisely Lemma 25.33 and Theorem 37.8 in [29]:

Lema 1.14 Let A, B be Ω-sets and let D be a dense set of sections in A.
a) The relation of being dense is transitive.
b) If f , g : A −→ B are Ω-set morphisms, then f|D = g|D ⇒ f = g.

c) A morphism f : A −→ B is epic iff f(A) is dense in B.

d) For all ~a ∈ |A|n, E~a =
∨
{[[~a = ~d ]] ∈ Ω : ~d ∈ Dn}.
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In [29], chapter 37, and in [4], chapter 1, there is an extensive account of characte-
ristic maps that are useful, among other things, to define the interpretation of formulas
in a first-order structure in Ω-set. We shall here collect the basics on this topic, refer-
ring the reader to [4, 29] for details and proofs. The vector notation in 1.12 will be of
constant use.

Definition 1.15 (Characteristic Maps) Let A be a Ω-set and let n ≥ 0 be an integer.
A n-characteristic map on A is a map h : |A|n −→ Ω, such that for all ~x, ~y ∈ |A|n:

[ch 1] : h(~x) ≤ E~x; [ch 2] : [[~x = ~y ]] ∧ h(~x) ≤ h(~y).
Write KnA for the set of n-characteristic maps on A. If h ∈ KnA, its extent is defined
by

Eh :=
∨
{h(~x) ∈ Ω : ~x ∈ |A|n}.

We have the following important remark from [29]:

Remark 1.16 Let A be a Ω-set and h ∈ KnA.
a) Condition [ch 2] is equivalent to [ch 2′] : [[~x = ~y ]] ∧ h(~x) = [[~x = ~y ]] ∧ h(~y).
b) KnA has a natural partial order, given by h ≤ k iff ∀ ~x ∈ |A|n, h(~x) ≤ k(~x).
With this partial order
∗ In KnA, ⊥ is the constant ⊥-valued function, while > is the map ~x 7−→ E~x;
∗ KnA is a frame, with meets and joins computed pointwise, while implication and
negation are given by

[h → k](~x) = E~x ∧ (h(~x) → k(~x)) and [¬h](~x) = E~x ∧ ¬h(~x),
where → and ¬ in the right-hand side of these equations are the operations in Ω.

Further properties of n-characteristic maps are contained in the Proposition 1.17
below, and are consequences of Theorem 37.8 and Proposition 37.12, in [29]:

Proposition 1.17 Let A be a Ω-set, let D be a dense set of sections in A and let h ∈
KnA.
a) For all ~x ∈ |A|n, h(~x) =

∨
~α∈Dn [[~α = ~x ]] ∧ h(~α).

b) If k ∈ KnA, then h|Dn = k|Dn ⇒ h = k.

c) If A is a presheaf over Ω, then for all ~a ∈ |A|n and p ∈ Ω we have h
(
~a|p
)

= p

∧ h(~a). In particular,

h
(
~a|E~a

)
= h

(
~a|h(~a)

)
= h(~a).

d) Let Dn k0−→ Ω be a map such that for ~x, ~y ∈ Dn, k0(~x) ≤ E~x and k0(~x) ∧ [[~x = ~y ]]
≤ k0(~y). Then, there is a unique k ∈ KnA such that k|Dn = k0.

e) If B is a sheaf over Ω and f0 : D −→ |B| is map such that for all x, y ∈ D, Ef0(x)
= Ex and [[x = y]] ≤ [[f0x = f0y]], there is a unique Ω-set morphism, f : A −→ B,
satisfying f|D = f0.
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Using Scott’s idea of a singleton (see [16]), every Ω-set A has a completion (or
sheafification); for a proof of the following result see theorems 27.9, 37.8 and Corollary
37.9 in [29].

Theorem 1.18 If A is a Ω-set, there is a sheaf cA over Ω and a morphism, A
c−→

cA, such that
a) For every a, b ∈ |A|, [[a = b]] = [[ca = cb]].
b) The image of c is dense in cA.
c) If B is a sheaf over Ω and f : A −→ B is a morphism, there is a unique morphism,
cf : cA −→ B, such that the following diagram commutes:

A - cA

f cf

B

c

A
A
A
A
A
A
AU

�
�
�
�
�
�
��

d) Let n ≥ 1 be an integer. Each characteristic map h ∈ KnA, has a unique extension
to a characteristic map, hc ∈ KncA, and for all ~x ∈ |cA|n,
(∗) hc(~x) =

∨
~a∈|A|n [[~x = c~a]]cA ∧ h(~a),

where c~a = 〈ca1, . . . , can〉. In particular, for all ~a ∈ |A|n, hc(c~a) = h(~a).

When dealing with first-order languages one frequently encounters operations that
are not unary. In general, the completion of a finite product of Ω-sets is not the product
of the completion of the coordinates.The situation for presheaves is smoother, for in
this case the completion functor is finitely complete5. If A is a Ω-set and n ≥ 2 is an
integer, recall (1.11) that 〈a1, . . . , an〉 ∈ |A|n is in An iff all ai have the same extent. If

A is a presheaf over Ω and D ⊆ |A| is dense in A, the set Dn
∗ := {~d|E~d : ~d ∈ Dn},

is a dense subset of An (see Proposition 26.22 in [29]).6

In the following, we will start with model theory in sheaves, and therefore we have
to make use of a first order language L, which we introduce in the next remark. For
the method of constants, cf. 4 we modify – without loss of generality, cf. [4, 6] – our
notion of the constant symbols.

Remark 1.19 We consider the following first-order language with equality, L, where

5We say that a Ω-set A is finitely complete iff every finite S ⊆f |A| compatible has a gluing, cf. 1.3
(c).

6If A is not a presheaf, there is no canonical way to lift a dense subset of A to a dense subset of An

(in general, Dn is not a subset of An). We need restriction!
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• rel(n, L) is the set of n-ary relation symbols in L,
• op(m,L) is the set of m-ary function symbols in L, and
• C is the set of constant symbols, or if necessary when a frame Ω is fixed, C is a
presheaf7 (of constant symbols) over Ω.

Clearly, we need the interpretation of our language introduced in 1.19. We use
characteristic functions to interprete relation symbols and the equality of the Ω-set
related to the presheaf for interpreting logical equality. By the discussion above we can
use almost always presheaves over a frame Ω instead of sheaves, cf. 1.18.

Definition 1.20 Let Ω be a frame, L a first-order language, with equality and a pres-
heaf of constant symbols, C. An interpretation of L in pSh(Ω) consists of a presheaf
A over Ω, together with the following data
[rel] : For every relation symbol R ∈ rel(n, L), distinct from =, a characteristic
function

[[R(·, . . . , ·)]]A : |A|n −→ Ω, ~a 7→ [[R(~a)]]A;
[=] : The equality symbol is interpreted by the equality of A;
[fun] : For every function symbol ω ∈ op(n, L), a presheaf morphism

ωA : An −→ A, ~a 7→ ωA(~a);
[Con] : A presheaf morphism8 from C to A, ·A : C −→ A, c 7→ cA.
A presheaf A over Ω, together with an interpretation of L in A is a L-structure in
pSh(Ω) or a presheaf of L-structures over Ω.

Remark that there exist many sheaves without global sections, consider for example
the recovering space Sn := (Rn, π,Rn/Zn), where π is the canonical projection, of a n-
torus; for more examples we refer the reader to [4, 29]. So the admittance of a presheaf
of constant symbols is in this sense very useful. We define free and bound variables,
terms of L, formulas of L and (free) substitution of a term in a formula as in the classical
case. We must define the extension of a term and a formula, because by considering
partial existence of constant symbols, terms and formulas can exist locally. See the
next definition.

Definition 1.21 Let L be a first order language with a presheaf of constants C over
Ω, τ be a term of L and ϕ be a formula of L. Then we define

7Initially in the theory of sheaf models, a set C of constant symbols is used and every symbol is
interpreted as global section. But if we want to generalize the method of constants, see section 4, we
have to consider the partial existence of the constants, to create the diagram of a theory. In [4] we
explain that we do not loss generality considering a presheaf of constants. So in the following we can
use simply a set C of constant symbols, or if necessary a presheaf over a frame of constant symbols.

8In the case, considering a set C of constant symbols, this set C can be seen as a presheaf C over
the frame Ω with only global sections. The interpretation of a symbol c ∈ C is then given by a global
section cA ∈ A(>). See also [16].
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{
Eτ :=

∧
{ECc : c occurs in τ}

Eϕ :=
∧
{ECc : c occurs in ϕ},

the extent of τ and ϕ, respectively.
Let p ∈ Ω, then τ |p and ϕ|p indicate the term and the formula obtained by substituting

every occurrence of a symbol c ∈ C in τ or ϕ, respectively, by the symbol c|p; it is easy

to see, that τ |p is a term and ϕ|p is a formula of L, with the same complexity as the

originals. We call them restriction of τ to p and restriction of ϕ to p, respectively.
It is also clear, that in case of τ and ϕ without constant symbols, the restrictions are
identical to the original formulas.

The next Lemma will give some simple but helpful properties.

Lema 1.22 Let τ(x1, . . . , xm), τ 1, . . . , τm be terms of L, ω ∈ op(m,L), R ∈ rel(m,L)
and ϕ, ψ formulas of L. Let C be the presheaf of constants of L and p ∈ Ω. Then
a) Eϕ|p =

∧
{p ∧ Ec : c ∈ |C| and c occurs in ϕ}.

b) If there are no occurrences of elements of |C| in ϕ and in τ , then Eτ = Eϕ = >.
c) ER(τ 1, . . . , τm) = Eω(τ 1, . . . , τm) =

∧m
i=1 Eτ i.

d) E(ϕ 3 ψ) = Eϕ ∧ Eψ, where 3 represents a binary connective of L.
e) E¬ϕ = E ∀vϕ = E ∃vϕ = Eϕ.
f) If ϕ = ϕ(x1, . . . , xm) and χ is the result obtained by substituting τ i for xi in ϕ,
1 ≤ i ≤ m, then Eχ = Eϕ ∧

∧n
i=1 Eτ i.

We have to talk about L-terms and their interpretation in a given presheaf A over
Ω.

Definition 1.23 Let A be a presheaf of L-structures. Every term τ(v1, . . . , vn) in L
induces a morphism of presheaves

τA : An|Eτ −→ A,

called the interpretation of τ in A, defined, for ~a ∈ |A|Eτ |
n, by induction on com-

plexity as follows:
1. If τ is a variable vi, then Eτ = > and τA is the i-th projection, that is, vAi (~a) = ai.
2. If τ is a constant c ∈ |C|, then for every p ∈ Ω, cA(p) = cA|(p∧Ec).
3. If τ1(~v), . . . , τm(~v) are terms in L, ω ∈ op(m,L) and τ(~v) := ω(τ1(~v), . . . , τm(~v)),
then

τA(~a) = ωA(τA1 (~a), . . . , τAm(~a)).

With these definitions in hands, we are able to define the interpretation of any first
order formula ϕ by complexity in an arbitrary presheaf over Ω. We will do this in the
next definition.
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Definition 1.24 Let A be a presheaf of L-structures over Ω. By induction on com-
plexity, we associate to each formula ϕ(v1, . . . , vn) in L, a characteristic function

[[ϕ(·, . . . , ·)]]A : |A|n −→ Ω,
called the interpretation of ϕ in A, defined for a1, . . . , an ∈ |A| as follows:

1. [atom] : If τ1(~v), . . . , τm(~v) are terms and R ∈ rel(m,L), then
[[(τ1(~v) = τ2(~v))(~a)]]A := [[τA1 (~a|p) = τA2 (~a|p)]]A

, where p = Eτ1 ∧ Eτ2;

[[R(τ1, . . . , τm)(~a)]]A := [[R(τA1 (~a|q), . . . , (τ
A
m(~a|q))]]A

, where q =
∧m
i=1 Eτi.

2. [con] : If ϕ, ψ are formulas with p = Eϕ and q = Eϕ ∧ Eψ, then
[[¬ϕ(~a)]]A := p ∧ E~a ∧ ¬ [[ϕ(~a|p)]]A

;

[[(ϕ 3 ψ)(~a)]]A := q ∧ E~a ∧
(

[[ψ(~a|q)]]A
3 [[χ(~a|q)]]A

)
, where 3 ∈ {∧,∨,→}.

3. [∃] : [[∃xϕ(x,~a)]]A :=
∨
t∈|A| [[ϕ(t;~a)]]A.

4. [∀] : [[∀xϕ(x,~a)]]A := Eϕ ∧ E~a ∧
∧
t∈|A|

(
Et→ [[ϕ(t;~a)]]A

)
.

Next, we define the intuitionistic forcing relation, which we will use in the following
sections.

Definition 1.25 Let A be a presheaf of L-structures over Ω.
a) Let ϕ(v1, . . . , vn) be a L-formula and a1, . . . , an ∈ |A|. We say that A forces ϕ at
a1, . . . , an and write A 
 ϕ[a1, . . . , an] iff [[ϕ(a1, . . . , an)]]A = Eϕ ∧ E~a.
b) Let σ be a L-sentence. We say that A is a model of σ, written A 
 σ, in case
[[σ]]A = Eσ.
c) Let Σ be a set of L-sentences, Λ(v1, . . . , vn) a set of L-formulas in the variables
v1, . . . , vn and a1, . . . , an ∈ |A|. Then the expressions

A 
 Σ and A 
 Λ[a1, . . . , an]
mean that A 
 σ and A 
 ϕ[a1, . . . , an], for all σ ∈ Σ and ϕ ∈ Λ, respectively.

For a better understanding, we recall in the next definition the Gödel translation,
which will be used in section 4.

Definition 1.26 Let L be a first-order language with equality, as above. The Gödel
translation of a L-formula, ϕ, written ϕg, is defined by induction on complexity as
follows:
• If ϕ is atomic, then ϕg is ¬¬ϕ;
• If 3 ∈ {∧, →}, then (ϕ 3 ψ)g = ϕg 3 ψg. Moreover, (¬ϕ)g = ¬ ϕg;
• (ϕ ∨ ψ)g = ¬¬ (ϕg ∨ ψg);
• (∃xϕ)g = ¬¬∃x ϕg; (∀xϕ)g = ∀x ϕg.

Also in section 4 we can prove a generalization of the diagram lemma extending our
language by adding a family of new connectives, which were considered first by Caicedo
and Sette in the paper [9]. We introduce a new family {2q}q∈Ω for a fixed frame Ω, in
the next remark.



Model Theory in Sheaves 391

Remark 1.27 We fix some frame Ω and introduce a new language L2 adding the
symbols 2q, q ∈ Ω, as unary connectives, to L.
∗ For every p ∈ Ω, if ϕ is a formula, then 2pϕ is a formula in L2.
Clearly, the notion of L2-term is the same as for L. The notions of L2-structure A
in pSh(Ω) and the interpretation of L2-term in A, are the same as earlier. We easily
show that

A is a L2-structure in pSh(Ω) iff A is a L-structure in pSh(Ω).
Concluding, we have to add the following conditions for the extent and the value of a
L2-formula:
∗ If ϕ(v1, . . . , vn) is a L-formula with Eϕ = q and p ∈ Ω, we set E(2pϕ) := Eϕ = q;
∗ If ϕ(v1, . . . , vn) is a L2-formula with q = Eϕ and ~a ∈ |A|n, then
[2p] [[2pϕ(~a)]]A = E~a |q ∧ ([[ϕ(~a|q)]]A

↔ p).

∗ We remark that for a dense element d ∈ D, the formula 2dϕ(~a) behaves in some
sense classically, see also section 4, theorem 4.10.

We argue that these preliminaries are sufficient for the presentation of our model
theoretic results in (pre-)sheaves of L-structures over a frame Ω. The reader interested
in the subject is recalled to take a look in [4, 16, 29] or every other bibliography treating
first order sheaf models. In the next section we begin with the important question of
completeness for these sheaf models which we answer positively.

2 Model Existence and  Loś Theorem

In this section, the question of completeness and the existence of models in (pre-
)sheaves over a frame Ω are treated. In [38], there is done an approach to construct a
model in Ω-sets for the first order language L. There, only global sections are consi-
dered for the proof of completeness. We can do a little better and prove the following
completeness theorem in pre-sheaves of L-structures.

The proof can be seen in [4]. The idea of the proof is simple, we construct a
term model seen as Ω-set and adapt the ideas of the original algebraic proof using the
Lindenbaum-Tarski algebra, cf. [36]. More explicitly, we consider the set of L-terms
and L-formulas and introduce the usual equivalence relation in terms indentifying two
terms iff they are equal in the theory; two formulas are identified iff they are logically
equivalent in the theory. Then, we are able to construct the Lindenbaum-Tarski algebra
A(T) of the theory T which we show to be a frame. For example, see the construction
in [36] for the proof of completeness of the intuitionistic first order logic. The set of
the names of the L-terms is now easily shown to be a separated A(T)-set with equality
defined as equivalence class of the equality in the Lindenbaum-Tarski algebra. The
interpretation of the formulas is also defined simply as equivalence class of the formula.
So, we are done and have our desired term model which proves the next theorem.



392 A. B. M. Brunner

Theorem 2.1 (Brunner & Miraglia, 2000, [4]) Let L be a first order language with
equality, ϕ a L-formula and T an intuitionistic theory in L . Are equivalent

(i) T `I ϕ; and
(ii) For all frame Ω and every L-structure A in pSh(Ω), T 
 ϕ, i.e.,

A 
 T =⇒ A 
 ϕ.

If we consider a fragment of the language L, L] consisting of the formulas (intuitio-
nistically equivalent to those) constructed from the atomic ones using the propositional
connectives and the existential quantifier ( a language without the universal quanti-
fier) and denote by ∀L] the fragment of L composed of the formulas (intuitionistically
equivalent to those) of the type ∀~xϕ(~x; ~y), where ϕ is in L], then we have a different
model existence theorem, given in 2.2. Observe that in particular, a sentence in ∀L] is
(intuitionistically equivalent to) the universal closure of a formula in L].

The next theorem is only valid for ∀L]-formulas, and the proof is more complicated
as the proof of 2.1. All the details can be joined in [4, 5]. Roughly speaking, we will
construct for the set Σ of L-sentences, the space X(Σ, L) consisting of all prime theories
extending Σ. We topologize this space by the base VΣ := {Vϕ| ϕ is a L-sentence },9
where Vϕ := {P ∈ X(Σ, L)| ϕ ∈ P}. We are able to show that the space X(Σ, L) with
this topology is a spectral space10. The analogue of the Boolean Prime Ideal Theorem
is proved and so we are able to prove the completeness theorem 2.2 using the Henkin
idea of witnessing the existential formulas of L by new constants. The construction
of the complete Ω-set or sheaf is made in the same way of theorem 2.1 adapting ideas
from Rasiowa and Sikorski explained above.

Theorem 2.2 (Brunner & Miraglia, 2004, [4, 5]) Let L be a first order language
with equality and let Σ ⊆ ∀L] be a consistent set of sentences. Then, there exist an
expansion L′ of L by constants, a spectral space Z and a L′-structure A in Sh(Z) such
that

(1) A is a model of Σ;
(2) The set {cA ∈ A(>) : c ∈ N} is dense in A;
(3) For every formula ϕ(x1, . . . , xn) in L and a1, . . . , an ∈ |A|,

[[ϕ(a1, . . . , an)]]A =
∨
~c∈Nn

⋂n
j=1 [[aj = cAj ]]

A
∩ [[ϕ(cA1 , . . . , c

A
n )]]A,

where N is the set of constants in L′ \ L.

As immediate consequence we have the completeness theorem for the language ∀L]
and with the existence of a spectral space Z a model as a sheaf over this spectral space
Z. Clearly, correctness theorem is straightforward to prove, and so we did not comment
anything so far.

9This topology is a Zariski style topology.
10A spectral space is compact T0 and sober, with a base of compact opens. Furthermore, it is a

Baire space. In section 5 we will use this fact to obtain stalks omitting a certain type.
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Corollary 2.3 Let L be a first order language with equality, Σ a set of sentences in
∀L] and ϕ a sentence of L. The following are equivalent :

(1) Σ `I ϕ;
(2) For every spectral space Z and every L-structure A in Sh(Z),

A 
 Σ ⇒ A 
 ϕ.

The next principle, the maximum principle, is first shown for intuitionistic logic, by
Chico Miraglia in [31]. The notable difference between classical and intuitionistic logic,
is the fact that an existential formula has a witness, which is only dense. This result
has been expected for intuitionistic logic and in section 4 we have a similar result for
the diagram, where density appears. Clearly, for showing that an existential formula
has a witness, gluing is important and necessary, so the result only holds in sheaves
over a frame. A proof can be accompanied in [30, 31]. We omit the details.

Theorem 2.4 (Maximum Principle, Miraglia, 1990, [31]) Let ∃xϕ(x; ~x) be a L-
formula and A an L-structure in Sh(Ω). Then ∀~a ∈ |A|n, ∃b ∈ |A| such that

[[ϕ(b;~a)]]A ≤ [[∃xϕ(x;~a)]]A ≤ ¬¬[[ϕ(b;~a)]]A.

For proving of  Loś’ Theorem we need this Maximum Principle and use a kind of
quotient Ω/θF -set, where F is a filter in Ω and θF is the congruence generated by F . We
assume the reader is familiar with the following constructions, some of them use ideas
from universal algebra, for details look [2, 7, 17], the other are basically straightforward
constructions, which can be consulted in [31].

Remark 2.5 (Localization of an Ω-set) Let Ω be a frame, F ⊆ Ω a filter and θF
the congruence generated by the filter F , i.e.:

∀p, q ∈ Ω, pθF q iff (p↔ q) ∈ F
Then we have the following:

(a) The quotient Ω/θF defined in the known way, cf. [7].
(b) Let now A be a (separated) Ω-set, then we construct naturally the following

Ω/θF -set AF :
|AF | := |A|/θF = {[a]F | a ∈ |A|}, where we have [a]F := {b ∈ |A|| (Ea ∨ Eb →

[[a = b]]A) ∈ F}, and
[[[a]F = [b]F ]]AF

:= [[a = b]]A/θF , for [a]F , [b]F ∈ AF
We say that AF is the localization of A in the filter F . We denote the set of

the global sections in AF by A∗F (= AF (>)) = {[a]F ∈ AF | Ea ∈ F}.
(c) For presheaves we can do localization in a similar way, we define restriction:

·|· : |A|F × Ω/F −→ |A|F , [x]F |[p]F := [x|p]F ,

and we have the localization presheaf.11

11This method cannot be generalized for sheaves, i.e., the localization AF can be no sheaf anymore.
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(d) For an example of localization of a presheaf, consider the recovering space
(E; π;X), with π : E → X a local homeomorphism. Fix a point x ∈ X and consi-
der the neighborhood filter F of x. Then the AF = Ax = π−1(x) is the classical stalk of
A at x, cf. 1.7.

(e) Localization can be seen as a functor, sometimes said to be the localization in
F , cf. [31].

(f) Having a presheaf A of L-structures over Ω, by localization, we can make AF a
presheaf of L-structures over Ω/θF in a natural way commuting the equivalence classes.
We omit the details and appoint the reader to [31].

We have a generalization of  Loś Theorem cf. 2.6, for presheaves satisfying the
maximum principle 2.412. The proof of 2.6 is made by induction in the L-formulas,
being the atomic case easy and the connective case almost immediate (using calculus
in frames and the fact that F is a prime filter in the frame Ω). The maximum principle
2.4 is used in the step for the existential quantifier in the direction from right to the
left. The direction from left to right follows by the induction hypothesis and the filter
properties. The universal quantifier is not going through. We are able to show the
direction from left to right, but we are not able to show the direction from right to left.
So we can formulate the  Loś Theorem only for the language L].

Theorem 2.6 ( Loś Theorem, Miraglia, 1990, [31]) Let A be an L-structure in
pSh(Ω) satisfying the maximum principle, U ⊆ Ω an ultrafilter and ϕ(~x) a L]-formula.
Let a1, . . . , an ∈ |A| be sections in A such that E~a ∈ U , then

A∗U |= ϕ([~a]U) iff [[ϕ(~a)]]A ∈ U

We have so the following open question: Exists a  Loś theorem in pSh(Ω) satisfying
the maximum principle for the whole language L, i.e. including the universal quantifier?

3 Downward Löwenheim Skolem Theorem

We know that classically there are two versions of the Löwenhein Skolem theorems, the
downward version and the upward version. Intuitionistically, we can show the downward
theorem and this downward Löwenheim Skolem Theorem is proved in frames which have
countable caracter, cf. 3.1, considering our (pre-)sheaf models introduced earlier. We
remind the reader that the proof can be studied in [30]. For the results, the following
definition about some kind of frames is essential.

Definition 3.1 Let Ω be a frame. Then

12Clearly the generalization is valid also for sheaves!
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(a) We say that Ω has countable determined meets, cdm, iff for all {pi}i∈I ⊆ Ω
there is a countable J ⊆ I such that

∧
i∈I pi =

∧
j∈J pj.

(b) We say that Ω has countable determined joins, cdj, iff for all {pi}i∈I ⊆ Ω there
is a countable J ⊆ I such that

∨
i∈I pi =

∨
j∈J pj.

(c) We say that Ω has countable caracter, cc, iff it has cdm and cdj.
(d) We say that Ω has countable chain condition, ccc, iff for all {pi}i∈I ⊆ Ω \ {⊥},
if pi ∧ pj = ⊥ for i 6= j, then I is countable.

It is possible to connect for a topological space conditions of the space X and
conditions of the frame of open sets Ω(X) in the following way:

Remark 3.2 Let X be a topological space and Ω(X) the frame of the open sets of X.
Then

(i) Ω(X) has ccc iff the space X has ccc,
(ii) Ω(X) has cdm iff the space X is hereditarily separable, and
(iii) Ω(X) has cdj iff the space X is hereditarily Lindelöf.

The proof of the next fundamental theorem is made basically in three steps. In the
first step we will construct by induction in n a chain {Dn}n∈N of countable subsets of
the support |A| – considering restriction, values of the function symbols in the structure
A and values of the quantified formulas in A, using the fact that Ω has cc. For details
see [30]. In the second step, we prove some properties of this chain {Dn}n∈N: the set
D :=

⋃
n∈NDn is countable with card(Dn) ≤ max{card(S); card(L)}, for each n. We

take now D∗ the subsheaf with support D and name it B. By construction, we have
then trivially that D is dense in B, and also that B is separable with subset S ⊆ |B|.
In the third and last step of the proof, we show that B is an elementary substructure13

of A by induction in the complexity of the L-formulas. For the quantifier steps, we use
the properties of the sets Dn constructed in the first step. So we have the following

Theorem 3.3 (Downward Löwenheim-Skolem, Miraglia 1988, [30]) Let Ω be a
frame with cc, L a countable first order language with equality and A a L-structure in
pSh(Ω). For all countable S ⊆ |A|, there is a separable elementary substructure B of
A such that S ⊆ |B|.

The following corollary is easy to handle. For the sheaf case, we get an elementary
substructure B that is a presheaf containg D. By sheafification we get the sheaf cB
which of course is a separable substructure of A, cf. 1.18.

Corollary 3.4 (Downward Löwenheim-Skolem Theorem in Sh(Ω), [30]) Let Ω
be a frame with cc, L countable and A a L-structure in Sh(Ω). For all separable S ⊆ |A|
there exists a separable B in A such that B is a L-structure in Sh(Ω), S ⊆ B and B
is an elementary substructure of A.

13For the definition of elementary substructure see section 4 definiton 4.1(5).
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4 Method of Constants

In this section, we generalize results considering positive diagram, diagram and elemen-
tary diagram, in an intuitionistic context. Clearly, we work with (intuitionistic) sheaf
models introduced earlier. Classically, the notion of diagram was first introduced to
the best of the authors knowledge by A. Robinson. We start with a model A and add
to our language L new constant symbols a, for each a ∈ |A|. In the new language LA,
we form the diagram of this model, which contains all valid atomic and negated atomic
sentences in A. The classical theorem of diagram postulates that knowing the diagram,
we know (up to isomorphism) the model A. There are some variations of this theorem
for the positive and elementary diagrams, cf. [10, 21]. We are able to generalize all of
them.

In our context of sheaf models, we are doing basically the same as classically, we
add to our language names of the sections a ∈ |A|, where A is a sheaf of L-structures.
Because of the fact that in sheaves (and presheaves) we have always partial sections
– sometimes there are no global sections at all ! –, we have to modify the original
definition of the set of constant symbols and we admit partial constant symbols. More
clearly, we admit a (pre-)sheaf C over some given frame Ω of constant symbols, cf. 1.19.
Then we can form our new language, LA – adding the names for a ∈ |A| – and prove
the diagram theorems, cf. 4.4, 4.5, 4.7 and 4.10. We start with the following definition,
recalling the various notions of L-morphisms.

Definition 4.1 Let L be a first-order language with equality, as above. Let A,B be
L-structures in pSh(Ω) and let f : A −→ B be a presheaf morphism. For a1, . . . , an
∈ |A|, set

f(~a) := 〈f(a1 �E~a), . . . , f(an �E~a)〉 = 〈f(a1)�E~a, . . . , f(an)�E~a 〉.14

(1) f is a L-morphism iff for every n ≥ 1 and a1, . . . , an ∈ |A|
a) ∀R ∈ rel(n, L), [[R(~a)]]A ≤ [[R(f(~a)]]B;
b) ∀ ω ∈ op(n, L), (f ◦ ωA)(~a�E~a) = ωB(f(~a));
c) ∀ c ∈ |C|, f(cA) = cB.

(2) f is a weak L-monomorphism iff f is a L-morphism and for all n ≥ 1, all
R ∈ rel(n, L) (equality included) and each ~a ∈ |A|n,

¬¬ [[R(~a)]]A = ¬¬ [[R(f(~a))]]B.
(3) f is a L-monomorphism15 iff f is a L-morphism and for all n ≥ 1, all

R ∈ rel(n, L) (= included) and each ~a ∈ |A|n, [[R(~a)]]A = [[R(f(~a))]]B.
(4) f is a weak elementary L-monomorphism iff f is a L-morphism and for

every L-formula ϕ(v1, . . . , vn) and ~a ∈ |A|n,
[[ϕg(~a)]]A = [[ϕg(f(~a))]]B.

14Note that Ef(~a) = E~a.
15Alternatively we call an L-monomorphism also an L-embedding or if f is the inclusion, L-

substructure.
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(5) f is an elementary L-monomorphism16 iff for every L-formula ϕ(v1, . . . , vn)
and ~a ∈ |A|n,

[[ϕ(~a)]]A = [[ϕ(f(~a))]]B.

In the next definiton, we introduce our new language LA. For simplicity, we use the
classical notation.

Definition 4.2 A presheaf of L-structures, A, becomes a presheaf of LA-structures by
the morphism17 a 7→ a, i.e., for every a ∈ |A|, the interpretation of a in A is a. We
write

Ã = (A, a)a∈|A|
to indicate the expansion of A to a presheaf of LA-structures.
More generally, if B is a presheaf of L-structures and f : A −→ B a morphism, B̃
= (B, fa)a∈|A| indicates the expansion of B to a presheaf of LA-structures, interpreting
a by fa.

The definitions of the (positive) diagram are the same as in the classical theory.

Definition 4.3 Let A be a L-structure in pSh(Ω).
a) The positive diagram of A, ∆+

A, is the set of all atomic LA-sentences forced by

Ã.18

b) The diagram of A, ∆A, is the set of all atomic and negated atomic LA-sentences

forced by Ã.

For the proof of the next result we refer the reader to [6]. Obviously, the result is a
generalization of the classical result in context of sheaf models over a frame.

Theorem 4.4 (Brunner & Miraglia 2000, [6]) Let A and B be L-structures in
pSh(Ω) and let f : |A| −→ |B| be a function preserving extents, i.e., Efa = Ea,
for each a ∈ |A|. The following are equivalent:

(1) f is a L-morphism.
(2) For every atomic formula ϕ(v1, . . . , vn) and ~a ∈ |A|n, [[ϕ(~a)]]A ≤ [[ϕ(f(~a))]]B.

(3) B̃ = (B, fa)a∈|A| 
 ∆+
A.

Let us formulate and prove the intuitionistic theorem about diagrams. The result
claims the existence of a weak L-monomorphism; treating with intuitionistic logic, the
notion “weak” could be expected and is the best possible, as example 4.12. of [6] shows
– using ultrasheaves, cf. [13, 14].

16Alternatively we call an elementary L-monomorphism also an elementary L-embedding or if
f is the inclusion, elementary L-substructure.

17This is a (pre-)sheaf morphism!
18See 1.25.
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Theorem 4.5 (Brunner & Miraglia 2000, [6]) Let A and B be L-structures in
pSh(Ω) and let f : |A| −→ |B| be a function preserving extents, i.e., Efa = Ea,
for each a ∈ |A|. The following are equivalent:

(1) There is a weak L-monomorphism f : A −→ B.

(2) There is an expansion B̃ of B to a LA-structure such that B̃ 
 ∆A.

Proof: The following proof is from [6].

(1) ⇒ (2). Suppose that f : A −→ B is a weak L-monomorphism. By 4.4, B̃ 
 ∆+
A. If

A 
 ¬ϕ(a1, . . . , an), with ϕ atomic in L, then
Eϕ ∧ E~a = [[¬ϕ(~a)]]A = E~a |Eϕ ∧ ¬ [[ϕ(~a |Eϕ)]]

A
.

Since f is a weak L-monomorphism, we obtain
¬¬ [[ϕ(~a)]]A = ¬¬ [[ϕ(f(~a))]]B,

and so ¬ [[ϕ(~a)]]A = ¬ [[ϕ(f(~a))]]B. The preceding equalities yield
Eϕ ∧ Ef(~a) = Eϕ ∧ E~a = Ef(~a|Eϕ) ∧ ¬ [[ϕ(f(~a |Eϕ))]]

B
= [[¬ϕ(f(~a))]]B,

and so B̃ 
 ¬ϕ[a1, . . . , an], as needed.

(2) ⇒ (1). Let B̃ be a LA-structure, such that B̃ 
 ∆A. Define f : |A|−→ |B| by f(a)

:= aB.
It is straightforward that f is a morphism of presheaves, while lemma 4.4 shows that
f is a L-morphism. If ϕ(v1, . . . , vn) is an atomic formula in L and ~a ∈ |A|n, then the
double negation of (2) in the statement of 4.4 gives

¬¬ [[ϕ(~a)]]A ≤ ¬¬ [[ϕ(f(~a))]]B.
Without loss of generality, assume E~a ≤ Eϕ and set ~c := ~a|¬[[ϕ(~a)A]]

. By lemma 4.4, we

have E~c = E~a ∧ ¬ [[ϕ(~a)]]A and ¬ϕ(c1, . . . , cn) ∈ ∆A, and so B̃ 
 ¬ϕ[c1, . . . , cn],
i.e., E~c = Ef(~c) = [[¬ϕ(f(~c))]]B. The definition of ~c and the fact that [[·]]B is a
characteristic map yield

[[¬ϕ(f(~c))]]B = E~a ∧ ¬ [[ϕ(~a)]]A ∧ [[¬ϕ(f(~a))]]B = E~a ∧ ¬ [[ϕ(~a)]]A ∧ ¬ [[ϕ(f(~a))]]B.
The above equations imply
(∗) E~a ∧ ¬ [[ϕ(~a)]]A = E~a ∧ ¬ [[ϕ(~a)]]A ∧ ¬ [[ϕ(f(~a))]]B.
Taking the meet with ¬¬ [[ϕ(f(~a))]]B in both of the sides of (∗), entails

E~a ∧ ¬ [[ϕ(~a)]]A ∧ ¬¬ [[ϕ(f(~a))]]B = ⊥,
and so E~a ∧ ¬¬ [[ϕ(f(~a))]]B ≤ ¬¬ [[ϕ(~a)]]A. Since [[ϕ(f(~a))]]B ≤ E~a, we obtain

¬¬ [[ϕ(f(~a))]]B ≤ ¬¬ [[ϕ(~a)]]A,
as desired.

We define the elementary diagram and the Gödel theory – using Gödel translation,
cf. 1.26.

Definition 4.6 Let A be a L-structure in pSh(Ω).

a) The theory of Ã or the elementary diagram of A is the set

Th(Ã) := {σ : σ is a LA-sentence and Ã 
 σ}.
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b) The Gödel theory of Ã or the elementary Gödel diagram of A is the set

Thg(Ã) := ∆A ∪ {σg : σ is a sentence of LA and Ã 
 σg},
where σg is the Gödel translation.

With the above definition in mind, we prove our first version of intuitionistic ele-
mentary diagram. Details can be joined in [4, 6].

Theorem 4.7 (Brunner & Miraglia 2000, [6]) Let A and B be L-structures in
pSh(Ω). The following conditions are equivalent:

(1) There exists a weak elementary L-monomorphism f : A −→ B.

(2) There is an expansion B̃ of B to a LA-structure such that B̃ 
 Thg(Ã).

For Boolean-valued structures, we have the following result showing that theorem 4.7
is indeed the generalization of Robinson’s classical theorems for (elementary) diagrams.
The proof of the next corollary is immediate from the preceding results.

Corollary 4.8 Let B be a complete Boolean algebra and A,B L-structures in pSh(B).19

a) The following conditions are equivalent:
(1) There is a L-embedding from A into B;

(2) There is an expansion B̃ from B to a LA-structure such that B̃ 
 ∆A.
b) The following conditions are equivalent:

(1) There is an elementary L-embedding from A into B;

(2) There is an expansion B̃ from B to a LA-structure such that B̃ 
 Th(Ã).

We can do a little different, considering the new connective 2p, p ∈ Ω, cf. 1.27, and
we introduce the following definition, remembering A. Robinson. In the next theorem
4.10, we can prove that the new connective about dense elements makes in some sense
the logic classical, and we prove diagram theorems in a classical sense. For the proof
we refer to [6].

Definition 4.9 Let A be a L-structure in pSh(Ω) and let D be the set of dense ele-
ments in Ω.
a) The Robinson diagram of A is the following collection of L2

A-sentences:

∆R
A := ∆A ∪ {2dϕ : d ∈ D, ϕ is atomic in LA and Ã 
 2dϕ}.

b) The Robinson theory of Ã or elementary Robinson diagram of A, is the
following collection of L2

A-sentences:

ThR(Ã) := {2dϕ : d ∈ D, ϕ is a sentence in LA and Ã 
 2dϕ}.
19Note that the structures A and B are so called Boolean valued structures.
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Theorem 4.10 (Brunner & Miraglia 2000, [6]) Let A and B be L-structures in
pSh(Ω) and D be the set of dense elements in Ω.
a) The following conditions are equivalent:

(1) There is a L-embedding, f : A −→ B.

(2) There is an expansion B̃ of B to a LA-structure such that B̃ 
 ∆R
A.

b) The following conditions are equivalent:
(1) There is an elementary L-embedding, f : A −→ B.

(2) There is an expansion B̃ of B to a LA-structure such that B̃ 
 ThR(Ã).

5 Omitting Types Theorem

In this section, we formulate an intuitionistic version of the Omitting Types Theorem
in the context of topological sheaves. For the proof, it is essential that spectral spaces
have Baire’s property.20 This property will guarantee that the stalks omitting a certain
type are dense. We have to restrict our language to the earlier mentioned language L]

– this is the language without the universal quantifier. We also use our spectral space
constructed earlier in section 2 and theorem 2.2 for the proof. For more details, we
refer the reader to [4, 5].

The next definition is the same as in classical logic.

Definition 5.1 Let L be a first order language with equality, Σ a consistent set of
sentences in L and Γ = Γ(x1, . . . , xn) a set of formulas in L in (at most) the free
variables x1, . . . , xn.
a) A formula ϕ(x1, . . . , xn) is consistent with Σ iff Σ ∪ {∃ϕ}21 is consistent.
b) If the formulas of Γ are consistent with Σ, we say that Σ locally omits Γ if for
every formula ϕ(x1, . . . , xn) of L, which is consistent with Σ, there is γ ∈ Γ such that
Σ ∪ {∃(ϕ ∧ ¬ γ)} is consistent.
c) For a L-structure A in pSh(Ω), A omits Γ iff for every ~a ∈ |A|n, E~a =

∨
γ∈Γ

[[¬ γ(~a)]]A.

For our restricted language L] we can prove the following result.

Theorem 5.2 (Brunner & Miraglia 2004, [5]) Let L be a countable language with
equality and Σ a consistent set of ∀L]-sentences. Let Γ(x1, . . . , xn) be a set of L]-
formulas, which are consistent with Σ. If Σ locally omits Γ, then there is a spectral
space Z and a separable L structure A in Sh(Z) such that
a) A is a model of Σ in Sh(Z) omitting Γ;
b) The set O = {z ∈ Z : Az

22 is a classical model of Σ omitting Γ} is dense in Z.

20For the proof of this fact see for example [4, 31]
21∃ϕ denotes the existential closure of the formula ϕ.
22Az is the stalk of A in the point z. See definition 1.7
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The reader may have noticed that the above theorem 5.2 is clearly an intuitionistic
version. But we were not able to work in the whole language L and not with structures
of sheaves over an arbitrary frame. We have to use the notion of topological sheaf,
because properties of the topological spectral space Z are needed to obtain the omitting
structures of the type. We argue nevertheless that a more general intuitionistic version is
possible, considering the whole language and frames with some kind of Baire’s property.

Remark 5.3 (a) There is a version of Model completeness for Boolean-valued Struc-
tures, made by Macintyre in the 70’s, cf. [26].
(b) Fräıssés Theorem23 using back and forth was done by Caicedo and Sette in the
language L2 and in the context of topological sheaves, [9]. They created and used the
new connective 2p, p ∈ Ω.
(c) In 1976, H. Volger published a work [39], generalizing the Feferman-Vaught theorem
for Boolean-valued structures. Is there an intuitionistic version?

Further Remark and Work 5.4 (i) Finally, we remark that all stated results are
intuitionistic results. We were working in sheaves over a frame, whenever possible. So
we obtain the results without considering in most cases points at all. Sometimes it was
necessary to exclude the universal quantifier from the language. The last theorem 5.2,
theorem 2.2 and theorem 2.6 are valid only in the langauge L] and some of them used
points of the given topological space.

(ii) In [34] the authors stated that points in topology are not necessary in almost all
important cases. So it seems that all theorems using topological sheaves can be proved
in sheaves over an arbitrary frame, this is in pointless topology.

(iii) Clearly, there is a lot of work to do in the model theory of sheaves. We give
only a few questions:
1. Prove a Completeness Theorem for the language L2. Perhaps, a Pavelka-style theo-
rem can be stated and proved.
2. Prove  Loś Theorem for the whole language L, or for the language L2.
3. Prove an intuitionistic Feferman-Vaught Theorem for L2 or an intuitionistic Feferman-
Vaught Theorem for L.
4. Prove an intuitionistic Omitting Types Theorem for the whole language L conside-
ring sheaves over a frame.
5. Define types in models of sheaves A ∈ Sh(Ω). Formulate and prove an intuitionistic
Omitting Types Theorem. Use language L, or L2.
6. Make a categorial approach for model theory, in topos.

23This theorem can be generalized in the context of sheaves of arbitrary frames – the proof made by
Caicedo and Sette is working. For details see [4].
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