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Abstract

The present paper begins with a diagnosis for the insufficiency of ZFC, es-
pecially when it comes to infinite arithmetic of sets. According to our diagnosis,
the problem is that, in ZFC, sets and ordinals are only fragmentarily connected.
The use of ordinals connected to sets was always one of the main points of set
theory, and the usual axioms barely touched this aspect of set theory. This is
related to the fact that the conceptual work upon which the axioms of ZFC are
based, and also a good deal of the conceptual work on candidates for new axioms,
was always very focused on the production of sets, and only indirectly related to
the global connection between sets and ordinals. This diagnosis is followed by an
analysis of how could we formulate a candidate for new axiom based on a very
simple set-theoretic principle according to which sets and ordinals can be con-
nected by a homomorphism from sets to ordinals which is minimal with respect
to cardinality among those with the ordinals as its fixed points and such that
the preimage of an infinite ordinal is equipotent to that ordinal. The formaliza-
tion of this principle is called the minimal ordinal-connection axiom, which can
be obtained by abstracting the coarse behaviour of the constructible rank in a
definability-free way. It is shown that the basic consequences of the constructibi-
lity axiom are also consequences of the minimal ordinal-connection axiom, and,
at the same time, that it is consistent with very large cardinals. A local version
of the minimal ordinal-connection axiom is given in the end of the paper.
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1 Amending the Iterative Conception of Set-Theo-

retic Universe

One of the most important aspects of set theory, probably its most important aspect
along with its foundational role in mathematics, is its use of ordinals connected to
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sets. The modes of grasping sets through ordinals always rely on some ordinal pattern
behind that plurality of sets, that is, on some assignment of ordinals to sets (or sets to
ordinals), granted by the axioms, such that problems about sets can be solved using
the assigned ordinals. Without a connection between sets and ordinals we could not,
for example, grasp sets in a hierarchy, and we could not count them. In fact, the rank,
which is a homomorphism between sets and ordinals, and the cardinality of sets, which
is a well-behaved (with respect to equipotence) assignment of ordinals to sets, are basic
examples of ordinal patterns granted by the usual axioms. We need to get sets and
ordinals connected in some way if we want to use ordinals to understand sets. In the
well established theory of sets ZFC, the recursion theorem, the axiom of foundation
and the axiom of choice are basic tools for connecting sets to ordinals. That’s about
it, and this is not a good thing. Those tools are insufficient for a good grasping of sets
through ordinals, for we cannot even know whether the power set operation is strictly
increasing with respect to cardinalities on this basis. The axioms of ZFC do not even
mention ordinals explicitly. We have an exceedingly important, basic concern of set
theory – the connection between sets and ordinals – which is barely scratched by the
well-established axioms, and this is somewhat surprising. Unsurprisingly, ZFC cannot
decide basically all nontrivial questions about cardinalities. The problem we will be
concerned with here is just this: How should we enhace the connection between sets
and ordinals in set theory?

When it comes to account for infinite arithmetic, one of the main roles of set theory,
ZFC is really weak. A diagnosis for this weakness was proposed in the above paragraph,
and this point is worth expanding. ZFC is weak not because it does not fix its intended
model, “the true universe of sets”– no first-order theory can do that! Rather, it is weak
simply because its axioms guarantee only a fragmentary connection between sets and
ordinals in a given set-theoretic universe. This is related to the fact that the main line of
conceptual work on grounding the axioms of ZFC, the so-called iterative conception of
set, was always very focused on the production of sets.1 The global connection between
sets and ordinals is, at best, a marginal concern, and the consequences of this are well-
known. Once this problem is understood, it is not difficult to obtain the generalized
continuum hypothesis from a simple axiom grounded on a conception of set-theoretic
universe centered not only on the iterative production of sets, but also on the global
connection between sets and ordinals. The amended conception of set-theoretic universe
is just this: Sets, in an iterative set-theoretic universe, admit an ordinal rank, that is a
membership preserving map from sets to ordinals fixing the ordinals, such that (a) the
preimage of an infinite ordinal is equipotent to that ordinal and (b) the growth rate of
this ordinal rank is minimal in terms of cardinality.

We will investigate an axiom system extending ZFC based on the above amen-

1A methodical analysis of the existential character of ZFC axioms based on the iterative conception
of set can be found in [2].
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ded conception of set-theoretic universe. Let us first examine a much bolder connection
between sets and ordinals which is well-known: The connection given by the constructi-
bility axiom, a connection encompassing both rank and cardinality, global well-ordering
and much more. Virtually everything concerning cardinalities left undecided by ZFC
is decided on this new basis. However, the constructibility axiom is not considered a
solution to the above mentioned problem. First of all, it is inconsistent with very appre-
ciated large cardinals. Moreover, it is more akin to an artificial technique for proving
results about consistency strength and it is not grounded by the proposed amendment
of the iterative conception. We are looking for an axiom which is consistent with large
cardinals and is simply stated as a formal counterpart of the amended conception of
set-theoretic universe giving a full, foundational connection between sets and ordinals.
That is what we will attempt to accomplish in this paper, and neither the constructi-
bility axiom nor any of its relative versions is our target. The axiom we are searching
for is not to be obtained from some complex model-theoretic construction. However,
discarding the constructibility axiom so fast seems like throwing the baby out with
the bathwater. Let us look at an abstract, simple, definability-free axiomatization of
the coarse structure of the L-hierarchy, isolating a handy connection between sets and
ordinals from the undesirable definability component of constructibility.2

We will now anticipate how can we axiomatize, in an entirely definability-free way,
the ordinal pattern given by the constructible rank when the fine behaviour of its ordinal
values is covered up, and how the resulting axiom can be seen as a formalization of a very
simple set-theoretic principle. Let ZF−ρ be the following theory: Its language has, in
addition to ∈, an unary function symbol ρ, and the axioms include all axioms of ZF−

(ZF minus foundation) along with replacement and separation axioms for formulas
containing ρ. Now, consider the following axiom, the minimal ordinal-connection axiom,
in ZF−ρ :

1. ∀x, (ρ(x) is an ordinal).

2. ∀α, (ρ(α) = α).

3. ∀x, y, (x ∈ y → ρ(x) < ρ(y)).

4. ∀α ∃f ; (f : α ∪ ω → {x : ρ(x) < α} is surjective).

5. For every set x, (i) if x ∈ Vω, then ρ(x) = rk(x), and (ii) if x /∈ Vω, then given a
transitive set T containing x and r : T → T satisfying 1− 4 above, ρ(x) < r(x)+.

2The definability component is usually seen as an artificial constraint on sets and a downside of the
constructibility axiom. However, the rejection of V = L on the basis that it is vaguely restrictive has
been countered in [5], for example.
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The set-theoretic principle behind the minimal ordinal-connection axiom can be
stated as follows: It is possible to arrange a homomorphism from sets to ordinals such
that (i) the ordinals are fixed, (ii) the preimage of an infinite ordinal is equipotent to
that ordinal and (iii) it is minimal with respect to cardinality among the homomor-
phisms from sets to ordinals satisfying (i) and (ii). The axioms of ZFC give only a
homomorphism with the ordinals as its fixed points and the well-ordering of sets, a
small fraction of a minimal ordinal-connection. It turns out that, as we shall prove in
the next sections, the most important consequences of V = L, such as the axiom of
foundation, the axiom of choice, the generalized continuum hypothesis, and the state-
ment that the standard models are unchanged, that is, if κ is inaccessible then Lκ = Vκ,
where Lκ = {x : ρ(x) < κ}, remain valid in ZF−ρ with the minimal ordinal-connection
axiom. Also, if θ is another function symbol satisfying 1−5 above, then |θ(x)| = |ρ(x)|,
which means that this axiomatization is categorical with respect to the cardinal of ρ(x).
Furthermore, as far as we know, this theory is consistent with very large cardinals. We
will prove this in section 5. The consistency with large cardinals follows from the fact
that the natural L[A]-rank is a minimal ordinal-connection in L[A], provided the JAα -
structures are acceptable, for every α, in the sense of [11]. Indeed, the extender models

L[ ~E] satisfy an appropriate acceptability condition. Therefore, the basic issue of getting
sets and ordinals effectively connected without banishing large cardinals by means of a
simple axiom is addressed.

2 Minimal Ordinal-Connection Axiom

Now we turn our attention to the technical work. We must show that the minimal
ordinal-connection axiom has the required properties. This is mostly straightforward.
We use α, β and γ as variables for ordinals, and f and g as variables for functions, and
standard notation for cardinality notions: If x is a set, then |x| is its cardinal, and α+

is the least cardinal greater than the ordinal α. The basics of set theory used in this
paper is very standard, and can be found in [7], for example.

Definition 2.1 Let K be a transitive class, and r be a class function, r : K→ K. We
say that r is an ordinal-connection in K iff

• ∀x ∈ K, (r(x) is an ordinal),

• ∀α ∈ K, (r(α) = α),

• ∀x, y ∈ K, (x ∈ y → r(x) < r(y)),

• ∀α ∃f ; (f : α ∪ ω → {x ∈ K : r(x) < α} is surjective).
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Definition 2.1 can be read as follows: An ordinal-connection in a transitive class
K is an assignment of ordinals to elements of K that fixes the ordinals, preserves
membership and is such that {x ∈ K : r(x) < α} is a set which can be obtained from
α ∪ ω by replacing β ∈ α ∪ ω by f(β), where f is an appropriate function.

If r is an ordinal-connection in a transitive set K, then we say that r is a set-like
ordinal-connection.

Remark 2.2 If r is an ordinal-connection in K and if α ⊆ K, then, from the se-
cond and fourth clauses in definition 2.1, α ⊆ {x ∈ K : r(x) < α} and, consequently,
α is equipotent to {x ∈ K : r(x) < α}. From the third clause, it follows that the set
{x ∈ K : r(x) < α} is transitive.

Recall that ZF−ρ is the theory containing, in addition to ∈, an unary function symbol
ρ, and the axioms of ZF− along with replacement and separation axioms for formulas
containing ρ.

Remark 2.3 If we were working in a theory of classes, such as NBG, the primitive
language would suffice to state the existence of a (minimal) ordinal-connection in V.
However, working in a theory of sets there is no alternative and we must extend our
language. The same thing happens when we want to state the existence of a global
well-ordering, another ordinal pattern that may consistently be added to a universe of
sets.

• Ordinal-Connection Axiom for ρ: The function symbol ρ is an ordinal-
connection in V.

Remark 2.4 The axiom of foundation is an easy consequence of the ordinal-
connection axiom for ρ in ZF−ρ . Indeed, since ρ preserves membership, for every
nonempty set x, any element y of x with least ρ(y) is ∈-minimal.

Remark 2.5 Another easy consequence of the ordinal-connection axiom for ρ in
ZF−ρ is the inequality ρ(x) ≥ rk(x), where x is a set and rk(x) is the rank of x.
In fact, using ∈-induction in the transitive class V, we have that

rk(x) = sup {rk(y) + 1 : y ∈ x} ≤ sup {ρ(y) + 1 : y ∈ x} ≤ ρ(x).

• Minimal Ordinal-Connection Axiom for ρ: The function symbol ρ is an
ordinal-connection in V such that for every set x, (i) if x ∈ Vω, then ρ(x) = rk(x),
and (ii) if x /∈ Vω, then given a transitive set T containing x and a set-like ordinal-
connection r : T → T in T , ρ(x) < r(x)+.
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It is convenient to abbreviate the expressions “ordinal-connection axiom for ρ”
and “minimal ordinal-connection axiom for ρ” as OC(ρ) and MOC(ρ), respectively.
Although it is formulated in an extended language, MOC(ρ) is a weak form of the
constructibility axiom in the sense that the constructible rank is a minimal ordinal-
connection in L, as it will be shown in 2.8, and it does not imply V = L. Now, we will
investigate some of its consequences.

Proposition 2.6 The axiom of choice is a theorem of ZF−ρ +OC(ρ).

Proof. If y is an infinite set and ρ(y) = α, then y ⊆ {x ∈ V : ρ(x) < α}. From
the last clause in definition 2.1, it follows that there is a surjective function f : α →
{x ∈ V : ρ(x) < α}. Therefore, y can be well-ordered. �

Proposition 2.7 below shows that the axiomatization of ρ as a minimal ordinal-
connection in V is rigid, that is, ρ is the unique modulo equipotence ordinal-connection
in V satisfying the minimality condition.

Proposition 2.7 For each function symbol θ in ZF−ρ +MOC(ρ) satisfying the condi-
tion MOC(θ),

|θ(x)| = |ρ(x)|.

Proof. Assume that x /∈ Vω. If T = tc({x})∪ ρ(x) + 1∪ θ(x) + 1, then T is transitive,
closed under ρ and θ, and such that x ∈ T . Hence ρ : T → T and θ : T → T are
ordinal-connections in X. From MOC(ρ) and MOC(θ), it follows that ρ(x) < θ(x)+

and θ(x) < ρ(x)+, which means that |θ(x)| = |ρ(x)|. �

Now, we will prove the consistency of ZF−ρ +MOC(ρ) relative to ZF−.

Proposition 2.8 If ZF− is consistent, then so is ZF−ρ +MOC(ρ).

Proof. Let λ be the L-rank in ZF− + V = L, that is, λ(x) is the least α such
that x ∈ Lα+1. We need only to prove MOC(λ) in ZF− + V = L. Of course, λ is
an ordinal-connection in L(= V), and λ restricted to Vω equals to rk restricted to Vω.
To prove MOC(λ) in ZF− + V = L, it only remains to verify that if x /∈ Vω, T is a
transitive set containing x and r : T → T is an ordinal-connection in T , then

λ(x) < r(x)+.

Let α be an infinite ordinal such that r(x) < α. Since {y ∈ T : r(y) < α} is transitive,
it follows, from Gödel’s condensation lemma for L, that there is an ordinal β such that

{y ∈ T : r(y) < α} ⊆ Lβ and |Lβ| = |{y ∈ T : r(y) < α}|.
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Therefore, |β| = |Lβ| = |{y ∈ T : r(y) < α}| = |α|, and λ(x) < β < α+. Taking
α = r(x) + 1, we conclude that λ(x) < r(x)+.

�

Remark 2.9 The proof of proposition 2.8 can be summarized as follows: The natural
L-rank is a minimal ordinal-connection in L.

3 GCH in ZF−ρ +MOC(ρ)

In this section we will prove the generalized continuum hypothesis, GCH, in ZF−ρ +
MOC(ρ).

Lemma 3.1 (ZF−ρ +MOC(ρ)) If α ≥ ω and y ⊆ {x ∈ V : ρ(x) < α}, then ρ(y) < α+.

Proof. If y ∈ {x ∈ V : ρ(x) < α}, then ρ(y) < α < α+.
If y /∈ {x ∈ V : ρ(x) < α}, then

T = {y, α} ∪ {x ∈ V : ρ(x) < α}

is a transitive set and r : T → T defined by (i) r(y) = r(α) = α and (ii) r(z) = ρ(z), for
every z ∈ {x ∈ V : ρ(x) < α}, is an ordinal-connection in T . From MOC(ρ), it follows
that ρ(y) < r(y)+ = α+. �

Proposition 3.2 (ZF−ρ +MOC(ρ)) For every α, 2ℵα = ℵα+1.

Proof. From lemma 3.1,

℘({x ∈ V : ρ(x) < ℵα}) ⊆ {x ∈ V : ρ(x) < ℵα+1},

and |℘({x ∈ V : ρ(x) < ℵα})| ≤ |{x ∈ V : ρ(x) < ℵα+1}|. However,

|℘({x ∈ V : ρ(x) < ℵα})| = 2ℵα ≥ ℵα+1 = |{x ∈ V : ρ(x) < ℵα+1}|.

Therefore, 2ℵα = ℵα+1.
�
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4 Standard Models of ZF−ρ +MOC(ρ)

Along with the axiom of foundation, the axiom of choice and the generalized continuum
hypothesis, the statement that Vκ = Lκ, for κ an inaccessible cardinal, is a basic,
important consequence of the constructibility axiom. For one thing, it shows that if we
adopt the Vκ as the standard models of ZF (C) (following the lead of Zermelo) and the
Lκ as the standard models of ZF− + V = L, then the passage to ZF− + V = L does
not involve changing the class of standard models. This is important because the class
of standard models can be seen as the subject matter of the theory, and it we want to
keep the subject matter unchanged. The corresponding statement in ZF−ρ +MOC(ρ)
is the following.

Proposition 4.1 (ZF−ρ +MOC(ρ)) If κ is an inaccessible cardinal, then

{x ∈ V : ρ(x) < κ} = Vκ.

Proof. Since rk(x) ≤ ρ(x), for every x, it follows that

{x ∈ V : ρ(x) < κ} ⊆ Vκ.

For the converse inclusion, assume that Vκ \ {x ∈ V : ρ(x) < κ} 6= ∅, and let y be
a least-rank element of this set. Of course, rk(y) ≥ ω. From the minimality of y,
we have that tc(y) ⊆ {x ∈ V : ρ(x) < κ}. Since κ is inaccessible and y ∈ Vk, the set
{ρ(x) : x ∈ tc(y)} is strictly bounded by an infinite ordinal α < κ, that is

tc(y) ⊆ {x ∈ V : ρ(x) < α}.

Let T be the transitive set trcl({y}) ∪ α + 1, and let r : T → T be defined by
(i) r(y) = r(α) = α, (ii) r(β) = β for every β < α and (iii) r(z) = ρ(z), for every
z ∈ tc(y).

The function r is easily seen to be an ordinal-connection in T . From MOC(ρ)
and the inaccessibility of κ, it follows that ρ(y) < r(y)+ = α+ < κ, contradicting our
assumption.

�

From proposition 4.1, according to ZF−ρ +MOC(ρ), the structures

〈{x ∈ V : ρ(x) < κ} ;∈; ρ〉,

for κ inaccessible, are models of ZF−ρ +MOC(ρ), as they are exactly Zermelo’s standard
models expanded with ρ. We call these structures the standard models of ZF−ρ +
MOC(ρ).
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5 Large Cardinals in ZF−ρ +MOC(ρ)

In this section we will finally prove that, as far as we know, ZF−ρ +MOC(ρ) is consistent
with large cardinal notions (beyond measurability). 3 This follows from the fact that the
natural L[A]-rank is a minimal ordinal-connection in L[A], provided the JAα -structures

are acceptable, for every α, in the sense of [9]. Indeed, the extender models L[ ~E] satisfy
an appropriate acceptability condition. 4

Proposition 5.1 If the JAα -structures are acceptable for every uncountable ordinal α,
then the L[A]-rank λA is a minimal ordinal-connection in L[A].

Proof. All clauses of definition 2.1 are trivially satisfied, and we will be concerned
only with minimality. Suppose minimality does not hold. Since the L-rank and the
usual rank are equal in Vω, if x is a set witnessing the failure of minimality, then x /∈ Vω.
Let x be a least-ranked set not in Vω for which there is a transitive set T containing x
and an ordinal-connection r : T → T such that r(x)+ ≤ λA(x). Notice that r(x)+ is an
infinite successor cardinal. Let α be an infinite ordinal such that λA(x) < α and r(x)+

is a successor cardinal in JAα .
From the fact that x ⊆ {y ∈ T : r(y) < r(x)}, it follows that |x| < r(x)+. Further-

more, as x is least-ranked, if y ∈ x, then λA(y) < r(y)+ ≤ r(x)+, which means that
x ⊆ JAr(x)+ . Now, from lemma 1.24 in [9], pag. 617, x ∈ JAr(x)+ . This contradicts our

assumption that r(x)+ ≤ λA(x), for JAr(x)+ = L[A]r(x)+ , from the relative version of

lemma 2.4 in [1], pag. 255.
�

6 The Local Minimal Ordinal-Connection Axiom

The class-free formulation of the minimal ordinal-connection axiom required an exten-
sion of the first-order language of ZF with a new unary function symbol. Now, it is
natural to seek for a local version of the axiom which remains within the range of the
original language. The local version that we will be concerned with can be stated as
follows:

3This topic was discussed at mathoverflow, and I am very much indebted to the researchers who
contributed there to the clarification of this point: http://mathoverflow.net/questions/239650/is-this-
weak-form-of-v-l-inconsistent-with-large-cardinals

4See definition 2.4 in [10], pag. 1601, or section 6.1 in [11]. The work of Friedman and Holy in [3]
and [4] is also relevant for this.
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• Local Minimal Ordinal-Connection Axiom : For every α there is an ordinal
β > α such that there is a minimal ordinal-connection ρ : Vβ → β.

Remark 6.1 The axiom of choice easily follows from the local minimal ordinal-
connection axiom in ZF . For every set is contained in some set of the form
{x ∈ Vβ : ρ(x) < α}, and these sets can be well-ordered since ρ is an ordinal-
connection in Vβ.

Remark 6.2 In ZF , if ρ : Vβ → β is a minimal ordinal connection and β ≥ ω,
then β is a fixed point of the beth function. In fact, from the definition of ordinal-
connection, Vβ is the union of the sets {x ∈ Vβ : ρ(x) < α}, for α < β. Now,
the cardinality of this union is bounded above by the cardinality of β. Therefore,
iβ ≤ β. Since β ≤ iβ, we have that β is a fixed point of the beth function.

Let ZF+LMO be the theory obtained from ZF by the addition of the local minimal
ordinal-connection axiom. This theory is relatively consistent with ZF , and it proves
the generalized continuum hypothesis.

Proposition 6.3 If ZF is consistent, then so is ZF + LMO.

Proof. In ZF + V = L, for every α there is a β > α such that Vβ = Lβ. For if
β > ω is any fixed point of the beth function, then Vβ = Lβ. Now, if Vβ = Lβ, then the
constructible rank is a minimal ordinal-connection in Vβ. �

Now, the generalized continuum hypothesis in ZF + LMO:

Proposition 6.4 (ZF + LMO) For every α, 2ℵα = ℵα+1.

Proof. Let β be greater than 2ℵα and such that there is a minimal ordinal-connection
ρ in Vβ. As in the proof of proposition 3.2, from lemma 3.1,

℘({x ∈ Vβ : ρ(x) < ℵα}) ⊆ {x ∈ Vβ : ρ(x) < ℵα+1},

and |℘({x ∈ Vβ : ρ(x) < ℵα})| ≤ |{x ∈ Vβ : ρ(x) < ℵα+1}|. However,

|℘({x ∈ Vβ : ρ(x) < ℵα})| = 2ℵα ≥ ℵα+1 = |{x ∈ Vβ : ρ(x) < ℵα+1}|.

Therefore, 2ℵα = ℵα+1. �

Lemma 6.5 (ZF−ρ + MOC(ρ)) If α is an ordinal, then there is a minimal ordinal-
connection ρα in Vα ∪ |Vα|.
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Proof.
We need only to verify that if x ∈ Vα, then ρ(x) < |Vα|. Once this is proved, just

take ρα to be the minimal ordinal-connection ρ restricted to Vα ∪ |Vα|.
Suppose this is not the case, and let α be the first ordinal for which it fails, and

let x ∈ Vα be a minimal set such that ρ(x) ≥ |Vα|. Of course, the rank of x must be
infinite.

Since x ∈ Vα, there is a γ < α such that tc(x) ⊆ Vγ. From the minimality of both
α and x, if y ∈ tc(x), then y ∈ Vγ and ρ(y) < |Vγ|.

Let T be the transitive set tc({x}) ∪ |Vγ|+ 1, and let r : T → T be defined by:

1. If y ∈ tc(x), then r(y) = ρ(y).

2. If y ∈ |Vγ|+ 1, then r(y) = y.

3. r(x) = |Vγ|.

The above defined function r is an ordinal-connection in the set T . Therefore,
ρ(x) < r(x)+ = |Vγ|+ ≤ |Vα|, a contradiction.

�

We will now prove that the local minimal ordinal-connection axiom is a consequence
of the global form.

Proposition 6.6 (ZF−ρ + MOC(ρ)) For every α there is an ordinal β > α such that
there is a minimal ordinal-connection in Vβ.

Proof. Let β be a fixed point of the beth function which is greater than α. From the
choice of β,

Vβ ∪ |Vβ| = Vβ ∪ β = Vβ.

From lemma 6.5, the restriction of the global minimal ordinal-connection ρ to Vβ is
a minimal ordinal-connection in Vβ.

�

7 Conclusion

Among the goals one can assign to the search for new set-theoretic axioms, there is one
which is very coherent with the history of the discipline and is roughly characterized by:
Endowing a set-theoretic universe with an ordinal pattern enriching the connection be-
tween sets and ordinals. The usefulness of highlighting this goal is twofold: It provides
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a point of view from which one can look at a proposed axiom, and it helps formulating
new axioms with significant consequences. In this paper we were primarily concerned
with a new axiom improving the ordinal pattern behind sets, at the same time avoiding
some undesirable features that one such enrichment may have. The minimal ordinal-
connection axiom can be approached from this perspective. An interesting connection
between sets and ordinals in a set-theoretic universe cannot, of course, be an isomor-
phism, which is too strong and inconsistent. Also, it cannot be only a homomorphism
from sets to ordinals, which is too weak and given just by the axiom of foundation.

We have shown that the minimal ordinal-connection axiom provides a bold enough
connection between sets and ordinals capable of supporting large cardinals. Further-
more, the axiom is very simple, easily seen to be relatively consistent with ZF , and is
based just on the possibility of a homomorphism from sets to ordinals which is minimal
with respect to cardinality among those with the ordinals as its fixed points and such
that the preimage of an infinite ordinal is equipotent to that ordinal. This connection
principle is a further thought about the interrelation between sets and ordinals which
is not separated from the usual practice of the discipline: Useful ordinal ranks have
always been in the center of set theory, from, for example, Cantor-Bendixon analysis to
the natural L[ ~E]-ranks on extender models. Nevertheless, this principle seems to be a
further thought, and not one which is completely grounded on the usual iterative and
limitation of size conceptions.

Although our connection principle is consistent with large cardinals and does not
make any definability constraint on sets, one could say that we gave no reason to
suppose that sets in the standard set-theoretic universes must conform to it. Fair
enough. The only reason that can be given is that it is based on the usual practice
with L-likeness, and if sets can be so organized, then we can understand their infinite
arithmetic. This is a good reason: ZFC is very far from providing a full account for the
infinite arithmetic of sets, and this is so because its axioms say nearly nothing about
the connection between sets and ordinals. One could reply that this is not a weakness
of ZFC, it is just that we are incapable of understanding that arithmetic. Very good,
but what is the point of stipulating a kind of arithmetic with definite operations that
we are incapable of understanding? In the paper [6], Jensen talks about Newtonian and
Pythagorean points of view in set theory, warning that “deeply rooted differences in
mathematical taste are too strong and would persist” ([6], page 401). A set-theoretic
universe for which the condition stated in our axiom obtains can be properly said to be
Pythagorean. In fact, although it seems clear that Jensen’s Pythagoreanism explained
in [6], page 401, is directly based on constructibility, it is reasonable to think that the
essence of modern Pythagorianism is the belief in some bold connection between sets
and ordinals, and not a definability requirement on sets. If this is so, then we can
look at our axiom as a formal statement of a Pythagorean picture of set theory. It is
a picture of set theory according to which we are capable of understanding the infinite
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arithmetic of sets.
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