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Abstract

We present some results and open problems related to expansions of the field
of real numbers by hypergeometric and related functions focussing on definabi-
lity and model completeness questions. In particular, we prove the strong model
completeness for expansions of the field of real numbers by the exponential, arc-
tangent and hypergeometric functions. We pay special attention to the expansion
of the real field by the real and imaginary parts of the hypergeometric function

2F1(1/2,
1/2; 1; z) because of its close relation to modular functions.
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dability, definability, model complete

Introduction

This work is an extended version of the talk given in the workshop “Logic and Applica-
tions: in honour to Francisco Miraglia by the occasion of his 70th birthday”, September,
16-17, 2016, at the University of São Paulo, SP, Brazil.

We deal with a research project related to the model theory of the field of real
numbers enriched with real analytic functions, resulting in an o-minimal structure.

O-minimality is a branch of Model Theory which has been very useful recently in
proofs of André-Oort conjecture (an important problem in Algebraic Geometry) by
Jonathan Pila and others, see [19, 12, 9]. One of the main ingredients is a diophantine
counting result due to J. Pila and Alex Wilkie, [20], where it is stated the Wilkie’s
Conjecture, a sharper bound on such counting which is not always true, but it holds in
some particular cases, see work by Binyamini and Novikov in [3]. This is discussed in
Section 5.
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Other direction of this project, not unrelated with the above, deals with decidability
problems for some of expansions of the field of real numbers by some analytic functions.
The first result in this direction is Macintyre’s and Wilkie’s proof of the decidability
of the first order theory of the real exponential field in 1996, [15], and extended by
Macintyre in the 2000’s to elliptic integrals, [13, 14]. These works rely on the assumption
of transcendental number theoretic conjectures, which seem to be out of reach of the
present methods.

One common thread linking the two paths of research broached in the previous
paragraphs is the theory of Pfaffian functions. The results of Macintyre and Wilkie,
[15, 13, 14], rely on a decidable version of Wilkie’s ground breaking proof of the model
completeness af the expansions of the real field by (restricted) Pfaffian functions and also
by the (unrestricted) exponential function, [25]. The work of Binyamini and Novikov,
[3], contains a discussion of the possibility of proving Wilkie’s conjecture for expansions
of the real field by Pfaffian functions, with the intention of finding computable bounds
to the counting arguments of that conjecture.

So one of the main focus of this work is the theme of Pfaffian functions discussed
in Section 2, where we survey some of its theory. In this section we present the larger
class of Noetherian functions and state the first open problem, relating them to the
Pfaffian functions. An important property of the theories studied here is o-minimality,
so in order to guarantee that it holds in the structures we prove a model completeness
test in Section 1. Section 3 contains some partial results in the direction of the first
open problem and we state particular cases of this open problem related to first order
linear differential equations and comments on the difficulties when we treat second order
equations. In this section we see that there appears a non linear first order equation
(Riccati’s equation) that becomes a system of two equations we still have no way to
transform into the Pfaffian setting. In Section 4 we treat hypergeometric functions
and its relation to modular functions and prove a model completeness result with the
methods of Section 1. This would give a decidable version of the author’s work on the
model completeness of expansions of the real field by such functions, [1]. We present a
short discussion of Wilkie’s conjecture in Section 5 and end this work with some final
remarks, Section 6.

Scattered in the text there are seven Open Problems: (1): p. 303; (2): p. 303;
(3): p. 306; (4): p. 308; (5): p. 313; (6): p. 314; (7): p. 314.

Notation: R denotes the field of real numbers; C, the field of complex numbers;
<(z), the real part of the complex number, and =(z), its imaginary part; H, the upper
half plane {z ∈ C : =(z) > 0}; z̄ the complex conjugate of z; Dρ(z0) denotes the open
disk {z ∈ C : |z − z0| < ρ}; f ◦ g indicates the composition of functions f and g,
f ◦ g(x) = f(g(x)).
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1 A Model Completeness Test

In previous model completeness results, [1, 2], the author has made use of the following
tests. These tests imply a strong form of model completeness.

Definition 1.1 We say that s set X ⊆ Rn is strongly definable in the structure R if
it is definable by an existential formula ∃ȳ ϕ(x̄, ȳ) such that for all ā ∈ X, there is a
unique b̄ such that R |= ϕ(ā, b̄). The (first order theory of the) structure R is strongly
model complete if every definable set is strongly definable.

Theorem 1.2 ([1, Theorem 2]) Let R̂ = 〈R, constants ,+,−, ·, <, (Fλ)λ∈Λ〉 be an ex-
pansion of the field of real numbers, where for each λ ∈ Λ, Fλ is the restriction to a
compact poly-interval Dλ ⊆ Rnλ of a real analytic function whose domain contains Dλ,
and defined as zero outside Dλ, such that there exists a complex analytic function gλ
defined in a neighbourhood of a poly-disk ∆λ ⊇ Dλ and such that

1. gλ is strongly definable in R̂ and the restriction of gλ to Dλ coincides with Fλ
restricted to the same set;

2. for each a ∈ ∆λ there exists a compact poly-disk ∆ centred at a and contained in
the domain of gλ, such that all the partial derivatives of the restriction of gλ to ∆
are strongly definable in R̂.

Under these hypotheses, the theory of R̂ is strongly model complete.

Now we introduce the unrestricted exponential function.

Theorem 1.3 ([1, Theorem 4]) Let R̂ be the structure described in Theorem 1.2.
We assume that the functions

expd[0,1](x) =

{
expx if 0 ≤ x ≤ 1,
0 otherwise;

sind[0,π](x) =

{
sinx if 0 ≤ x ≤ π,
0 otherwise,

have representing function symbols in its language. The expansion R̂exp of R̂ by the
inclusion of the (unrestricted) exponential function “exp” is strongly model complete.

We present here a simplification appropriate to the envisaged applications.
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Proposition 1.4 Suppose that the real and imaginary parts, FR(x, y) and FI(x, y), of
the complex analytic function F (z), z = x + iy, defined in a poly-disk ∆ρ = {z ∈
Cn : |zi| < ρ, 1 ≤ i ≤ n}, are strongly definable in the structure R, which expands
the field of real numbers. Then are real analytic functions and admit complex analytic
continuations

F̃R(z, w) =
F (z + iw) + F (z̄ + iw̄)

2
, F̃I(z, w) = (−i)F (z + iw) + F (z̄ + iw̄)

2
,

with z, w ∈ ∆ρ/2, which are strongly definable in R.

Proof. This is a consequence of the equalities =(F ) = <(−iF ) and

<(F )(x+ iy) =
F (x+ iy) + F (x+ iy)

2
.

If F (x + iy) =
∑

α∈Nn cα(x + iy)α, F (x+ iy) =
∑

α∈Nn c̄α(x̄ + iȳ)α. If z, w ∈ ∆ρ/2,
then z + iw, z̄ + iw̄ ∈ ∆ρ. �

The following result is an immediate consequence of this proposition applied to
Theorem 1.2.

Theorem 1.5 Let R̂ = 〈R, constants ,+,−, ·, <, (Fλ)λ∈Λ〉 be an expansion of the field
of real numbers, where for each λ ∈ Λ, Fλ is the restriction to a compact poly-interval
Dλ ⊆ Rnλ of a real analytic function whose domain contains Dλ, and defined as zero
outside Dλ, such that for each λ ∈ Λ the function Fλ and all its partial derivatives of
all orders admit strongly definable real analytic extension to poly-intervals twice as big
as Dλ, and zero outside, then the theory of R̂ is strongly model complete. �

2 Pfaffian Functions

Pfaffian functions were introduced by Askold Khovanskii in 1980 in his seminal paper
On a Class of Systems of Transcendental Equations, [11]. In this paper he proved
that there exists a computable bound to the number of non singular zeros of a system
of equations with Pfaffian functions, and as a consequence, a computable bound to
the sum of the Betti numbers of the set of zeros of a system of such equations (see
an extended exposition of these results in [16]). This plays an important role in the
proof of the model completeness of expansions of the field of real numbers with Pfaffian
functions by Alex Wilkie, [25], and its decidable version by Angus Macintyre and Alex
Wilkie, [15]. Noetherian functions are closely related to Pfaffian functions and were
introduced by Jean-Claude Tougeron in 1991, [22]. They may not be Pfaffian functions
(for instance, sinx is Noetherian and non Pfaffian) but there has been some research
about local finiteness results, see [10].

We start defining Pfaffian and Noetherian functions.



Model Theory: Hypergeometric & Pfaffian Functions 301

Definition 2.1 (Pfaffian Functions) Let U ⊆ Rn be an open set. A finite sequence
of smooth functions fj : U → R, 1 ≤ i ≤ N , is a Pfaffian chain if there exist real
polynomials Pi,j(x̄, y1, . . . , yi), 1 ≤ i ≤ N and 1 ≤ j ≤ n, such that

∂fi
∂xj

= Pi,j(x̄, f1, . . . , fi),

or, equivalently,

dfi(x̄) =
n∑
j=1

Pi,j(x̄, f1, . . . , fi) dxj.

A Pfaffian function is any function which belongs to a Pfaffian chain.

Definition 2.2 (Noetherian Functions) Let U ⊆ Rn be an open set. A finite se-
quence of smooth functions fj : U → R, 1 ≤ i ≤ N , is a Noetherian chain if there exist
real polynomials Pi,j(x̄, y1, . . . , yN), x̄ = (x1, . . . , xn), 1 ≤ i ≤ N and 1 ≤ j ≤ n, such
that

∂fi
∂xj

= Pi,j(x̄, f1, . . . , fN),

or, equivalently,

dfi(x̄) =
n∑
j=1

Pi,j(x̄, f1, . . . , fN) dxj.

A Noetherian function is any function belonging to a Noetherian chain.

Remark 2.3 Pfaffian and Noetherian functions are real analytic functions.

Some basic properties of these functions are stated in the following lemma, whose
proof is straightforward.

Lemma 2.4 If f, g : U ⊆ Rn → R are Pfaffian (respectively Noetherian) functions
then f + g, f · g and 1/f (if f(x̄) 6= 0) are Pfaffian (respectively Noetherian) functions.
If f : U ⊆ Rn → R and g1, . . . , gn : V ⊆ Rm → R are Pfaffian (respectively Noetherian)
functions, such that for all x̄ ∈ V , (g1(x̄), . . . , gn(x̄)) ∈ U , then h : x̄ ∈ V → h(x̄) =
f(g1(x̄), . . . , gn(x̄)) ∈ R is a Pfaffian (respectively Noetherian) function. If all the partial
derivatives ∂f/∂xi of the function f are Pfaffian (respectively Noetherian) functions,
then f is a Pfaffian (respectively Noetherian) function.

We want to reduce the logic questions (such as model completeness, decidability)
about Noetherian functions to the case of Pfaffian functions, which is more understood
nowadays. So we introduce some tools which may be useful in this project.

Firstly we introduce change of variables.
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Definition 2.5 A map Φ : U ⊆ Rn → V ⊆ Rm is a Pfaffian map (respectively
Noetherian map) if each of its coordinate functions is a Pfaffian (respectively Noether-
ian) function.

Let f1, . . . , fN : V ⊆ Rm → R be a Noetherian or Pfaffian chain and Φ : U ⊆ Rn →
V ⊆ Rm a Noetherian or Pfaffian map. The sequence gi(x̄) = fi ◦ Φ(x̄), 1 ≤ i ≤ N , is
called the pull back of the chain f1, . . . , fN (by the map Φ).

Proposition 2.6 The pull-back of a Pfaffian or Noetherian chain by a Pfaffian or
Noetherian map can be extended to a Noetherian chain.

Proof. This is a simple application of the chain rule in the calculation of derivatives
of the composition of functions.

We name the variables x̄ = (x1, . . . , xn) ∈ Rn and ȳ = (y1, . . . , ym) ∈ Rm. Write
Φ(x̄) = (φ1(x̄), . . . , φm(x̄)). Let ψ1(x̄), . . . , ψM(x̄) be a Noetherian (or Pfaffian) chain
containing the coordinate functions of Φ.

Let gi(x̄) = fi ◦ Φ(x̄), 1 ≤ i ≤ N , be the pull back of the Noetherian chain f1(ȳ),
. . . , fN(ȳ). We apply the chain rule to calculate the differentials

dgi(x̄) =
n∑
j=1

(
m∑
j=1

∂gi
∂yj
◦ (Φ(x̄))

∂φj
∂xi

)
dxi.

The partial derivatives of the coordinate functions of Φ are polynomials on the variables
x̄ and the functions ψk, 1 ≤ k ≤ M . The partial derivatives of the functions fj(ȳ)
are polynomials in the variables ȳ and the functions fi. The composition with the
coordinate functions of the map φ turn these into polynomias in the variable x̄ and the
functions gj.

The sequence ψ1, . . . , ψM , g1, . . . , gM if the desired Noetherian chain. �

Now we introduce modifications on the Noetherian chain in a lemma whose proof
is similar to the previous one.

Lemma 2.7 Let Ψ : W ⊆ Rk → Rk+p be a Pfaffian map. Let f1, . . . , fk : V ⊆ Rm → R
be a sequence of functions, such that the image of the map F (x̄) = (f1(x̄), . . . , fk(x̄))
is contained in W . If the functions g1, . . . , gk+p : V → R are such that (g1(x̄), . . . ,
gk+p(x̄)) = Ψ ◦ F (x̄), and can be extended to a Pfaffian chain, then f1, . . . , fk can be
extended to a Noetherian chain.

Example 2.8 (Trigonometric Functions) The sequence of two functions g1(x) =
cosx, g2(x) = sinx is a Noetherian chain, proving that the sine and cosine functions
are Noetherian Functions.

The sine function is not a Pfaffian function on R because it has infinitely many
zeros, but its restriction to the open interval ] − π/2, π/2[ is Pfaffian. Consider the
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sequence f1(x) = tanx, f2(x) = secx = 1/ cosx, f3(x) = cosx and f4(x) = sinx, all of
them restricted to the interval ]− π/2, π/2[. This is a Pfaffian chain because

f ′1(x) = sec2 x = 1 + f 2
1 (x)

f ′2(x) = secx · tanx = f1(x) · f2(x)
f ′3(x) = − sinx = −f1(x) · f3(x)
f ′4(x) = cosx = f3(x),

where f ′j denotes the derivative of fj, 1 ≤ j ≤ 4. The interval ] − π/2, π/2[ appears
naturally as a connected component of the domain of tanx.

Notice that here we used Φ(x) = x and Ψ(y1, y2) = (y2/y1 ,
1/y1 , y1, y2) applied to

(g1(x), g2(x)).

This example is simple because the pair of functions sinx and cos x satisfies a first
order linear system of two differential equations. For equations of higher order, we are
not yet able to give a positive or negative answer to the problem. This is the subject
of the following section.

We are now able to state our first problem.

Problem 1 Given a Noetherian chain, can it be locally extended to a Pfaffian chain,
or at least to another Noetherian chain which is the pull-back of a Pfaffian chain under
a Pfaffian map? Can this be done recursively?

Lou van den Dries asked the following question about unrestricted Pfaffian functions
(see, [21] for a discussion and partial results).

Problem 2 Is the expansion of the field of real numbers by unrestricted Pfaffian functi-
ons model complete?

See the comments after the Open Problem 4, p. 308, for connections with the
definability of the exponential function. We know today that such expansion is o-
minimal by [26].

3 Complex Linear Differential Equations

We consider some special cases related to linear differential equations of first and second
order. We show that solutions to complex first order linear equations the real and
imaginary parts of the solutions are locally Pfaffian. For second order linear equations
with non constant coefficients we run into difficulties because there appears a non linear
first order equation (a Riccati equation) which is not amenable to the same treatment
given to the linear case. It is worth mentioning the relation between quotients of two
linearly independent solutions to a second order linear differential equation and modular
functions (see [8, Chapter XI]).
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3.1 First Order Equations

Given holomorphic functions g(z) and h(z), we consider the complex first order linear
differential equation Y ′ = g(z)Y + h(z), where the prime indicates derivative with
respect to the complex variable z = x+ iy.

Lemma 3.1 Suppose that f(z) satisfies a first order linear equation Y ′ = g(z)Y +h(z),
such that the real and imaginary parts of the functions g and h are Pfaffian functions.
Then the real and imaginary parts of f are locally Pfaffian functions.

Proof. We proceed in two steps. We first solve the associated homogeneous equation
Y ′ = g(z)Y . Write g(z) = a(x, y) + ib(x, y) and let f0(z) = u0(x, y) + iv0(x, y) be a non
zero solution. Then

df0

dz
=

1

2

(
∂

∂x
− i ∂

∂y

)
(u0 + iv0) =

1

2

(
∂u0

∂x
+
∂v0

∂y

)
+
i

2

(
∂v0

∂x
− ∂u0

∂y

)
.

We use the Cauchy-Riemman equations ∂u0
∂x

= ∂v0
∂y

and ∂u0
∂y

= −∂v0
∂x

to obtain

df0

dz
=
∂u0

∂x
+ i

∂v0

∂x
=
∂v0

∂y
− i∂u0

∂y
.

The differential equation becomes the system

∂u0

∂x
= au0 − bv0,

∂u0

∂y
=−bu0 − av0

∂v0

∂x
= bu0 + av0,

∂v0

∂y
= au0 − bv0

If we set q0 = u0/v0, q1 = 1/v0, q2 = v0 and q3 = u0 (and this may impose a
restriction to the domain of definition of the functions), then

∂q0

∂x
=

1

v0

∂u0

∂x
− u0

v2
0

∂v0

∂x
= −b(1 + q2

0),

and going the same way as the example of the sine function, we obtain a chain q0, q1,
q2, q3, satisfying

∂q0

∂x
=−b(1 + q2

0),
∂q0

∂y
= −a(1 + q2

0)

∂q1

∂x
=−(bq0 + a)q1,

∂q1

∂y
= −(aq0 − b)q1

∂q2

∂x
= (bq0 + a)q2,

∂q2

∂y
= (aq0 − b)q2

∂q3

∂x
=−(2bq2

0 − aq0 + b)q2,
∂q3

∂y
= −(bq0 − a)q2,
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which implies that the chain is a Pfaffian chain.

Now, suppose that Y = f(z) = u(x, y)+ iv(x, y) satisfies Y ′ = g(z)Y +h(z). We use
the method of variation of parameters, [4, pp. 60–62], to solve the equation. We use the
function f0(z) and search for a solution f(z) = c(z)f0(z). Substitute y = f(z) in the
equation and we obtain f0(z)c′(z) = h(z), or c′(z) = h(z)/f0(z). Write h(z) = h1(x, y)+
ih2(x, y) and h/f0 = (h1 + ih2)/(u0 + iv0) = [(h1u0 + h2v0) + i(h2u0 − h1v0)]/(u2

0 + v2
0).

Since h1 and h2 are Pffafian functions (by hypothesis), and u0 and v0 are Pfaffian
functions by the above, we apply Lemma 2.4 to conclude that the real and imaginary
parts of f(z) (with a possibly smaller domain) are Pfaffian functions. �

As a particular example we consider the complex exponential function.

Example 3.2 The real and imaginary parts of the complex exponential function are
(locally) Pfaffian functions. We write the function f(z) = exp z = exp(x + iy) =
u(x, y) + i v(x, y). Then the equation f ′(z) = f(z) satisfied by the exponential function
can be written as the system

∂u

∂x
= u;

∂u

∂y
=−v

∂v

∂x
= v;

∂v

∂y
= u.

The Pfaffian chain is closely related to that of the sine function: g1(x, y) = u/v,
g2(x, y) = 1/v, g3(x, y) = v, g4(x, y) = u.

3.2 Second Order and Riccati Equations

We consider here linear homogeneous second order linear equations

Y ′′ + a1(z)Y ′ + a0(z)Y = 0,

with complex meromorphic coefficients a1(z) and a0(z).
The substitution q = Y ′/Y transforms this equation into the Riccati’s equation (see

[4, pp. 45–46])
q′ + q2 + a1(z)q + a0(z) = 0.

If we write q(z) = q(x+iy) = u(x, y)+iv(x, y) and ai(z) = Ai(x, y)+Bi(x, y) (i = 0, 1),
then Riccati’s equation becomes the system

∂u

∂x
= u2 − v2 + A1u−B1v + A0,

∂u

∂y
=
∂v

∂x

∂v

∂x
= 2uv +B1u+ A1v +B0,

∂v

∂y
=−∂u

∂x
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If Ai and Bi (i = 0, 1) are Noetherian functions, then u and v are Noetherian
functions.

Problem 3 Is there a map Ψ which transforms the pair (u, v) into a Pfaffian chain
(or at least into a sequence contained in a Pfaffian chain)?

If we restrict to the real functions we obtain a Pfaffian functions q, Y , satisfying
q′ = q2 + a1(x)q + a0(x) and Y ′ = qY . If all these functions are real analytic in a
neighbourhood of the interval [x0, x1], x0 < x1, then we obtain the following result by
Wilkie’s method, [25].

Theorem 3.3 Let f1, . . . , fN be a Pfaffian chain of functions defined in some open
neighbourhood of the interval [x0, x1] which contains the coefficients and a non zero
solution of q′ = q2 + a1(x)q + a0(x) and Y ′ = qY . Let g1, . . . , gN be defined as
gj(x) = fj(x) if x0 ≤ x ≤ x1, and as zero elsewhere, 1 ≤ j ≤ N . Then the theory of
the structure 〈R, 0, 1,−,+, ·, g1, . . . , gN〉 is model complete.

An important class of second order linear differential equations is the class of hy-
pergeometric equations. We treat them in the following section.

4 Hypergeometric Equations and Functions

In this section we treat the case of the hypergeometric differential equation. We first
summarize the basics about hypergeometric differential equations and the Gauss hy-
pergeometric functions (one of the solutions). Then we prove a model completeness
result for expansions of the reals by suitable restrictions of the hypergeometric function
and the unrestricted exponential function. The next subsection contains results about
definability and model completeness for expansions of the reals by the real and ima-
ginary parts of hypergeometric functions. Finally we deal with a particular case of

2F1(1/2,
1/2; 1; z), which has a close relation to the modular functions.

4.1 Preliminaries

We summarize here some facts about the hypergeometric functions and their respective
second order linear differential equations (see, for instance, [7, Chapter 2], or [24, Chap-
ter XVI]).

The hypergeometric differential equation is the equation

z(1− z)Y ′′ + [c− (a+ b+ 1)z]Y ′ − abY = 0,

where a, b, c ∈ C, (−c) 6∈ N.
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One solution is given for |z| < 1 by Gauss’s hypergeometric series

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n n!

zn,

where (x)n is the Pochhammer symbol, defined as (x)0 = 1 and (x)n+1 = (x)n(x + n),
for all n ≥ 0. It is easy to see that

d

dz
2F1(a, b; c; z) =

Γ(a)Γ(b)

Γ(c)
2F1(a+ 1, b+ 1; c+ 1; z),

where Γ(z) is the Gamma Function. Except the cases where a or b is a non positive in-
teger where 2F1(a, b; c; z) is a polynomial, the hypergeometric functions have branching
points at z = 1 and z = ∞. They are single valued in the complex plane minus the
real interval [1,∞).

Euler’s Formula [7, § 2.1.3 (10)] allows us to define analytic continuations of the
hypergeometric function. It is the integral

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a dt,

for | arg(1− z)| < π, <(c) > <(b) > 0.
We apply these results to definability and model completeness results in what fol-

lows.

4.2 The Real Case

We treat firstly the case of one real variable hypergeometric functions because they can
be formalized in the Pfaffian function setting.

Here we restrict the parameters a, b, c to the real numbers. Euler’s formula in this
case holds for z in the real interval (−∞, 1), for c > b > 0. In that interval the integrand
is positive and so the (real) hypergeometric functions do not assume the value zero. The
function q(x) = F ′(a, b; c;x)/F (a, b; c;x) = F (a+1, b+1; c+1;x)/F (a, b; c;x) is defined
for all x ∈ (−∞, 1).

If we restrict the functions f(x) = F (a, b; c;x) and q(x) = F ′(a, b; c;x)/F (a, b; c;x)
to any interval [x0, x1], with x0 < x1 < 1, and defined as zero elsewhere, then Wilkie’s
method [25] gives the following result.

Theorem 4.1 The first order theory of 〈R, 0, 1,+, ·,−, f, q〉 is model complete.

The method of Section 1 above is more appropriate to the complex case, studied
below.

If we restrict the functions f and q to the unbounded interval (−∞, 1), and define
as zero elsewhere, we may have a logarithmic singularity at x = 1. Therefore the best
we can prove at the moment is the following result, based on Wilkie’s [26].
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Theorem 4.2 The structure RH = 〈R, 0, 1,+, ·,−, f, q〉 is o-minimal.

At the present knowledge, we can only state the following question.

Problem 4 Is the theory of RH model-complete?

A positive answer to this problem would imply that the unrestricted exponential
function is existentially definable in such structure (it is definable, by [17]). Notice

though that f(x) = f(x0) exp
(∫ x

x0
q(t) dt

)
.

4.3 The Complex Case

The hypergeometric series 2F1(a, b; c; z) define an analytic function if |z| < 1 which can
be analytically continued to the complex plane minus the real interval [1,∞), in general
with branching points at z = 1 and z =∞. It defines a solution to the hypergeometric
differential equation

z(1− z)Y ′′ + [c− (a+ b+ 1)z]Y ′ − abY = 0.

If the parameter c 6∈ Z, then a second solution is y2(z) = z1−c
2F1(1 + a− c, 1 + b−

c; 2− c; z), defined in C \ ((−∞, 0] ∪ (−∞, 0]), with branching point at z = 0.
Let F0(z) = 2F1(a, b; c; z) if z ∈ C \ [1,∞), F1(z) = F ′0(z) (the derivative), F2(z) =

2F1(1 +a− c, 1 + b− c; 2− c; z), z ∈ C\ [1,∞), F3(z) = F ′2(z), and Fj(z) = 0 elsewhere,
j = 0, 1, 2, 3.

We firstly prove an auxiliary result.

Lemma 4.3 (Monodromy) The main branch of the functions F0(z) and F2(z) (and
their derivatives. F1 and F3), are defined in the domain C \ [1,∞), where we choose
arg(1 − z) ∈ (−π, π). The analytic continuations to −3π < arg(z) < −π and π <
arg(z) < 3π are given by linear combinations of F0 and F2, (respectively, of F1 and F3).

Proof. This is a direct application of [7, § 2.7.1, Formulas 1–3, p. 93]. �

Theorem 4.4 The main branch and adjacent branches of the functions Fj(z), 0 ≤ j ≤
3, are definable in Ran,exp.

Proof. The Monodromy Lemma 4.3 implies the definability of the adjacent branches
of Fj(z), 0 ≤ j ≤ 3, once we prove the definability of their main branches.

The function arctan x, x ∈ R is definable in Ran,exp, because of the formula

arctan(1/x) =
π

2
− arctan(x) = 2 arctan(1)− arctan(x), x 6= 0,
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so it is definable from its restriction to the interval [−1, 1]. This function together with
the real exponential function allow us to define any particular branch of the complex
logarithm. Therefore, we can define the power function z1−c, for any c ∈ C.

We only prove that F0(z) is definable in Ran,exp. The proof for the other functions
are analogous. Formulas for analytic continuation allow us to define other branches of
F0 (see [7, § 2.10, Formulas (1)-(6), pp. 108-109]).

The function z 7→ z2 maps the region {z ∈ C : <(z) > 0} = {z ∈ C : | arg(z)| <
π/2} onto the region {z ∈ C : | arg(z)| < π}, so the function z 7→ [1−(1−z)2] = (2z−z2)
maps {z ∈ C : | arg(1 − z)| < π/2} onto {z ∈ C : | arg(1 − z)| < π}. The Möbius
transformation z 7→ [2z/(z + 1)] maps the unit disk D1(0) onto {z ∈ C : | arg(1− z)| <
π/2}; maps the arc eiθ, −π < θ < 0, onto the ray 1− iy, y > 0; and maps the arc eiθ,
0 < θ ≤ 0 onto the ray 1 + iy, y > 0. It maps the interval [1,∞) onto the interval
[1, 2); the interval (−∞,−1] onto [2,∞), and (−1, 1) onto (−∞, 1). Therefore the
composition of these functions z 7→ w = [2z/(z+ 1)] 7→ (2w−w2) = [4z/(z+ 1)2] maps
the disk D1(0) onto the region {z ∈ C : | arg(1− z)| < π}.

The functionG(z) = F0(4z/(z+1)2) is analytic in the unit diskD1(0) with branching
points at z = 1 and z = −1. These can be removed using the formula [7, § 2.9, Formula
(35), p. 107].

This gives the desired definability result. �

Now let RFj(x, y) = <(Fj(x+ iy)), IFj(x, y) = =(Fj(x+ iy)), 0 ≤ j ≤ 3.

Theorem 4.5 The first order theory of the structure RH = 〈R, constants ,−,+, ·, RF0,
RF1, RF2, RF3, IF0, IF1, IF2, IF3, exp, arctan〉 is o-minimal and strongly model com-
plete.

Proof. The o-minimality is a consequence of the previous theorem and the o-
minimality of Ran,exp.

Model completeness follows from the method of Section 1.
The transformation z 7→ 4z/(z + 1)2 maps the unit disk to the region C \ [1,∞), so

Gj(z) = Fj(z) is defined in the unit disk, if H0,j(z) and H1,j(z) are the two adjacent
branches of Fj(z), then Hi,j(4z/(1 + z)2) are defined in the region outside the disk (one
in each halfplane H and −H). This gives the definition of the analytic continuation
of Gj(z) to the disk D2(0), required by Theorem 1.5. The derivatives of all orders
of these functions can be defined from the corresponding second order hypergeometric
differential equation. �
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4.4 The Function 2F1(
1/2,

1/2; 1; z)

In this section we consider the complete elliptic integral of the first kind, which is a
particular case of hypergeometric functions,

K(z) =

∫ 1

0

1√
1− t2

√
1− zt2

dt =

∫ π/2

0

dθ√
1− z sin2 θ

=
π

2
· 2F1(1/2,

1/2; 1; z).

This is one of the solutions to the equation

(z − z2)Y ′′ + (1− 2z)Y ′ − Y

4
= 0,

which has the functions y1(z) = K(z) = (π/2) 2F1(1/2,
1/2; 1; z) and y2(z) = iK(1 − z)

as a pair of C-linearly independent solutions.
We can view K(z) as a multivalued complex analytic function in the variable z ∈

C\{1}, or a single valued function with the variable z restricted to the domain C\[1,∞)
(the complex numbers minus the set of real numbers greater or equal to 1). The point
z = 1 is a logarithmic branch point for the integral and so for each z 6= 1 there are
infinitely many possible values for K(z) (one for each branch fo K(z)).

We choose the main branch of K(z), for z ∈ C \ [1,∞), by choosing the positive
square roots in the integrand when 0 < z < 1 and taking their analytic continuations.
We intend to prove a model completeness result for expansions of the field of real
numbers by the real and imaginary parts of K(z). In order to do this we should be
able to define analytic continuations to other branches of K(z).

We do this in two steps. Firstly we define an extension of K(z) for real z > 1 and
then we extend to the other branches using the monodromy matrices.

Recall that an argument of a complex number w ∈ C, w 6= 0 is some θ ∈ R, denoted
arg(w), such that w = |w| ei θ.

Lemma 4.6 (Monodromy) The main branch of the function K(z) and its derivative
K ′(z), are defined in the domain C \ [1,∞), where we choose arg(1 − z) ∈ (−π, π).
These can be continued to the real interval [1,∞) and to adjacent branches (−3π <
arg(1−z) < π, and π < arg(1−z) < 3π) by linear combinations of K(z) and K(1−z),
and of K ′(z) and K ′(z), respectively.

Proof. We prove the result for the analytic continuation of K(z) to the branch
−3π < arg(1 − z) < π, and to the interval [1,∞) with arg(1 − z) = −π. The other
cases are analogous.

Write z = k2, for k > 1. We write the integral as the sum of integrals in the intervals
0 ≤ t ≤ 1/k, where

√
1− k2t is real, and 1/k < t ≤ 1, where the square root is pure

imaginary, and here we make an explicit choice
√

1− k2t = −i
√
k2t− 1. Therefore

K(k2) =

∫ 1/k

0

1√
1− t2

√
1− k2t2

dt+ i

∫ 1

1/k

1√
1− t2

√
k2t2 − 1

dt,
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where we choose the branch
√
w > 0, for w > 0.

With this choice, the function K(z) becomes discontinuous in the set [1,∞), but
continuous from below, that is, for x > 1,

lim
y→0+

K(x− iy) = K(x), lim
y→0+

K(x+ iy) = −2iK(1− x) +K(x),

(see [7, Section 2.7.1, Formulas (4) and (5), p. 95]).
From this, we obtain the monodromy matrix

M =

(
1 −2i
0 1

)
This finishes the proof. �

Theorem 4.7 The main branch of the function K(z) and its derivative K ′(z), z ∈
C \ [1,∞), and their analytic continuation to the adjacent branches are definable in
Ran,exp.

Proof. We prove the result only for K(z) = (π/2)2F1(1/2,
1/2; 1; z) because for its

derivative K ′(z) = (π/2)2F1(3/2,
3/2; 2; z) the argument is analogous.

We use change of variables to transform the function into an analytic function de-
fined in an open neighbourhood of a closed disk of finite radius. The main branch
complex function log(1 − z) is definable in Ran,exp, and we use it to remove the loga-
rithmic singularities at z = 1 and z =∞.

We recall that the function z 7→ z2 maps the region {z ∈ C : <(z) > 0} = {z ∈ C :
| arg(z)| < π/2} onto the region {z ∈ C : | arg(z)| < π}, so the function z 7→ [1− (1−
z)2] = (2z − z2) maps {z ∈ C : | arg(1 − z)| < π/2} onto {z ∈ C : | arg(1 − z)| < π}.
The Möbius transformation z 7→ [2z/(z + 1)] maps the unit disk D1(0) onto {z ∈ C :
| arg(1− z)| < π/2}; maps the arc eiθ, −π < θ < 0 onto the ray 1− iy, y > 0; and maps
the arc eiθ, 0 < θ ≤ 0 onto the ray 1 + iy, y > 0. It maps the interval [1,∞) onto the
interval [1, 2); the interval (−∞,−1] onto [2,∞), and (−1, 1) onto (−∞, 1). Therefore
the composition of these functions z 7→ w = [2z/(z + 1)] 7→ (2w − w2) = [4z/(z + 1)2]
maps the disk D1(0) onto the region {z ∈ C : | arg(1− z)| < π}.

The function F (z) = K(4z/(z+1)2) is analytic in the disk D1(0) and has logarithmic
singularities at z = 1 and z = −1. This is the composition of G(w) = K(2w − w2)
with w = 2z/(z + 1). The function G(w) admits analytic continuation G̃(w) to C \
[1,∞) (by Lemma 4.6). Therefore, F (z) admits (definable) analytic continuation to
C \ [(−∞,−1] ∪ [1,∞)].

The following equation from [7, § 2.7.1, Formula (6), p. 95] is the key to eliminate
the logarithmic singularities

π

2
· 2F1(1/2,

1/2; 1; z) +
log(1− z)

2
· 2F1(1/2,

1/2; 1; 1− z) =
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=
∞∑
n=0

[
(1/2)n
n!

]2

[ψ(n+ 1)− ψ(n+ 1/2)](1− z)n, (∗)

where ψ(z) is the derivative of Euler’s Gamma Function Γ(z). Notice that its left hand
side equals

K(z) +
log(1− z)

π
K(1− z).

The formula (∗) above says that K(z)+ log(1−z)
π

K(1−z) is analytic in a disk around
z = 1. So we can isolate this branch point.

The second branch point lies at∞ and we isolate it making the Möbius transforma-
tion z 7→ z/(z − 1), which maps the real interval [1,∞) onto itself and maps the point
∞ to z = 1.

G(z) = K((1 − z)2) is defined in the half plane <(z) < 1. H(z) = G(1/z) is
defined in the open disk D1/2(

1/2) = {z ∈ C : |z − 1/2| < 1/2}. It can be analytically
continued around all points of its boundary, except the points z = 0 and z = 1 (which
are logarithmic singularities).

The transformation z 7→ z/(z− 1) maps 1 7→ ∞, ∞ 7→ 1, fixes z = 0, maps the real
interval [0, 1) onto the interval (−∞, 0] (and vice-versa), and keep invariant the real
interval [1,∞). Then K(z/(z− 1)) is also defined in the same domain as K(z). Euler’s
integral produces

K

(
z

z − 1

)
=
π

2

√
1− z

∫ 1

0

dt
√
t
√

1− t
√

1− z(1− t)
=

=
π

2

√
1− z

∫ 1

0

dt√
t
√

1− t
√

1− zt
=
√

1− zK(z),

where the last but one equality comes from the change of variables t 7→ (1 − t) (this
is called the Pfaff transformation). We must choose the branches of the square roots√

1− z and
√

1− z(1− t) to provide the correct branch of
√

1− zt, that is, if z ∈ (0, 1),√
1− z > 0 and

√
1− z(1− t) > 0.

The function z 7→ (2z/(z+1)2) maps the disk Dρ((η+1)/2η), where ρ = (η2−1)/2η
(0 < η < 1), onto the disk Dδ(1), where δ = 1 − 4η/(η + 1)2. If f(z) is an analytic
function defined on Dρ2(1), then g(z) = f(2z/(z + 1)2) is analytic in D1(1) ⊇ Dδ(1)
(the closure of Dδ(1)). We take f1(z) = K(z) + log(1− z)K(z)/π, which is analytic in
the disk D1(1) and its restriction to Dδ(1) is definable in Ran,exp.

Therefore K(z) restricted to C \ [1,∞) (and defined as zero in [1,∞) is definable in
Ran,exp. �

This allows us to prove the following model completeness result.
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Let RKk(x, y) and IKk(x, y), k = 0, 1, be the real and imaginary parts of the
functions K(x+ iy)) and its derivative K ′(x+ iy), respectively, for x+ iy 6∈ [1,∞), and
defined as zero in that interval.

Theorem 4.8 The theory of the structure RK = 〈R, 0, 1,+, ·,−, exp, arctan, RF0, RF1,
IF0, IF1〉 is strongly model complete, where exp and arctan are the unrestricted expo-
nential and arctangent functions.

Proof. We deduce from the proof of the previous theorem together with Theorem 1.5,
page 300, the model completeness of the expansion 〈R, 0, 1,+, ·,−, exp, arctan, RG0, RG1,
IG0, IG1〉, where RGj(x, y) = <[K(j)(4z/(z + 1)2)], IGj(x, y) = =[K(j)(4z/(z + 1)2)],
j = 0, 1, |z| < 1 and defined as zero if |z| ≥ 1. This gives the definition of the analytic
continuation of Gj(z) to the disk D2(0), required by Theorem 1.5. The derivatives
of all orders of these functions can be defined from the corresponding second order
hypergeometric differential equation.

Each of the structures admit strong existential interpretations in the other, so both
are strongly model complete. �

Because τ(z) = iK(1 − z)/K(z) is the inverse of the modular function z = λ(τ)
restricted to the set F = {τ ∈ H : |<(τ)| ≤ 1; |2τ ± 1| ≥ 1} (see [23, § 4.4, pp. 76–84],
or [7, § 2.7.4, p. 99]), we have the following corollary.

Corollary 4.9 The modular functions λ, j : F → C is strongly definable in the struc-
ture RK = 〈R, constants ,+, ·,−, exp, arctan, RF0, RF1, IF0, IF1〉.

Remark 4.10 There is an algebraic relation between j(z) and λ(z), namely,

j(z) =
256(1− λ+ λ2

λ2(1− λ)2
,

which allows us to strongly define this function in the structure RK . (See [5, Chapter
VII, §§ 8-9, pp. 116-118]. See also [1] for some model completeness results related to
the modular j function.)

4.5 Restriction to the Real Numbers

If we restrict K(z) and its derivative K ′(z) to the real interval (−∞, 1), then they are
Pfaffian functions, and therefore the expansion of the field of the real numbers by K(z),
and its derivative K ′(z), is o-minimal by [26].

Problem 5 Is the exponential function existentially definable from the restriction of

2F1(1/2, 1/2; 1; z) and its derivative 2F1
′(1/2, 1/2; 1; z) = 2F1(3/2, 3/2; 2; z) to the in-

terval (−1, 1)?

Because the singularity at x = 1 is logarithmic, the exponential function is certainly
definable by [17, Theorem, pp. 257-258].
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5 On Wilkie’s Conjecture

In this section we discuss Wilkie’s conjecture, a counting statement about rational
points in definable sets. In this context model completeness results may prove to be
useful because definable sets are existentially definable, and so of low quantifier com-
plexity.

Jonathan Pila and Alex Wilkie proved in [20] a counting result about rational points
in definable sets in the structure Ran,exp which proved to be useful in applications
to algebraic geometrical problems, [19, 12, 9]. In that paper it was conjectured a
sharper counting result for the real exponential field, which could be true in some other
particular cases (it is not true in the whole Ran,exp). A first positive result is Binyamini
and Novikov’s [3], where they prove it for the expansion of the real field by restricted
sine and exponential functions. They use the strong model completeness techniques,
which are not recursively computable. The restricted sine and exponential functions
are Pfaffian functions, so they raise the question whether their proof can be done with
the techniques of Macintyre and Wilkie, [15], which could give computable bounds to
the counting arguments.

We recall the following definitions.

Definition 5.1 (Algebraic Part of a Set) Let A ⊆ Rn be a non empty set. The
algebraic part Aalg ⊆ A of A is the union of all connected semialgebraic subsets of A.
The transcendental part of A is the set Atrans = A \ Aalg .

Definition 5.2 (Height of a Rational Number) Let r = a/b ∈ Q, with either r =
a = 0 or gcd(a, b) = 1. The height of r is the number max{|a|, |b|}.

Wilkie and Pila have proved for a set A definable in Ran,exp that the number of
points of Atrans with rational coordinates with height at most H is O(Hα), for some
α > 0.

Wilkie’s Conjecture is the bound O((logH)α) for sets definable in Rexp.

Problem 6 Can we prove Wilkie’s conjecture for expansions of the real field by a Pfaf-
fian chain restricted to compact poly-intervals? If so, which cases can be done recursi-
vely?

In another direction we have the following problem.

Problem 7 Is Wilkie’s conjecture true for expansions of the real field by elliptic and
modular functions?

A positive answer to this problem would imply the original conjecture conjecture for
the real exponential field because Peterzil and Starchenko have proved in [18, Theorem
5.7, p. 545] that the real exponential function is definable from the ℘ function (actually,
from the modular function j(z), which is itself definable from ℘(z)).
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6 Final Remarks

The themes of Pfaffian functions and model completeness permeate this paper. It seems
to be far from exhausted and the problems posed in this paper touch a few aspects of
this subject.

Because we have focussed in the case of complex differential equations and hyper-
geometric functions, we have not touched in one of the major problems dealing with
Pffafian functions. Alex Wilkie proved in 1991 (published in 1996, [25]) the model
completeness of expansions of the real field by restricted Pfaffian functions, and in
1999 he proved that the expansion of the real field by unrestricted Pfaffian functions
is o-minimal (see [26]). It remains to prove (or disprove) the model completeness of
expansions by unrestricted Pfaffian functions (the positive answer is known today as
van den Dries Conjecture; see discussion in [21]). But this is another story.
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[9] Z. Gao. Towards the André-Oort conjecture for mixed Shimura varieties: the Ax-
Lindemann theorem and lower bounds for Galois orbits of special points. J. Reine
Angew. Math., 2015. DOI:10.1515/crelle-2014-0127

[10] A. Gabrielov, N. Vorobjov. Complexity of computations with Pfaffian and Noether-
ian functions. In Normal Forms, Bifurcations and Finiteness Problems in Diffe-
rential Equations, pp. 211–250. Kluwer, 2004. Mathematical Reviews (AMS):
MR2083248 (2006b:14104)

[11] Askold Khovanskii. On a class of systems of transcendental equations. Soviet
Math. Dokl. 22 (3): 762–765, 1980. Mathematical Reviews (AMS): MR0600749
(82a:14006)

[12] Bruno Klingler, Emmanuel Ullmo, Andrei Yafaev. The Hyperbolic Ax-Lindemann-
Weierstrass conjecture. arxiv.org:1307.3965.

[13] Angus Macintyre. The Elementary theory of elliptic functions I: the formalism and
a special case. In O-minimal Structures, Lisbon 2003. Proceedings of a Summer
School by the European Research and Training Network, Mário J. Edmundo, Daniel
Richardson, Alex Wilkie (eds.). RAAG (Real Algebraic and Analytic Geometry
Preprint Server, University of Manchester; accessed in March, 2014) Available in
http://www.maths.manchester.ac.uk/raag/preprints/0159.pdf

[14] Angus Macintyre. Some observations about the real and imaginary parts of com-
plex Pfaffian functions. In Model theory with applications to algebra and analysis.
Vol. 1, pp. 215–223. London Math. Soc. Lecture Note Ser., 349. Cambridge Univ.
Press, Cambridge, 2008. Mathematical Reviews (AMS): MR2441381 (2009h:03044)



Model Theory: Hypergeometric & Pfaffian Functions 317

[15] Angus Macintyre, A. J. Wilkie. On the decidability of the real exponential field. In
Kreiseliana, pp. 441–467. A K Peters, Wellesley, MA, 1996. Mathematical Reviews
(AMS): MR1435773

[16] David Marker. Khovanskii’s theorem. In Algebraic model theory (Toronto, ON,
1996), 181–193. Kluwer Acad. Publ., Dordrecht, 1997. Mathematical Reviews
(AMS): MR1481444 (99f:03048)

[17] Chris Miller. Exponentiation is Hard to Avoid. Proc. Amer. Math. Soc. 122(1):257–
259, 1994. Mathematical Reviews (AMS): MR1195484 (94k:03042)

[18] Ya’acov Peterzil, Sergei Starchenko. Uniform definability of the Weierstrass ℘
functions and generalized tori of dimension one. Selecta Math. (N.S.) 10(4):525–
550, 2004. Mathematical Reviews (AMS): MR2134454 (2006d:03063)

[19] Jonathan Pila. O-minimality and the Andre-Oort conjecture for Cn. An-
nals of Math. 173:1779–1840, 2011. Mathematical Reviews (AMS): MR2800724
(2012j:11129)

[20] Johnathan Pila, Alex Wilkie. The rational points of a definable set. Duke Math.
J. 133:591–616, 2006. Mathematical Reviews (AMS): MR 2228464

[21] Patrick Speissegger. Pfaffian sets and o-minimality. In Lecture Notes on O-minimal
Structures and Real Analytic Geometry, Chris Miller, Patrick Speissegger, Jena-
Phillipe Rolin (editors), Fields Institute Communications 62, pp. 179–218. Sprin-
ger, New York, 2012. Mathematical Reviews (AMS): MR2976993
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