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Abstract

The objective of this exposition is to prove a certain kind of reciprocal assertion
to the Fundamental Theorem of Algebra, which is the Artin-Schreier characteri-
zation of real closed fields, without assuming previous theorems in Galois theory.
Another important feature is that the proof presented here treats in a unified way
both the prime and the null characteristic case.
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The objective of this exposition is to prove a certain kind of reciprocal assertion
to the Fundamental Theorem of Algebra, which is the Artin-Schreier characterization
of real closed fields, without assuming previous theorems in Galois theory. Another
important feature is that the proof presented here treats in a unified way both the
prime and the null characteristic case.

More precisely, the above mentioned “reciprocal” of the following theorem is proved
(here,

√
−1 denotes a choice of a square root of −1).

Theorem 1 (Fundamental Theorem of Algebra). If F is a real closed field, then
F(
√
−1) is algebraically closed.

The “reciprocal” of Theorem 1, and Theorem 1 itself determine exhaustively the
occurrence of all algebraically closed fields and real closed fields: they arise in pairs,
i.e, for all real closed field F , by adding

√
−1, one gets an algebraically closed field E

(Theorem 1) and, reciprocally, for every proper subfield F of an algebraically closed
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field E such that the extension is finite, F is real closed (and, therefore,
√
−1 6∈ F) and

one obtains E by adding
√
−1.

The proof will be divided into 7 lemmas. This article is intended to be self-contained,
then no previous knowledge of field theory except the definition of a field and basic linear
algebra is needed.

Definition 1. Let F be a field. F is formally real if for all x1, . . . , xm ∈ F ,
∑

i x
2
i = 0

implies that xi = 0 for all i.

Definition 2. Let F be a field. F is real closed if: (i) F is formally real; (ii)
for every f ∈ F [x] having odd degree, there exists ζ ∈ F such that f(ζ) = 0; (iii)
F = F2∪ (−F2), i.e., for every x ∈ F , there exists y ∈ F such that x = y2 or x = −y2.

Remark 1. In 2, it’s possible to impose that F2 + F2 = F2 and F2 ∩ (−F2) = {0}
instead of requiring that F is formally real.

The reciprocal of the Fundamental Theorem of Algebra, originally due to E. Artin
and O. Schreier, that will be proved here is the following assertion.

Theorem 2 (Artin-Schreier Theorem). Let E be an algebraically closed field and F ⊂ E
a subfield. If F 6= E and dimF E < ℵ0, then E = F(

√
−1).

Furthermore, F is real closed. In particular, F have characteristic zero.

Remark 2. The above theorem says explicitly that a proper subfield of E of finite
dimension have exactly dimension equals 2.

Remark 3. Notice that in the above theorem, it’s not asserted that given an algebrai-
cally closed field E , there exists F such that F(

√
−1) = E . However, indeed, this

assertion is true when the characteristic of E is zero. This fact is related to the order 2
automorphisms of E (see Theorem 3 and Theorem 4).

Furthermore, no mention to the characteristic is made in the theorem hypothesis
and, also, no assumptions that the extension E/F is Galois is required.

The proof will be divided into 7 lemmas as already mentioned above.

In what follows, it will be proved for an algebraically closed E that there doesn’t
exist proper subfields G ′ ⊂ E for which

√
−1 ∈ G ′ and [E : G ′] is finite. Now, suppose

that the previous assertion doesn’t hold.
Let, therefore, E be an algebraically closed field, G ⊂ E a proper subfield such that√
−1 ∈ G and [E : G] = p is minimal among all [E : G ′] for every proper subfield G ′ ⊂ E

containing
√
−1 for which [E : G ′] is finite.

Lemma 1. If t ∈ E and t 6∈ G, then E = G(t).
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Proof. Since G ⊂ G(t) ⊂ E ,

[E : G(t)][G(t) : G] = [E : G].

By the assumption t 6∈ G,
[G(t) : G] > 1.

Hence
[E : G(t)] < [E : G].

By the minimality of p, G(t) cannot be proper. Therefore E = G(t). �

Lemma 2. If θ ∈ Aut(E/G),1 t ∈ E and θ(t) = t, then t ∈ G or θ = 1E .2

Proof. By 1, if t 6∈ G, then E = G(t).
Suppose θ(t) = t. Let α = f(t) for f ∈ G[X]. Since θ|G = 1G,

θ(α) = f(θ(t)) = f(t) = α

for all α ∈ E . Therefore θ = 1E . �

For every t ∈ E , let ft ∈ G[X] denotes the minimal polynomial of t ∈ E . Further-
more, for every f ∈ G[X], let Rf denotes the set of f roots.

Lemma 3. If θ ∈ Aut(E/G) and θ 6= 1E , then θp = 1E e θl 6= θk for 0 ≤ l < k < p.

Proof. Let t ∈ E such that t 6∈ G, ft ∈ G[X] the minimal polynomial of t. Then ft
have degree p. Since θ(Rft) ⊂ Rft ,

{θk(t) | 0 ≤ k ≤ p} ⊂ Rft .

Since p+ 1 > p ≥ #Rft ,3 there exists i, j such that 0 ≤ i < j ≤ p and

θj−i(t) = t.

Let m = j − i ≤ p and

g =
m−1∏
r=0

(X − θr(t)) ∈ E [X].

By θm(t) = t,

gθ =
m−1∏
r=0

(X − θr+1(t)) = g.

1Aut(E/G) = {σ ∈ Hom(E , E) | σ automorphism of E such that σ|G = 1G}.
21E denotes the identity function on E .
3 #X denotes the cardinality of a set X.
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Hence, by Lemma2, g ∈ G[X].
Since g(t) = 0 and g ∈ G[X],

ft|g.

Hence p ≤ m. Then p = m and, therefore, by Lemma 2, θp = 1E .
By assuming θk = θl for 0 ≤ l < k ≤ p, an identical argument for i = l and j = k

implies that k − l = p. However, if 0 ≤ l < k < p, then k − l < p. Therefore θl 6= θk

whenever 0 ≤ l < k < p. �

Lemma 4. If Aut(E/G) 6= 1,4 then p is prime.

Proof. Let θ ∈ Aut(E/G) such that θ 6= 1E , p = rs and r > 1. By Lemma 3,

1E = θp = (θr)s.

Since 1 ≤ s < p, again by Lemma 3, θr = 1E . Once more, by Lemma 3, r = p. �

Lemma 5. If t ∈ E and t 6∈ G, then #Rft = p = #Aut(E/G)5.

Proof. Suppose #Rft = 1. Since E is algebraically closed, ft factors into linear terms
in E [X], so

ft = (X − t)p.

Since ft(0) = (−t)p = (−1)ptp ∈ G,

g = Xp − tp ∈ G[X].

By g(t) = 0 and g ∈ G[X], ft|g and, then, since ft and g have the same degree and
both are monic,

(X − t)p = ft = g = Xp − tp.

Since ft = Xp − ptXp−1 + · · · − tp = Xp − tp, p.t = 0 and, hence,

p.1 = 0.

Let p = rs, for r and s natural numbers such that s > 1. Since ts is a root of
Xr − tp,

[G(ts) : G] ≤ r.

Then, by
[E : G(ts)][G(ts) : G] = [E : G] = p

41 denotes {1E}.
5See footnote 3.
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and [G(ts) : G] ≤ r,
[E : G(ts)] ≥ s > 1

and, hence, by Lemma 1, ts ∈ G. Hence Xs − ts ∈ G[X] and it has t as a root. Then,
ft|Xs − ts. Hence

s ≤ rs = p ≤ s

and, then, s = p. Therefore p is prime.
Let u ∈ E such that up = t. By Lemma 1 and the assumption that t 6∈ G, G(t) = E .

Then
u = u0 + u1t+ · · ·+ up−1t

p−1,

where ui ∈ G for 0 ≤ i < p. Since p.1 = 0 and p is prime,

t = up = up0 + up1t
p + · · ·+ upp−1(tp)p−1 ∈ G.

However t 6∈ G by assumption, an absurd. Therefore #Rft > 1.
Since #Rft > 1, there exists v ∈ Rft such that v 6= t. Let

G[X]
evt
//

evv // E

denote the homomorphisms that evaluate the polynomials on v and t respectively, ı.e.,
evv(h) = h(v) and evt(h) = h(t) for each h ∈ G[X]. Since ft(t) = ft(v) = 0 and ft
is irreducible, h(t) = 0 or h(v) = 0 are equivalent to ft|h. Then, evt and evv induce
isomorphisms

G[X]/(ft)
εt

//

εv // E .

Let θ = εv(εt)
−1. Since θ(t) = v, θ 6= 1E . Then, by Lemma 3,

θk 6= θl

for 0 ≤ l < k < p and, by using that E = G(t),

θk(t) 6= θl(t)

for 0 ≤ l < k < p. Since θ(Rft) ⊂ Rft ,

{t, θ(t), . . . , θp−1(t)} ⊂ Rft

and, then, p ≤ #Rft . Since ft have degree p, #Rft ≤ p and, therefore, #Rft = p and

Rft = {t, θ(t), . . . , θp−1(t)}.
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Let σ ∈ Aut(E/G). Since σ(Rft) ⊂ Rft = {t, θ(t), . . . , θp−1(t)}, there exists l such
that 0 ≤ l < p and σ(t) = θl(t). Then σ−1θl(t) = t and, by Lemma 2, σ−1θl = 1E , i.e.,

σ = θl.

Hence
Aut(E/G) = {1E , θ, . . . , θp−1}.

Therefore, since θk 6= θl for 0 ≤ l < k < p, #Aut(E/G) = p.
�

Lemma 6.

1. #RXp−1 = p is equivalent to the existence of λ ∈ E such that λ 6= 1 and λp = 1;

2. For any λ ∈ E such that λ 6= 1 and λp = 1,

RXp−1 = {λi| 0 ≤ i ≤ p}.

Proof.
[Proof of 1] Suppose that λ ∈ E such that λ 6= 1 and λp = 1. If λi = λj for

0 ≤ i < j < p, then λq = 1 for q = j − i and p > q ≥ 1. Since, by Lemmas 4 and 5, p
is prime and, then, aq + bp = 1 for some integers a and b. Hence

λ = λaq+bp = (λq)a(λp)b = 1.1 = 1,

an absurd. Then
#{λi | 0 ≤ i < p} = p.

Since (λi)p = (λp)i = 1 for 0 ≤ i < p,

{λi | 0 ≤ i < p} ⊂ RXp−1

and, then, #RXp−1 ≥ p. Also, since the degree of Xp − 1 is equal p, #RXp−1 ≤ p and,
therefore, #RXp−1 = p. As a consequence

RXp−1 = {λi | 0 ≤ i < p}.

Conversely, suppose #RXp−1 = p. Since 1 ∈ RXp−1, p > 1, there exists λ 6= 1 such
that λp = 1.

[Proof of 2] An identical argument to the first part of Proof of 1 also proves 2. �

Lemma 7. #RXp−1 = p.



A Simple Proof of the Characterization of Real Closed Fields 367

Proof. If RXp−1 < p, by Lemma 6, RXp−1 = {1}. Then, since E is algebraically
closed,

Xp − 1 = (X − 1)p = Xp − pXp−1 + · · ·+ (−1)p

and, therefore, p.1 = 0. Let σ ∈ Aut(E/G) such that σ 6= 1E , which exists by Lemma
5. By Lemma 3, σp − 1E = 0. Since p.1 = 0 and, by Lemmas 4 and 5, p is prime, then

0 = σp − 1E = (σ − 1E)
p.

Let τ = σ − 1E . Then, by the Newton binomial formula,

τ p−1 = σp−1 − (p− 1)σp−2 + · · ·+ (p− 1)σ(−1)p−2 + (−1E)
p−1.

By Lemma 3, σi 6= σj for 0 ≤ i < j < p. Then, by Dedekind Theorem (Appendix A)
with

Γ = {σl | 0 ≤ l < p},
{σl | 0 ≤ l < p} is linearly independent over E and, therefore, τ p−1 6= 0.

Since τ p−1 6= 0, there exists t ∈ E such that τ p−1(t) 6= 0. In view of

0 = τ p(t) = ττ p−1(t) = (σ − 1E)τ
p−1(t),

σ(c) = c for c = τ p−1(t). By Lemma 1 and σ 6= 1E , c ∈ G and, then, τ p−1(z) = 1 for
z = t

c
.

One wishes to prove that {z, τ(z), . . . , τ p−1(z)} is linearly independent in E as a
vector space over G. Suppose there exists c0, . . . , cp−1 ∈ G such that

c0z + c1τ(z) + · · ·+ cp−1τ
p−1(z) = 0

and cj 6= 0 for some 0 ≤ j < p. Let l be the least j such that cj 6= 0. Then

clt
l(z) + cl+1τ

l+1(z) + · · ·+ cp−1τ
p−1(z) = 0.

Hence

cl = clτ
p−1(z) = τ p−l−1(clτ

l(z) + cl+1τ
l+1(z) + · · ·+ cp−1τ

p−1(z)) = 0,

a contradiction. Therefore {z, τ(z), . . . , τ p−1(z)} is linearly independent over G.
Since dimG E = p and {z, τ(z), . . . , τ p−1(z)} is linearly independent over G, its car-

dinality is equals to p and, hence, {z, τ(z), . . . , τ p−1(z)} is a basis for E over G. Let
c0, . . . , cp−1 ∈ G such that

zp = c0z + c1τ(z) + · · ·+ cp−1τ
p−1(z).

Since
τ(xp) = σ(xp)− xp = (σ(x))p − xp = (σ(x)− x)p = (τ(x))p
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for every x ∈ E , τ j(xp) = (τ j(x))p for every natural j and x ∈ E . Particularly,

τ p−1(zp) = (τ p−1(z))p = 1.

Since τ p−1(zp) = c0,

zp − z = c1τ(z) + · · ·+ cp−1τ
p−1 = τ(w)

with w = c1z + · · ·+ cp−1τ
p−2(z).6 Let ζ ∈ E be a root of Xp −X − w. Since

(σ(ζ))p − ζp = (σ(ζ)− ζ)p,

σ(ζ) is a root of
Xp −X − σ(w)

and τ(ζ) = σ(ζ)− ζ is a root of

Xp −X − τ(w).

Similarly, τ(ζ)− z is a root of
Xp −X.

Since the set of roots of Xp−X is exactly Fp, there exists c ∈ Fp such that τ(ζ)−z = c,
equivalently,

τ(ζ) = c+ z.

However, since τ(c) = 0 and τ p−1(z) = 1,

0 = τ p−1(τ(ζ)) = τ p−1(c+ z) = 1,

an absurd.
Therefore, #RXp−1 = p.

�

Remark 4. Notice that Lemma 7 is trivial in characteristic 0 since every extension is
separable and E is algebraically closed. The result, of course, is not trivial in positive
characteristic as the above proof shows.

Now we are ready to provide a proof of the main Theorem
Proof. (Artin-Schreier Theorem) Let σ ∈ Aut(E/F) such that σ 6= 1E and σp = 1E ,
which exists by Lemmas 4 and 5. Let λ ∈ E such that λ 6= 1 and λp = 1, which exists
by Lemmas 6 and 7. Since λ 6= 1, λp = 1 and (λ− 1)(λp−1 + · · ·+ λ+ 1) = λp − 1 = 0,

λp−1 + · · ·+ λ+ 1 = 0,

6If p = 2, w = 0
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equivalently, λ is root of the polynomial

Xp−1 + · · ·+X + 1 ∈ G[X]

and, hence, [G(λ) : G] < p. By

[E : G(λ)][G(λ) : G] = p

and [G(λ) : G] < p, [E : G(λ)] > 1 and, then, by Lemma 1, λ ∈ G. Let ϕ =
σp−1 + · · · + λiσp−i−1 + · · · + λp1E . Hence, by Theorem 5, ϕ 6= 0 since the coeffi-
cients 1, λ, . . . , λi, . . . , λp−1 are nonzero. Let t ∈ E such that ϕ(t) = u 6= 0. Since λ ∈ G,
σ(λ) = λ. Then σ(λ1E) = (λ1E)σ and, hence,

0 = σp − (λ1E)
p = (σ − λ1E)(σ

p−1 + · · ·+ λjσp−j−1 + · · ·+ λp1E) = (σ − λ1E)ϕ.

Then (σ − λ1E)u = 0, i.e., σ(u) = λu.
Let v ∈ E be a root of Xp − u and ξ = σ(v)

v
. Then

ξp =
σ(vp)

vp
=
σ(u)

u
= λ

and, since λ ∈ G (σ(ξ)

ξ

)p
=
σ(ξp)

ξp
=
σ(λ)

λ
= 1.

Hence there exists i such that 0 ≤ i < p and

σ(ξ)

ξ
= λi.

Suppose that p is odd, i.e., p = 2q + 1 for some natural q. Then

v = σp(v) = σp−1(σ(v)) = σp−1(ξv) = σp−2(σ(ξ)σ(v)) = σp−2(λiξξv) =

= λiσp−2(ξ2v) = . . . = λi+···+kiσp−(k+1)(ξk+1v) = . . . = λi+···+(p−1)iξpv = λv

since
i+ · · ·+ (p− 1)i = i(1 + · · ·+ (p− 1)) = ipq,

λipq = (λp)iq = 1 and ξp = λ. Hence v = λv and v 6= 0 implies that λ = 1. Then p
cannot be odd and, therefore p = 2. In this case, ξ2 = λ = −1 since λ 6= 1, λ2 = 1 and
λ2 − 1 = (λ+ 1)(λ− 1). Then, by the assumption that

√
−1 ∈ G, ξ ∈ G. Hence

v = σ2(v) = σ(σ(v)) = σ(ξv) = σ(ξ)σ(v) = ξξv = λv,
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where the last equality follows from σ(ξ) = ξ. Then λ = 1 or v = 0. However, by
assumption, λ 6= 1 and v 6= 0, an absurd. Therefore there are no proper subfields G ′ of
E such that [E : G ′] < ℵ0 and

√
−1 ∈ G ′.

Let F be a proper subfield of E such that [E : F ] < ℵ0. Since

[E : F(
√
−1)][F(

√
−1) : F ] = [E : F ]

and
√
−1 6∈ F ,

[E : F(
√
−1)] < [E : F ] < ℵ0

and, therefore, E = F(
√
−1).

Now, to conclude the proof of Theorem 2, we will regard its latter statement, con-
cerning real closedness.

For every t ∈ E , there exists uniques x, y ∈ F such that t = x+
√
−1y. Let a, b ∈ F .

Since E is algebraically closed, there exists c, d ∈ F such that

a+ b
√
−1 = (c+ d

√
−1)2 = c2 − d2 + 2cd

√
−1.

Then a = c2 − d2 and b = 2cd and, hence

a2 + b2 = (c2 − d2)2 + (2cd)2 = (c2 + d2)2 = e2

for e = c2 + d2. More generally by induction, for every x1, . . . , xn ∈ F , there exists
y ∈ F such that x2

1 + · · ·+x2
n = y2. Let a2 +x2

1 + · · ·+x2
n = 0. Since, x2

1 + · · ·+x2
n = y2

for some y ∈ F ,
0 = a2 + y2 = (a+ y

√
−1)(a− y

√
−1)

and, then, a + y
√
−1 = 0 or a − y

√
−1 = 0. Hence a = y = 0 and, consequently,

x2
1 + · · · + x2

n = 0. Proceeding by induction, a = x1 = . . . = xn = 0. Therefore F is
formally real.

Let a ∈ F and b = 0, by the equality

a+ b
√
−1 = c2 − d2 + 2cd

√
−1

for c and d as before, 2cd = 0. Then, if c = 0, a = −d2 and , if d = 0, a = c2. Hence

F = F2 ∪ (−F2).

If f ∈ F [X] have odd degree, then there exists g ∈ F [X] irreducible, of odd degree,
such that g|f , since the degree of f is the sum of the degrees of the polynomials
appearing in a factorization of f in irreducible factors. Let t ∈ E such that g(t) = 0.
Since

[E : F(t)][F(t) : F ] = [E : F ] = 2
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and deg(g) = [F(t) : F ] is odd, [F(t) : F ] = 1 and, then, t ∈ F , which is a root of f .
Therefore F is real closed.

Therefore F is real closed and E = F(
√
−1)

�

By the absence of any mention to the characteristic of E in the hypotheses of Artin-
Schreier Theorem, it follows the corollary.

Corollary 1. Let E be algebraically closed of characteristic p > 0. For any proper
subfield F ⊂ E, the extension E/F is infinite.

Corollary 2. Let E be algebraically closed. If G < Aut(E) has finite order and G 6= 1,
then G have order 2.

Proof. By Proposition B.1 (Appendix B), [E : EG] = |G| < ℵ0. By Artin-Schreier
Theorem (Theorem 2) and the fact that EG 6= E , |G| = [E : EG] = 2. �

In particular, this stablishes a surprising fact about the absolute Galois group GQ,
which is the main source of problems in arithmetic geometry.

Corollary 3. Let σ ∈ GQ be such that σ 6= 1 and σ has finite order, then σ has order
2 and satisfies σ(

√
−1) = −

√
−1.

Proof. Consider the subgroup 〈σ〉 < Aut(E) generated by σ and use Corollary 2 and
Theorem 2 applied to the subfield Eσ < E , consisting of the fixed elements of σ. �

The article now ends with the proof of the existence of F (as stated in Remark 3) and
the existence of a bijective correspondence between real closed fields and involutions.

Theorem 3. For every algebraically closed field E of characteristic zero, there exists a
subfield F such that F(

√
−1) = E. Furthermore any such F is real closed.

Proof. [Sketch] Let R the set of all formally real subfields of E partially ordered by
inclusion. For any chain S ⊂ R,

⋃
S is the maximum of S and, then, by Zorn’s

Lemma, there exists a maximal element in R, say F .
For any a ∈ F , α ∈ E and β ∈ E such that α2 = a, and β2 = −a, F(α) or F(β) is

formally real. Hence, by the maximality of F , α ∈ F or β ∈ F . It follows, then, that
F = F2 ∪ (−F2).

Let p ∈ F [X] be of odd degree. Since the degree of p is the sum of the degrees of
of the irreducible factors of a decomposition of p in F [X], there is q|p irreducible over
F [X] of odd degree such that q ∈ F [X]. If ζ ∈ E be a root of q, then F(ζ) is again
formally real. Hence ζ ∈ F . Therefore F is real closed.

By the Fundamental Theorem of Algebra, F(
√
−1) is algebraically closed.
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Notice that no element τ ∈ E can be transcendent over F , otherwise F(τ) would be
a proper formally real extension of F . The extension E/F , then, is algebraic and, as a
consequence, also the extension E/F(

√
−1). Hence any ζ ∈ E is a root of a non-constant

polynomial p ∈ F(
√
−1)[X]. Since F(

√
−1) is algebraically closed, p decomposes in

F(
√
−1) into linear factors. Then ζ ∈ F(

√
−1). Therefore E = F(

√
−1).

The argument developed above in the proof of the Artin-Schreier Theorem presen-
ted after Remark 4 can be applied in the same way to conclude that for any proper
subfield F < E such that E = F(

√
−1), F is real closed. �

Remark 5. The claims in the above proof sketch concerning extensions of formally real
fields by adjoining to F square roots of elements of F , roots of odd degree irreducible
polynomials in F [X] or transcendent elements over F are of an elementary character,
and are accessible to any beginner student in the subject.

Remark 6. The last reasoning in the above proof sketch (which refers to the argument
used in the proof of the Artin-Schreier Theorem presented after Remark 4) indicates
that to find a proper subfield F < E such that E = F(

√
−1), one must consider at least

the formally real subfields of E .
For this reason, R and Zorn’s lemma are used. Using only elementary properties of

formally real subfields, the maximal in R turns out to the real closed. The real closed-
ness, then, guarentees the conditions to apply the Fundamental Theorem of Algebra to
get the desired result, which is the claim of existence.

Symmetrically, when one already has, hypothetically, a proper subfield F such that
E = F(

√
−1), F is real closed as mentioned in the end of the above proof sketch.

Remark 7. The last reasoning in the above proof sketch also applies to the statement
of Theorem 4. In this context, it implies that all elements of RE are real closed.

Theorem 4. Let E be an algebraically closed field of characteristic zero. Let RE , LE
be, respectively, the set of all proper subfields F , such that E = F(

√
−1), and the set of

involutions7 of E. The set

Θ = {(F , σ) | ((F , σ) ∈ RE ×LE) ∧ (Eσ = F)}

is a bijection
Θ : RE

∼−→ LE .

Proof. Let F ∈ RE . If ζ ∈ E , then there exists only one pair (x, y) ∈ F × F such
that ζ = x + y

√
−1. Let E σ−→ E be the morphism determined by σ(ζ) = x − y

√
−1.

Notice that σ ∈ LE and Eσ = F . Therefore dom(Θ) = RE .
7Let F be a field. σ ∈ Aut(F) is an involution of F iff σ2 = 1F .
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Suppose (F , σ), (F ′, σ′) ∈ Θ. Since σ, σ′ 6= 1E , σ(
√

1) = −
√
−1 = σ′(

√
1). Then,

for every ζ = x+ y
√
−1 such that (x, y) ∈ F × F ,

σ(ζ) = σ(x) + σ(y)σ(
√
−1) = x− y

√
−1 = σ′(x) + σ′(y)σ′(

√
−1) = σ′(ζ)

by the fact that Eσ = F = Eσ′ Therefore Θ is a function.
If (F , σ), (F ′, σ′) ∈ Θ, then F = Eσ = F ′. Therefore Θ is injective.
Let σ ∈ LE such that F = Eσ < E is a proper subfield. Let ζ ∈ E such that

σ(ζ) 6= ζ, and ξ ∈ E such that ξ2 = ζ − σ(ζ). Then(σ(ξ)

ξ

)2

=
σ(ξ2)

ξ2
=
σ(ζ − σ(ζ))

ζ − σ(ζ)
=
σ(ζ)− ζ
ζ − σ(ζ)

= −1

and
σ
(σ(ξ)

ξ

)
=

ξ

σ(ξ)
= −σ(ξ)

ξ
.

Hence σ(
√
−1) = −

√
−1. Let λ ∈ E , λ = x+ y

√
−1,

x =
λ+ σ(λ)

2

and
y =

λ− σ(λ)

2
√
−1

.

Then x, y ∈ F and, finally, E = F(
√
−1). Then Θ is surjective and, therefore, it’s a

bijection. �

Appendices

A Dedekind Theorem
Theorem 5 (Dedekind Theorem). Let E and F be fields, and Γ ⊂ Aut(E/F). Γ is
linearly independent over E.

Proof. Suppose that
c1γ1 + · · ·+ cnγn = 0

for γi 6= γj, 1 ≤ i < j < n, γi ∈ Γ, cj ∈ E , cj 6= 0 for some j and n minimal under
these conditions. Then n > 1 and ci 6= 0 for every 0 ≤ i ≤ n. Let x ∈ E such that
γ1(x) 6= γn(x). Then

0 = c1γ1(x)γ(y) + · · ·+ cnγn(x)γn(y)
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for every y ∈ E . Hence

0 = c1(γ1(x)− γn(x))γ1(y) + · · ·+ cn−1(γn−1(x)− γn(x))γn−1(y)

for all y ∈ E , i.e.,

0 = c1(γ1(x)− γn(x))γ1 + · · ·+ cn−1(γn−1(x)− γn(x))γn−1

which contradicts the minimality of n since c1(γ1(x)− γn(x)) 6= 0. �

B [E : EG] = |G|
Lemma 8. Let E be a field, S ⊂ Aut(E) finite subset and Γ a generator of E as a vector
space over ES .8 Then #Γ ≥ #S.

Proof. Suppose that #Γ < #S. Let

Γ→ F (S, E)∗ 9

be given by γ 7→ fγ where fγ(α) =
∑

g∈S g(γ)α(g). Since

#{fγ| γ ∈ Γ} ≤ #Γ < #S = dimE(F (S, E)),⋂
γ∈Γ Ker(fγ) 6= 0. In other words, a linear system with more variables than equations

has a nonzero solution. Then there exists α : S → E such that α 6= 0 and∑
g∈S

g(γ)α(g) = 0

for every γ ∈ Γ. By the fact that Γ generates E over ES, for every ξ ∈ E , there exists
λ : Γ→ ES such that

ξ =
∑
γ∈Γ

λ(γ)γ.

Then

0 =
∑
γ∈Γ

(λ(γ)
∑
g∈S

g(γ)α(g)) =
∑
g∈S

(α(g)
∑
γ∈Γ

λ(γ)g(γ)) =
∑
g∈S

(α(g)
∑
γ∈Γ

g(λ(γ)γ)) =

8Let F be a field and S be a subset of Aut(F). FS denotes the subset of F fixed by all elements
of S.

9

(i) Let S be a set and F a field. F (S,F) denotes the F-vector space of functions from S to F ;
(ii) Let F be a field and V a F-vector space. V ∗ = HomF (V,F) denotes the dual vector space, i.e.,
the vector space of F linear homomorphisms.
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=
∑
g∈S

(α(g)g(
∑
γ∈Γ

λ(γ)γ)) =
∑
g∈S

α(g)g(ξ) = (
∑
g∈S

α(g)g)(ξ)

for every ξ ∈ E . Hence
∑

g∈S α(g)g = 0. By Dedekind Theorem (Appendix A) for
Γ = S, α(g) = 0 for all g ∈ S, an absurd since α 6= 0 . Therefore #Γ ≥ #S. �

Lemma 9. Let E be a field, G < Aut(E) a finite subgroup and L a linearly independent
subset of E as a vector space over EG. Then #L ≤ #G.

Proof. Suppose that #G < #L. One can choose a finite subset of L with cardinality
greater than G. For this reason, L will denote such subset from now on. Let

G→ F (L, E)∗ 10

be given by g 7→ ϕg where ϕg(β) =
∑

ξ∈L g(ξ)β(ξ). Since

#{ϕg| g ∈ G} ≤ #G < #L = dimE(F (L, E)),⋂
g∈GKer(ϕg) 6= 0. Then there exists β : L → E such that β 6= 0 and∑

ξ∈L

g(ξ)β(ξ) = 0

for every g ∈ G.
Consider β 6= 0 as above such that T = {ξ ∈ L | β(ξ) 6= 0} has minimal cardinality.

Then
0 = h(

∑
ξ∈T

g(ξ)β(ξ)) =
∑
ξ∈T

h(g(ξ)β(ξ)) =
∑
ξ∈T

hg(ξ)h(β(ξ))

for every g, h ∈ G. Hence, since hG = G for every h ∈ G,∑
ξ∈T

g(ξ)h(β(ξ)) = 0

for every g, h ∈ G.
Since β 6= 0, #T ≥ 1. If #T = 1, then g(T ) = {0} for every g ∈ G. Hence T = {0},

an absurd since T ⊂ L is linearly independent over EG.
Suppose #T ≥ 2. Let ζ ∈ T . Since∑

ξ∈L

g(ξ)h(β(ξ))β(ζ) = 0

10See footnote 9.
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and ∑
ξ∈L

g(ξ)β(ξ)h(β(ζ)) = 0

for every g, h ∈ G, ∑
ξ∈T\{ζ}

g(ξ)(h(β(ξ))β(ζ)− h(β(ζ))β(ξ)) = 0

for every g, h ∈ G. By the minimality of T as mentioned above,

h(β(ξ))β(ζ)− h(β(ζ))β(ξ) = 0

for every h ∈ G and ξ ∈ T . Since β(ζ) 6= 0,

h
(β(ξ)

β(ζ)

)
=
β(ξ)

β(ζ)

and, therefore, λξ = β(ξ)
β(ζ)
∈ EG, for every h ∈ G and ξ ∈ T . Since β(ξ) = λξβ(ζ),

β(ζ)g(ζ) +
∑

ξ∈T\{ζ}

λξβ(ζ)g(ξ) = 0

for every g ∈ G. Setting g = 1E ,

ζ = −
∑

ξ∈T\{ζ}

λξξ

and, then, T ⊂ L is not linearly independent over EG, an absurd. Therefore #L ≤ #G.
�

Proposition B.1. Let E be a field and G < Aut(E/EG) a finite subgroup. Then
[E : EG] = |G|.

Proof. By Lemma 9, every subset of S ⊂ E linearly independent over EG has at most
#G elements. Let T be a maximal subset of E among all subsets of E that are line-
arly independent over EG. By a standard argument, T generates E over EG, then it is
a basis of E over EG. By Lemma 8, #T ≥ #G. Therefore T has exactly #G elements. �
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