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Abstract

In this paper we present a new proposal for the development of da Costa’s
paraconsistent differential calculus, from the introduction of a new concept of
metric, a hypermetric. After presenting the hyperring A and the quasi-ring A∗,
that extend the set R of the real numbers, we introduce a hypermetric on A and
generalized concepts of limit, continuity and derivability of hyperfunctions.
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1 Introduction

Ever since the beginning of the 18th century, the criticisms by various philosophers
and mathematicians of the differential and integral calculus, created independently by
Leibniz and Newton at the end of the 17th century, have been well known. The apparent
intrinsic inconsistency of the concept of the infinitesimal, which was not clarified by
either Leibniz or Newton, is at the center of these discussions, as seen, for instance, in
George Berkeley’s well-known The Analyst (see Berkeley (1774)).

Independently of such critiques, during the next two centuries several mathematici-
ans contributed to the development of the calculus, in special Jean le Rond d’Alembert
and Augustin-Louis Cauchy, both having proposed that the concept of the limit of a
function should give the foundation of the calculus. But, from the works of Georg
Cantor and Richard Dedekind, only with Karl Weierstrass’ definition of the limit of a
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function and of his rigorous definition of real number, at the end of the 19th century
that problems intrinsically concerned with the infinitesimal method were surpassed.

The recent return within mathematics to conceptual questions relative to the infi-
nitesimals begins with the work of Abraham Robinson.

From a different perspective, Newton da Costa proposes a paraconsistent differential
calculus that is able to deal with the infinitesimals and infinites, and that satisfies the
so-called Principle of l’Hôpital:

On demande qu’on puisse prendre indifféremment l’une pour l’autre deux quantités qui

ne different entr’elles que d’une quantité infiniment petite: ou (ce qui est la même chose)

qu’une quantité qui n’est augmentée ou diminuée que d’une autre quantité infiniment

moindre qu’elle, puisse être considérée comme demeurant la même. . .1 (l’Hôpital (1696)).

As the early formulations of the differential calculus in terms of infinitesimals offer
us an example of a potentialy inconsistent theory, the paraconsistent reconstruction
of the classical differential calculus reflects many of its theoretical and applied aspects
and, it seems, also reflects many of the original ideas of Leibniz and Newton. It offers a
new theory of mathematical analysis, that from a certain point of view conservatively
extends the classical and the non-standard analyses. Besides dealing with conceptual
questions relative to the infinitesimals, the paraconsistent differential calculus may also
be considered as an alternative to classical mathematical analysis.

The aim of this short paper is to present a new proposal for the development of da
Costa’s ideas, from the introduction of a new concept of metric, the hypermetric.

Robinson (1961), based on a previous work of 1960, presents a new theory of mathe-
matical analysis, non-standard analysis (see Robinson (1967) and (1996), third revised
edition of the first edition of 1966).

The logic underlying non-standard analysis is a higher order (classical) logic, with
a non-standard semantics (structures). In the development of his analysis, Robinson
introduces extensions of the set of real numbers and of the set of natural numbers, called
sets of hyperreal numbers and the set of hypernatural numbers (or positive hyperintegers).
His analysis is based on the fact that ordered fields, which are non-standard models
of the theory of real numbers, can be mathematically interpreted as non-Archimedean
extensions of the field of the reals, which externally contain elements that behave as
infinitesimal numbers.

Robinson and Zakon (1967) and Stroyan and Luxemburg (1976) introduce Robin-
son’s non-standard analysis in a more comprehensible form, using set and model theory.

1In short, “Two finite quantities that differ by an infinitely small quantity are equal”. Robinson
(1967, p. 32) translates the passage from l’Hôpital as follows: “One requires that one may substitute
for one another [prendre indifféremment l’une pour l’autre] two quantities which differ only by an
infinitely small quantity: or (which is the same) that a quantity which is increased or decreased only
by a quantity which is infinitely smaller than itself may be considered to have remained the same. . .”.
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Being constructed over an extension of the set of real numbers, which contains infinite-
simals and infinite elements, non-standard analysis can be considered as an extension
or an alternative to classical mathematical analysis.

After a pre-publication of 1996, da Costa (2000) introduces a paraconsistent dif-
ferential calculus, whose underlying logic is his well-known paraconsistent predicate
calculus with equality C=

1 , and whose underlying set theory is the paraconsistent set
theory CHU1, introduced in da Costa (1986) (see da Costa (1963) and (1974); and da
Costa, Béziau and Bueno (1998)).

Based on the classical set theory ZF , da Costa (2000) introduces the ring of the
hyperreal numbers, denoted by A, and the quasi-ring of the extended hyperreal numbers,
denoted by A∗. The classical algebraic structures A and A∗ are extensions of the field
R of the standard real numbers, and the elements of A and A∗, including infinitesimals
and infinite numbers, are called hyperreal numbers, generalized real numbers, or simply
g-reals.

From A∗, da Costa proposes the construction of a paraconsistent differential calculus,
whose language L is the language L= of the system C=

1 extended to the language of
CHU1, in which the elements of A∗ are dealt with.

Carvalho (2004) studies and improves the calculus proposed by da Costa. He pre-
sents da Costa’s definitions for the basic concepts, proves some new theorems that
generalize important classical results and presents some applications of these results
(see also D’Ottaviano and Carvalho (2005)).

Carvalho and D’Ottaviano (201-), motivated by Robinson’s non-standard analysis
and by Robinson and Zakon (1967) and Stroyan and Luxembourg (1976), introduce the
concept of paraconsistent superstructure and obtain a Transference Theorem, that “con-
servatively translates” the classical differential calculus into da Costa’s paraconsistent
calculus.

In da Costa’s work, Carvalho (2004), and Carvalho and D’Ottaviano (201-), the
hyperfunctions in A are considered as extensions of real functions in R; and concepts
of the limit and continuity of hyperfunctions are conceived relative to standard real
numbers.

In this paper, we introduce a new concept of metric over the hyperring A, named
hypermetric. From this new approach, we present a general concept of hyperfunction
and general definitions of the limit of hyperfunctions and of continuity, considering
generalized hyperreal numbers.

In Section 2, we recall da Costa’s definitions of the structure A, the hyperring of
the hyperreal numbers, and A∗, the quasi-ring of the extended hyperreal numbers.

In Section 3, we introduce the concept of hypermetric over A, which allows us to
present a general definition for the concept of the limit of a hyperreal function, when
the variable tends to a hyperreal number.

In Section 4, we have some final remarks.
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We must here observe that the paraconsistent differential calculus introduced by
da Costa (2000) is interpreted in the structure A∗. However, in this paper, in spite of
presenting some general concepts that will be useful for the improvement of da Costa’s
ideas, we do not properly deal with his paraconsistent differential calculus.

2 The hyperreal numbers

In this section we define the hyperring A of the hyperreal numbers and the quasi-ring
A∗ of the extended hyperreal numbers, which are classical algebraic structures and can
be built in the classical set theory ZF , introduced and studied by da Costa (2000),
and extend the set R of real numbers in order to incorporate, as defined elements, the
infinitesimals and the infinites.

Da Costa’s paraconsistent differential calculus is interpreted in the structure A∗,
and according to da Costa, under certain aspects, an infinitesimal analysis founded
in A and A∗ brings us back to the ideas of the pioneers of the calculus, i.e., Leibniz,
Newton, the Bernoullis, l’Hôpital, etc., and recalls the Principle of l’Hôpital.

2.1 The ring A of the hyperreal numbers

Having the classical theory ZF as the underlying set theory, da Costa extends the field
R of the real numbers to the hyperring A of the hyperreal numbers, which is extended to
the quasi-ring A∗ of the extended hyperreal numbers (see da Costa, Béziau and Bueno
(1998)).

Let I be a fixed real interval2 and a a fixed element of the interior of I.3

Definition 2.1.1: An infinitesimal variable is a real function ϕ : I ⊆ R → R, such
that

lim
x→a

ϕ(x) = 0.4

We denote the set of infinitesimal variables by Var. In the case when ϕ(x) ≥ 0
in I, we write ϕ ∈ Var±; when ϕ(x) ≤ 0 in I, we write ϕ ∈ Var−; and when ϕ ∈
Var−(Var+ ∪ Var−) we say that ϕ ∈ Var±.

2In particular, I can be R.
3We assume the set theory ZF and the known definitions and results of the classical differential

calculus.
4Observe that the concept of limit used here is the classical one.
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Definition 2.1.2: The set of the hyperreal numbers, denoted by A,5 is defined by

A =df {〈r, ϕ〉 : r ∈ R and ϕ ∈ Var}.

Observe that every real number r, r ∈ R, can be identified with the hyperreal of the
form 〈r, 0〉, which is said to be a standard real number, via the injective homomorphism
of rings h : R→ A, such that h(r) = 〈r, 0〉.

Definition 2.1.3: An infinitesimal is a hyperreal number of the form 〈0, ϕ〉, in which
ϕ is an infinitesimal variable.

The function ϕ(x) = 0 can be considered an infinitesimal variable, and so the real
number 0, identified with the hyperreal 〈0, 0〉, can be considered an infinitesimal.

The set of all infinitesimals in A is denoted by:

J =df {〈0, ϕ〉 : ϕ ∈ Var}.

For every r ∈ R, the set of the hyperreals of the form 〈r, ϕ〉 is said to be a monad
of r, denoted by [r]:

[r] =df {〈s, ϕ〉 ∈ A : s = r}

Therefore, according to the previous definitions, the infinitesimals are elements of
A, which in general are not real numbers, and the set of the infinitesimals is the monad
of zero.

Definition 2.1.4: The equality or identity of two hyperreal numbers, denoted by =, is
trivally defined from the equality of ordered pairs:

〈r, ϕ〉 = 〈s, ψ〉 if, and only if, r = s and ϕ = ψ.

Definition 2.1.5: The addition (+) and multiplication (×) of hyperreal numbers are
defined from the usual operations of addition and multiplication of real numbers:

(i) 〈r, ϕ〉+ 〈s, ψ〉 =df 〈r + s, ϕ+ ψ〉;

(ii) 〈r, ϕ〉 × 〈s, ψ〉 =df 〈rs, rψ + ϕs+ ϕψ〉.

Note that ϕ+ ψ, s× ϕ, r × ψ and ϕ× ψ ∈ Var.

5We should denote Var and A by VarIa and AI
a, respectively. But, considering that I and a are

fixed, for simplicity we use Var and A.
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According to the previous definition, for any hyperreal 〈r, ϕ〉,

〈r, ϕ〉 = 〈r, 0〉+ 〈0, ϕ〉

or simply
〈r, ϕ〉 = r + ρ,

with ρ denoting the infinitesimal 〈0, ϕ〉.

We observe that, in order to facilitate the notation, we use the same notation for
the operations + and × between hyperreal numbers and for the respective operations
of addition and multiplication of real numbers.

We can now define the difference and the quotient of two hyperreals in A.

Definition 2.1.6: The opposite of a hyperreal number 〈r, ϕ〉, denoted by −〈r, ϕ〉, is
defined by

−〈r, ϕ〉 =df 〈−r,−ϕ〉 .

Definition 2.1.7: The difference between two hyperreals is defined by

〈r, ϕ〉 − 〈s, ψ〉 =df 〈r, ϕ〉+ (−〈s, ψ〉) = 〈r−s, ϕ−ψ〉 .

Definition 2.1.8: The elements of A of type 〈r, ϕ〉, with r 6= 0 and ϕ(x) 6= −r for
every x in I, are inversible, and their inverse, denoted by 〈r, ϕ〉−1, is defined by

〈r, ϕ〉−1 =df

〈
r−1,

−ϕ
r(ϕ+ r)

〉
.

Definition 2.1.9: The division between two hyperreals 〈s, ψ〉 and 〈r, ϕ〉, with r 6= 0,
is defined by

〈s, ψ〉 : 〈r, ϕ〉 =df 〈s, ψ〉 × 〈r, ϕ〉−1 ,

with ϕ(x) 6= −r for every x ∈ I

The division can be extended to the case where the hyperreals are infinitesimals,
〈0, ϕ〉 and 〈0, ψ〉, respectively. We have to determine k = 〈r, η〉 such that

〈0, ϕ〉 = 〈r, η〉 × 〈0, ψ〉 = 〈0, (r + η)ψ〉 ,

and we can write
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〈0, ϕ〉 = r 〈0, ψ〉+ ρ 〈0, ψ〉, with ρ = 〈0, η〉.

There are three cases to consider, and when lim
x→a

ϕ(x)

ψ(x)
and lim

x→a

ψ(x)

ϕ(x)
do not exist, then

the quotients 〈0, ψ〉 : 〈0, ϕ〉 and 〈0, ϕ〉 : 〈0, ψ〉 do not exist.

The proof of the following result may be seen in detail in Carvalho (2004).

Theorem 2.1.10 (da Costa (2000)): The structure 〈A,+,×, 0, 1〉 is a commutative
ring with unity, where 0 and 1 are the hyperreals 〈0, 0〉 and 〈1, 0〉, respectively. �

As in the case of the standard real numbers, the set Var with the trivial operations of
addition and multiplication is a commutative ring without unity, that can be identified
with the elements of type 〈0, ϕ〉 ∈ A, that is, with J , via the injective homomorphism
of rings h′ : Var → A, such that h′(ϕ) = 〈0, ϕ〉. According to the homomorphism
h : R→ A, previously mentioned, and h′, we can consider the field 〈R,+,×, 0, 1〉 of the
real numbers and Var as subrings of 〈A,+,×, 0, 1〉.

The order relation < of R can be extended to A.

Definition 2.1.11: 〈r, ϕ〉 < 〈s, ψ〉 if, and only if, either r < s, or r = s and, for all
x ∈ I, we have that ϕ(x) < ψ(x) (that is, (ψ − ϕ) ∈ V ar±).

The order relation < is non-linear (partial) in A. In fact, two hyperreals 〈r, ϕ〉 and
〈s, ψ〉, such that r = s and their infinitesimal components ϕ and ψ alternate positive
and negative values in their respective domains ((ψ − ϕ) ∈ V ar±), are incomparable
relative to <.

The hyperreal numbers 〈r, ϕ〉, such that 〈r, ϕ〉 ≥ 0, are the positive hyperreals;
the hyperreals 〈r, ϕ〉, such that 〈r, ϕ〉 ≤ 0, are the negative hyperreals; a positive
infinitesimal 〈0, ϕ〉, where ϕ is never null in I, is said to be strictly positive; analogously
we have the strictly negative infinitesimals.

The hyperring A is a non-Archimedean structure, for there are positive hyperreals
〈r, ϕ〉 such that there are not standard natural numbers n with 0 < 1/n < 〈r, ϕ〉.
Furthermore, A is not an integrity ring, for it has divisors of zero.

Now, let us consider the function | | : A→ A, such that

| 〈r, ϕ〉 | =df 〈| r |, | ϕ |〉 ,

where | r | and | ϕ | are the usual modules of real numbers. The image of an element
of A by such function is also called the module of such element.

The following result is immediate.
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Theorem 2.1.12: Given the function | | : A → A, for every 〈r, ϕ〉 , 〈s, ψ〉 ∈ A the
following conditions are valid:

i) | 〈r, ϕ〉 | = 〈0, 0〉 if, and only if, 〈r, ϕ〉 = 〈0, 0〉;

ii) | 〈r, ϕ〉+ 〈s, ψ〉 | ≤ | 〈r, ϕ〉 | + | 〈s, ψ〉 |. �

It is interesting to observe that the function | | restricted to R coincides with the
usual module function in R, including the fact that | 〈r, 0〉 × 〈s · 0〉 | = | 〈r, 0〉 | ×
| 〈s, 0〉 |.

2.2 The quasi-ring A∗ of the extended hyperreal numbers

Da Costa’s paraconsistent differential calculus is based on the extension A∗ of A, defined
below.

As in the case of the structure A, let I be a fixed real interval and a a fixed element
of the interior of I.

Definition 2.2.1: An infinite variable is a function v : I ⊆ R→ R such that

lim
x→a

v(x) =∞.

Definition 2.2.2: An infinite hyperreal number6 is a pair of the form 〈v, 0〉, with v an
infinite variable.

Definition 2.2.3: The set of the extended hyperreal numbers, denoted by A∗, is defined
by:

A∗ = {h : h ∈ A or h is an infinite hyperreal}.

We can extend the operations in A and the relation of equality of A to the set A∗.

Definition 2.2.4: Two infinite hyperreal numbers 〈u, 0〉 and 〈v, 0〉 are equal if, and
only if, the infinite variables u and v are identical, with the possible exception of the
point a. That is, if and only if, u(x) = v(x) for all x ∈ I − {a}, with a according to
Definition 2.2.1.

We observe that the operation of addition between two infinite hyperreals 〈u, 0〉
and 〈v, 0〉 is defined only in the cases where lim

x→a
(u + v) = ∞ or lim

x→a
(u + v) = r (r a

6Infinite hyperreal numbers are not hyperreal numbers.
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standard real number). The operation of multiplication between an infinite hyperreal
〈u, 0〉 and an infinitesimal 〈0, ϕ〉 is defined only in the case where lim

x→a
(u × ϕ) = ∞ or

lim
x→a

(u× ϕ) = 0.

The new structure 〈A∗,+,×, 0, 1〉 preserves some of the important properties of the
hyperring 〈A,+,×, 0, 1〉. But as some of the conditions of the definition of a ring are
not satisfied by A∗, as for instance the associativeness of the operations, da Costa calls
it a quasi-ring.

As in the case of A, the quasi-ring A∗ is also a non-Arquimedian structure.
We observe that A and A∗ are classical structures and that A∗ may be considered

as a classical model of a calculus with infinitesimals and infinites.

3 Hypermetric and limit of hyperfunctions

3.1 Hypermetric

We can introduce a special metric over the hyperring A.

Definition 3.1.1: The function dA : A×A→ A, for every 〈r, ϕ〉 , 〈s, ψ〉 ∈ A, is defined
by:

dA(〈r, ϕ〉 , 〈s, ψ〉) =df | 〈r, ϕ〉 − 〈s, ψ〉 | =

| 〈r − s, ϕ− ψ〉 | = 〈| r − s |, | ϕ− ψ |〉 .

Theorem 3.1.2: The function dA : A×A→ A is such that, for every 〈r, ϕ〉 , 〈s, ψ〉 , 〈t, φ〉 ∈
A:

i) dA(〈r, ϕ〉 , 〈s, ψ〉) ≥ 〈0, 0〉;

ii) dA(〈r, ϕ〉 , 〈s, ψ〉) = 〈0, 0〉 if, and only if, 〈r, ϕ〉 = 〈s, ψ〉;

iii) dA(〈r, ϕ〉 , 〈s, ψ〉) = dA(〈s, ψ〉 , 〈r, ϕ〉);

iv) dA(〈r, ϕ〉 , 〈s, ψ〉) ≤ dA(〈r, ϕ〉 , 〈t, φ〉) + dA(〈t, φ〉 , 〈s, ψ〉). �

We call dA a hypermetric over A.

We note that dA|R×R = dR, where dR indicates the usual metric of R. It is also
interesting to observe that, given any two elements 〈r, ϕ〉 and 〈r, ψ〉 of the monad [r] of
a real number r, dA(〈r, ϕ〉 , 〈r, ψ〉) < 〈ε, 0〉, for any real number 〈ε, 0〉 , 〈ε, 0〉 > 〈0, 0〉.
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3.2 Limit, Continuity and Derivative

In order to construct the paraconsistent differencial calculus, da Costa [2000] and
D’Ottaviano and Carvalho [201–] consider piecewise continuous functions f , defined
in R, and extend them to hyperreal functions f ′ : J ⊆ A → A. The concept of the
limit of a hyperreal function is considered only when the free variable 〈x, ϕ〉 tends to a
real number 〈r, 0〉 ∈ R; and the concept of continuity of a hyperreal function in a given
element of J ⊆ A is defined for real numbers 〈r, 0〉 ∈ J .

In this paper, we present a new approach. The proofs of the theorems are not
developed, for they are very simple consequences of the previous definitions.

Let us consider a function f : J ⊂ A→ A. We call this function a hyperfunction.

Definition 3.2.1: We say that the limit of the hyperfunction f : J ⊆ A → A, when
〈x, λ〉 tends to 〈r, ϕ〉, is the hyperreal number 〈b, ψ〉, what is denoted by

lim
〈x,λ〉→〈r,ϕ〉

f(〈x, λ〉) = 〈b, ψ〉 ,

if, and only if,

(∀ 〈ε, φ〉 > 〈0, 0〉) (∃ 〈δ, η〉 > 〈0, 0〉) such that

((〈0, 0〉 < | 〈x, λ〉 − 〈r, ϕ〉 | < 〈δ, η〉)→ (| f(〈x, λ〉)− 〈b, ψ〉 | < 〈ε, φ〉))

Theorem 3.2.2: Let f : A→ A and f̂ = f |R, such that f̂(R) ⊆ R. If lim
〈x,λ〉→〈r,0〉

f(〈x, λ〉) =

〈b, 0〉, then lim
x→r

f̂(x) = b.

Proof: Immediate, from the above definition, noting that the lim
x→r

f̂(x) is the classical

limit. �

Theorem 3.2.3: Given the function f̂ : R → R, such that lim
x→r

f̂(x) = b, consider a

hyperfunction f : A → A, such that f |R = f̂ ; for every x ∈ R − {r}, f([x]) ⊆ [f̂(x)];
and for λ 6= 0, f(〈r, λ〉) ∈ [b]. Then lim

〈x,λ〉→〈r,0〉
f(〈x, λ〉) = 〈b, 0〉. �

Definition 3.2.4: We say that a hyperfunction f : A→ A is continuous in 〈r, ϕ〉 ∈ A
if, and only if,

lim
〈x,λ〉→〈r,ϕ〉

f(〈x, λ〉) = f(〈r, ϕ〉).

The following results show that the definition of the continuity of a hyperfunction
in a hyperreal number extends the definition of continuity of real functions. They are
immediate consequences of the previous theorems.
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Theorem 3.2.5: Let f : A→ A and f̂ = f |R, such that f̂(R) ⊆ R. If f is continuous
in 〈r, 0〉, then f̂ is continuous in r. �

Theorem 3.2.6: Given f̂ : R → R, such that f̂ is continuous in r, let us consider a
hyperfunction f : A → A such that: f |R = f̂ ; for every x ∈ (R− {r}), f([x]) ⊆ [f̂(x)];
and, for λ 6= 0, f(〈r, λ〉) ∈ [f̂(r)]. Then, f is continuous in 〈r, 0〉. �

Following, we introduce the concept of derivative of a hyperfunction in a hyperreal
number, extending the definition of derivative of real functions.

Theorem 3.2.7: Given a hyperfunction f : A → A, we say that f is derivable in
〈r, ϕ〉 ∈ A if, and only if, there exists an element f ′(〈r, ϕ〉) ∈ A such that

lim
〈h,0〉→〈0,0〉

f(〈r, ϕ〉+ 〈h, 0〉)− f(〈r, ϕ〉)
〈h, 0〉

= f ′(〈r, ϕ〉).

3.3 The limit in A∗

Now, if we consider hyperfunctions f : J ⊆ A → A∗, we can generalize the concept of
limit.

Definition 3.3.1:
lim

〈x,λ〉→〈r,ϕ〉
f(〈x, λ〉) = 〈v, 0〉

if, and only if,

(∀ 〈M,ρ〉 > 〈0, 0〉) (∃ 〈δ, η〉 > 〈0, 0〉) such that
((〈0, 0〉 < | 〈x, λ〉 − 〈r, ϕ〉 | < 〈δ, η〉)→ (f(〈x, λ〉) > 〈M,ρ〉))

Y

(∀ 〈M,ρ〉 < 〈0, 0〉) (∃ 〈δ, η〉 > 〈0, 0〉) such that
((〈0, 0〉 < | 〈x, λ〉 − 〈r, ϕ〉 | < 〈δ, η〉)→ (f(〈x, λ〉) < 〈M,ρ〉)).

Definition 3.3.2:

lim
〈x,λ〉→〈u,0〉

f(〈x, λ〉) = 〈b, ψ〉
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if, and only if, (∀ 〈ε, φ〉 > 〈0, 0〉) (∃ 〈N, γ〉 > 〈0, 0〉) such that
(∀ 〈r, ϕ〉) ((〈r, ϕ〉 > 〈N, γ〉)→ (| f(〈r, ϕ〉)− 〈b, ψ〉 | < 〈ε, φ〉))

Y

(∀ 〈ε, φ〉 > 〈0, 0〉) (∃ 〈N, γ〉 < 〈0, 0〉) such that
(∀ 〈r, ϕ〉) ((〈r, ϕ〉 < 〈N, γ〉)→ (| f(〈r, ϕ〉)− 〈b, ψ〉 | < 〈ε, φ〉)).

For the definition of
lim

〈x,λ〉→〈u,0〉
f(〈x, λ〉) = 〈v, 0〉 ,

we have four cases to consider.

4 Final remarks

Carvalho (2004), and D’Ottaviano and Carvalho (201-) have improved the paraconsis-
tent differential calculus, proposed by da Costa, from the structure A∗.

In this paper, we have not worked with da Costa’s calculus, we have simply proposed
a new approach to dealing with hyperfunctions, defined in the hyperring A and with
values in the quasi-ring A∗. Such approach allowed us to introduce general definitions
for the concepts of the limit of a hyperfunction, continuity and derivability.

We consider that the paraconsistent differential calculus formalizes the intuitions
of the piomeers of differencial calculus by giving a precise sense to infinitesimals and
infinites. It seems to open a rich and useful research field, not only for logic, but also
for mathematics, physics and other connected areas.

In future works, the concepts introduced in this paper may be useful for the impro-
vement of da Costa’s calculus.
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