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Abstract

The class of (commutative, unitary) von Neumann-regular rings (vN-rings)
has been studied under algebraic and model-theoretic aspects. It is closed under
several constructions and it can be characterized as the class of rings isomorphic
to the ring of global sections of a sheaf of rings over a Boolean space such that the
stalks are fields— from a broader logical perspective they are ”fields”. In this work
we build, by sheaf-theoretic methods, a vIN-Hull for every commutative unitary
ring, giving a left adjoint to the inclusion of categories vIN Rings — Rings. This
result is immediately extended to categories of preordered rings and we present
some applications to abstract codifications of the algebraic theory of quadratic
forms over rings with 27! (ATQF), that turns out to be an alternative approach
to the first-principle axiomatic approach of “well-behaved” quadratic form the-
ory of pre-ordered rings, introduced and developed in [DM9]. For instance we
address two subjects in the theory of Special Groups ([DM1]). (I) We determine
interesting classes of rings relative to ATQF ([DM7], [DM9]): we show that the
class of rings whose induced (proto)special group morphism into the special group
of its vN-hull is a pure embedding is an elementary class in the language of rings
that can be axiomatized by sets of Horn sentences or by V3i-sentences. (II) We
determine a class of reduced special groups (rsg) of interest for a variant of the
representation problem in SG-theory (see for instance [DMS8]): we show that the
class of reduced special groups that can be purely embedded into a special group
of a preordered vN-ring is an elementary class in the language of special groups
which can be axiomatized by sets of Horn sentences. Moreover, every rsg in the
class satisfies the K-theoretic property called [SMC] ([DM6]).

Keywords: von Neumann regular rings, Special Groups, preordered rings, quadratic
forms
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Introduction

In this work, “ring” will always mean unitary commutative ring and “regular ring”
means von Neumann regular ring (vN-regular ring or simply vN-ring), i.e., for each a
in the ring, there is  such that a®x = a and (x) = (e).

The theory of quadratic forms over rings more general than fields is addressed in
the setting of the theory of Special Groups in [DMT], [DMS], [DMJ9]; see also [DP1],
[Marl], [Mar2|, [Mar3] for other abstract encodings of the algebraic theory of qua-
dratic forms. Among all rings, the vN-rings form a particularly well-behaved class, for
which it is easier to access the information on quadratic forms than for a general ring.
The reason is that vN-regular rings are, in a precise sense, the rings which are closest
to fields. From a broader logical and set-theoretical perspective, vN-regular rings are
“fields” ([Smi]).

It is known, that vN-regular rings form a reflective subcategory of all rings, i.e. for
every ring A there is a vN-regular hull R(A), i.e. a universal vN-regular ring R(A) and
a homomorphism 74: A — R(A) which is initial among maps to vN-regular rings.

This suggests the strategy to transfer results about quadratic forms over vN-regular
rings back to arbitrary rings along this map. Indeed, we show in Thm. 41 below that
for any ring one can detect Witt-equivalence of quadratic forms still after passage to the
vN-regular hull. We further, in Thm. 45, determine elementary classes of rings and pre-
ordered rings whose quadratic form theory is satisfactorily encoded in their vN-hulls,
namely those rings for which the the morphism to their vN-hull induces an elementary
equivalence of the associated proto-special groups. This turns out to be an alternative
approach to the first-principle axiomatic approach of “well-behaved” quadratic form
theory of pre-ordered rings, introduced and developed in [DM9]. Finally, we address
the representation problem for special groups by showing in Thm. 48 that there is
an elementary class of special groups with a good representation theory by vN-regular
rings.

As our approach is based on the initial map n4: A — R(A) to a vN-regular ring, we
spend the first four sections discussing this construction in detail. In the classical papers
[Car], [LS] the model-theory of the elementary class of vN-regular rings is analyzed.
A key point in these works is the simple fact that a reduced ring is (canonically)
embedded in a vN-regular ring through the “diagonal” homomorphism: d4 : A —
[ Liespec(a) kp(A), where k,(A) is the field of fractions of A/p (or equivalently, the field
A,/pA,, where A, is the localization of A at the prime ideal p).

There is a refinement of the map above: we prove that for an arbitrary ring the
“diagonal arrow” A— [T cqpeea) A/P = T lpespec(a) kn(A) factors through the univer-
sal vN-regular ring R(A)S [ ] cspec(a) kp(A4). We show that R(A) arises as the global
sections of a sheaf of fields canonically associated to A.

These last results are not new — we summarize the history towards the end of
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section 1.

It is especially the sheaf construction, which is useful. Sheaves over boolean spaces
already feature prominently in the literature on special groups and this construction
connects well with our desired applications, e.g. it is used in the proof of Thm. 41.
Therefore we chose to dedicate parts of the article to a self-contained proof, avoiding
the topos-theoretic machinery of other existing proofs.

Overview of the article:

We will start in section 1 by reviewing the concept of vN-regular ring, giving a quick
proof that there is a reflection, summarizing the history of the result and showing that
one “cannot get any closer to fields” via a reflection functor. Since the sheaf theoretic
point of view on the reflection functor provides additional insight, in sections 2 and
3 we give a self-contained and elementary proof that the vN-hull arises in this way.
In section 4 we present some simple examples. We then proceed in section 5 with
the observation that the result is easily extended to categories of pre-ordered rings.
Finally, in section 6 we give the model-theoretic applications of this to the theory of
Special Groups ([DM1]) which were mentioned above.

1 vN-regular rings

We start by giving a selection of equivalent characterizations of vN-regular rings, that
we will make use freely in the sequel.

Proposition 1 Let A be a ring. Then the following are equivalent:

(i) A is vN-regular, i.e. Va€ Az € A: a = a*x.

(11) Every principal ideal of A is generated by an idempotent element, i.e. Ya € A Je €

Ady,ze A: e =e,ey = a,az = e.

(iii) Vae Adbe A: a = a*b,b = ba.

Moreover, when A is vN-regular, then A is reduced (i.e., Nil(A) = {0} ) and for each
a € A, the idempotent element e € A satisfying (ii) and the element b satisfying (iii)
are uniquely determined.

Proof. (iii) = (i): is obvious.

(i) = (ii) Let a,z € A such that a = a®z and define e := ax, then: e = a2? =
axr = e and ea = axa = a.

(ii) = (i) Let a,e,x,z € A such that €? = e,ey = a,az = e and define = := 2%y,
then a’z = a?2%y = e’y = ey = a.

(i) = (iii) Let a,z € A such that a = a*z. There can be many z satisfying this
role, but there is a “minimal” one: the element az is idempotent and we can project
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any chosen = down with this idempotent, obtaining b := az?. Then: aba = aab’a =

(ax)(az)a = axa = a and bab = (ax?)a(ax?®) = (az)*z = (ax)x = b.

Now suppose that A is vN-regular and let a € A such that " = 0, for some
n € N\{0}. Then let e be an idempotent such that ey = a,az = e, for some y, z € A.
Then e = e" = a™z" = 02" = 0 an then a = ey = Oy = 0, showing that Nil(A) = {0}.

Let e, ¢’ € A idempotents in an arbitrary ring satisfying (e) = (¢’). Select r,r" € A
such that er’ = ¢ and e'r = e. Then ¢/ = er’ = er’e = ¢'e = e're/ = ¢'r = e. Thus, if an
ideal a ring is generated by a single idempotent, this idempotent is uniquely determined.

Let A be a vN-regular ring. Select a member a € A and consider b, € A such
that a®V' = a = a®b,b = b%a,V = b%a. Then (b — V)%a® = (b —V)(ba® — ba?) =
(b—V)(a—a) = (b—"¥)0 =0. Since A is reduced, we have (b — t')a = 0, therefore
by = b*a—b%a=(*—b*a=b+)(b—b)a=(b+1V)0=0.

|

Remark 2 On vN-regular rings:
(i) Other equivalent descriptions of a vN-regular ring A:

e A is reduced and has Krull dimension 0 (i.e., prime ideals are maximal).
e Every A-module is flat.
(ii) Fields and boolean rings are natural examples of regular rings. A domain or a

local ring is vN-regular iff it is a field. If A is vN-regular ring, then Spec(A) is a
boolean space.

iii) The subclass of vN-regular rings is closed under isomorphisms, products and coe-
g &
qualizers (=homomorphic images) in the category of all rings.

O

Remark 3 vN-regular rings and Logic: We will denote Lgnys = {+,-, —, 0,1}, the
first-order language adequate for description of rings.

(i) The subclass of vN-regular rings is closed under and pure subrings’.

(ii) If the “diagonal” homomorphism 04 : A —> [ ] cgpeea) kn(A) 18 & Lpimg-pure em-
bedding, then A is a vN-regular ring. It follows from Proposition 3.2.(d) in [DMT],
that the converse statement also holds.

1Recall that, if L a language and M, M’ be L-structures, an L-homomorphism j : M— M’ is called
L-pure embedding if it (preserves and) reflects the satisfaction of existential positive L-formulas with
parameters in M.
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(iii) Since a ring A is vN-regular iff for each a € A there exists a unique b € A such
that a = a?b,b = b?a. then the class of vN-regular rings is axiomatizable by a (finite)
set of limit sentences in the language Lgings, i.€. sentences of the form VZ(¢(z) —
Ny(z, )%

(iv) Since vN-regular rings can be presented as structures for a signature L* := Lp;pngs U
{( )*}, with an additional unary operation symbol which, for any = forms describes its
“quasi-inverse” x*, where xz = z2x* x* = (2*)2x. This makes it clear that vN-regular
rings form a variety (= equational class) in this expanded language. Thus: the subclass
of vN-regular rings is closed under homomorphic images, substructures and products
in the class of all L*-structures; there exists a free vN-regular ring over any set.

In the sequel, we present some closure properties of RegRings as a subclass of
L gings-structures.

Proposition 4 The inclusion functor RegRings <— Rings creates filtered colimits,
i.e., RegRingsC Rings is closed under directed/filtered colimits.

Proof. A filtered colimit of vN-regular rings, taken in Rings, is a vN-regular ring
again. Indeed, filtered colimits in Rings are formed by taking the colimit of the under-
lying sets and defining the sum, resp. product, of two elements a,b by mapping them
both into a common ring occurring in the diagram and taking the sum, resp. product,
there. Thus for an element a in the colimit, there is a ring A; in the diagram containing
an element a; € A; which is mapped to a by the canonical map to the colimit. Since A;
is vN-regular, we have z; € A; with a;z;a; = a;, and the image of z; in the colimit will
satisfy the corresponding relation with a. ]

Proposition 5 RegRingsSRings is closed under localizations.

Proof. Let A be a vN-regular ring and SCA be a multiplicative submonoid of A. We
will show that A[S]™! is a vN-regular ring:

Case (1) S = S,{a) = {a* : k e N}, for some a € A.
Let e be the unique idempotent element such that (a) = (e). Then, by Remark 15,
D, = D, and 0(A)¢ : A, = —A.. By Fact 14, A, = A/(1 —e) = A-e. Since
RegRingsS Rings is closed under homomorphic images, then A, = A[S,]™! is a vN-
regular ring.

ZNote that any equation VZ(t(Z) = s(Z)) is logically equivalent to the limit sentence VZ(T —
y(t(z) =y ry = s(2))).
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Case (2) S ={ay,--- ,ax), for some {ay, - --a,}<pinA.
Since A[S]™! = A[S,]™!, where a = [}, a;, then A[S]™! is a vN-regular ring, by the
case (1).

Case (3) For general S.
Write S = (Jyc,, §(X): this is a directed reunion. Then A[S]™" = lim A[XO]L

xS pins
Since RegRingsSRings is closed under directed/filtered colimits, then A[S]™! is a
vN-regular ring, by the case (2).
|

Proposition 6 The limit in Rings of a diagram of vN-regular rings is vN-reqular. In
particular RegRings is a complete category and the inclusion functor RegRings —
Rings preserves all limats.

Proof. It is clear from the definition that the class RegRings of vN-regular rings is
closed under arbitrary products in the class Rings of all rings. Thus it suffices to show
that it is closed under equalizers. So let A, B be vN-regular rings and f,g: A - B
ring homomorphisms. Their equalizer in the category Rings is given by the set E :=
{ae A: f(a) = g(a)}, endowed with the restricted ring operations from A.

To see that E is vN-regular, we need to show that for a € F, the (unique) element
b e A satisfying a?b = a and b?a = b also belongs to E.

First we note that the idempotent element ab belongs to E. Indeed, we have f(ab) =
fla)f(b) = g(a)f(b) = g(a®b)f(b) = g(a)g(ab)f(b) = f(a)g(ab)f(b) = f(ab)g(ab). Ex-
changing f and ¢ in this chain of equations, we also get g(ab) = f(ab)g(ab). Altogether
we obtain g(ab) = f(ab), and hence ab € FE.

Now we use this, as well as the fact that we also have the equation b = ab?, and
conclude f(5) = f(ab?) = f(b)f(ab) = [(Bglab) = [(B)gla)g(®) — F(b)[(a)g(b) —
f(ab)g(b) = g(ab)g(b) = g(ab*) = g(b). u

Clearly, in many ways fields are the best behaved kind of commutative ring. Often
problems in general commutative algebra are treated by reducing them to the case
of fields, for example when using local-global principles in module theory. It is thus
natural to ask whether an arbitrary commutative ring A admits some kind of universal
approximation by a field, i.e. a map A — F, with F a field, which is initial among
maps to fields.

The answer is negative, because if every ring would admit such a map, then we would
obtain a reflection functor Rings — Flields, left adjoint to the inclusion Fields —
Rings. But then Fields would be a cocomplete (and complete) category and the
inclusion functor would preserve limits. This contradicts the fact that the product of
two fields is a ring with non-trivial idempotents, thus it not a field.
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However, it turns out that this problem with limits is the only obstruction to the
existence of a universal approximation. If we take the closure of the subcategory of
fields under limits in Rings, then we obtain the category RegRings of vN-regular rings
(see Prop. 8 below), and this category does admit a reflection functor. We give a quick,
but non-constructive, proof that the inclusion functor RegRings — Rings has a left
adjoint.

Proposition 7 The inclusion functor i : RegRings < Rings has a left adjoint.

Proof. Since RegRings, Rings are categories of models of first order theories given by
limit sentences then, by [AR, Thm 5.9], they are locally finitely presentable categories.
By the previous propositions 4 and 6, the inclusion functor ¢ : RegRings — Rings
is a finitely accessible (= preserves filtered colimits), limit preserving functor between
locally presentable categories. Thus, by the adjoint functor theorem for locally presen-
table categories, [AR, Thm 1.66], the functor i has a left adjoint. |

The above proof of Prop. 7 provides no information about how to compute the left
adjoint. For this, more constructive proofs are preferable.

The first proof of Prop. 7 in the literature is that of Olivier, [Oli, Prop. 5|. He
proceeds by formally adjoining a quasi-inverse to every element a of a ring A (where
quasi-inverse means the z such that a’z = a, 2%a = ). It is easy to see that the
outcome is the universal vN-regular ring associated to A, but hard to compute this
outcome, as it is given in terms of generators and relations.

Next, Popescu and Vraciu [PV, Sect. 3] noted that the reflection functor can
be described as follows. To a ring A one associates the diagonal map 64 : A —
[ Lespec(ay kp(A), where k,(A) is the field of fractions of A/p (or equivalently, the field
A,/pA,, where A, is the localization of A at the prime ideal p). Then one takes the
smallest zero-dimensional subring of [ [ cg,..(4) k»(A) containing the image of 64 (which
exists, because zero-dimensional subrings of a ring are closed under intersection by [Gil,
Thm 2.1]).

It follows from Theorem 10.3 in [Pie] that the class of vN-regular rings coincides
with the closure under isomorphisms of the class of the rings of global sections of sheaves
of rings over a boolean space such that the stalks are fields. Finally, Coste [Cos, Prop.
4.5.5 and Sect. 5.2.2] gave a description of the functor as the global sections of a
sheaf of fields on the boolean space arising by endowing the space Spec(A) with the
constructible topology. The étale space of this sheaf is given by [ [ cg,c.(a) kp(A4) with
an appropriate topology, which links this construction to the previous one. This space
with its sheaf of fields is called the “field spectrum” and had previously been considered
by Johnstone [Joh, Prop. 5.6]. It arises from a general topos theoretic machinery which
is able to gives a universal approximation of a ring by a field — with the downside that
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the field lives in a different topos than the the topos of set, where the original ring A
is situated.

It is only this last construction, as the global sections of a sheaf of fields, that
allows to prove that our solution of taking vN-regular rings for approximating a ring
by something close to a field is the best possible:

Proposition 8 The category RegRings is the smallest reflective subcategory of Rings
containing all fields.

Proof. Clearly all fields are vN-regular, and by Prop. 6 so are limits of fields, so
RegRings contains all limits of fields. On the other hand the ring of global sections of
a sheaf can be expressed as a limit of a diagram of products and ultraproducts of the
stalks by [Ken, Lemma 2.5]. All these occurring (ultra)products are vN-regular as well
and hence so is their limit by Prop. 6. |

In the following two sections we will give an elementary and self-contained proof
that the reflection functor arises as the global sections, without any use of general
topos theory.

2 The candidate

It is well known that any ring is isomorphic to the ring of global sections of the structure
sheaf of its affine scheme. It is a sheaf of rings over the spectral space Spec(A), the prime
spectrum of A, with stalks that are (isomorphic to) the local rings A,, the localizations
of the ring in the prime ideals p € Spec(A). This suggests that if we get a sheaf of rings
over the booleanization space of the spectral space Spec(A) (i.e. Spec™(A) := Spec(A)
with the constructive topology) and with stalk on the prime ideal p the residue field
k,(A) := A,/p.A, of the local ring A, then the ring of the global sections of this sheaf
should be “the closest” vN-regular ring to A.

In this section we will see that if the ring A has a vN-regular hull n4 : A—R(A)
(i.e., na is a ring homomorphism from A to a regular ring R(A) with the universal
property: for any regular ring V' and any ring homomorphism f : A—V there is a
unique ring homomorphism f : R(A)—V such that fons = f), then the spectral
sheaf of R(A) must be such that the topological space Spec(R(A)) is homeomorphic to
the booleanization of Spec(A) and the stalks R(A),, p' € Spec(R(A)), are isomorphic
to the residue fields of the local ring A,: k,(A), p € Spec(A).

Notation 9

(i) If p is a proper prime ideal of the ring A, write 7r;)4 : A — A/p for the quotient
homomorphism and o/} : A—k,(A) for the composition A — A/p — k,(A). We will
consider the “diagonal” homomorphism 4 1= (&) )pespec(a) : A — [ Liespecca) kp(A)-
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(ii) If f : A — B is a ring homomorphism and ¢ € Spec(B), we will denote f, :
A/f*(q) — B/q, the “quotient” monomorphism between the associated domains, f, :
Aje(q) — By, the “canonical” local homomorphism between the associated local rings

and f, : kp()(A) = k¢(B), the “canonical” monomorphism between the associated
fields®. We have f o 04}4* =alof.

We will write f : 11
phism such that proj, of f OpTOjf* , for each ¢ € Spec(B) (note that foéA = dgof).

[m]

A kp(A) — T sespecin) Kq(B) for the unique homomor-

peSpec

Remark 10 On spectral spaces: (see [Hoc|, [DST))

e A topological space is spectral if: (1) it is sober, i.e. each closed irreducible subset
has a unique generic point; (ii) it has a basis that is closed under finite intersecti-
ons (and contains the space) and whose elements are compact-open subsets. A
boolean space is a compact Hausdorff space that is 0-dimensional (or equivalently,
it has a basis whose elements are clopens). The boolean spaces are the spectral
Ti-spaces. If A is a ring, then Spec(A) is a spectral space. For each spectral space
S and field K, there is a K-algebra A, such that S is homeomorphic to Spec(A).

e A map between spectral spaces is called spectral map if the inverse image of a
compact open subset of the codomain is a compact open subset of the domain.
In particular, spectral maps are continuous; a map between boolean spaces is
spectral iff it is continuous. If f : A— B is a ring homomorphism, then f*
Spec(B)—>Spec(A) : ¢ — f~!q] is a spectral map.

e Every spectral space S has a “canonically” associated boolean space: S“"*! is the
set S with the constructive topology, constructed as follows. Take any base {D; :
i € I} of S whose elements are compact open, that contains ¥, S and that is closed
under finite intersections. Then {D;, N (S\D;,) N ... (S\D;,) : G0, 01, .., 0n € I}
is a basis of S“™ whose elements are clopen subsets (that contains ¢, .S and is
closed under finite intersections). Clearly, the identity function id : S®"—S is
spectral. This construction satisfies a universal property: it is the booleanization
of the spectral space S, i.e. given T a boolean topological space and F' : T—>S
a spectral map, there is a unique contlnuous/ spectral map between the boolean
spaces F . T—>8%nst guch that ido F' = F. As continuous /spectral bijections
between boolean spaces are homeomorphisms, a spectral map G : U—S from a
boolean space U is a/the booleanization of S iff it is a bijection.

(]

3Recall that k,(B) := Res(B,) = B,/q.B, = Frac(B/q) = (B/q)[B/q\{0}]7!, and that B, —»
kq(B) is a local homomorphism.
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Proposition 11 Suppose that the ring A has a vN-reqular hull ny : A — R(A) 4
Then:

(1) (na)*: Spec(R(A)) — Spec(A) is a surjective spectral function.
(ii) For any q € Spec(R(A)), N, : k(g (A) = ky(R(A)).

(iii) (na)* : Spec(R(A)) —> Spec™st(A) is a homeomorphism where Specst(A) is
the (boolean) topological space on the set of prime ideals of A with the constructive
topology.

(iv) (iv) ker(na) = nil(A) = (\Spec(A) = {a € A:3In e N, a™ = 0}. Thus na is

injective iff A is reduced.

Proof.

(1) Take p € Spec(A) and consider the canonical homomorphism «,, from A to the
reqular ring (field) k,(A). By the universal property of 4 : A — R(A) we have a
unique “extension” 84;1 : R(A) — k,(A) with &;1 ona = ai'. Now take y4(p) :=
(@5)*({0}) € Spec(R(A)). In this way we have (na)*(ya(p)) = (n4)*((6)*({0})) =
(@ 0na)*({0}) = (oyp)*({0}) = p, thus (na)* 0 va = idgpec(a) and (na)* is surjective.

A(z'i) Let g € Spec(R(A)), by definition of 77, we have (see dlagram below) oy B ony =

(na), © aq‘;‘*(q), so we have the field (mono)morphism 74, an(q) (A) — ky(R(A)).

Let us prove that it is surjective: consider the extension of o’ (o) O R(A) : %(q) :
o~ ~A —~~ R(A ~A
R(A)—kys (¢)(A), then 74, O Qs (q) © 114 = T]4, ooz;;‘z(q) = aq( ) o4, thus 7x MAq 0 Qs (q) =

. A), by the universal property of n4. But g € Spec(R(A)) is a maximal ideal so
R(A)/q = k,(R(A)) and aq4 B : R(A) — R(A)/q —> k,(R(A)) is surjective, therefore

—~ . . . A o R(A)
N4 1s surjective too, since "IAq O (q) = Qg -

(iii) By Remark 10, to prove that (na)* : Spec(R(A)) —> Spec®™t(A) is a
homeomorphism it is necessary and sufficient to prove that the spectral map (n4)*
Spec(R(A)) — Spec(A) is a bijection from the boolean space Spec(R(A)) to the
spectral space Spec(A). Keeping the notation in the proof of item (i), we will show that
va is the inverse map of n%. By the proof of (i), it is enough to prove that y4 0 (n4)* =
idspec(r(a))- Let g € Spec(R(A)), then v4(n4(q)) = ker(dyp ) = ker(af(’q)) = ¢, since
Nag © ozA () = a4 and 74, is injective.

(1w ) We will see that the result follows from the fact that Spec(R(A)) is homeomor-

phic to the booleanization of Spec(A). Take any ring B and consider the “diagonal”
homomorphism

6B = ( )peSpec( B) - : B — 1_[ k

peSpec(B

4For instance, if A is already regular then 74 : A =~ R(A)
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From the equality of morphisms

abl)pe pec Wf peopee
(B e T k@)= T ] B [ k(B)
)

peSpec(B) peSpec(B peSpec(B)

we have ker(dp) = [\Spec(B) = nil(B).

In particular, for B = R(A), we have ker(dgra)) = nil(R(A)) = {0} and therefore
obtain that dr(a) : R(A) — [ [ cspec(r(ay Ka(F(A)) is injective.

As ny  : Spec(R(A))—Spec(A) is bijective we get that the arrow
Ma | Lespeeay 5p(A) — T iespeeriay ka(R(A)) is isomorphic to the homomorphism
(mq)QESPGC(R(A)) : quSpec(R(A)) kﬂ;\(Q)(A) - quSpec(R(A)) kq(R(A)) By the previ—
ous items, (7a,)gespec(r(4)) 1S an isomorphism, thus 74 is an isomorphism too. As
Na 004 = dpay ©Na and 74, Ogea) are injective, we have ker(na) = ker(na o 0rea)) =
ker(naoda) = ker(d4) = nil(A).

A" | R
off &;‘ ol where p 1= 1%(q)
hp(A) ——=———> Fy(R(A))

Proposition 12 Suppose that we have a functor R : Rings—> RegRings and a natural
transformation (1a) Acobj(Rings) M4 : A—R(A).
(1) Suppose that the following condition is satisfied.

(E) For each vN-regular ring V' the arrow ny : V. —>R(V)) is a section (i.e. it has
a left inverse).

Then every homomorphism f : A—V to a vN-reqular ring V' factors through na.
(11) Suppose that the following conditions are satisfied.

(U) n% : Spec(R(A)) —> Spec(A) is a bijection (Spec(R(A)) is homeomorphic to
the booleanization of Spec(A)).

(U°) the stalk of the spectral sheaf of R(A) at a prime ideal p “in A” is isomorphic to
ky(A), more precisely, Na, : ke (q)(A)—ky(R(A)) is an isomorphism, q € Spec(R(A)).

Then a homomorphism f : A—V to a vN-reqular ring V' admits at most one fac-
torization through n4.
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Thus if all of (E), (U) and (U’) are satisfied, then the map na is initial among
maps to vN-reqular rings, i.e. a homomorphism f : A—V to a vN-regular ring V
factors uniquely through n4.

Proof. (i) Let V be a vN-regular ring and f : A—V a homomorphism. As 7 is
a natural transformation we have R(f) on4a = ny o f. By hypothesis (E) there is a
homomorphism 7y : R(V)—V such that ry ony = idy. Now define F : R(A)—V as
the composition : F':=ry o R(f): clearly F'is an “extension” of f (Fony = f).

(ii) Let V be a vN-regular ring and | Fo, Iy R(A)—>V be homomorphisms such that
Foona = f = Fiona. Then we get Fo ona = f F1 o7a (to see that, just compose
these homomorphisms with projY, s € Spec(V)). From the hypotheses (U) and (U?)
we obtain that the arrow 74 @ [ [ cgpec(a) kp(A)— quSpec(B) k (B) is an isomorphism,

and therefore ﬁ’; = ﬁ It follows that &y o Fy = FO © Op(a) = F1 o 0pa) = Oy o F.
As V' is reduced, we get ker(dy) = Nil(V) = {0}, thus dy is injective and, by the
commutativity of the bottom trapezoid below, we can conclude that Fy = F}, proving
the uniqueness of extensions.

oA

A

Y

Hf()

(A

PE

na na

% - T Es(V)
5‘/ seSpec(V)

3 Building sheaves

In the remainder of this section we will show that the inclusion functor RegRings —
Rings has a left adjoint through the following steps:

(I) Firstly we build a (mono)presheaf of rings over a basis of the constructive topology
of Spec(A) with stalks k,(A), p € Spec(A): this construction turns out to be canonical,
i.e. describes a functor A — P(A);
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(IT) Then we take the associated sheaf S(A) of the presheaf basis P(A): this has the
same underlying space of P(A) and isomorphic stalks over each point of the space;
(III) Next, we consider the ring R(A) of global sections of the sheaf S(A) and the
canonical A-algebra arrow 14 : A—TI'(S(A));
(IV) Finally we prove that, for each ring A, R(A) is vN-regular ring and that 7, :
A—R(A), satisfies the conditions in Proposition 12, thus has the universal property
wanted.

Let us fix now a ring A.

13 On the prime spectrum of rings:

e For each a,b € A, consider the sets D, := {p € Spec(A) : a & p} , Z, := {p €
Spec(A) : b e p} = Spec(A)\D,. Then Dy = Zy = Spec(A), Dy = Z; = &,
D, N Dy = D, and the set {D,SSpec(A) : a € A} is a basis of a topology in
Spec(A) whose elements are compact-open subsets, that contains ¢, Spec(A) and
that it is closed under finite intersections. Moreover with this topology Spec(A) is
a spectral space. If f: A— A’ is a ring homomorphism, then (f*)~'[D,] = D}(a),
thus f* : Spec(A")—Spec(A) is a spectral map.

e Now, for each a € A and b = {b1,...,b,}S A, we consider the subset Unp =
Dy Zy ... Zy,=Spec(A). Then the set 5(A) := {U,;SSpec(A) :ae A, b=
{b1,....,bn}SrinA} is a basis of the boolean space Spec®'(A) whose elements are
clopen subsets, that contains J, Spec(A) and is closed under finite intersections.
Spec™st(A) is the booleanization of the spectral space Spec(A) (see Remark
10). If f : A— A’ is a ring homomorphism, then (f*)"'[U, ;] = U}(a),f(l_))’ thus
I Specst( A" — Specst(A) is a spectral /continuous map.

We register the following:

Fact 14

e (i) Let A be a ring. Denote B(A) := {ee€ A : e?> = e}. Then:
« (B(A), A, v,* <,0,1) is a boolean algebra, where e A € = e/, e v e =
et+e —ee, ef:=1—¢, e<ee=c.é,top:=1, bottom := 0.
+ Concerning principal ideals: (e)=(€/)e=e < €'; (e) = (¢)ee = €'; (e) + (¢) =
(eve);(e)n(e) =(e).(e) = (e n €).
« The mapping e — D, determines an injective boolean algebra homomorphism
ja @ B(A) — Clopen(Spec(A)). If A is a vN-regular ring, then j, : B(A) —»
Clopen(Spec(A)).
« For each e € B(A), consider the canonical A-algebra morphisms q : A —»
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A/l —e), f: A—A, and m : A - A.e (note that A.e := {z.e : x € A} is
a ring with unity e). Then there are unique isomorphisms of A-algebras: A, =

A/(1—e) = Ae.

e (ii) Let f : A— A’ be a ring homomorphism, then f; : B(A)—DB(4') is a
(well-defined) boolean algebra homomorphism. Moreover, this defines a functor
B : Rings—> BA, where BA is the category of boolean algebra and its homomor-
phisms.

a

Let us now recall some definitions and facts about the affine scheme functor from
the category of rings to the category of locally ringed spaces, Locringed. Recall first
that:

« the objects of Locringed are locally ringed spaces, i.e. pairs (X, F') where X is a topo-
logical space and F' : (Open(X), €)?— Rings is a sheaf whose stalks, F, :=  lim

UeOpen(X):zeU
F(U) (denote ¢y, : F(U)—F, the cocone arrow), are local rings (denote m, the uni-
que maximal ideal in F}).
+ the morphisms in Locringed are certain morphisms of sheaves (over variable base
spaces), i.e. pairs (h,7) : (X, F)— (X', F’) given by a continuous function h : X'— X
and a natural transformation 7 : F'—h,(F'), that induces local homomorphism on
stalks. It follows from the definition of identities and composition in Locringed that
(h,7) is an isomorphism iff A is a homeomorphism and 7 is a natural isomorphism.

Remark 15 On the affine scheme functor: ([EGA))

(i) For each a,ce A, D,=D, ift Z, 2 Z, iff \/(a)S~/(c).

(ii) If D, D, then there is a unique ring homomorphism o(A)¢ : A.— A, such that

(A (A A, 74 A,) = (A oA A,) where A, denotes the ring of fractions of A

w.r.t. the multiplicative set {b" : n € N} and o(A), : A— A, x — /1 is the
canonical arrow.

(iii) 0(A)? = ida,; if D,.D.CD,, then o(A) = 0(A)S o o(A)S; if D, = D., then

g(A)S, 0(A)? is a pair of inverse isomorphisms.
(iv) The  structure sheaf of the affine scheme of the ring A,
Y4 : (Open(Spec(A)), <)?—> Rings is the (essentially) unique sheaf of rings

o \%4
such that for each a € A, ¥4(D,) = A,. We denote X4(V) Wy Xa(U),
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the morphism induced by the inclusion USV, U,V € Open(Spec(A)). The ca-
nonical arrow s(A) : A—X 4(Spec(A)) is naturally identified with the canonical
homomorphism A— Ay, thus it is a ring isomorphism. The stalk of ¥4 over the
point p € Spec(A) is isomorphic to the local ring A, of fractions of A w.r.t. the
multiplicative set A\p. Thus 34 is a locally ringed space.

If f: A— A’ is a ring homomorphism, then there is an induced morphism of
ringed spaces (f*, f) : Y a—X 4 where, f*: Spec(A')—>Spec(A) is the induced
spectral map and f: % A—>(f*)e(2 4/) is the natural transformation given on ba-
sic opens D, and D, = (f *)~YD,] by the induced homomorphism Ac— A%
z/a® — f(x)/f(a)". For each p" € Spec(A’), Ap+py—>A;, is a local homomor-

~

phism. Thus (f*, f) : ¥4a—X 4 is a morphism of locally ringed space. Moreover,

the map (A 7, A — Xy () ¥ 4 defines a functor ¥ : Rings—s Locringed®.

If I : Locringed®®— Rings, denotes the global sections functor, i.e. ((X, F) e

(X', F")) L (F(X) 55 F'(X') = F'(h"'[X]), then:

* the family of canonical (iso)morphisms s(A) : A—T'(X4), A € obj(Rings),
determines a natural transformation s : Idgin,s — ' 0 ¥ (and it is a natural
isomorphism);

+ there is another family of (canonical) arrows e x,r) = (hp, 7r) : Xrx,p— (X, F),
(X, F) € obj(Locringed), that determines a natural transformation

e:xol ’[dLocrmged

-hp : X—Spec(F (X)), x — gb}}m [m..]; hr is continuous since, for each a € F(X),
hpt[D.] = {x € X : ¢x.(a) is invertible in F,} = W, := the largest open U such
that ay := Fyf (a) € F(U) is invertible.

- 7p ¢ Bpx)—(hr)e(F) is the natural transformation that, for each a € F'(X),
(7F) D, : Br(x)(Da)—>F (hp'[D,]) that is naturally identified with the homomor-
phism F(X),—F(W,), obtained from the arrow Fy, : F(X)—F(W,) by the
universal property of the ring of fractions F(X)—F(X),; 7 is uniquely determi-
ned by the condition above since Yp(x) and (hr).(F) are sheaves on Spec(F (X))
and {D, : a € F(X)} is a basis of the space Spec(F(X)).

It is straightforward to check that the pair natural transformations (s, e) satisfies
both triangular equations above ([Mac]):

e (24 D wrm)) S 2 = (2419 5L, A € obj(Rings):
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T(ex,r))

s (X F) ) 1) S DX FY) = (DX, F) "5 1(XF)), (X, F) e
(X)
obj(Locringed).

(viii) ([Mac]) In this way, the affine scheme functor ¥ is the left adjoint of the glo-
bal sections functor I' with s being the unit and e being the counit of this ad-
junction. Thus s(A) has the universal property between all ring homomorphisms
A—T(X, F), for each locally ringed space (X, F'). Moreover, since the unit of
the adjunction s : Idgjngs —> I' © ¥ is a natural isomorphism, X is a full and
faithful functor from the category of rings to the category of locally ringed spaces.

]

We will now recall some results from Commutative Algebra and develop some pre-
parations.

16 Let A be a ring.

+ The Prime Ideal Theorem: let SCA be a multiplicative submonoid and /€A an
ideal. Then S n I = ¥ iff 3p € Spec(A) s.t. ISP, Sn P = &.

« Let JSA be an ideal and denote ¢4 : A — A/J the canonical homomorphism
onto que quotient ring. Then (¢7)* : Spec(A/J) —> Z; e Spec(A). Recall that
Zy=Zyj.

+ Let a € A and denote o' : A— A, the canonical homomorphism into the ring of
fractions of {a* : k € N}. Then (¢4)* : Spec(A,) — D, o Spec(A).

+ Let a € A and let ICA be a radical ideal (I = /).
Denote A, 1 := (A/I)y; the a/I-fractions ring of the quotient ring A/I.
Denote tg‘J = af/f oql: A—A.g.
Then ker(t;;) = {r€ A:IneN,z.a" € I}.
Denote U, 1 := D, n Z1=Spec(A).

Then (t1,)* : Spec(Aq,1) — Uqyr — Spec(A). o

Lemma 17 Let A be a ring.
(a) Consider a,a’ € A and I,I'CA be radical ideals of A. Then the following are
equivalent:
(i) Uns < Vs s
(ii) Both the conditions (ii)z and (ii)p below hold:
(it)z Uy nDp = (it)p Usgr 0 Zy =&
(i11) Both the conditions (iii)z and (iii)p below hold:
(iii)z I'Sker(t) (1i)p t(a') € Unit(Aq, )
(iv) There is an A-algebra homomorphism h(A)Z:’III s App — Aag e h(A)Zi’IF is

a ring homomorphism such that h(A)Z:}I/ oth =14
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(b) Suppose that the equivalent conditions in (a) above hold. Then the A-algebra

homomorphism hZ’% is unique. Moreover, 3k e NI e A X.d'—a* e I and %51/ € Ay

ne (zA"/1)
= (@F/T) € Aal
(¢) MA)g; = ida,,;
if Ust © Uapr © Ugn o, then h(A)27 o h(A)“ﬁ’f,” = h(A);
if Uyt = Uy, then h(A)aJI and h(A)%' o.p are a inverse pair of A-algebra isomor-
phisms.

Proof. Item (c) follows directly from items (a) and (b).

(a) The equivalence between (i) and (i7) is clear.

(1) z<=>(i11) 2

UornDp #+@ it 3pe Dy,nZynDyp iff 3p e Spec(A)3z’ € I' Icp, and a,x’ ¢ p
iff Ip e Spec(A)Ix’ € I'Vm, k e N, ICp, (a™.a')* ¢ p iff 2’ € I'Vm e N,a™.a' ¢ [ iff
I' < ker(t}))

(i) = (iii) p:

Ust " Zy # & ifft 3pe Dy Zyn Zy iff Ip € Spec(A),{a* : k e N} np =
@, (d)+Icp iff {a*:keN}n(d)+1= iff Vke NVAe A, aF —\d' ¢ [ iff°
Vk,le NVA € A a'.(a* — Na') ¢ I iff t,;(a') ¢ Unit(Aur)

(m) (iv): by (iii)z, there is a unique homomorphism #;'; : A/I'— A, ; such that
td; oqp = ti; thus, by (iid)p, t,(a//I') = t};(d') € Unit(Asz), and then there is
a unique homomorphism h(A), II/ D App — Aa 1 such that h(A)a x aé%, ta;.
Composing with ¢ji : A — A/]’ we get h<A>aI ot =1t

(iv)=>(7i7): Let h(A)aJ . Ayr —> Aur be a ring homomorphism such that

h(A)Y] otf,,l, = t},. Define fo; := (A)gj{' o ol Then f&)(a'/I') € Unit(Ay).
Then f&) o qp = tAI and then I'ker(t;;), establishing (iii)z. Since ¢j : A — A/I'
is surjective, fa ;= ta,] and h(A)a:’II, is the unique ring homomorphism such that

WA ool = [ Thus t4, (') = T2,(a/I') = [&,(a/I') € Unit(Aq,r), esta-
blishing (i) p.

(b) The uniqueness of h(A) ,’[F was established in the course of the proof of equi-
valence (iii)<(iv) above. We leave it to the reader to check the correctness of the
concrete description of hZ:’II, when acting on elements. |

18 Let A be a ring. For each a € A,b<};, A consider:

5Since U, 1 # .
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(i) the quotient ring A/I;, where Iy := 7/ S=%(b;) < A;

=1
(ii) the fraction ring A, 5 := Aur, = (A/I})a/1;;

(iii) the canonical homomorphism t*; := t2, : A — (A/I}),;, i.e. the composition
a,b a,ly b /b
of projection on the quotient qf‘ : A — A/l with the universal homomorphism

of a/Iz-fractions ring OAlL A/l — (A/[l';)a/lg-

(iv) if @’ € A, V'S ;A is such that U, ;SU, i, then h(A )Z = h(A),, ’IE,/ cAuy — Aup
a' b

P oth tA Besides, 4k € N

is the unique ring homomorphism such that 2(A)? 5 °luy

e Ad —ab e Iy and G e A, , et ) ¢ 4,
Note that:

(a) Since Nil(A)<I;, then tﬁg factors through gy : A — A/Nil(A) and A, is an
A/Nil(A)-algebra.

(b) U, = Spec(A) & a € Unit(A) and Vi < n,b; € Nil(A) = the canonical
homomorphism A/Nil(A)— A, is an isomorphism.

(C) Ua’g = < ﬂi<ani§Za < dke N, ak e ]5 54 Aa,E = {0}

(]

Construction 19 For each ring A we build a presheaf basis of A-algebras®. Keep the
notation from Lemma 17. The work is done in two steps:

(i) We build a (contravariant) functor P'(A) : (8(A), €)?—A — alg (recall from
paragraph 13 that S(A) was a basis for the constructible topology). This is a “large”
presheaf base of A-algebras:

For each U € 3(A) consider the ring P'(A)(U) := [[{A,5: U = U,3,a € A, b<s;, A}
and the ring homomorphism t'(A)y := (tiﬁ)Ua,E=U : A—P'(A)(U). Let U,V € B(A)
with USV and consider the ring homomorphism h/(A)Y; : P'(A)(V)—P'(A)(U), the

unique ring homomorphism such that for each a,b,c,d with U = U,;,V = U4 ,

Proju, s © h(A)Y = h(A)“f © Proju. 4 ; h'(A)Y; is an A-algebra homomorphism, i.e.

h(A); ot/(A)y = t/(A)y: to see that just take composition of these arrows with the
projections projy,, , + P'(A)(U)—A, 5 such that U = U, ; and use Lemma 17.(a).(iv) .
P'(A) is indeed a (contravariant) functor, i.e. if U, V, W € B( ) is such that USV W
then W'(A)y o K (A)Y = W(A)] and h’(A)U = idpiayw) : this follows from Lemma
17.(c), taking compositions with appropriate prOJectlons

(ii) We build a subfunctor P(A) : (B(A),<)?— A — alg of P'(A). This will be a
“good” presheaf base of A-algebras:

6In fact, by 18.(a), we will obtain a presheaf basis of A/Nil(A)-algebras.



VN-HULL AND QUADRATIC FORMS 219

For each U € 5(A) consider the subring P(A)(U) — Ay P'(A)(U) givenby P(A)(U) :=
{# e P'(A)(U) : h’(A)a b,(pij ,l;,)(f)) = proju,,, (%) , for each a, b,a', b with U =
Upp = Uy} By Lemma 17. (a ) (iv), the ring homomorphism t'(A)y : A—>P’(A)(U)
factors (uniquely) as t'(A)y = i(A)y o t(A)y with ¢(A)y : A—P(A)(U) is a ring ho-
momorphism. Let U,V € S(A) with USV, then the ring homomorphism P(A)(V) Ay
PAYV) " PrA)(U) factors (uniquely) as P(A)(V) "2 p(ay@) @ prayw)
and h(A)Y; : P(A)(V)—P(A)(U) is a ring homomorphism; h(A)y; is an A-algebra ho-
momorphism, i.e. h(A)}; o t(A)y = t(A)y. To see that, just take composition of these
arrows with the inclusion i(A)y : P(A)(U) — P'(A)(U). It is easy to see that P(A) is a
contravariant functor and the family of inclusions (i(A)y : P(A)(U) — P'(A)(U))ves(a)
gives a natural transformation i(A) : P(A) — P'(A).

[m}
Proposition 20 Let A be a ring.

(i) For each U € B(A), P(A)(U) = {0} iff U = &. A/Nil(A) —=> P(A)(Spec(A)).
(ii) For each p € Spec®*(A), we have that the stalk of P(A) at p is

P(A), = lim P(A)(U) = ky(A).

UepB(A):peU

(iii) In general, P(A) is not a sheaf basis, but it always is a monopresheaf basis.

(iv) If A is a vN-reqular ring, then Spec™'(A) = Spec(A) and P(A) is a sheaf
that is naturally isomorphic to X 4, the usual structure sheaf of the affine scheme
associated to A.

Proof.
(i) Since P(A)(U,3) = A, 3, by 18.(c) we have that P(A)(U,;) = {0} iff U,; = &.
Since P(A)(Spec(A)) = A,; whenever U,; = Spec(A), we have A/Nil(A) —
)

ec(
Agp = P(A )(SPGC( ) (see 18.(b)).
(ii) Let p € Spec(A). Recall the canonical isomorphism

ko(A) := Res(4,) = Ay/p.A, = Frac(Afp) = A/p[A/p\{0}]™"

(1) Let a,by,--- ,by € A such that pe U, = Dy n Zr,. Then I[;1Sp and we have a
unique A-algebra epimorphism qé,z’ : A/I; - A/p such that qé’p oq}‘l‘; = q;‘. Since a ¢ p,
a/p € (A/p\{0}) and the canonical homomorphism j! : A/p — A/p[A/p\{0}]~" is such
that j;'(¢;'(a)) € Unit(Frac(A/p)). Define ff;’p = ! oqu : A/I;—>Frac(A/p). Then
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clearly fIAp(a/Ig) € Unit(Frac(A/p)). By the universal property of af/;; : A[IB—’Aa,By
We obtaln a umque homomorphism h“b . A g—Frac(A/p) such that h’ o oMl =

jp oqI - Oince q[ is surjective, we have

(2) hgb : A,y;—Frac(A/p) is the unique homomorphism such that hgj’ otd =

,b
jit o ¢it. Moreover n//l}? € Aup , aﬁ/}o € Frac(A/p).

(3)Ifc,dy,--- ,dy € Aaresuch that U, ;CU, 4, then ha’th(A)C@ = hc"Z: this follows
from (2) since, by 18.(iv), h(A)Cd A.g—A,p is the unique homomorphism such that

(4) Tt follows from (3) and Construction 19 that, for each V' € S(A) such that p e V,
we have a unique (well defined) homomorphism hl‘)/ : P(A)(V)—Frac(A/p) such that
for each ¢, dy, - ,d; € Asuch that V = U,j3, hy = h&? o proj. 5. Moreover, if U € $(A)
is such that p e USV, then hl o h(A)}; = ).

(5) Denote f,(A) := {U € B(A) : pe U}. By (4) we have a co-cone (h) )ves,(a) over

\4
the diagram (P(A)(V) gl P(A)(U))vcv.u,ves,(a)- Thus we have a unique homomor-
phism
h(A), : lim P(A)(U)—Frac(A/p)
UepBp(A)

such that for each U € 8,(A), h(A), 0 ¢up = hl) : P(A)(U)— Frac(A/p), where

Svp: P(A)V)— lim P(A)U), =z~ [(zV)]

UeBp(A)

is the canonical arrow. We will show that h(A), is an isomorphism.

(6) h(A), is surjective:
Let % e A/p[A/p\{0}]7! and select representatives x € A, ¢ € A\p. Let d; = 0
and consider V' = U, = D.n Zy = D,, then V € f,(A) (and I; = Nil(A)=p). By

c,d _

(2), 22 € Ag it P € Frac(Afp). Consider z := (h5(22))y, ,-v € P(A)(V).
Then h(A),([(z,V)]) = b (2) = th(iﬁz) = % € Frac(A/p), showing that h(A), is
surjective.

(7) h(A), is injective:
Let [(z,V)] € ker(h(A),) for some V € 5,(A) and z € P(A)(V). Consider ¢, dy,--- ,d

/

such that V' = U, ; and let n//lld € A.g such that proj.(z) = ci/lfld Since [(z,V)] €

ker(h(A),), we have Cx/p th(z/I‘i) = hy(z) = h(A)([(2,V)] = 0 € Frac(A/p).

"/p /1
Thus z € p Let a = cand b = {d, -+ ,d;} U {z}, then p € U, ;<U, ; and heda, b(ZL 2/lg ) =

((ZQZ?;:)) € A,p, for some k € N and some A € A such that )\.a —d el Let V' := U,
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and 2/ = (W% (X)), v Then V!,V € B,(4), V'SV and A,(2) = 2, thus

[(Z, V)] = [(2,V)] € Lim P(A)(U). We will show that 2/ = 0 € P(A)(V’), thus

UeBp(A)

[(2,V)] = 0€ lim P(A)(U) and ker(h(A),) = {0}, as desired. To ensure that 2’ =

UeBp(A)
0e P(A)(V"), it is enough to prove that (w;\n//f”)) 0€ A, ie., that 3 € N, a'z\" € Ij;:

Since € b, we have z € I; and we can choose any [ € N.

(iii) Consider the following three facts:
- any sheaf of rings over a boolean space whose stalks are fields has a vN-regular ring
as its global section ring (see Theorem 10.3 in [Pie], alternatively this follows from the
facts that fields are vN-regular and that vN-regular rings are closed under limits by
Prop. 6, since the ring of global sections can be expressed as a limit of a diagram of
ultraproducts of the stalks [Ken, Lemma 2.5] );
- P(A) is a presheaf basis over the boolean space Spec®™*(A) and its stalks are fields
(item (ii) above);
- a sheaf basis (as opposed to a presheaf basis) of rings and its associated sheaf over

any given space have isomorphic global section ring and isomorphic stalks (see Remark
23 below).

Thus, to see that, in general, P(A) is not a sheaf basis of rings, it is enough remark
that its global section ring is not a vN-regular ring in general, since P(A)(Spec(A)) =
A/Nil(A) (item (i) above). For this just take for A any domain that is not a field (see
Remark 2).

Now we will show that P(A) : (5(A),S)?—A — alg is a monopresheaf basis. We
have to prove that for any U € 5(A) and {U; : i € [}<f(A) such that U = | J,.; U;, the
A-algebra homomorphism (h(A)g )ier : P(A)(U)— ] [,c; P(A)(U;) is injective. Clearly
it is enough to prove that for any ¢ € A dCfmA and any a; € A,b; iZrinA , 1 € I such

that U, g = ;s U, 5, the A-algebra homomorphism (h(A)Z_db Jier * Aea— 1 Licr Au. s,

is injective. Suppose that there is ﬁ//f # 0 e A, g such that h(A)Z_dg_ (Cﬁ//lé) =0€ A, s,

Vi e I. From this we will derive a contradiction in the following four steps:
(1) 2L 20eA,g iff VheN, - x¢ Iz iff IpeZ, & -x¢p

cn/1z
(2) Up5,SUeq = Ik e N3N € A, N -c—af € I, and h(A)o (355) = AZ
L a; b;
(3) h(A)Cd (Ci//f; )=0¢€ A, iff 3 €N, (aF™)i-z- A7 e I, iff Yge Spec(A), (qe

VA =>EUZEN,( a,; )Z IL‘/\?G(]
(4) According to (1), we can choose p € Spec(A) such that p € Zr_,c*.x ¢ p. Then
pe Zi, 0 De=U.q= s U, thus there is i € I such that p € Z;, n D,,. Applying

(2), Ik; e NIN; € A N\jc— afi € p. Applying (3), 3l; e N, (afi")li.x.)\? € p. Since p € D,,

b;
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and x ¢ p, we must have \; € p and, since \;.c — afi € p, we conclude that a; € p,

contradicting p € Zj, n D,,. This finishes the proof of item (iii)

(iv) Let A be a vN-regular ring:
(1) By Fact 14.(i), for each x € A there is a unique idempotent e, € B(A) such that
(7) = (€a).
(2) Therefore every ideal ICA in A is radical (v/I = I): for each 2 € A we have z € [
iff for e, e ['iff Ine N (et el)iff Ine N (2" el)iff x e /1.
(3) By the result (2) above and Remark 15.(i), it follows that D, = D, iff (a) = (c¢).
(4) Let a,bg,...,b,—1 € A and denote e, fy, ..., fn_1SB(A) their (uniquely given) cor-
responding idempotents (so (a) = (e) and (b;) = (fi), @ < n) and write f := \/,_, fi.
Then:
Usp = Do 0 (VicnZy = De 0 (Ni<nZy = De 0 (VioyDiogy = Deqi_i-p) =
Deni—v,_, 1) = Dengr = Deppr 0 Zo;
(5) By results (3), (4) above and by Fact 14.(i), for each U € [(A) there is a uni-
que gV € B(A) such that U = Dyv = Dy n Zy (6) For each U € B(A), by result

(5) above, P(A)U) = (A0 /55 = (Ao = Aw = Da(U). Tt can
be proved that %H those isomorphisms are compatible so they give an isomorphism
V(A : Pa(U) — Ba(U).

(7) By result (4) and Fact 14.(i), U, ;SUy 5 iff DenpxSD,, s iff € A f* <€/ A f77
(8) By results (6), (7) above, if U, U’ € f(A), UCU’, then:

o(A)Y

U/
h(A)Y YAy SA(U) T Ba()).

(PaU') " PA(U) M 2,(U) = (PaU') Y

(9) By results (6), (8) above: y(A) : P(A) —=> 4.
|

Denote Boofield the full subcategory of Locringed whose objects are the sheaves
of rings over boolean spaces whose stalks are fields. In Theorem 10.3 in [Pie] is shown
that the ring of global sections of each sheaf in Boofield is a vN-regular ring. On
the other hand, Proposition 5.6 in [DMT]|, provides an(other) explicit proof that the
affine scheme of a vN-regular ring is a sheaf in Boofield. A natural question suggested
by item (iv) of Proposition 20 above is ask if, in general, any sheaf in Boofield is
Boofield — isomorphic to the affine sheaf of the ring of global sections. The answer is
the content of the following:

Proposition 21 (i) Let X be a boolean space and F : (Open(X),<)?—Ring be
a sheaf of rings over X such that for each x € X, F, :=  lim FU) is a

zeUeOpen(X)
field. Then ep := (hp,Tr) : Yrpy—F (see Remark 15.(vi)) is a Boofield —
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isomorphism. In more details:

(a) T(F) := F(X) is a vN-regular ring ([Pie], Theorem 10.3), thus Ypx) €
obj(Boofield) ([DMT], Proposition 5.6);

(b) hp : X —> Spec(F (X)) is a homeomorphism of boolean spaces;

(¢) Tp : Xpx) — (hr)e(F) is a natural isomorphism of sheaves over Spec(F(X)).

(ii) The adjunction (X,1,s,e) : Rings 2 Locringed, described Remark 15, restricts
to an adjunction equivalence (X,1',s,¢e) : Regrings < Boofield; in particular,
the categories Regrings, Boofield are equivalent.

Proof. Item (ii) is a direct consequence of item (i), since we already have that for
every ring A, s(A) : A —>T(X,) (see items (iv) and (viii) in Remark 15).

(i) (a) We just present an alternative proof that F(X) is a vN-regular ring. By
Proposition 3.2.(d) in [DMT7], for each C' € Clopen(X), the mapping (¢cz)zec :
F(C)— | |,cc F» reflects the satisfiability of geometrical formulas, it is pure in par-
ticular. As fields are vN-regular rings, products of vN-regular rings are vN-regular
rings and pure subrings of vN-regular rings are vN-regular rings (see Remark 3), then
it follows that F'(C) is a vN-regular ring; in particular, I'(F') = F'(X) is a vN-regular
ring.

(b) Since F'(X) is a vN-regular ring, Spec(F (X)) is a boolean space. By Stone du-
ality, to show that hr : X — Spec(F (X)) is a homeomorphism of boolean spaces, is
equivalent to show that (hz)™' : Clopen(Spec(F(X)))—>Clopen(X) is a boolean alge-
bra isomorphism. Since F'(X) is a vN-regular ring, the mapping jp(x) : B(F(X)) —
Clopen(Spec(F(X))), given by e — D, is a boolean algebra isomorphism (see Fact
14.(i)). Thus, it is enough to provide an inverse map to the BA-homomorphism
(hp)™ o jrx) : B(F(X))—Clopen(X), e — W, = the largest open subset U of
X such that F¥(e) is invertible in F'(U); note that W;_, = X\W,, thus W, is a clopen.

Let C' € Clopen(X) and denote C' := X\C; thus {C,C"} is a disjoint (cl)open
cover of X. Since F is a sheaf of rings, we have F(&) = {0} and (FZ, F3) : F(X) —
F(C)x F(C"). Denote by e(C),e(C") € F(X) the elements that under this isomorphism
correspond to, respectively, (1¢,0c/) and (O¢,1ler). Clearly e(C),e(C’) € B(F(X)),
e(C)-e(C’') =0 and e(C) +e(C") = 1.

We will show that the mapping Ex : Clopen(X)—B(F(X)), C — e(C), is the
inverse of (hr)™' o jr(x).

+ Ex o (hp)™' o jpx) = tdprx)):

Let e € B(F(X)) and denote ¢ :=1—e € B(F(X)). We must show that Fjy (e) =
1y, and FV)[fe,(e) = Ow,,. But Fyj (e) is invertible and idempotent in F(W,), thus
Fyy, () = lw,; likewise 1y, = Fyy (¢') = Fiy, (1—e)lw,, — Fyy (e), thus Fyy; (e) = Ow,.

x (hp)™ o jpix) © Ex = idciopen(x):

Let C' € Clopen(X) and denote C’ := X\C € Clopen(X). We must show that
C' = We). By the definitions, F@¥ (e(C)) = 1¢ is invertible in F(C), thus CSW,(cy;
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likewise CIQWG(C/) = Wl—e(C) = X\We(c). In this way {O, O/} and {We(c), We(cf)} are
both disjoint (cl)open covers of X the former one refining the latter: thus C' = We(e.

(c) Since 7p : Xpx) — (hr)o(F) is a natural transformation of sheaves over
Spec(F(X)), to prove that 7 is a natural isomorphism, it is enough to show that
(tr)v + Srpeo(U) — F(hi'[U]) is a ring isomorphism, for each U in some open
basis of X that is closed under finite intersections. In Remark 15.(vi), we saw that,
for each a € F(X), (77)p, : rx)(Da)—F(hz'[D,]) is naturally identified with the
homomorphism F(X),—F(W,), obtained from the arrow Fyy : F(X)—F(W,) by
the universal property of the ring of fractions F/(X)—F(X),.

Since F'(X) is a vN-regular ring, (a) = (e) for a unique e € B(F(X)). Therefore
D, = D., W, = W, and F(X), Olie F(X).. Thus we only need consider the homo-
morphisms F(X).—F(W,), obtained from the arrows Fy; : F(X)—F(W,) by the
universal property of the ring of fractions F(X)—F(X)., e € B(F(X)).

Since {W,, W} is a disjoint (cl)open cover of X and F is a sheaf, we have an iso-
morphism (Fy) , Ff )« F(X) — F(W,) x F(W/). Thus F}\ : F(X)—F(W,) can
be identified with the canonical epimorphism F(X) — F(X)-e. Let ¢ := 1 —e. By
Fact 14.(i), we have the canonical inverse isomorphisms of F(X)-algebras F(X), =~
F(X)/(¢') = F(X)-e. Thus Fyy, : F(X)—F(W,) can be identified with the canonical
(epi)morphism of fractions F(X) — F(X),, then F(X).,— F(W,) is an isomorphism,
finishing the proof. |

The association A — P(A) extends to a functor from the category of rings to the
category of presheaves (or presheaf bases) over variable spaces. Keeping the notations
in 17, 19, this is content of the following:

Fact 22 Let f: A— A’ a ring homomorphism.

(i) f* :  Specost(A)—Specst(A) is a spectral map such that
(f*)7': BA)—B(A) : Uyp — Uk sy 1 = id(A) then (f*)~' = id(B(A)). If
[ A'— A" is a ring homomorphism then ((f' o f)*)™' = (f*)" o (f*)7"

(ii) Consider a € A, bSp,A. There is a unique ring homomorphism

_ . A ~ _ A _ A B .
Jab i A Af(a”(b) such that f,; o tos = Uity .rd) © f. Moreover: )

wif c€ A, dinA is such that U, ;U g, then f,5 0 h(A)0Y = h(A) 10
« 1f f =1idy, then f,; =ida_; ;
« if f'+ A'— A" is a ring homomorphism, then (f' o f),5 = f}(a) 1) © Jab-

=

O feds

=

(iii) There is a canonical natural transformation f : P(A)—(f*).P(A’) of contra-
variant functors over (f(A), <), where (f*).P(A’) is the direct image presheaf base of
P(A") under f*. Moreover,

(AL Ay — (Pa) LD peany)
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is a functorial association. More explicitly:

For U € $(A) there is a unique ring homomorphism fy : P(A)(U)—P(A)((f*)~'[U])
such that fy ot(A)y = t(A")(p)-1jv © f and with the following properties:

+if V € B(A) s such that USV., then fy o h(A)}; = WAl o o

« if f =1da, then fy = idp(A)(U) ;

« if '+ A/— A" is a ring homomorphism then (f' o f), = f’(f*)—l[U] o fu. o

Remark 23 On the associated sheaf of a presheaf basis: ([EGA])

Let BSOpen(X) be a basis of the topology. For each U € Open(X) define B(U) :=
{De B:DcU}; if UCU' are open sets note that B(U)<B(U").

Consider a “presheaf basis” F' of rings defined on the basis B (i.e., a contravariant
functor F' : (B,<)?—Rings) and a “sheaf basis” G of rings defined on the basis B
(i.e., G is a presheaf basis and satisfies the condition that any compatible family of
sections has a unique gluing). Then:

(i) As the stalks of the presheaf basis ' on B are determined, there is a sheaf basis
F : (B,<)—Rings and a natural transformation op : F—F, satisfying the
universal property that characterizes the construction up to unique isomorphism.

(i) If USU’ are open sets, define G(U) := lim G(D) and G(U — U') : lim

DeB(U) D’eB(U’)

G(D')— lim G(D) is the projection homomorphism.

pCuU

(iii) G is a sheaf on open(X). If D € B, then G(D) =~ G(D) (through the canonical

A~

projection): This characterizes the construction G — G up to unique isomor-
phism.

(iv) The mapping F — S(F) := F satisfies a universal property that characterizes the

construction up to unique isomorphism. Moreover, F', F' and F have (canonically)
isomorphic stalks.

(]

As the direct image of a sheaf under a continuous function is a sheaf (over the
codomain space), the following result is a direct consequence of the universal property
of the associated sheaf in Remark 23 and Fact 22.(iii).

Fact 24
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Let A be a ring. Denote by S(A) : (Open(Spec*(A)), =)?—A — alg the as-
sociated sheaf of the presheaf base P(A) : (5(A),S)?—A — alg. For each U €
Open(Spect(A)), denote (A)y : A—>S(A)(U) the ring homomorphism that
encodes the A-algebra structure on the ring S(A)(U); denotena := 6(A)gpeceonst () :
A—>S(A)(Specmst(A)).

Let f: A—A’ be a ring homomorphism and still denote by S(A) and S(A’) the
sheaves with codomain in the category Rings. There is a canonical natural trans-
formation f :  S(A)—(f*).S(A") of contravariant functors over
(Open(Spec™t(A)), <), where (f*).S(A’) is the direct image (pre)sheaf of S(A")
under f*. ]

Moreover, (A L, A — (S(4) ) S(A’)) is a functorial association. More
explicitly:

Consider U € Open(Spec®**(A)), then there is a unique ring homomorphism
fi + SAYNU)— SN [U]) such that fi o 0(A)y = B(A)gyw © f.
Moreover: ) L §

« if V e B(A) is such that UV, then fir o s(A)Y = s(A")1) 11 o fu;

« if f =ida, then fu = idpayw) ;

s if f' A'— A" is a ring homomorphism, then (f"o f),; = f' -1 © fu-

—

Consider now the following:

Construction 25

e Let A be a ring. Define R(A) := T'(S(A)) = S(A)(Spec™*(A)): Note that

R(A) € obj(RegRings) because it is given by the global sections of a sheaf of
rings over a boolean space whose stalks are fields.

o Let f: A— A’ be a ring homomorphism. Define

R(f) 1= fspecconsicay : S(A)(Specmt(A))—S(A')(Spece™st(A')).

Note that f*~'[Specet(A)] = Speccost(A").

e By Fact 24.(ii) above, these mappings determine a functor R : Rings— RegRings.

e For each ring A, consider the ring homomorphism 74 : A—>R(A) described

in Fact 24.(i) above. Then, by Fact 24.(ii), (74) acobj(Rings) defines a the natural
transformation 7 : Idgings—>10 R, where 7 is the inclusion functor i : RegRings —
Rings.
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Finally we are ready to state and prove the following:

Theorem 26 The inclusion functor i : RegRings <— Rings has a left adjoint given by
the functor R : Rings— RegRings and the natural transformation n = (nA)Aeobj(ngs)
is the unit of this adjunction.

Proof. We will check that the conditions (E), (U), (U”) in Proposition 12 are satisfied.

(E) Let V be a vN- regular ring. By Proposition 20.(iv) we have SpecCO"St(V) =
Spec(V) and Xy — P(V) thus, in particular, P(V) — S(V) and
V = 2(V)(Spec(V)) = P(V)(Spec(V)) (see Remark 15). Keeping track of the
former isomorphisms, we can conclude that ny : V—S(V)(Specs*(V')) is an isomor-
phism, establishing (E).

By Proposition 21, hguy : Spec®™(A) i> Spec(R(A)) and, for each
U € Open(Spec(R(A))), we have 75(4)(U) : Egea)(U) — S(A)(h S(A)[U])

(U) A diagram chase shows that

(Spec®™(A) "5t Spec(cR(A)) Ta, Spec(A)) = (Spec™™(A) _, Spec(A))

Thus, since hg(a) is a homeomorphism, we conclude that (na)* : Spec(R(A)) —
Spec(A) is a spectral bijection, establishing (U).
(U”) By Proposition 20.(ii) and Remark 23.(iv), for each p € Spec®*(A), P(A), =

kp(A) = S(A),. As hisay(p) = ker(R(A) > S(A)y), (Tsa))p * (Srea)hsiy ) —> S(A)y
and (Zp(a))ngea (p) = ER A)/hS(A (P) = knga ) (R(A)) (smce R(A) is vN-regular), we
get an isomorphism k,(A) — kng, @) (R(A)).

Keeping track of the former isomorphisms and by the above proof of (U), we can
conclude that, for each ¢ € Spec(R(A)), Na, : kyy () (A) =5 ky(R(A)), establishing (U”).
|

Corollary 27 The functor R preserves all colimits. In particular it preserves:
1. directed inductive limits;
2. coproducts (= tensor products in Rings);

3. coequalizers/quotients.

Proof. Since it is a left adjoint, R preserves all colimits. We explain the mea-
ning of the preservation of quotients. Consider the induced homomorphism R(q;) :
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R(A) — R(A/I): it is surjective since the coequalizers in Rings and RegRings coi-
ncide with the surjective homomorphisms. Then I := ker(R(q;))SR(A) is such that
R(qr) : R(A)/T = R(A/I) and, since R(A) — [ Liespec(a) ko(A), I can be identified
with R(A) n {Z = (zp)pespec(a) € [ Lyespec(a) kp(A) 1 Vp 2 L 2, = 0 € ky(A)}. Note in

particular, that if IS Nil(A), then R(q;) : R(A) —> R(A/I), thus T = {0}. u

The following results are specific to the functor R, i.e., they are not general conse-
quences of it being a left adjoint functor.

Proposition 28 R preserves localizations. More precisely, given a ring A and a mul-
tiplicative submonoid SCA, denote S' := na|S]SR(A) the corresponding multiplica-
tive submonoid and let n5 : A[S]|*—R(A)[S']! be the induced arrow, i.e., 05 is
the unique homomorphism such that 13 o o(A)s = o(R(A))s © na. Then nags—1
A[S] 1> R(A[S]™Y) thus it is isomorphic to the arrow 03, through the obvious pair of
inverse (iso)morphisms R(A[S]™') = R(A)[S']~ .

Proof. First of all, note that R(A)[S’]"! is a vN-regular ring, cf. Prop. 5. For
each vN-regular ring V, the bijection (— ony4) : RegRings(R(A),V) —> Rings(A,V)
restricts to the bijection
(—ona) : {H € RegRings(R(A),V) : H[S"|<Unit(V)}
—=> {h e Rings(A,V) : h[S]<Unit(V)}.
Composing the last bijection with the bijections below, obtained from the universal
property of localizations,

(—o0a(A)s)': {he Rings(A, V) : h[S]cUnit(V)} —=> Rings(A[S]}, V),
(—oo(R(A))s) : Rings(R(A)[S]7", V) => {H € Rings(R(A),V) : H[S'|<Unit(V)},
we obtain, since RegRings is a full subcategory of Rings, the bijection

(= on3) : RegRings(R(A)[S']7', V) = Rings(A[S]™',V).

Summing up, the arrow n3 : A[S]"!—>R(A)[S']"! satisfies the universal property of
vN-regular hull, thus it is isomorphic to the arrow napg;-1 : A[S]'—R(A[S]™"). W

Proposition 29 R preserves finite products. More precisely, let I be a finite set and
{A; i€ I} any family of rings. Denote m; : [[,.; Ai — A; the projection homomor-
phism, j € I. Then [l.c;na; @ [ Lic; Ai— 1 Lie; R(A;) satisfies the universal property
of vN-regular hull, thus it is isomorphic to the arrow n_, A, * | Lie; A—R([ [,e; As),
through the obvious pair of inverse (iso)morphisms R(] [..; Ai) < [ ;e R(4:).
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Proof. (Sketch) First of all, note that [[,.; R(A;) is a vN-regular ring. If I = ¢,
then [[,.; A, [[,c; R(A;) and R([[,.; Ai) are isomorphic to the trivial ring {0}, thus
the result holds in this case.

By induction, we only need to see that (R(m), R(m)) : R(A; x Ay) — R(A;) x
R(Aj3). But we have:
o [m7,m5]: Spec(Ay) L Spec(Ay) = Spec(A; x Ay), (pii) — m; *[pi], i =1,2.
o [m,m5] 0 Spectomt(A) L Spectt(Ay) > Spectst(A; x Ap).
o Let a:= (aj,a2) € Ay x Ay and b := {(b11,021),  , (b1.n, b2n) }S fin A1 x Ag, then
(A1 x A2)ap = Aig 3, X Azayfy-
® UpeSpec(Ay XA2)kP(A1 x Ap) ~ ('-‘plespec(Al)km(Al)) U ('—'meSPEC(Al)km (A2)).
e Let U € Open(Spec(A; x Ap)), then U ~ Uy u U,y, where U; = (7}) U] €

(2

Open(Spec(A;)). Then any sheaf S satisfies S(A)(U) = S(A1)(Ur) x S(As)(Us).

Now the construction of R as the global sections of of a sheaf allows to conclude
R(Al X AQ) = S(Al X AQ)(S])€C(A1 X Ag)) = (S(Al)(SPGC(Al)) X S(AQ)(SP@C(AQ))) =
R(Ay) x R(As).

|

Remark 30 By a combination of Theorem 26, Proposition 21.(ii) and Remark 15.(viii),
in some sense, any ring viewed as an object of Locringed has a "nearest field””. In more
details, for each affine scheme A (i.e A = ¥ 4), there is an affine scheme V4 in Boofield
and there is a Locringed-morphism (ha,74) : A—>V4, such that for each (X, F) in
Boofield, and for each Locringed-morphism (h, 1) : A— (X, F'), then there is a unique
Locringed-morphism (h,7) : V4— (X, F) such that (h,7) o (ha,74) = (h, 7). o

4 Some calculations and remarks

In Proposition 11.(iv) we saw that, given a ring A, then for each a € A, a €
Nil(A)ena(a) € Nil(R(A)) = {0}. It is natural to ask if the canonical homomorphism
na : A—>R(A) reflects other ring-theoretic properties.

31 If V is a vN-regular ring then the diagonal ring homomorphism
ov + V] Licspecry ks(V) is injective (because ker(dy) = Nil(V) = {0}), but much
more holds: as V' is isomorphic to the ring of global sections of its spectral sheaf and the
space Spec(V') is boolean, it follows from Proposition 3.2.(d) in [DMT7] that dy : V »—
HseSpec(V) ks(V) is an Lying-pure embedding, i.e., if we consider the language L,;,, =
{+,—,0,-,1} and we take any existential positive L,;,,-formula, say ¢(z1,...,z,), then

"Clearly, the inclusion functor Fields «— Rings does not have a left adjoint. On other hand, each
ring A admits a essentially unique family of ”nearest fields”: {a;‘ : A—k,(A)}, establishing that
Fields — Rings has a multi left adjoint.
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for each by,...b, € V, ¢[by,...,b,] is true in V iff ¢[dy(b1),...,0v(b,)] is true in
HseSpec(V) kJS(V) O

32 Let us write B*® for the set of invertible elements of a ring B. For a given ring A,
we have that for each a € A, a € A* < na(a) € R(A)®. Indeed, it follows from some
well known results in Commutative Algebra and the calculations in Section 2, that

a € A is invertible iff Vp e Spec(A) a/p #0/pe A/p

iff Vpe Spec(A)ay (a) € kp(A) is invertible

il d4(a) € [ [espec(a) kip(A) is invertible

it 74 004(a) €[ [ espee(riay Fa(R(A)) is invertible

iff On(a) 0 nala) € [ oespec(riay Fa(F(A)) is invertible

iff na(a) € R(A) is invertible (since dp(a) is a pure embedding) o

33 The sheaf theoretic description of the vN-regular hull, and the fact that dga) :
R(A) = [especiriay ka(R(A)) is a pure embedding, give us a guide to “calculate”
some vN-regular hulls. For instance:

(i)

Since R(A) is the ring of global sections of the sheafification of a known
(mono)presheaf, its elements are obtained by gluing of sections of this presheaf,
and the canonical map 14 : A — R(A) is the one that maps elements of A to the
compatible families they represent (and which appear in more general form in the
process of gluing). Potentially, this more concrete description of the vN-hull can
provide information easier than just by the use of the universal property.

Let A be a ring. Then the following are equivalent:

(a) Spec(A) is a finite spectral space.

(b) Spec™™st(A) is a finite and discrete space.

(¢) R(A) is isomorphic to a finite product of fields.

We analyze only the non-obvious implication: (b) = (c¢). Assuming Spec®™*(A) is
a finite and discrete space, then S(A)({p}) = S(A4), = k,(A); moreover
S(A)(Spec!(A)) = S(A) Upespee) (P} = 1 hespecia) S(A)({p}), since S(A) is
a sheaf. Thus R(A) = S(A)(Spec®™*(A)) = [ [ cspec(a) kp(A) and na : A—R(A)
can be identified with the diagonal homomorphism 64 : A— [ [ cgpeea) kp(A)-
In particular:

e R(A) is a trivial ring iff Spec(A) = F iff A is a trivial ring.

o R(A)is a field iff Spec(A) = {m} iff A is a zero-dimensional local ring; moreo-
ver, in this case, R(A) = Res(A) = A/m.

o If Ais a finite ring, then Spec(A) is a finite space and k,(A) = A/p. Then
R(A) = S(A)(Spece ™ (A)) = [ [ espec(a) A/p is a finite ring (a finite product of fi-
nite fields) and 74 : A—> R(A) can be identified with the diagonal homomorphism
(45 Jpespec(a) : A—> [ Lcspec(ay A/p-



VN-HULL AND QUADRATIC FORMS 231

(iii) If F[x] the ring of polynomials in one variable over the field F, R(F'[x]) is a pure
subring of F'(z) x| [{ simple algebraic extensions of F'} and F'[x] is in the diagonal.
In particular, when F is an algebraically closed field, then the (boolean) space of
1-types of F' is homeomorphic to Specs(F[z]) and R(F[z])SF(x) x F¥ is a
pure subring containing F'[x].

(iv) R(Z) is a pure subring of Q x [ N, prime Z/PZ. Consider n € N\{0, 1}, say
n = p°.--- .py¥, with p; > 0 distinct primes and e; > 0, i < n; if A = Z/nZ
then the canonical arrow 74 : A — R(A) can be identified with the projection
onto the quotient g, : Z/nZ — Z/n'Z, where n' = py - ... - pp: as dgmz =
(Gnp)isk * L/nl—1],o, Z/piZ we get Nil(A) = ker(6a) = n'Z/nZ<Z/nZ, and
because R(A) = R(A/Nil(A)), we just have to see that dz/mz = (¢up)i<k :
70 L~ [ |,<;, Z/piZ is an isomorphism, this follows from the injectivity of dz/nz
and a counting argument or by Chinese Remainder Theorem.

(v) If Ais a ring with Krull dimension = 0, then Jac(A) = Nil(A) and A/Nil(A)
is vN-regular, since it is reduced and zero dimensional. It is straightforward to
check that to the quotient map qnua) : A - A/Nil(A) satisfies the universal

property of vN-hull. Thus we can conclude that 14 : A — R(A) is isomorphic to

5 The vIN-Hull in categories of preordered rings and
applications

In this section, we extend the construction of the vN-Hull to categories of preordered
rings.

Remark 34 On preordered rings: ([Lam2|, [Mar2])

(i) A preorder in a ring A is a subset TS A such that A% = {a? : a € A}<T,T +
T<T, T.T<T. The intersection of any set of preorders in A is a preorder in A. It
follows that the set po(A) = {T<A: T is a preorder in A}, ordered by inclusion,
is a complete lattice, in which Y] A? and A are the extremal preorders in A. A
preorder TS A is properif T # A. 1If 2 € A* (<2 € R(A)*) then T<A is proper
ifft —1¢7T. If TCA is a preorder, then 7'~ —T is an ideal in A. An order in A
is a (proper) preorder PCA such that P u —P = A and P n —P € Spec(A). If
—1¢ T<A is a (proper) preorder then a maximal preorder P such that —1 € P
and T<P is a (maximal) order in A. Not every order is maximal under inclusion.
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(ii) The set Sper(A) = {P<A: Pisan order in A} is called the real spectrum of A and
has a natural spectral topology: it has as subbase the set {S,&Sper(A) : a e A}
where S, := {P € Sper(A) :ae€ P\ — P}, ae A. For T € po(A) we consider also
the subspace Sperr(A) = {P € Sper(A) : TSP}, then Spery 42(A) = Sper(A).
There is a spectral map I14: Sper(A) — Spec(A), P+— P n —P.

Now consider a ring homomorphism f: A—A’.

(iii) The inverse image function induced by f is a contravariant increasing function be-
tween the complete lattices f* : po(A')—po(A) : T'— f*(T') := f~[T']. The
inverse image of a proper preorder is a proper preorder. Moreover, the image in-
verse function gives a well defined (spectral) function: f* : Sperg/(A’)—>Sperr(A)
, for each T € po(A), S" € po(A"), T<f*(S"). The direct image function induced by
f is a covariant increasing function between complete lattices f, : po(A)—po(A’)

T [(T) = S A%f[T] (= S € po(A) : JITIES)).

(iv) The pair of functions given by direct and inverse image (fs, f*) : po(A) <= po(A’
forms an adjunction: for each T € po(A),S" € po(A") , (f[T]=S" iff) f.(
T< f*(S), in particular T< f* o f,(T) , foo f*(S")S" and f.(T) = f.o
s [rofio f1(9) = f1(S).

(v) The direct and inverse image constitute, respectively, a covariant and a con-
travariant functor Rings—> CompleteLattices. Le. (ida). = idpoay = (ida),
and if f': A’— A" is a ring homomorphism, then (f’' o f). = (f')« o (f)« and
(frof)y =)o lf)

(]

Fact 35 Consider the category poRings whose objects are the poRings (A, T) and ar-
rows h : (A, T)—(A’,T") are the ring homomorphisms h : A—>A’ such that h|T|<T".
Then:

(a) If h : A— A’ is a ring homomorphism and T € po(A), T’ € po(A’), then we have
the following equivalences: RT|cT  iff  h(T)ST' iff  T<h*(T).

(b) Let Lporings = (+,-,—,0,1,T( )) be the first-order language that extends the lan-
guage of rings by the addition of a unary predicate symbol T( ). Then poRings is a
full reflective subcategory of the category Lyorings — Str of all Ly,gings-structures and
its Lporings-homomorphisms.

(c) poRings — Lyorings — Str is an elementary subclass that is closed under upward
directed colimits, substructures, products, reduced products.

(]
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Proposition 36 Let A be a ring. Then the vN-hull, na: A — R(A) induces a (spectral)
bijection between spectral spaces Sper(R(A)) — Sper(A). This bijection fits into a

commutative diagram with the maps 14, gy of Remark 34(ii), and the bijection
(na)*: Spec(R(A)) — Spec(A).

Proof. There is a natural bijection between Sper(B) and equivalence classes of ring
homomorphisms from B to a real closed field: where f : B—F | f' : B—F" are
equivalent if there is a real closed field K and homomorphisms j : F— K, j' : F— K’
such that jo f = j' o f/ 8 Using this identification, the first claim follows from the
universal property of n4.

The second claim follows simply from the definitions of I14, IIz4y and the fact that
taking preimage of a set under a ring homomorphism commutes with finite intersection
and negation. ]

Remark 37 Consider the vN-Hull 4 : A—R(A).

o If T € po(A) is proper, then there is an order P € Sperr(A). Since (n4)* :
Sper(R(A))—Sper(A) is bijective (by Prop. 36), there is an order @) €
Sper(R(A)) with TS(n4)*(Q), i.e. (na)«(T)SQ. Thus (na)(T) € po(R(A)) is
a proper preorder, too. On the other hand, as TS(na)*((na)«(1)), if (na)«(T) is
a proper preorder on R(A), then T is a proper preorder on A.

o If P € Sper(A) is a mazximal order, then P € po(A) is proper so (na).«(P) €
po(R(A)) is proper and (n4)*((na)«(P)) € po(A) is proper, too. In this case,
as P<(14)"((na)«(P)), we get P = (14)*((na)«(P)); since (na)* : Sper(R(A)
—>Sper(A) is a increasing bijection, P = (n4)*(Q) for some (unique) @
maxSpec(R(A)) and, as P = (n4)*((na)+(P)), then (na).(P) = Q € po(R(A)
is a maximal order. Summing up, we have the pair of inverse bijections {Q

Sper(R(A)) : @ is maximal} Eqi;* {P € Sper(A) : P is maximal }.
NA)x

~—

m

~—

m

(]

The remarks above suggest that the association (A,T) — (R(A),(n4)+(T)) has a
privileged role. For simplicity, we will write T}, := (n4).(T).

Proposition 38 If poRegRings denotes the full subcategory of poRings formed by
pairs (V,S) where V is a vN-reqular ring, then the inclusion functor poRegRings <
poRings has a left adjoint. Il.e., for each poring (A,T), the poring-morphism 14 :

8This relation is transitive because the elementary class of real closed fields is model complete and
has the amalgamation property for (mono)morphisms.
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(A, T)—(R(A),T.) has the following universal property: Given a poring (V,S) with
V' a vN-regular ring and a poring-morphism f : (A, T)—(V,S), there exists a unique
poring-morphism F : (R(A),T,)—(V,S) that extends f through na i.e. Fona = f.

Proof. As the underlying functors poRings— Rings, poRegRings—> RegRings are
faithful and 14 : A—R(A) has the universal property relatively to the inclusion
RegRings — Rings, it only remains verify that F[T,]=S. This can be seen as fol-
lows:

FIT ]S iff Fu((na)(T)) = Fu(TW)SS iff (Fona).(T)=S iff fo(T)=S iff f[T]cS

Corollary 39 (Relative version of Prop. 36) For each ring A there is a natural
bijection between the orders in A and the equivalence class of ring homomorphisms
from A to a real closed field. Using these identification, it follows from the universal
property of na that it induces a continuous bijection (na)* : Sperr, (R(A))— Spery(A).

a

6 Applications to the theory of Quadratic Forms

In this section, we consider some applications of the previous constructions to some
abstract codifications of the theory of quadratic forms over rings, mainly to Special
Groups Theory ([DM1]).

For any ring A here, we will assume 2 € A®*. By preorder here we will always mean
proper preorder.

40 On real semigroups of porings:

In [DP1], [DP2] the authors introduce the concept of real semigroup. This is a first
order axiomatizable concept intended to deal with quadratic forms over general preor-
dered rings. The category of real semigroups is dual to the category of abstract real
spectra.

In [DP1, 9.1(A)] the authors describe a covariant functor S from the category of
porings into the category of real semigroups. In particular, the (canonical) poring-
morphism 74 : (A, T)—(R(A), T,) induces a canonical morphism of real semigroups
S(na): S(A,T) —S(R(A),T).

The Post hull of a real semigroup M is defined as the algebra of continuous functi-
ons C(Xy,3) where 3 = {1,0,—1} and X, is the boolean space Hom(M,3) with the
constructible topology, see [DP2, TI1.4]. o
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Theorem 41 The morphism of real semigroups S(na) : S(A, T)—S(R(A),T.) indu-
ces an isomorphism between Post hulls. In particular it is a complete embedding of real
semagroups and thus reflects the Witt-equivalence of forms.

Proof. When M = S(A, Y] A?), then X}, is the booleanization of the spectral space
Sper(A) = Spers 42(A); this result can be easily extended to the relative version Tc A a
preorder. It follows from Corollary 39 above that 0} : Xg(ra),r+)—Xs(a,r) is a homeo-
morphism of boolean spaces. Therefore Post(74) : Post(S(A,T))—> Post(S(R(A),T*)
is an isomorphism of Post algebras.

By [DP2, Thm. II1.4.5] a morphism of semigroups is a complete embedding (i.e.
it reflects reflects Witt-equivalence [DP2, 1.2.7(c)], [DP2, I11.4.3)) iff it induces an in-
jective map on Post-hulls, which proves the second claim. |

We will focus now on applications of the vN-hull construction to the first-order
theory of Special Groups in the language Ls¢ = (-,1,—1,=) ([DM1]). We begin by
registering the following facts:

Lemma 42 (/MS/) For each n € N, the functor k-theory functor k,, : protoSG—ptGr
([DM6]), preserves pure embeddings, where the language of pointed groups is Lyc, =
('7 17 _1) . O

Corollary 43 If f : G — G’ is a pure embedding of a protoSG, G, into a RSG, G', that
satisfies the property [SMC] (Special Marshall’s conjecture, [DM6]), then G is a RSG
that satisfies [SMC] and [MC] (Marshall’s signature congecture), [MWRC] (Milnor’s
congecture for the graded Witt ring) ([DMT]).

Proof. As each of the axioms for RSGs is either a negation of an atomic formula
or the universal closure of ¢ — v, where ¢ and 1 are positive primitive formulas,
we can conclude from the hypothesis that G is a RSG. Since G’ satisfies [SMC],
wn(G") : ky(G')—kny1(G') is injective (w,(G') = I(—1) ® —), ¥n € N. By Lemma
42, the homomorphism k,(f) : k,(G)—k,(G") is injective for each n € N and, as
Wi (G ok, (f) = knt1(f)own(G), we conclude that w,(G) : k,(G)—kn+1(G) is injective
Vn e N, i.e. G satisfies [SMC]. The equivalence between [SMC] and the conjunction of
[MC] and [MWRC] is established in Lemma 1.2 in [DM7]. |

44 On (proto-)special groups of porings:
Denote by G : poRings—protoRSG the functor

(A, T) - (A, T')) € poRings  —  (A*/T* — A"/T") € protoRSG
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(i) It is straightforward that G preserves directed inductive limits, products and reduced
products. Moreover, as a consequence, G preserves pure embeddings.

(ii) Theorem 7.2 in [DMY7] establishes that if V' is a vN-regular ring (with 2 € V*) and
ScV is a (proper) preorder in V', then G(V, 5) is a RSG that satisfies [MC], [SMC] and
[MWRC]. o

Now we will apply the previous results on poRegRings to describe classes of porings
and RSGs that are interesting under different criteria:
(I) Categorial: they are full subcategories of, respectively, poRings and RSG, closed
under many constructions.
(IT) Logical: they are (relatively simple) first-order elementary classes in the appropriate
languages.

(III) Quadratic form theory: the associated RSGs satisfy the interesting properties
[MC], [SMC] and [MWRC].

Theorem 45 Consider the class
vNpur:={(A,T) € poRings | G(na): G(A, T)—G(R(A),Ts) is an Lsg-pure embedding}

(i) (Alternative descriptions of vNpur.) Let (A,T) € poRings. Then the following
are equivalent:

(i1) (g(aﬁ))pespm(fl) : g(A7T)—’Hpespec(A) G(ky(A), (aﬁ)*(T)) is an Lgg-pure
embedding

(i2) G(( )pespec)) © G(A, T)—G ([ Tpespeciay(kn(A), (0)u(T))) is an Lsg-pure
embedding

(i3) G(6a) : G(A, T)—G((I espec(a) kp(A)): (04)«(1)) is an Lsg-pure embedding

(i4) G(na) : G(A, T)—G(R(A), (na)+(T)) is an Lsg-pure embedding

(i5) 3(V,S) € poRegRings,3h : (A, T)—(V,S) poRings — morphism, such that
G(h): G(A,T)—G(V,S) is an Lgg-pure embedding.

(ii) The full subcategory vNpurSpoRings is closed under: (a) isomorphisms; (b) pure
substructures; (c) directed inductive limits; (d) (non-empty) products; (e) proper
reduced products; (f) elementary equivalence.

(11i) vNpur is an Lyorings-€lementary class that is axiomatizable by Y3-sentences and
also by Horn sentences ([CK]).

(iv) If (A,T) € vNpur, then G(A,T) is a RSG that satisfies [SMC] and [MC], [MWRC].
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Proof. We already remarked in 32 that 2 € A® iff 2 € R(A)* and, in 37.(i), we saw
that T is a proper preorder on A iff (n4).(7") is a proper preorder on R(A).

(i) The equivalence (il1) < (i2) follows from the fact the G is a functor that preserves
products. (i2) < (i3): follows from the characterization of products in poRings and of
direct image of preorders. (i4) = (i5): is clear. (i5) or (i3) = (i4): since whenever a
composition go f is pure, then f is pure, the result follows from the universal property
of the poRing-morphism n4) : (A, T)—(R(A),T}). (i3) = (i4): it follows from Propo-
sition 3.2.(d) in [DMY?] that the arrow d4 : (R(A), T)— (I Lespee(a) kn(A)); (6.4)«(T)
is a Lporings-pure embedding. Since G is a functor that preserves pure embeddings, the
result then follows from the fact that if g, f are pure then g o f is pure.

(ii) We use the characterization in (i5). The closure under (a) and (b) are clear
because the composition of pure embeddings is a pure embedding.

(c) Let (I,<) be an upward directed poset and let {((A;, T;) L, (A;,T;) i < je

I} < vNpur be a directed system; consider the pure embeddings

G(na,) : G(A;, T;)—G(R(A;), (Ti)). Since the directed colimit of pure embeddings

is a pure embedding ([MM2]), the colimit arrow lim G(na,) :lim G(A;, T;)—> lim
i€l el iel

G(R(A;), (T;)) is a pure embedding. Since poRegRings < poRings is closed under

directed colimits and both functors R and G preserve directed colimits,

lim G(R(Ay), (T;).) = G(R(lim A;), lim (T;).),

i€l i€l el
there is a pure embedding F' : G(lim (A;,T;))—G(R(lim A;),lim (T;).), with
i€l iel i€l

G(R(lim A;),lim (T;)+) € poRegRing, i.e. lim (A;,T;) € vNpur.
el el el

(d) Let I be a non-empty set and {(A4;,T;) : i € I} < vNpur. For each i € I choose a
pure embedding G(f;) : G(A;, T;)—G(V;, S;), with V; a vN-regular ring. Since the pro-
duct of pure embeddings is a pure embedding ([MMZ2]), the product arrow [ [,_, G(f;) :
[1ic; 9(A;, T;)— [ L.c; G(Vi, Si) is a pure embedding. Since poRegRings < poRings is
closed under products and G preserves products, there is a pure embedding
Fio= G ier fi) : 9 Lier Ai Ties T)—G ([ Lies Vis TLies Si), with (I Tie; Vi, [ Lies Si) €
poRegRing, i.e. |],.;(A;,T;) € vNpur.

(e) Let F be a proper filter over a set I # ¢ and {(A;,T;) : i € I} < vNpur; it is
well-known that the reduced product (] [,.;(A;,7;))/F is isomorphic to the inductive

Projik

limit of the direct system { ([ [,.;(4:, 7)) — ([ Liex(4iT3)) - (J 2 K) € F ) (see,
for instance [MM1]), and the conclusion follows from items (a), (c¢) and (d).

(f) By Fraine’s Lemma (Lemma 8.1.1 in [BS]), (A,7) = (A, T") iff (A, T) is elementary
embeddable in some ultrapower of (A’,T7") and the conclusion follows from (a), (b) and

(e).
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(iii) All the statements follow from well-known model-theoretic results applied to
item (ii). By Theorem 4.1.12 in [CK], a subclass of first-order structures is elementary
if and only if it is closed under ultraproducts and elementary equivalence, conditions
guaranteed by items (e) and (f) in (ii). By Theorem 6.2.5 in [CK], an elementary
class of structures is axiomatizable by Horn-sentences if and only if it is closed under
reduced products and this condition is assured by (ii).(e). By Theorem 5.2.6 in [CK],
an elementary class of structures is axiomatizable by V3-sentences if and only if it is
closed under direct inductive limits of embeddings: the desired conclusion comes from
(ii).(d).

(iv) By 44.(ii) and Corollary 43. |

Corollary 46 The full subcategory v Npur is weakly reflective in poRings, i.e. for every
preordered ring R there exist a preordered ring R € vNpur and a morphism f: R — R
such that every morphism R — P with P € vNpur factors through f (not necessarily
uniquely). Moreover it is weakly cocomplete, i.e. for every diagram in vNpur there is a
weakly initial cocone (i.e. for every cocone over the diagram there is a, not necessarily
unique, morphism of cones from this one).

Proof. The category v Npur is accessible, since it is first order axiomatizable by Thm.
45(iii). Moreover it is accessibly embedded into poRings by Thm. 45(ii)(c) and closed
under products by Thm. 45(ii)(d). By the equivalence of [AR, Thm. 4.8 (ii)] and [AR,
Thm. 4.8 (iii)], these properties guarantee that v Npur is weakly reflective in poRings.
[AR, Thm. 4.8 (ii)]. Finally, the weak cocompleteness follows from [AR, Thm. 4.11].
[

Remark 47 The notion of ”"Faithfully Quadratic Ring” introduced and developed in
[DMO9] gives an axiomatic approach to ”well-behaved” quadratic form theory of porings.
Instead, we provide in the Theorem 45 above an approach that selects a class of porings
that are relatively ”well-behaved”: i.e., its objects have a nice relation with a very well-
behaved class of porings (poRegRings), that is stable under many constructions. In
the sequel of the present research, we intend to:

e Provide explicit axiomatizations of v Npur by Horn sentences and V3-sentences.

e Understand the relation between representation and transversal representation of
forms defined on porings in v Npur.

e Establish precise connections of v Npur with the class of faithfully quadratic rings.

(]



VN-HULL AND QUADRATIC FORMS 239

Theorem 48 Consider the class RSGuN := {G € RSG : 3(V,S) € poRegRings,3j :
G—G(V,S) a Lsg-pure embedding }. Then:

(1) The class RSGuN contains the class {G(A,T) : (A, T) € vNpur}.

(i1) The full subcategory RSGuNSRSG is closed under: (a) isomorphisms; (b) pure
substructures; (c) (non-empty) products; (d) proper reduced products; (e) elementary
equivalence.

(111) RSGuN s an Lgg-elementary class that is axiomatizable by Horn sentences ([CK]J).
(iv) If G € RSGuN, then G is a RSG that satisfies [SMC] and [MC], [MWRC].

Proof. Item (i) follows from Theorem 45.(i). Item (iv) follows from Corollary 43.
(ii) The closure under (a) and (b) are clear because the composition of pure em-
beddings is a pure embedding.
(c¢) Let I be a non-empty set and {G; : i € I} < RSGuN; select a pure embedding
fi + Gi—G(V;, S;), with V; a vN-regular ring. Since the product of pure embeddings
is a pure embedding ([MMZ2]), the product arrow [[._, fi : [[.c; Gi—11,c; Vi, Si)
is a pure embedding. Since poRegRingsSpoRings is closed under products and G
preserves products [ [,.; G(Vi, i) = G(I [,c; Vis [ Lic; Si), thus there is a pure embedding
F [ Ties Gi—G(I Lier Vis T Lier Si), with (I, Vi, [ iy Si) € poRegRing, ie. [, Gi €
RSGuN.
(d) Let F be a proper filter over a set [ # ¢ and {G; : i € I} € RSGuN. Select a
pure embedding f; : G;—G(V;,S;), with V; a vN-regular ring. The reduced product

(I Lic; Gi)/F is isomorphic to the inductive limit of the directed system { (] [,.; G e

[Liex Gi) : (J 2 K) € F ) and the reduced product ([ [,.; G(Vi, S;)/F is isomorphic to

Projik

the inductive limit of the direct system { ([ [..,;G(V;,S:)) = [liexG(Vi,Si)) : (J 2
K) e F ). As the product and directed inductive limit of pure embeddings is a pure
embedding, then we have a pure embedding

tim ([ [ £:) stim (] ] Go)— tim ([ [9(V;, 2).
Jef e Jef © Je]r e
As the functor G preserves products and directed inductive limits and

poRegRingsSpoRings is closed under products and directed inductive limits, we have
an isomorphism lim ([ [,.;G(Vi,S;)) = G(lim ([ [,.;(Vi,S:)). Thus there is a pure

JeJT" JG‘F
embedding
Fo([]6)/F—6( v 1)/ F)
iel el

and [ [,.;(V;,T;)/F € poRegRings, i.e. (] [,.; Gi)/F € RSGuN.
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(e) By Fraine’s Lemma (Lemma 8.1.1 in [BS]), G = H iff G is elementary embeddable
in some ultrapower of H and the conclusion follows from (a), (b) and (d).

(iii) All the statements follow from well-known model-theoretic results applied to
item (ii) . By Theorem 4.1.12 in [CK], a subclass of first-order structures is elementary
if and only if it is closed under ultraproducts and elementary equivalence, conditions
guaranteed by items (e) and (f) in (ii). By Theorem 6.2.5 in [CK], an elementary class
of structures is axiomatizable by Horn-sentences if and only if it is closed under reduced
products and this condition is assured by (ii).(e). [

Remark 49 One of the main open tasks in the theory of Special Groups is to deter-
mine the extent to which this concept generalizes the theory of quadratic forms over
fields and rings. For instance:

(i) The Representation Conjecture means: Every reduced special group (rsg) is isomor-
phic to the rsg given by a pythagorean field, via the functor G.

(ii)) The Weak Representation Conjecture means: Every rsg can be embedded, by an
Lsg-elementary embedding (or, instead, by a Lgg-pure morphism), into a representable
reduced special group (i.e., the rsg associated, via G, to a pythagorean field).

(iii) In [DMS8] a relaxed version of (i) is established: Every rsg is isomorphic to a rsg
associated to (a part of) a ring real of continuous functions.

We provide in the Theorem 48 above a new approach to the representation problem
under a intermediary balance that selects a new and very well-behaved class of porings,
the class poRegRings, that contains the Pythagorean fields is stable under many con-
structions. Besides the very difficult representation question (is RSG = RSGuN?) we
intend, in the sequel of our research:

e to analyze if the class RSGuN is closed under other constructions, like directed
inductive limits and extensions.

e provide explicit axiomatizations of RSGuvN by Horn sentences.
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