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Abstract

The class of (commutative, unitary) von Neumann-regular rings (vN-rings)
has been studied under algebraic and model-theoretic aspects. It is closed under
several constructions and it can be characterized as the class of rings isomorphic
to the ring of global sections of a sheaf of rings over a Boolean space such that the
stalks are fields– from a broader logical perspective they are ”fields”. In this work
we build, by sheaf-theoretic methods, a vN-Hull for every commutative unitary
ring, giving a left adjoint to the inclusion of categories vNRings ãÑ Rings. This
result is immediately extended to categories of preordered rings and we present
some applications to abstract codifications of the algebraic theory of quadratic
forms over rings with 2´1 (ATQF), that turns out to be an alternative approach
to the first-principle axiomatic approach of “well-behaved” quadratic form the-
ory of pre-ordered rings, introduced and developed in [DM9]. For instance we
address two subjects in the theory of Special Groups ([DM1]). (I) We determine
interesting classes of rings relative to ATQF ([DM7], [DM9]): we show that the
class of rings whose induced (proto)special group morphism into the special group
of its vN-hull is a pure embedding is an elementary class in the language of rings
that can be axiomatized by sets of Horn sentences or by @D-sentences. (II) We
determine a class of reduced special groups (rsg) of interest for a variant of the
representation problem in SG-theory (see for instance [DM8]): we show that the
class of reduced special groups that can be purely embedded into a special group
of a preordered vN-ring is an elementary class in the language of special groups
which can be axiomatized by sets of Horn sentences. Moreover, every rsg in the
class satisfies the K-theoretic property called [SMC] ([DM6]).

Keywords: von Neumann regular rings, Special Groups, preordered rings, quadratic
forms
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Introduction

In this work, “ring” will always mean unitary commutative ring and “regular ring”
means von Neumann regular ring (vN-regular ring or simply vN-ring), i.e., for each a
in the ring, there is x such that a2x “ a and pxq “ peq.

The theory of quadratic forms over rings more general than fields is addressed in
the setting of the theory of Special Groups in [DM7], [DM8], [DM9]; see also [DP1],
[Mar1], [Mar2], [Mar3] for other abstract encodings of the algebraic theory of qua-
dratic forms. Among all rings, the vN-rings form a particularly well-behaved class, for
which it is easier to access the information on quadratic forms than for a general ring.
The reason is that vN-regular rings are, in a precise sense, the rings which are closest
to fields. From a broader logical and set-theoretical perspective, vN-regular rings are
“fields” ([Smi]).

It is known, that vN-regular rings form a reflective subcategory of all rings, i.e. for
every ring A there is a vN-regular hull RpAq, i.e. a universal vN-regular ring RpAq and
a homomorphism ηA : AÑ RpAq which is initial among maps to vN-regular rings.

This suggests the strategy to transfer results about quadratic forms over vN-regular
rings back to arbitrary rings along this map. Indeed, we show in Thm. 41 below that
for any ring one can detect Witt-equivalence of quadratic forms still after passage to the
vN-regular hull. We further, in Thm. 45, determine elementary classes of rings and pre-
ordered rings whose quadratic form theory is satisfactorily encoded in their vN-hulls,
namely those rings for which the the morphism to their vN-hull induces an elementary
equivalence of the associated proto-special groups. This turns out to be an alternative
approach to the first-principle axiomatic approach of “well-behaved” quadratic form
theory of pre-ordered rings, introduced and developed in [DM9]. Finally, we address
the representation problem for special groups by showing in Thm. 48 that there is
an elementary class of special groups with a good representation theory by vN-regular
rings.

As our approach is based on the initial map ηA : AÑ RpAq to a vN-regular ring, we
spend the first four sections discussing this construction in detail. In the classical papers
[Car], [LS] the model-theory of the elementary class of vN-regular rings is analyzed.
A key point in these works is the simple fact that a reduced ring is (canonically)
embedded in a vN-regular ring through the “diagonal” homomorphism: δA : A �
ś

pPSpecpAq kppAq, where kppAq is the field of fractions of A{p (or equivalently, the field

Ap{pAp, where Ap is the localization of A at the prime ideal p).
There is a refinement of the map above: we prove that for an arbitrary ring the

“diagonal arrow” AÝÑ
ś

pPSpecpAqA{p �
ś

pPSpecpAq kppAq factors through the univer-

sal vN-regular ring RpAqĎ
ś

pPSpecpAq kppAq. We show that RpAq arises as the global
sections of a sheaf of fields canonically associated to A.

These last results are not new — we summarize the history towards the end of
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section 1.
It is especially the sheaf construction, which is useful. Sheaves over boolean spaces

already feature prominently in the literature on special groups and this construction
connects well with our desired applications, e.g. it is used in the proof of Thm. 41.
Therefore we chose to dedicate parts of the article to a self-contained proof, avoiding
the topos-theoretic machinery of other existing proofs.

Overview of the article:
We will start in section 1 by reviewing the concept of vN-regular ring, giving a quick

proof that there is a reflection, summarizing the history of the result and showing that
one “cannot get any closer to fields” via a reflection functor. Since the sheaf theoretic
point of view on the reflection functor provides additional insight, in sections 2 and
3 we give a self-contained and elementary proof that the vN-hull arises in this way.
In section 4 we present some simple examples. We then proceed in section 5 with
the observation that the result is easily extended to categories of pre-ordered rings.
Finally, in section 6 we give the model-theoretic applications of this to the theory of
Special Groups ([DM1]) which were mentioned above.

1 vN-regular rings

We start by giving a selection of equivalent characterizations of vN-regular rings, that
we will make use freely in the sequel.

Proposition 1 Let A be a ring. Then the following are equivalent:

(i) A is vN-regular, i.e. @a P A Dx P A : a “ a2x.

(ii) Every principal ideal of A is generated by an idempotent element, i.e. @a P A De P
ADy, z P A : e2 “ e, ey “ a, az “ e.

(iii) @a P A Db P A : a “ a2b, b “ b2a.
Moreover, when A is vN-regular, then A is reduced (i.e., NilpAq “ t0u) and for each

a P A, the idempotent element e P A satisfying (ii) and the element b satisfying (iii)
are uniquely determined.

Proof. (iii) ñ (i): is obvious.
(i) ñ (ii) Let a, x P A such that a “ a2x and define e :“ ax, then: e2 “ a2x2 “

ax “ e and ea “ axa “ a.
(ii) ñ (i) Let a, e, x, z P A such that e2 “ e, ey “ a, az “ e and define x :“ z2y,

then a2x “ a2z2y “ e2y “ ey “ a.
(i) ñ (iii) Let a, x P A such that a “ a2x. There can be many x satisfying this

role, but there is a “minimal” one: the element ax is idempotent and we can project
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any chosen x down with this idempotent, obtaining b :“ ax2. Then: aba “ aab2a “
paxqpaxqa “ axa “ a and bab “ pax2qapax2q “ paxq3x “ paxqx “ b.

Now suppose that A is vN-regular and let a P A such that an “ 0, for some
n P Nzt0u. Then let e be an idempotent such that ey “ a, az “ e, for some y, z P A.
Then e “ en “ anzn “ 0zn “ 0 an then a “ ey “ 0y “ 0, showing that NilpAq “ t0u.

Let e, e1 P A idempotents in an arbitrary ring satisfying peq “ pe1q. Select r, r1 P A
such that er1 “ e1 and e1r “ e. Then e1 “ er1 “ er1e “ e1e “ e1re1 “ e1r “ e. Thus, if an
ideal a ring is generated by a single idempotent, this idempotent is uniquely determined.

Let A be a vN-regular ring. Select a member a P A and consider b, b1 P A such
that a2b1 “ a “ a2b, b “ b2a, b1 “ b12a. Then pb ´ b1q2a2 “ pb ´ b1qpba2 ´ b1a2q “

pb ´ b1qpa ´ aq “ pb ´ b1q0 “ 0. Since A is reduced, we have pb ´ b1qa “ 0, therefore
bb1 “ b2a´ b12a “ pb2 ´ b12qa “ pb` b1qpb´ b1qa “ pb` b1q0 “ 0.

�

Remark 2 On vN-regular rings:

(i) Other equivalent descriptions of a vN-regular ring A:

• A is reduced and has Krull dimension 0 (i.e., prime ideals are maximal).

• Every A-module is flat.

(ii) Fields and boolean rings are natural examples of regular rings. A domain or a
local ring is vN-regular iff it is a field. If A is vN-regular ring, then SpecpAq is a
boolean space.

(iii) The subclass of vN-regular rings is closed under isomorphisms, products and coe-
qualizers (=homomorphic images) in the category of all rings.

˝

Remark 3 vN-regular rings and Logic: We will denote LRings “ t`, ¨,´, 0, 1u, the
first-order language adequate for description of rings.

(i) The subclass of vN-regular rings is closed under and pure subrings1.

(ii) If the “diagonal” homomorphism δA : A ÝÑ
ś

pPSpecpAq kppAq is a LRing-pure em-

bedding, then A is a vN-regular ring. It follows from Proposition 3.2.(d) in [DM7],
that the converse statement also holds.

1Recall that, if L a language and M,M 1 be L-structures, an L-homomorphism j : MÝÑM 1 is called
L-pure embedding if it (preserves and) reflects the satisfaction of existential positive L-formulas with
parameters in M .
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(iii) Since a ring A is vN-regular iff for each a P A there exists a unique b P A such
that a “ a2b, b “ b2a. then the class of vN-regular rings is axiomatizable by a (finite)
set of limit sentences in the language LRings, i.e. sentences of the form @x̄pφpx̄q Ñ

D!ȳθpx̄, ȳqq2.

(iv) Since vN-regular rings can be presented as structures for a signature L˚ :“ LRingsY
tp q˚u, with an additional unary operation symbol which, for any x forms describes its
“quasi-inverse” x˚, where x “ x2x˚, x˚ “ px˚q2x. This makes it clear that vN-regular
rings form a variety (= equational class) in this expanded language. Thus: the subclass
of vN-regular rings is closed under homomorphic images, substructures and products
in the class of all L˚-structures; there exists a free vN-regular ring over any set.

˝

In the sequel, we present some closure properties of RegRings as a subclass of
LRings-structures.

Proposition 4 The inclusion functor RegRings ãÑ Rings creates filtered colimits,
i.e., RegRingsĎRings is closed under directed/filtered colimits.

Proof. A filtered colimit of vN-regular rings, taken in Rings, is a vN-regular ring
again. Indeed, filtered colimits in Rings are formed by taking the colimit of the under-
lying sets and defining the sum, resp. product, of two elements a, b by mapping them
both into a common ring occurring in the diagram and taking the sum, resp. product,
there. Thus for an element a in the colimit, there is a ring Ai in the diagram containing
an element ai P Ai which is mapped to a by the canonical map to the colimit. Since Ai
is vN-regular, we have xi P Ai with aixiai “ ai, and the image of xi in the colimit will
satisfy the corresponding relation with a. �

Proposition 5 RegRingsĎRings is closed under localizations.

Proof. Let A be a vN-regular ring and SĎA be a multiplicative submonoid of A. We
will show that ArSs´1 is a vN-regular ring:

Case (1) S “ Saxay “ ta
k : k P Nu, for some a P A.

Let e be the unique idempotent element such that paq “ peq. Then, by Remark 15,
Da “ De and σpAqae : Aa – ÝÑAe. By Fact 14, Ae – A{p1 ´ eq – A ¨ e. Since
RegRingsĎRings is closed under homomorphic images, then Aa “ ArSas

´1 is a vN-
regular ring.

2Note that any equation @x̄ptpx̄q “ spx̄qq is logically equivalent to the limit sentence @x̄pJ Ñ

D!yptpx̄q “ y ^ y “ spx̄qqq.
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Case (2) S “ xa1, ¨ ¨ ¨ , aky, for some ta1, ¨ ¨ ¨ akuĎf inA.
Since ArSs´1 – ArSas

´1, where a “
śn

i“1 ai, then ArSs´1 is a vN-regular ring, by the
case (1).

Case (3) For general S.
Write S “

Ť

XĎfinS
xXy: this is a directed reunion. Then ArSs´1 – lim

ÝÑ

XĎfinS

ArxXys´1.

Since RegRingsĎRings is closed under directed/filtered colimits, then ArSs´1 is a
vN-regular ring, by the case (2).

�

Proposition 6 The limit in Rings of a diagram of vN-regular rings is vN-regular. In
particular RegRings is a complete category and the inclusion functor RegRings ãÑ

Rings preserves all limits.

Proof. It is clear from the definition that the class RegRings of vN-regular rings is
closed under arbitrary products in the class Rings of all rings. Thus it suffices to show
that it is closed under equalizers. So let A, B be vN-regular rings and f, g : A Ñ B
ring homomorphisms. Their equalizer in the category Rings is given by the set E :“
ta P A : fpaq “ gpaqu, endowed with the restricted ring operations from A.

To see that E is vN-regular, we need to show that for a P E, the (unique) element
b P A satisfying a2b “ a and b2a “ b also belongs to E.

First we note that the idempotent element ab belongs to E. Indeed, we have fpabq “
fpaqfpbq “ gpaqfpbq “ gpa2bqfpbq “ gpaqgpabqfpbq “ fpaqgpabqfpbq “ fpabqgpabq. Ex-
changing f and g in this chain of equations, we also get gpabq “ fpabqgpabq. Altogether
we obtain gpabq “ fpabq, and hence ab P E.

Now we use this, as well as the fact that we also have the equation b “ ab2, and
conclude fpbq “ fpab2q “ fpbqfpabq “ fpbqgpabq “ fpbqgpaqgpbq “ fpbqfpaqgpbq “
fpabqgpbq “ gpabqgpbq “ gpab2q “ gpbq. �

Clearly, in many ways fields are the best behaved kind of commutative ring. Often
problems in general commutative algebra are treated by reducing them to the case
of fields, for example when using local-global principles in module theory. It is thus
natural to ask whether an arbitrary commutative ring A admits some kind of universal
approximation by a field, i.e. a map A Ñ F , with F a field, which is initial among
maps to fields.

The answer is negative, because if every ring would admit such a map, then we would
obtain a reflection functor Rings Ñ Fields, left adjoint to the inclusion Fields ãÑ

Rings. But then Fields would be a cocomplete (and complete) category and the
inclusion functor would preserve limits. This contradicts the fact that the product of
two fields is a ring with non-trivial idempotents, thus it not a field.
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However, it turns out that this problem with limits is the only obstruction to the
existence of a universal approximation. If we take the closure of the subcategory of
fields under limits in Rings, then we obtain the category RegRings of vN-regular rings
(see Prop. 8 below), and this category does admit a reflection functor. We give a quick,
but non-constructive, proof that the inclusion functor RegRings ãÑ Rings has a left
adjoint.

Proposition 7 The inclusion functor i : RegRings ãÑ Rings has a left adjoint.

Proof. Since RegRings, Rings are categories of models of first order theories given by
limit sentences then, by [AR, Thm 5.9], they are locally finitely presentable categories.
By the previous propositions 4 and 6, the inclusion functor i : RegRings ãÑ Rings
is a finitely accessible (= preserves filtered colimits), limit preserving functor between
locally presentable categories. Thus, by the adjoint functor theorem for locally presen-
table categories, [AR, Thm 1.66], the functor i has a left adjoint. �

The above proof of Prop. 7 provides no information about how to compute the left
adjoint. For this, more constructive proofs are preferable.

The first proof of Prop. 7 in the literature is that of Olivier, [Oli, Prop. 5]. He
proceeds by formally adjoining a quasi-inverse to every element a of a ring A (where
quasi-inverse means the x such that a2x “ a, x2a “ x). It is easy to see that the
outcome is the universal vN-regular ring associated to A, but hard to compute this
outcome, as it is given in terms of generators and relations.

Next, Popescu and Vraciu [PV, Sect. 3] noted that the reflection functor can
be described as follows. To a ring A one associates the diagonal map δA : A �
ś

pPSpecpAq kppAq, where kppAq is the field of fractions of A{p (or equivalently, the field

Ap{pAp, where Ap is the localization of A at the prime ideal p). Then one takes the
smallest zero-dimensional subring of

ś

pPSpecpAq kppAq containing the image of δA (which

exists, because zero-dimensional subrings of a ring are closed under intersection by [Gil,
Thm 2.1]).

It follows from Theorem 10.3 in [Pie] that the class of vN-regular rings coincides
with the closure under isomorphisms of the class of the rings of global sections of sheaves
of rings over a boolean space such that the stalks are fields. Finally, Coste [Cos, Prop.
4.5.5 and Sect. 5.2.2] gave a description of the functor as the global sections of a
sheaf of fields on the boolean space arising by endowing the space SpecpAq with the
constructible topology. The étale space of this sheaf is given by

š

pPSpecpAq kppAq with
an appropriate topology, which links this construction to the previous one. This space
with its sheaf of fields is called the “field spectrum” and had previously been considered
by Johnstone [Joh, Prop. 5.6]. It arises from a general topos theoretic machinery which
is able to gives a universal approximation of a ring by a field — with the downside that
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the field lives in a different topos than the the topos of set, where the original ring A
is situated.

It is only this last construction, as the global sections of a sheaf of fields, that
allows to prove that our solution of taking vN-regular rings for approximating a ring
by something close to a field is the best possible:

Proposition 8 The category RegRings is the smallest reflective subcategory of Rings
containing all fields.

Proof. Clearly all fields are vN-regular, and by Prop. 6 so are limits of fields, so
RegRings contains all limits of fields. On the other hand the ring of global sections of
a sheaf can be expressed as a limit of a diagram of products and ultraproducts of the
stalks by [Ken, Lemma 2.5]. All these occurring (ultra)products are vN-regular as well
and hence so is their limit by Prop. 6. �

In the following two sections we will give an elementary and self-contained proof
that the reflection functor arises as the global sections, without any use of general
topos theory.

2 The candidate

It is well known that any ring is isomorphic to the ring of global sections of the structure
sheaf of its affine scheme. It is a sheaf of rings over the spectral space SpecpAq, the prime
spectrum of A, with stalks that are (isomorphic to) the local rings Ap, the localizations
of the ring in the prime ideals p P SpecpAq. This suggests that if we get a sheaf of rings
over the booleanization space of the spectral space SpecpAq (i.e. SpecconstpAq :“ SpecpAq
with the constructive topology) and with stalk on the prime ideal p the residue field
kppAq :“ Ap{p.Ap of the local ring Ap, then the ring of the global sections of this sheaf
should be “the closest” vN-regular ring to A.

In this section we will see that if the ring A has a vN-regular hull ηA : AÝÑRpAq
(i.e., ηA is a ring homomorphism from A to a regular ring RpAq with the universal
property: for any regular ring V and any ring homomorphism f : AÝÑV there is a
unique ring homomorphism rf : RpAqÝÑV such that rf ˝ ηA “ f), then the spectral
sheaf of RpAq must be such that the topological space SpecpRpAqq is homeomorphic to
the booleanization of SpecpAq and the stalks RpAqp1 , p

1 P SpecpRpAqq, are isomorphic
to the residue fields of the local ring Ap: kppAq, p P SpecpAq.

Notation 9

(i) If p is a proper prime ideal of the ring A, write πAp : A � A{p for the quotient
homomorphism and αAp : AÝÑkppAq for the composition A � A{p � kppAq. We will
consider the “diagonal” homomorphism δA :“ pαAp qpPSpecpAq : A ÝÑ

ś

pPSpecpAq kppAq.
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(ii) If f : A ÝÑ B is a ring homomorphism and q P SpecpBq, we will denote sfq :
A{f ‹pqq � B{q, the “quotient” monomorphism between the associated domains, f̌q :
Af‹pqq ÝÑ Bq, the “canonical” local homomorphism between the associated local rings

and pf q : kf‹pqqpAq � kqpBq, the “canonical” monomorphism between the associated

fields3. We have pf q ˝ α
A
f‹pqq “ αBq ˝ f .

We will write pf :
ś

pPSpecpAq kppAq ÝÑ
ś

qPSpecpBq kqpBq for the unique homomor-

phism such that projBq ˝
pf “ pf q˝proj

A
f‹pqq, for each q P SpecpBq (note that pf˝δA “ δB˝f).

˝

Remark 10 On spectral spaces: (see [Hoc], [DST])

• A topological space is spectral if: (i) it is sober, i.e. each closed irreducible subset
has a unique generic point; (ii) it has a basis that is closed under finite intersecti-
ons (and contains the space) and whose elements are compact-open subsets. A
boolean space is a compact Hausdorff space that is 0-dimensional (or equivalently,
it has a basis whose elements are clopens). The boolean spaces are the spectral
T1-spaces. If A is a ring, then SpecpAq is a spectral space. For each spectral space
S and field K, there is a K-algebra A, such that S is homeomorphic to SpecpAq.

• A map between spectral spaces is called spectral map if the inverse image of a
compact open subset of the codomain is a compact open subset of the domain.
In particular, spectral maps are continuous; a map between boolean spaces is
spectral iff it is continuous. If f : AÝÑB is a ring homomorphism, then f ‹ :
SpecpBqÝÑSpecpAq : q ÞÑ f´1rqs is a spectral map.

• Every spectral space S has a “canonically” associated boolean space: Sconst is the
set S with the constructive topology, constructed as follows. Take any base tDi :
i P Iu of S whose elements are compact open, that containsH, S and that is closed
under finite intersections. Then tDi0 X pSzDi1q X . . .X pSzDinq : i0, i1, . . . , in P Iu
is a basis of Sconst whose elements are clopen subsets (that contains H, S and is
closed under finite intersections). Clearly, the identity function id : SconstÝÑS is
spectral. This construction satisfies a universal property: it is the booleanization
of the spectral space S, i.e. given T a boolean topological space and F : TÝÑS
a spectral map, there is a unique continuous/spectral map between the boolean

spaces pF : TÝÑSconst such that id ˝ pF “ F . As continuous/spectral bijections
between boolean spaces are homeomorphisms, a spectral map G : UÝÑS from a
boolean space U is a/the booleanization of S iff it is a bijection.

˝

3Recall that kqpBq :“ RespBqq “ Bq{q.Bq – FracpB{qq “ pB{qqrB{qzt0us´1, and that Bq �
kqpBq is a local homomorphism.
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Proposition 11 Suppose that the ring A has a vN-regular hull ηA : A Ñ RpAq 4.
Then:

(i) pηAq
‹ : SpecpRpAqq ÝÑ SpecpAq is a surjective spectral function.

(ii) For any q P SpecpRpAqq, xηAq : kη‹ApqqpAq
–
ÝÑ kqpRpAqq.

(iii) pηAq
‹ : SpecpRpAqq

«
ÝÑ SpecconstpAq is a homeomorphism where SpecconstpAq is

the (boolean) topological space on the set of prime ideals of A with the constructive
topology.

(iv) (iv) kerpηAq “ nilpAq “
Ş

SpecpAq “ ta P A : Dn P N , an “ 0u. Thus ηA is
injective iff A is reduced.

Proof.
(i) Take p P SpecpAq and consider the canonical homomorphism αp from A to the

regular ring (field) kppAq. By the universal property of ηA : A ÝÑ RpAq we have a
unique “extension” rαAp : RpAq ÝÑ kppAq with rαAp ˝ ηA “ αAp . Now take γAppq :“
prαpq

‹pt0uq P SpecpRpAqq. In this way we have pηAq
‹pγAppqq “ pηAq

‹pprαpq
‹pt0uqq “

prαp ˝ ηAq
‹pt0uq “ pαpq

‹pt0uq “ p, thus pηAq
‹ ˝ γA “ idSpecpAq and pηAq

‹ is surjective.

(ii) Let q P SpecpRpAqq, by definition of pηA we have (see diagram below) α
RpAq
q ˝ηA “

ypηAqq ˝ α
A
η‹pqq, so we have the field (mono)morphism xηAq : kη‹ApqqpAq � kqpRpAqq.

Let us prove that it is surjective: consider the extension of αAη‹Apqq
to RpAq : rαAη‹Apqq :

RpAqÝÑkη‹ApqqpAq, then xηAq ˝ rαAη‹Apqq ˝ ηA = xηAq ˝α
A
η‹Apqq

= α
RpAq
q ˝ ηA, thus xηAq ˝ rαAη‹Apqq “

α
RpAq
q , by the universal property of ηA. But q P SpecpRpAqq is a maximal ideal so

RpAq{q – kqpRpAqq and α
RpAq
q : RpAq � RpAq{q

–
ÝÑ kqpRpAqq is surjective, therefore

xηAq is surjective too, since xηAq ˝ rαAη‹Apqq “ α
RpAq
q .

(iii) By Remark 10, to prove that pηAq
‹ : SpecpRpAqq

–
ÝÑ SpecconstpAq is a

homeomorphism it is necessary and sufficient to prove that the spectral map pηAq
‹ :

SpecpRpAqq ÝÑ SpecpAq is a bijection from the boolean space SpecpRpAqq to the
spectral space SpecpAq. Keeping the notation in the proof of item (i), we will show that
γA is the inverse map of η‹A. By the proof of (i), it is enough to prove that γA ˝ pηAq

‹ “

idSpecpRpAqq. Let q P SpecpRpAqq, then γApη
‹
Apqqq “ kerprαη‹Apqqq “ kerpα

RpAq
q q “ q, since

xηAq ˝ rαAη‹Apqq “ α
RpAq
q and xηAq is injective.

(iv) We will see that the result follows from the fact that SpecpRpAqq is homeomor-
phic to the booleanization of SpecpAq. Take any ring B and consider the “diagonal”
homomorphism

δB :“ pαBp qpPSpecpBq : B ÝÑ
ź

pPSpecpBq

kppBq.

4For instance, if A is already regular then ηA : A – RpAq
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From the equality of morphisms

pB
pαBp qpPSpecpBq
ÝÑ

ź

pPSpecpBq

kppBqq “ pB
pπBp qpPSpecpBq
ÝÑ

ź

pPSpecpBq

B{p�
ź

pPSpecpBq

kppBqqq

we have kerpδBq “
Ş

SpecpBq “ nilpBq.
In particular, for B “ RpAq, we have kerpδRpAqq “ nilpRpAqq “ t0u and therefore

obtain that δRpAq : RpAq ÝÑ
ś

qPSpecpRpAqq kqpRpAqq is injective.

As η‹A : SpecpRpAqqÝÑSpecpAq is bijective we get that the arrow
xηA :

ś

pPSpecpAq kppAq ÝÑ
ś

qPSpecpRpAqq kqpRpAqq is isomorphic to the homomorphism

pxηAqqqPSpecpRpAqq :
ś

qPSpecpRpAqq kη‹ApqqpAq ÝÑ
ś

qPSpecpRpAqq kqpRpAqq. By the previ-

ous items, pxηAqqqPSpecpRpAqq is an isomorphism, thus xηA is an isomorphism too. As
xηA ˝ δA “ δRpAq ˝ ηA and xηA, δRpAq are injective, we have kerpηAq “ kerpηA ˝ δRpAqq “
kerpxηA ˝ δAq “ kerpδAq “ nilpAq.

?
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where p :“ η‹Apqq

A RpAq

kppAq kqpRpAqq

ηA

xηAq

αAp rαAp α
RpAq
q

�

Proposition 12 Suppose that we have a functor R : RingsÝÑRegRings and a natural
transformation pηAqAPobjpRingsq ηA : AÝÑRpAq.
(i) Suppose that the following condition is satisfied.

(E) For each vN-regular ring V the arrow ηV : V ÝÑRpV qq is a section (i.e. it has
a left inverse).

Then every homomorphism f : AÝÑV to a vN-regular ring V factors through ηA.
(ii) Suppose that the following conditions are satisfied.

(U) η‹A : SpecpRpAqq ÝÑ SpecpAq is a bijection (SpecpRpAqq is homeomorphic to
the booleanization of SpecpAq).

(U’) the stalk of the spectral sheaf of RpAq at a prime ideal p “in A” is isomorphic to
kppAq, more precisely, xηAq : kη‹ApqqpAqÝÑkqpRpAqq is an isomorphism, q P SpecpRpAqq.

Then a homomorphism f : AÝÑV to a vN-regular ring V admits at most one fac-
torization through ηA.
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Thus if all of (E), (U) and (U’) are satisfied, then the map ηA is initial among
maps to vN-regular rings, i.e. a homomorphism f : AÝÑV to a vN-regular ring V
factors uniquely through ηA.

Proof. (i) Let V be a vN-regular ring and f : AÝÑV a homomorphism. As η is
a natural transformation we have Rpfq ˝ ηA “ ηV ˝ f . By hypothesis (E) there is a
homomorphism rV : RpV qÝÑV such that rV ˝ ηV “ idV . Now define F : RpAqÝÑV as
the composition : F :“ rV ˝Rpfq: clearly F is an “extension” of f (F ˝ ηA “ f).

(ii) Let V be a vN-regular ring and F0, F1 : RpAqÝÑV be homomorphisms such that

F0 ˝ ηA “ f “ F1 ˝ ηA. Then we get xF0 ˝ xηA “ pf “ xF1 ˝ xηA (to see that, just compose
these homomorphisms with projVs , s P SpecpV q). From the hypotheses (U) and (U’)
we obtain that the arrow xηA :

ś

pPSpecpAq kppAqÝÑ
ś

qPSpecpBq kqpBq is an isomorphism,

and therefore xF0 “ xF1. It follows that δV ˝ F0 “ xF0 ˝ δRpAq “ xF1 ˝ δRpAq “ δV ˝ F1.
As V is reduced, we get kerpδV q “ NilpV q “ t0u, thus δV is injective and, by the
commutativity of the bottom trapezoid below, we can conclude that F0 “ F1, proving
the uniqueness of extensions.

? ?
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V
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sPSpecpV q
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f pf

δA

δRpAq

δV

ηA xηA

F0

F1
xF0

xF1

�

3 Building sheaves

In the remainder of this section we will show that the inclusion functor RegRings ãÑ

Rings has a left adjoint through the following steps:
(I) Firstly we build a (mono)presheaf of rings over a basis of the constructive topology
of SpecpAq with stalks kppAq, p P SpecpAq: this construction turns out to be canonical,
i.e. describes a functor A ÞÑ P pAq;
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(II) Then we take the associated sheaf SpAq of the presheaf basis P pAq: this has the
same underlying space of P pAq and isomorphic stalks over each point of the space;
(III) Next, we consider the ring RpAq of global sections of the sheaf SpAq and the
canonical A-algebra arrow ηA : AÝÑΓpSpAqq;
(IV) Finally we prove that, for each ring A, RpAq is vN-regular ring and that ηA :
AÝÑRpAq, satisfies the conditions in Proposition 12, thus has the universal property
wanted.

Let us fix now a ring A.

13 On the prime spectrum of rings:

• For each a, b P A, consider the sets Da :“ tp P SpecpAq : a R pu , Zb :“ tp P
SpecpAq : b P pu “ SpecpAqzDa. Then D1 “ Z0 “ SpecpAq, D0 “ Z1 “ H,
Da X Da1 “ Da¨a1 and the set tDaĎSpecpAq : a P Au is a basis of a topology in
SpecpAq whose elements are compact-open subsets, that contains H, SpecpAq and
that it is closed under finite intersections. Moreover with this topology SpecpAq is
a spectral space. If f : AÝÑA1 is a ring homomorphism, then pf ‹q´1rDas “ D1fpaq,

thus f ‹ : SpecpA1qÝÑSpecpAq is a spectral map.

• Now, for each a P A and b̄ “ tb1, . . . , bnuĎfinA, we consider the subset Ua,b̄ :“
Da X Zb1 X . . .X ZbnĎSpecpAq. Then the set βpAq :“ tUa,b̄ĎSpecpAq : a P A, b̄ “
tb1, . . . , bnuĎfinAu is a basis of the boolean space SpecconstpAq whose elements are
clopen subsets, that contains H, SpecpAq and is closed under finite intersections.
SpecconstpAq is the booleanization of the spectral space SpecpAq (see Remark
10). If f : AÝÑA1 is a ring homomorphism, then pf ‹q´1rUa,b̄s “ U 1

fpaq,fpb̄q
, thus

f ‹ : SpecconstpA1qÝÑSpecconstpAq is a spectral/continuous map.

˝

We register the following:

Fact 14

• (i) Let A be a ring. Denote BpAq :“ te P A : e2 “ eu. Then:
˚ pBpAq,^,_, ˚,ď, 0, 1q is a boolean algebra, where e ^ e1 :“ e.e1, e _ e1 :“
e` e1 ´ e.e1, e˚ :“ 1´ e, e ď e1ôe “ e.e1, top :“ 1, bottom :“ 0.
˚ Concerning principal ideals: peqĎpe1qôe ď e1; peq “ pe1qôe “ e1; peq ` pe1q “
pe_ e1q; peq X pe1q “ peq.pe1q “ pe^ e1q.
˚ The mapping e ÞÑ De determines an injective boolean algebra homomorphism
jA : BpAq � ClopenpSpecpAqq. If A is a vN-regular ring, then jA : BpAq

–
ÝÑ

ClopenpSpecpAqq.
˚ For each e P BpAq, consider the canonical A-algebra morphisms q : A �
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A{p1 ´ eq, f : AÝÑAe and m : A � A.e (note that A.e :“ tx.e : x P Au is
a ring with unity e). Then there are unique isomorphisms of A-algebras: Ae –
A{p1´ eq – A.e.

• (ii) Let f : AÝÑA1 be a ring homomorphism, then fæ : BpAqÝÑBpA1q is a
(well-defined) boolean algebra homomorphism. Moreover, this defines a functor
B : RingsÝÑBA, where BA is the category of boolean algebra and its homomor-
phisms.

˝

Let us now recall some definitions and facts about the affine scheme functor from
the category of rings to the category of locally ringed spaces, Locringed. Recall first
that:
˚ the objects of Locringed are locally ringed spaces, i.e. pairs pX,F q where X is a topo-
logical space and F : pOpenpXq,ĎqopÝÑRings is a sheaf whose stalks, Fx :“ lim

ÝÑ

UPOpenpXq:xPU

F pUq (denote φU,x : F pUqÝÑFx the cocone arrow), are local rings (denote mx the uni-
que maximal ideal in Fx).
˚ the morphisms in Locringed are certain morphisms of sheaves (over variable base
spaces), i.e. pairs ph, τq : pX,F qÝÑpX 1, F 1q given by a continuous function h : X 1ÝÑX
and a natural transformation τ : F 1ÝÑh‚pF q, that induces local homomorphism on
stalks. It follows from the definition of identities and composition in Locringed that
ph, τq is an isomorphism iff h is a homeomorphism and τ is a natural isomorphism.

Remark 15 On the affine scheme functor: ([EGA])

(i) For each a, c P A, DaĎDc iff Za Ě Zc iff
a

paqĎ
a

pcq.

(ii) If DaĎDc, then there is a unique ring homomorphism σpAqca : AcÝÑAa such that

pA
σpAqc
ÝÑ Ac

σpAqca
ÝÑ Aaq “ pA

σpAqa
ÝÑ Aaq where Ab denotes the ring of fractions of A

w.r.t. the multiplicative set tbn : n P Nu and σpAqb : AÝÑAb, x ÞÑ x{1 is the
canonical arrow.

(iii) σpAqaa “ idAa ; if DaĎDcĎDe, then σpAqea “ σpAqca ˝ σpAq
e
c; if Da “ Dc, then

σpAqca, σpAq
a
c is a pair of inverse isomorphisms.

(iv) The structure sheaf of the affine scheme of the ring A,
ΣA : pOpenpSpecpAqq,ĎqopÝÑRings is the (essentially) unique sheaf of rings

such that for each a P A, ΣApDaq – Aa. We denote ΣApV q
σpAqVU
ÝÑ ΣApUq,
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the morphism induced by the inclusion UĎV , U, V P OpenpSpecpAqq. The ca-
nonical arrow spAq : AÝÑΣApSpecpAqq is naturally identified with the canonical
homomorphism AÝÑA1, thus it is a ring isomorphism. The stalk of ΣA over the
point p P SpecpAq is isomorphic to the local ring Ap of fractions of A w.r.t. the
multiplicative set Azp. Thus ΣA is a locally ringed space.

(v) If f : AÝÑA1 is a ring homomorphism, then there is an induced morphism of

ringed spaces pf ‹, pfq : ΣAÝÑΣA1 where, f ‹ : SpecpA1qÝÑSpecpAq is the induced

spectral map and pf : ΣAÝÑpf
‹q‚pΣA1q is the natural transformation given on ba-

sic opens Da and D1fpaq “ pf
‹q´1rDas by the induced homomorphism AaÝÑA

1
fpaq,

x{an ÞÑ fpxq{fpaqn. For each p1 P SpecpA1q, Af‹pp1qÝÑA
1
p1 is a local homomor-

phism. Thus pf ‹, pfq : ΣAÝÑΣA1 is a morphism of locally ringed space. Moreover,

the map pA
f
ÝÑ A1q ÞÑ ΣA

pf‹, pf q
ÝÑ ΣA1 defines a functor Σ : RingsÝÑLocringedop.

(vi) If Γ : LocringedopÝÑRings, denotes the global sections functor, i.e. ppX,F q
ph,τq
ÝÑ

pX 1, F 1qq
Γ
ÞÑ pF pXq

τX
ÝÑ F 1pX 1q “ F 1ph´1rXsq, then:

˚ the family of canonical (iso)morphisms spAq : AÝÑΓpΣAq, A P objpRingsq,
determines a natural transformation s : IdRings ÝÑ Γ ˝ Σ (and it is a natural
isomorphism);

˚ there is another family of (canonical) arrows epX,F q “ phF , τF q : ΣΓpX,F qÝÑpX,F q,
pX,F q P objpLocringedq, that determines a natural transformation

e : Σ ˝ ΓÝÑIdLocringed

- hF : XÝÑSpecpF pXqq, x ÞÑ φ´1
X,xrmxs; hF is continuous since, for each a P F pXq,

h´1
F rDas “ tx P X : φX,xpaq is invertible in Fxu “ Wa := the largest open U such

that aU :“ FX
U paq P F pUq is invertible.

- τF : ΣF pXqÝÑphF q‚pF q is the natural transformation that, for each a P F pXq,
pτF qDa : ΣF pXqpDaqÝÑF ph

´1
F rDasq that is naturally identified with the homomor-

phism F pXqaÝÑF pWaq, obtained from the arrow FX
Wa

: F pXqÝÑF pWaq by the
universal property of the ring of fractions F pXqÝÑF pXqa; τF is uniquely determi-
ned by the condition above since ΣF pXq and phF q‚pF q are sheaves on SpecpF pXqq
and tDa : a P F pXqu is a basis of the space SpecpF pXqq.

(vii) It is straightforward to check that the pair natural transformations ps, eq satisfies
both triangular equations above ([Mac]):

˚ pΣA
ΣpspAqq
ÝÑ ΣpΓpΣAqq

peΣA q
ÝÑ ΣAq = pΣA

IdΣA
ÝÑ ΣAq, A P objpRingsq;
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˚ pΓpX,F q
spF pXqq
ÝÑ ΓpΣF pXqq

ΓpepX,F qq
ÝÑ ΓpX,F qq = pΓpX,F q

IdF pXq
ÝÑ ΓpX,F qq, pX,F q P

objpLocringedq.

(viii) ([Mac]) In this way, the affine scheme functor Σ is the left adjoint of the glo-
bal sections functor Γ with s being the unit and e being the counit of this ad-
junction. Thus spAq has the universal property between all ring homomorphisms
AÝÑΓpX,F q, for each locally ringed space pX,F q. Moreover, since the unit of
the adjunction s : IdRings ÝÑ Γ ˝ Σ is a natural isomorphism, Σ is a full and
faithful functor from the category of rings to the category of locally ringed spaces.

˝

We will now recall some results from Commutative Algebra and develop some pre-
parations.

16 Let A be a ring.
˚ The Prime Ideal Theorem: let SĎA be a multiplicative submonoid and IĎA an

ideal. Then S X I “ H iff Dp P SpecpAq s.t. IĎP, S X P “ H.
˚ Let JĎA be an ideal and denote qAJ : A � A{J the canonical homomorphism

onto que quotient ring. Then pqAJ q
‹ : SpecpA{Jq

«
ÝÑ ZJ ãÑ

closed
SpecpAq. Recall that

ZJ “ Z?J .
˚ Let a P A and denote σAa : AÝÑAa the canonical homomorphism into the ring of

fractions of tak : k P Nu. Then pσAa q
‹ : SpecpAaq

«
ÝÑ Da ãÑ

open
SpecpAq.

˚ Let a P A and let IĎA be a radical ideal (I “
?
I).

Denote Aa,I :“ pA{Iqa{I the a{I-fractions ring of the quotient ring A{I.

Denote tAa,I :“ σ
A{I
a{I ˝ q

A
I : AÝÑAa,I .

Then kerptAa,Iq “ tx P A : Dn P N, x.an P Iu.
Denote Ua,I :“ Da X ZIĎSpecpAq.

Then ptAa,Iq
‹ : SpecpAa,Iq

«
ÝÑ Ua,I ãÑ SpecpAq. ˝

Lemma 17 Let A be a ring.
(a) Consider a, a1 P A and I, I 1ĎA be radical ideals of A. Then the following are

equivalent:
(i) Ua,I Ď Ua1,I 1;
(ii) Both the conditions piiqZ and piiqD below hold:

piiqZ Ua,I XDI 1 “ H piiqD Ua,I X Za1 “ H
(iii) Both the conditions piiiqZ and piiiqD below hold:

piiiqZ I 1ĎkerptAa,Iq piiiqD tAa,Ipa
1q P UnitpAa,Iq

(iv) There is an A-algebra homomorphism hpAqa
1,I 1

a,I : Aa1,I 1 ÝÑ Aa,I i.e. hpAqa
1,I 1

a,I is

a ring homomorphism such that hpAqa
1,I 1

a,I ˝ t
A
a1,I 1 “ tAa,I .
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(b) Suppose that the equivalent conditions in (a) above hold. Then the A-algebra

homomorphism hc,d̄
a,b̄

is unique. Moreover, Dk P N Dλ P A λ.a1´ak P I and px{I 1q
pa1n{I 1q

P Aa1,I 1

ha
1,I1

a,I
ÞÑ

pxλn{Iq
pakn{Iq

P Aa,I .

(c) hpAqa,Ia,I “ idAa,I ;

if Ua,I Ď Ua1,I 1 Ď Ua2,I2, then hpAqa
1,I 1

a,I ˝ hpAq
a2,I2

a1,I 1 “ hpAqa
2,I2

a,I ;

if Ua,I “ Ua1,I 1, then hpAqa
1,I 1

a,I and hpAqa,Ia1,I 1 are a inverse pair of A-algebra isomor-
phisms.

˝

Proof. Item (c) follows directly from items (a) and (b).
(a) The equivalence between piq and piiq is clear.
piiqZôpiiiqZ :
Ua,I XDI 1 ‰ H iff Dp P DaXZI XDI 1 iff Dp P SpecpAqDx1 P I 1, IĎp, and a, x1 R p

iff Dp P SpecpAqDx1 P I 1@m, k P N, IĎp, pam.x1qk R p iff Dx1 P I 1@m P N, am.x1 R I iff
I 1 Ĺ kerptAa,Iq
piiqDôpiiiqD:
Ua,I X Za1 ‰ H iff Dp P Da X ZI X Za1 iff Dp P SpecpAq, tak : k P Nu X p “

H, pa1q ` IĎp iff tak : k P Nu X pa1q ` I “ H iff @k P N@λ P A, ak ´ λ.a1 R I iff5

@k, l P N@λ P A, al.pak ´ λ.a1q R I iff ta,Ipa
1q R UnitpAa,Iq

piiiqñpivq: by piiiqZ , there is a unique homomorphism t̄Aa,I : A{I 1ÝÑAa,I such that
t̄Aa,I ˝ q

A
I 1 “ tAa,I thus, by piiiqD, t̄Aa,Ipa

1{I 1q “ tAa,Ipa
1q P UnitpAa,Iq, and then there is

a unique homomorphism hpAqa
1,I 1

a,I : Aa1,I 1 ÝÑ Aa,I such that hpAqa
1,I 1

a,I ˝ σ
A{I 1

a1{I 1 “ t̄Aa,I .

Composing with qAI 1 : A� A{I 1, we get hpAqa
1,I 1

a,I ˝ t
A
a1,I 1 “ tAa,I .

pivqñpiiiq: Let hpAqa
1,I 1

a,I : Aa1,I 1 ÝÑ Aa,I be a ring homomorphism such that

hpAqa
1,I 1

a,I ˝ tAa1,I 1 “ tAa,I . Define fa
1

a,I :“ hpAqa
1,I 1

a,I ˝ σ
A{I 1

a1{I 1 . Then fa
1

a,Ipa
1{I 1q P UnitpAa,Iq.

Then fa
1

a,I ˝ q
A
I 1 “ tAa,I and then I 1ĎkerptAa,Iq, establishing piiiqZ . Since qAI 1 : A � A{I 1

is surjective, fa
1

a,I “ t̄Aa,I and hpAqa
1,I 1

a,I is the unique ring homomorphism such that

hpAqa
1,I 1

a,I ˝ σ
A{I 1

a1{I 1 “ fa
1

a,I . Thus tAa,Ipa
1q “ t̄Aa,Ipa

1{I 1q “ fa
1

a,Ipa
1{I 1q P UnitpAa,Iq, esta-

blishing piiiqD.

(b) The uniqueness of hpAqa
1,I 1

a,I was established in the course of the proof of equi-
valence piiiqôpivq above. We leave it to the reader to check the correctness of the

concrete description of ha
1,I 1

a,I when acting on elements. �

18 Let A be a ring. For each a P A, b̄ĎfinA consider:

5Since Ua,I ‰ H.
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(i) the quotient ring A{Ib̄, where Ib̄ :“
b

ři“k
i“1pbiq ĎA;

(ii) the fraction ring Aa,b̄ :“ Aa,Ib̄ “ pA{Ib̄qa{Ib̄ ;

(iii) the canonical homomorphism tA
a,b̄

:“ tAa,Ib̄ : A ÝÑ pA{Ib̄qa{Ib̄ i.e. the composition

of projection on the quotient qA
b̄

: A � A{Ib̄ with the universal homomorphism
of a{Ib̄-fractions ring σA{Ib̄ : A{Ib̄ ÝÑ pA{Ib̄qa{Ib̄ .

(iv) if a1 P A, b̄1ĎfinA is such that Ua,b̄ĎUa1,b̄1 , then hpAqa
1,b̄1

a,b̄
:“ hpAqa

1,b̄1

a,Ib̄
: Aa1,b̄1 ÝÑ Aa,b̄

is the unique ring homomorphism such that hpAqa
1,b̄1

a,b̄
˝ tA

a1,b̄1
“ tA

a,b̄
. Besides, Dk P N

Dλ P A λa1 ´ ak P Ib̄ and
px{Ib̄1 q

pa1n{Ib̄1 q
P Aa1,b̄1

ha
1,b̄1

a,b̄
ÞÑ

pxλn{Ib̄q

pakn{Ib̄q
P Aa,b̄.

Note that:
(a) Since NilpAqĎIb̄, then tA

a,b̄
factors through q0 : A � A{NilpAq and Aa,b̄ is an

A{NilpAq-algebra.
(b) Ua,b̄ “ SpecpAq ô a P UnitpAq and @i ă n, bi P NilpAq ñ the canonical

homomorphism A{NilpAqÝÑAa,b̄ is an isomorphism.
(c) Ua,b̄ “ H ô

Ş

iănZbiĎZa ô Dk P N, ak P Ib̄ ô Aa,b̄ “ t0u.
˝

Construction 19 For each ring A we build a presheaf basis of A-algebras6. Keep the
notation from Lemma 17. The work is done in two steps:

(i) We build a (contravariant) functor P 1pAq : pβpAq,ĎqopÝÑA ´ alg (recall from
paragraph 13 that βpAq was a basis for the constructible topology). This is a “large”
presheaf base of A-algebras:

For each U P βpAq consider the ring P 1pAqpUq :“
ś

tAa,b̄ : U “ Ua,b̄, a P A, b̄ĎfinAu
and the ring homomorphism t1pAqU :“ ptA

a,b̄
qUa,b̄“U : AÝÑP 1pAqpUq. Let U, V P βpAq

with UĎV and consider the ring homomorphism h1pAqVU : P 1pAqpV qÝÑP 1pAqpUq, the
unique ring homomorphism such that for each a, b̄, c, d̄ with U “ Ua,b̄, V “ Uc,d̄ ,

projUpa,b̄q ˝ h
1pAqVU “ hpAqc,d̄

a,b̄
˝ projUpc,d̄q ; h1pAqVU is an A-algebra homomorphism, i.e.

h1pAqVU ˝ t
1pAqV “ t1pAqU : to see that just take composition of these arrows with the

projections projUpa,b̄q : P 1pAqpUqÝÑAa,b̄ such that U “ Ua,b̄ and use Lemma 17.(a).(iv) .

P 1pAq is indeed a (contravariant) functor, i.e. if U, V,W P βpAq is such that UĎVĎW
then h1pAqVU ˝ h

1pAqWV “ h1pAqWU and h1pAqUU “ idP 1pAqpUq : this follows from Lemma
17.(c), taking compositions with appropriate projections.

(ii) We build a subfunctor P pAq : pβpAq,ĎqopÝÑA ´ alg of P 1pAq. This will be a
“good” presheaf base of A-algebras:

6In fact, by 18.(a), we will obtain a presheaf basis of A{NilpAq-algebras.
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For each U P βpAq consider the subring P pAqpUq
ipAqU
ãÑ P 1pAqpUq given by P pAqpUq :“

t~x P P 1pAqpUq : h1pAqa
1,b̄1

a,b̄
pprojU

pa1,b̄1q
p~xqq “ projUpa,b̄qp~xq , for each a, b̄, a1, b̄1 with U “

Ua,b̄ “ Ua1,b̄1u. By Lemma 17.(a).(iv), the ring homomorphism t1pAqU : AÝÑP 1pAqpUq
factors (uniquely) as t1pAqU “ ipAqU ˝ tpAqU with tpAqU : AÝÑP pAqpUq is a ring ho-

momorphism. Let U, V P βpAq with UĎV , then the ring homomorphism P pAqpV q
ipAqV
ãÑ

P 1pAqpV q
h1pAqVU
ÝÑ P 1pAqpUq factors (uniquely) as P pAqpV q

hpAqVU
ÝÑ P pAqpUq

ipAqU
ãÑ P 1pAqpUq

and hpAqVU : P pAqpV qÝÑP pAqpUq is a ring homomorphism; hpAqVU is an A-algebra ho-
momorphism, i.e. hpAqVU ˝ tpAqV “ tpAqU . To see that, just take composition of these
arrows with the inclusion ipAqU : P pAqpUq ãÑ P 1pAqpUq. It is easy to see that P pAq is a
contravariant functor and the family of inclusions pipAqU : P pAqpUq ãÑ P 1pAqpUqqUPβpAq
gives a natural transformation ipAq : P pAq ãÑ P 1pAq.

˝

Proposition 20 Let A be a ring.

(i) For each U P βpAq, P pAqpUq “ t0u iff U “ H. A{NilpAq
–
ÝÑ P pAqpSpecpAqq.

(ii) For each p P SpecconstpAq, we have that the stalk of P pAq at p is

P pAqp :“ lim
ÝÑ

UPβpAq:pPU

P pAqpUq
–
ÝÑ kppAq.

(iii) In general, P pAq is not a sheaf basis, but it always is a monopresheaf basis.

(iv) If A is a vN-regular ring, then SpecconstpAq “ SpecpAq and P pAq is a sheaf
that is naturally isomorphic to ΣA, the usual structure sheaf of the affine scheme
associated to A.

Proof.
(i) Since P pAqpUa,b̄q – Aa,b̄, by 18.(c) we have that P pAqpUa,b̄q “ t0u iff Ua,b̄ “ H.

Since P pAqpSpecpAqq – Aa,b̄ whenever Ua,b̄ “ SpecpAq, we have A{NilpAq
–
ÝÑ

Aa,b̄ – P pAqpSpecpAqq (see 18.(b)).
(ii) Let p P SpecpAq. Recall the canonical isomorphism

kppAq :“ RespApq “ Ap{p.Ap – FracpA{pq “ A{prA{pzt0us´1.

(1) Let a, b1, ¨ ¨ ¨ , bk P A such that p P Ua,b̄ “ Da X ZIb̄ . Then Ib̄Ďp and we have a
unique A-algebra epimorphism qAIb̄,p : A{Ib̄ � A{p such that qAIb̄,p ˝ q

A
Ib̄
“ qAp . Since a R p,

a{p P pA{pzt0uq and the canonical homomorphism jAp : A{p� A{prA{pzt0us´1 is such
that jAp pq

A
p paqq P UnitpFracpA{pqq. Define fAIb̄,p :“ jAp ˝ q

A
Ib̄,p

: A{Ib̄ÝÑFracpA{pq. Then
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clearly fAIb̄,ppa{Ib̄q P UnitpFracpA{pqq. By the universal property of σ
A{Ib̄
a{Ib̄

: A{Ib̄ÝÑAa,b̄,

we obtain a unique homomorphism ha,b̄p : Aa,b̄ÝÑFracpA{pq such that ha,b̄p ˝ σA{Ib̄ “
jAp ˝ q

A
Ib̄,p

. Since qAIb̄ is surjective, we have:

(2) ha,b̄p : Aa,b̄ÝÑFracpA{pq is the unique homomorphism such that ha,b̄p ˝ tA
a,b̄
“

jAp ˝ q
A
p . Moreover

x{Ib̄
an{Ib̄

P Aa,b̄
ha,b̄p
ÞÑ

x{p
an{p

P FracpA{pq.

(3) If c, d1, ¨ ¨ ¨ , dl P A are such that Ua,b̄ĎUc,d̄, then ha,b̄p ˝hpAq
c,d̄

a,b̄
“ hc,d̄p : this follows

from (2) since, by 18.(iv), hpAqc,d̄
a,b̄

: Ac,d̄ÝÑAa,b̄ is the unique homomorphism such that

hpAqc,d̄
a,b̄
˝ tA

c,d̄
“ tA

a,b̄
.

(4) It follows from (3) and Construction 19 that, for each V P βpAq such that p P V ,
we have a unique (well defined) homomorphism hVp : P pAqpV qÝÑFracpA{pq such that

for each c, d1, ¨ ¨ ¨ , dl P A such that V “ Ua,b̄, h
V
p “ hc,d̄p ˝ projc,d̄. Moreover, if U P βpAq

is such that p P UĎV , then hUp ˝ hpAq
V
U “ hVp .

(5) Denote βppAq :“ tU P βpAq : p P Uu. By (4) we have a co-cone phVp qV PβppAq over

the diagram pP pAqpV q
hpAqVU
ÝÑ P pAqpUqqUĎV,U,V PβppAq. Thus we have a unique homomor-

phism
hpAqp : lim

ÝÑ

UPβppAq

P pAqpUqÝÑFracpA{pq

such that for each U P βppAq, hpAqp ˝ φU,p “ hUp : P pAqpUqÝÑFracpA{pq, where

φV,p : P pAqpV qÝÑ lim
ÝÑ

UPβppAq

P pAqpUq, z ÞÑ rpz, V qs

is the canonical arrow. We will show that hpAqp is an isomorphism.
(6) hpAqp is surjective:

Let x{p
c{p

P A{prA{pzt0us´1 and select representatives x P A, c P Azp. Let d1 “ 0

and consider V “ Uc,d̄ “ Dc X Z0 “ Dc, then V P βppAq (and Id̄ “ NilpAqĎp). By

(2),
x{Id̄
c{Id̄

P Ac,d̄
hc,d̄p
ÞÑ

x{p
c{p

P FracpA{pq. Consider z :“ phc,d̄
a,b̄
p
x{Id̄
c{Id̄
qqUa,b̄“V P P pAqpV q.

Then hpAqpprpz, V qsq “ hVp pzq “ hc,d̄p p
x{Id̄
c{Id̄
q “

x{p
c{p
P FracpA{pq, showing that hpAqp is

surjective.
(7) hpAqp is injective:

Let rpz, V qs P kerphpAqpq for some V P βppAq and z P P pAqpV q. Consider c, d1, ¨ ¨ ¨ , dl
such that V “ Uc,d̄ and let

x{Id̄
cn{Id̄

P Ac,d̄ such that projc,d̄pzq “
x{Id̄
cn{Id̄

. Since rpz, V qs P

kerphpAqpq, we have x{p
cn{p

“ hc,d̄p p
x{Id̄
cn{Id̄

q “ hVp pzq “ hpAqpprpz, V qs “ 0 P FracpA{pq.

Thus x P p Let a “ c and b̄ “ td1, ¨ ¨ ¨ , dluYtxu, then p P Ua,b̄ĎUc,d̄ and hc,d̄a, b̄p
x{Id̄
cn{Id̄

q “

pxλn{Ib̄q

pakn{Ib̄q
P Aa,b̄, for some k P N and some λ P A such that λ.a ´ ak P Ib̄. Let V 1 :“ Ua,b̄
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and z1 :“ pha,b̄
a1,b̄1
p
pxλn{Ib̄q

pakn{Ib̄q
qqUa1,b̄1“V 1 . Then V 1, V P βppAq, V

1ĎV and hVV 1pzq “ z1, thus

rpz1, V 1qs “ rpz, V qs P lim
ÝÑ

UPβppAq

P pAqpUq. We will show that z1 “ 0 P P pAqpV 1q, thus

rpz, V qs “ 0 P lim
ÝÑ

UPβppAq

P pAqpUq and kerphpAqpq “ t0u, as desired. To ensure that z1 “

0 P P pAqpV 1q, it is enough to prove that
pxλn{Ib̄q

pakn{Ib̄q
“ 0 P Aa,b̄, i.e., that Dl P N, alxλn P Ib̄:

Since x P b̄, we have x P Ib̄ and we can choose any l P N.
(iii) Consider the following three facts:

- any sheaf of rings over a boolean space whose stalks are fields has a vN-regular ring
as its global section ring (see Theorem 10.3 in [Pie], alternatively this follows from the
facts that fields are vN-regular and that vN-regular rings are closed under limits by
Prop. 6, since the ring of global sections can be expressed as a limit of a diagram of
ultraproducts of the stalks [Ken, Lemma 2.5] );
- P pAq is a presheaf basis over the boolean space SpecconstpAq and its stalks are fields
(item (ii) above);
- a sheaf basis (as opposed to a presheaf basis) of rings and its associated sheaf over
any given space have isomorphic global section ring and isomorphic stalks (see Remark
23 below).

Thus, to see that, in general, P pAq is not a sheaf basis of rings, it is enough remark
that its global section ring is not a vN-regular ring in general, since P pAqpSpecpAqq –
A{NilpAq (item (i) above). For this just take for A any domain that is not a field (see
Remark 2).

Now we will show that P pAq : pβpAq,ĎqopÝÑA ´ alg is a monopresheaf basis. We
have to prove that for any U P βpAq and tUi : i P IuĎβpAq such that U “

Ť

iPI Ui, the
A-algebra homomorphism phpAqUUiqiPI : P pAqpUqÝÑ

ś

iPI P pAqpUiq is injective. Clearly
it is enough to prove that for any c P A, d̄ĎfinA and any ai P A, b̄iĎfinA , i P I such

that Uc,d̄ “
Ť

iPI Uai,b̄i , the A-algebra homomorphism phpAqc,d̄
ai,b̄i
qiPI : Ac,d̄ÝÑ

ś

iPI Aai,b̄i

is injective. Suppose that there is
x{Id̄
cn{Id̄

‰ 0 P Ac,d̄ such that hpAqc,d̄
ai,b̄i
p
x{Id̄
cn{Id̄

q “ 0 P Aai,b̄i ,

@i P I. From this we will derive a contradiction in the following four steps:
(1)

x{Id̄
cn{Id̄

‰ 0 P Ac,d̄ iff @k P N, ck ¨ x R Id̄ iff Dp P ZId̄ , c
k ¨ x R p

(2) Uai,b̄iĎUc,d̄ ñ Dki P NDλi P A, λi ¨ c´ akii P Ib̄i and hpAqc,d̄
ai,b̄i
p
x{Id̄
cn{Id̄

q “
x.λni {Ib̄i

a
kin
i {Ib̄i

.

(3) hpAqc,d̄
ai,b̄i
p
x{Id̄
cn{Id̄

q “ 0 P Aai,b̄i iff Dli P N, pakini qli ¨x ¨λni P Ib̄i iff @q P SpecpAq, pq P

ZIb̄i
ñ Dli P N, pakini qli ¨ x ¨ λni P q

(4) According to (1), we can choose p P SpecpAq such that p P ZId̄ , c
k.x R p. Then

p P ZId̄ XDc “ Uc,d̄ “
Ť

iPI Uai,b̄i , thus there is i P I such that p P Zb̄i XDai . Applying

(2), Dki P NDλi P A, λi.c´ akii P p. Applying (3), Dli P N, pakini qli .x.λni P p. Since p P Dai
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and x R p, we must have λi P p and, since λi.c ´ akii P p, we conclude that ai P p,
contradicting p P Zb̄i XDai . This finishes the proof of item (iii)

(iv) Let A be a vN-regular ring:
(1) By Fact 14.(i), for each x P A there is a unique idempotent ex P BpAq such that
pxq “ pexq.
(2) Therefore every ideal IĎA in A is radical (

?
I “ I): for each x P A we have x P I

iff for ex P I iff Dn P N ( enx P I) iff Dn P N ( xn P I) iff x P
?
I.

(3) By the result (2) above and Remark 15.(i), it follows that Da “ Dc iff paq “ pcq.
(4) Let a, b0, . . . , bn´1 P A and denote e, f0, . . . , fn´1ĎBpAq their (uniquely given) cor-
responding idempotents (so paq “ peq and pbiq “ pfiq, i ă n) and write f :“

Ž

iăn fi.
Then:
Ua,b̄ :“ Da X

Ş

iănZbi “ De X
Ş

i ă nZfi “ De X
Ş

iănD1´fi “ De.p
ś

iăn 1´fiq “

De^p1´
Ž

iăn fiq
“ De^f˚ “ De^f˚ X Z0;

(5) By results (3), (4) above and by Fact 14.(i), for each U P βpAq there is a uni-
que gU P BpAq such that U “ DgU “ DgU X Z0 (6) For each U P βpAq, by result

(5) above, P pAqpUq – pA{
a

p0qq
gU {
?
p0q
“ pA{p0qqgU {p0q – AgU – ΣApUq. It can

be proved that all those isomorphisms are compatible so they give an isomorphism
γpAqU : PApUq

–
ÝÑ ΣApUq.

(7) By result (4) and Fact 14.(i), Ua,b̄ĎUa1,b̄1 iff De^f˚ĎDe1^f 1˚ iff e^ f˚ ď e1 ^ f 1˚.
(8) By results (6), (7) above, if U,U 1 P βpAq, UĎU 1, then:

pPApU
1
q

hpAqU
1

U
ÝÑ PApUq

γpAqU
ÝÑ ΣApUqq “ pPApU

1
q

γpAqU 1
ÝÑ ΣApU

1
q

σpAqU
1

U
ÝÑ ΣApUqq.

(9) By results (6), (8) above: γpAq : P pAq
–
ÝÑ ΣA.

�

Denote Boofield the full subcategory of Locringed whose objects are the sheaves
of rings over boolean spaces whose stalks are fields. In Theorem 10.3 in [Pie] is shown
that the ring of global sections of each sheaf in Boofield is a vN-regular ring. On
the other hand, Proposition 5.6 in [DM7], provides an(other) explicit proof that the
affine scheme of a vN-regular ring is a sheaf in Boofield. A natural question suggested
by item (iv) of Proposition 20 above is ask if, in general, any sheaf in Boofield is
Boofield´ isomorphic to the affine sheaf of the ring of global sections. The answer is
the content of the following:

Proposition 21 (i) Let X be a boolean space and F : pOpenpXq,ĎqopÝÑRing be
a sheaf of rings over X such that for each x P X, Fx :“ lim

ÝÑ

xPUPOpenpXq

F pUq is a

field. Then eF :“ phF , τF q : ΣΓpF qÝÑF (see Remark 15.(vi)) is a Boofield ´
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isomorphism. In more details:
(a) ΓpF q :“ F pXq is a vN-regular ring ([Pie], Theorem 10.3), thus ΣF pXq P

objpBoofieldq ([DM7], Proposition 5.6);
(b) hF : X ÝÑ SpecpF pXqq is a homeomorphism of boolean spaces;
(c) τF : ΣF pXq ÝÑ phF q‚pF q is a natural isomorphism of sheaves over SpecpF pXqq.

(ii) The adjunction pΣ,Γ, s, eq : Rings Õ Locringed, described Remark 15, restricts
to an adjunction equivalence pΣ,Γ, s, eq : Regrings Õ Boofield; in particular,
the categories Regrings,Boofield are equivalent.

Proof. Item (ii) is a direct consequence of item (i), since we already have that for

every ring A, spAq : A
–
ÝÑ ΓpΣAq (see items (iv) and (viii) in Remark 15).

(i) (a) We just present an alternative proof that F pXq is a vN-regular ring. By
Proposition 3.2.(d) in [DM7], for each C P ClopenpXq, the mapping pφC,xqxPC :
F pCqÝÑ

ś

xPC Fx reflects the satisfiability of geometrical formulas, it is pure in par-
ticular. As fields are vN-regular rings, products of vN-regular rings are vN-regular
rings and pure subrings of vN-regular rings are vN-regular rings (see Remark 3), then
it follows that F pCq is a vN-regular ring; in particular, ΓpF q “ F pXq is a vN-regular
ring.

(b) Since F pXq is a vN-regular ring, SpecpF pXqq is a boolean space. By Stone du-
ality, to show that hF : X ÝÑ SpecpF pXqq is a homeomorphism of boolean spaces, is
equivalent to show that phF q

´1 : ClopenpSpecpF pXqqqÝÑClopenpXq is a boolean alge-
bra isomorphism. Since F pXq is a vN-regular ring, the mapping jF pXq : BpF pXqq ÝÑ
ClopenpSpecpF pXqqq, given by e ÞÑ De, is a boolean algebra isomorphism (see Fact
14.(i)). Thus, it is enough to provide an inverse map to the BA-homomorphism
phF q

´1 ˝ jF pXq : BpF pXqqÝÑClopenpXq, e ÞÑ We “ the largest open subset U of
X such that FX

U peq is invertible in F pUq; note that W1´e “ XzWe, thus We is a clopen.
Let C P ClopenpXq and denote C 1 :“ XzC; thus tC,C 1u is a disjoint (cl)open

cover of X. Since F is a sheaf of rings, we have F pHq “ t0u and pFX
C , F

X
C1q : F pXq

–
ÝÑ

F pCqˆF pC 1q. Denote by epCq, epC 1q P F pXq the elements that under this isomorphism
correspond to, respectively, p1C , 0C1q and p0C , 1C1q. Clearly epCq, epC 1q P BpF pXqq,
epCq ¨ epC 1q “ 0 and epCq ` epC 1q “ 1.

We will show that the mapping EX : ClopenpXqÝÑBpF pXqq, C ÞÑ epCq, is the
inverse of phF q

´1 ˝ jF pXq.
˚ EX ˝ phF q

´1 ˝ jF pXq “ idBpF pXqq:
Let e P BpF pXqq and denote e1 :“ 1´ e P BpF pXqq. We must show that FX

We
peq “

1We and FX
We1
peq “ 0We1

. But FX
We
peq is invertible and idempotent in F pWeq, thus

FX
We
peq “ 1We ; likewise 1We1

“ FX
We1
pe1q “ FX

We1
p1´eq1We1

´FX
We1
peq, thus FX

We1
peq “ 0We1

.

˚ phF q
´1 ˝ jF pXq ˝ EX “ idClopenpXq:

Let C P ClopenpXq and denote C 1 :“ XzC P ClopenpXq. We must show that
C “ WepCq. By the definitions, FX

C pepCqq “ 1C is invertible in F pCq, thus CĎWepCq;
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likewise C 1ĎWepC1q “ W1´epCq “ XzWepCq. In this way tC,C 1u and tWepCq,WepC1qu are
both disjoint (cl)open covers of X the former one refining the latter: thus C “ WepCq.

(c) Since τF : ΣF pXq ÝÑ phF q‚pF q is a natural transformation of sheaves over
SpecpF pXqq, to prove that τF is a natural isomorphism, it is enough to show that
pτF qU : ΣF pXqpUq ÝÑ F ph´1

F rU sq is a ring isomorphism, for each U in some open
basis of X that is closed under finite intersections. In Remark 15.(vi), we saw that,
for each a P F pXq, pτF qDa : ΣF pXqpDaqÝÑF ph

´1
F rDasq is naturally identified with the

homomorphism F pXqaÝÑF pWaq, obtained from the arrow FX
Wa

: F pXqÝÑF pWaq by
the universal property of the ring of fractions F pXqÝÑF pXqa.

Since F pXq is a vN-regular ring, paq “ peq for a unique e P BpF pXqq. Therefore

Da “ De, Wa “ We and F pXqa
σa1´e
– F pXqe. Thus we only need consider the homo-

morphisms F pXqeÝÑF pWeq, obtained from the arrows FX
We

: F pXqÝÑF pWeq by the
universal property of the ring of fractions F pXqÝÑF pXqe, e P BpF pXqq.

Since tWe,We1u is a disjoint (cl)open cover of X and F is a sheaf, we have an iso-

morphism pFX
We
, FX

We1
q : F pXq

–
ÝÑ F pWeq ˆ F pW 1

eq. Thus FX
We

: F pXqÝÑF pWeq can
be identified with the canonical epimorphism F pXq � F pXq ¨ e. Let e1 :“ 1 ´ e. By
Fact 14.(i), we have the canonical inverse isomorphisms of F pXq-algebras F pXqe –
F pXq{pe1q – F pXq ¨ e. Thus FX

We
: F pXqÝÑF pWeq can be identified with the canonical

(epi)morphism of fractions F pXq� F pXqe, then F pXqeÝÑF pWeq is an isomorphism,
finishing the proof. �

The association A ÞÑ P pAq extends to a functor from the category of rings to the
category of presheaves (or presheaf bases) over variable spaces. Keeping the notations
in 17, 19, this is content of the following:

Fact 22 Let f : AÝÑA1 a ring homomorphism.
(i) f ‹ : SpecconstpA1qÝÑSpecconstpAq is a spectral map such that

pf ‹q´1 : βpAqÝÑβpA1q : Ua,b̄ ÞÑ U 1
fpaq,fpb̄q

. If f “ idpAq then pf ‹q´1 “ idpβpAqq. If

f 1 : A1ÝÑA2 is a ring homomorphism then ppf 1 ˝ fq‹q´1 “ pf 1‹q´1 ˝ pf ‹q´1.
(ii) Consider a P A, b̄ĎfinA. There is a unique ring homomorphism

fa,b̄ : Aa,b̄ÝÑA
1

fpaq,fpb̄q
such that fa,b̄ ˝ t

A
a,b̄
“ tA

1

fpaq,fpb̄q
˝ f . Moreover:

˚ if c P A, d̄ĎfinA is such that Ua,b̄ĎUc,d̄, then fa,b̄ ˝ hpAq
c,d̄

a,b̄
“ hpA1q

fpcq,fpd̄q

fpaq,fpb̄q
˝ fc,d̄;

˚ if f “ idA, then fa,b̄ “ idAa,b̄ ;
˚ if f 1 : A1ÝÑA2 is a ring homomorphism, then pf 1 ˝ fqa,b̄ “ f 1

fpaq,fpb̄q
˝ fa,b̄.

(iii) There is a canonical natural transformation f̌ : P pAqÝÑpf ‹q‚P pA
1q of contra-

variant functors over pβpAq,Ďq, where pf ‹q‚P pA
1q is the direct image presheaf base of

P pA1q under f ‹. Moreover,

pA
f
ÝÑ A1q ÞÑ pP pAq

pf‹,f̌q
ÝÑ P pA1qq



vN-Hull and Quadratic Forms 225

is a functorial association. More explicitly:
For U P βpAq there is a unique ring homomorphism f̌U : P pAqpUqÝÑP pA1qppf ‹q´1rU sq
such that f̌U ˝ tpAqU “ tpA1qpf‹q´1rUs ˝ f and with the following properties:

˚ if V P βpAq is such that UĎV , then f̌U ˝ hpAq
V
U “ hpA1q

pf‹q´1rV s

pf‹q´1rUs ˝ f̌V ;

˚ if f “ idA, then f̌U “ idP pAqpUq ;

˚ if f 1 : A1ÝÑA2 is a ring homomorphism then ­pf 1 ˝ fqU “ f̌ 1pf‹q´1rUs ˝ f̌U . ˝

Remark 23 On the associated sheaf of a presheaf basis: ([EGA])
Let BĎOpenpXq be a basis of the topology. For each U P OpenpXq define BpUq :“

tD P B : DĎUu; if UĎU 1 are open sets note that BpUqĎBpU 1q.
Consider a “presheaf basis” F of rings defined on the basis B (i.e., a contravariant

functor F : pB,ĎqopÝÑRings) and a “sheaf basis” G of rings defined on the basis B
(i.e., G is a presheaf basis and satisfies the condition that any compatible family of
sections has a unique gluing). Then:

(i) As the stalks of the presheaf basis F on B are determined, there is a sheaf basis
F̃ : pB,ĎqopÝÑRings and a natural transformation σF : FÝÑF̃ , satisfying the
universal property that characterizes the construction up to unique isomorphism.

(ii) If UĎU 1 are open sets, define pGpUq :“ lim
ÐÝ

DPBpUq

GpDq and pGpU ãÑ U 1q : lim
ÐÝ

D1PBpU 1q

GpD1qÝÑ lim
ÐÝ

DĎU

GpDq is the projection homomorphism.

(iii) pG is a sheaf on openpXq. If D P B, then pGpDq – GpDq (through the canonical

projection): This characterizes the construction G ÞÑ pG up to unique isomor-
phism.

(iv) The mapping F ÞÑ SpF q :“ pF̃ satisfies a universal property that characterizes the

construction up to unique isomorphism. Moreover, F , F̃ and pF̃ have (canonically)
isomorphic stalks.

˝

As the direct image of a sheaf under a continuous function is a sheaf (over the
codomain space), the following result is a direct consequence of the universal property
of the associated sheaf in Remark 23 and Fact 22.(iii).

Fact 24
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(i) Let A be a ring. Denote by SpAq : pOpenpSpecconstpAqq,ĎqopÝÑA ´ alg the as-
sociated sheaf of the presheaf base P pAq : pβpAq,ĎqopÝÑA ´ alg. For each U P
OpenpSpecconstpAqq, denote θpAqU : AÝÑSpAqpUq the ring homomorphism that
encodes theA-algebra structure on the ring SpAqpUq; denote ηA :“ θpAqSpecconstpAq :
AÝÑSpAqpSpecconstpAqq.

(ii) Let f : AÝÑA1 be a ring homomorphism and still denote by SpAq and SpA1q the
sheaves with codomain in the category Rings. There is a canonical natural trans-
formation f̌ : SpAqÝÑpf ‹q‚SpA

1q of contravariant functors over
pOpenpSpecconstpAqq,Ďq, where pf ‹q‚SpA

1q is the direct image (pre)sheaf of SpA1q
under f ‹.

Moreover, pA
f
ÝÑ A1q ÞÑ pSpAq

pf‹,f̌q
ÝÑ SpA1qq is a functorial association. More

explicitly:

Consider U P OpenpSpecconstpAqq, then there is a unique ring homomorphism
f̌U : SpAqpUqÝÑ SpA1qppf ‹q´1rU sq such that f̌U ˝ θpAqU “ θpA1qpf‹q´1rUs ˝ f .
Moreover:
˚ if V P βpAq is such that UĎV , then f̌U ˝ spAq

V
U “ spA1q

pf‹q´1rV s

pf‹q´1rUs ˝ f̌V ;

˚ if f “ idA, then f̌U “ idP pAqpUq ;

˚ if f 1 : A1ÝÑA2 is a ring homomorphism, then ­pf 1 ˝ fqU “ f̌ 1pf‹q´1rUs ˝ f̌U .

˝

Consider now the following:

Construction 25

• Let A be a ring. Define RpAq :“ ΓpSpAqq “ SpAqpSpecconstpAqq: Note that
RpAq P objpRegRingsq because it is given by the global sections of a sheaf of
rings over a boolean space whose stalks are fields.

• Let f : AÝÑA1 be a ring homomorphism. Define

Rpfq :“ f̌SpecconstpAq : SpAqpSpecconstpAqqÝÑSpA1qpSpecconstpA1qq.

Note that f ‹´1
rSpecconstpAqs “ SpecconstpA1q.

• By Fact 24.(ii) above, these mappings determine a functorR : RingsÝÑRegRings.

• For each ring A, consider the ring homomorphism ηA : AÝÑRpAq described
in Fact 24.(i) above. Then, by Fact 24.(ii), pηAqAPobjpRingsq defines a the natural
transformation η : IdRingsÝÑi˝R, where i is the inclusion functor i : RegRings ãÑ
Rings.
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˝

Finally we are ready to state and prove the following:

Theorem 26 The inclusion functor i : RegRings ãÑ Rings has a left adjoint given by
the functor R : RingsÝÑRegRings and the natural transformation η “ pηAqAPobjpRingsq
is the unit of this adjunction.

Proof. We will check that the conditions (E), (U), (U’) in Proposition 12 are satisfied.
(E) Let V be a vN-regular ring. By Proposition 20.(iv) we have SpecconstpV q “

SpecpV q and ΣV
–
ÝÑ P pV q thus, in particular, P pV q

–
ÝÑ SpV q and

V
–
ÝÑ ΣpV qpSpecpV qq

–
ÝÑ P pV qpSpecpV qq (see Remark 15). Keeping track of the

former isomorphisms, we can conclude that ηV : VÝÑSpV qpSpecconstpV qq is an isomor-
phism, establishing (E).

By Proposition 21, hSpAq : SpecconstpAq
«
ÝÑ SpecpRpAqq and, for each

U P OpenpSpecpRpAqqq, we have τSpAqpUq : ΣRpAqpUq
–
ÝÑ SpAqph´1

SpAqrU sq.

(U) A diagram chase shows that

pSpecconstpAq
hSpAq
ÝÑ SpecpcRpAqq

η‹A
ÝÑ SpecpAqq “ pSpecconstpAq

id
ÝÑ SpecpAqq

Thus, since hSpAq is a homeomorphism, we conclude that pηAq
‹ : SpecpRpAqq

«
ÝÑ

SpecpAq is a spectral bijection, establishing (U).
(U’) By Proposition 20.(ii) and Remark 23.(iv), for each p P SpecconstpAq, P pAqp –

kppAq – SpAqp. As hSpAqppq “ kerpRpAq� SpAqpq, pτSpAqqp : pΣRpAqqhSpAqppq
–
ÝÑ SpAqp

and pΣRpAqqhSpAqppq – ΣRpAq{hSpAqppq – khSpAqppqpRpAqq (since RpAq is vN-regular), we

get an isomorphism kppAq
–
ÝÑ khSpAqppqpRpAqq.

Keeping track of the former isomorphisms and by the above proof of (U), we can

conclude that, for each q P SpecpRpAqq, xηAq : kη‹ApqqpAq
–
ÝÑ kqpRpAqq, establishing (U’).

�

Corollary 27 The functor R preserves all colimits. In particular it preserves:

1. directed inductive limits;

2. coproducts (= tensor products in Rings);

3. coequalizers/quotients.

Proof. Since it is a left adjoint, R preserves all colimits. We explain the mea-
ning of the preservation of quotients. Consider the induced homomorphism RpqIq :



228 P. Arndt and H. L. Mariano

RpAq � RpA{Iq: it is surjective since the coequalizers in Rings and RegRings coi-
ncide with the surjective homomorphisms. Then Ī :“ kerpRpqIqqĎRpAq is such that
ĞRpqIq : RpAq{Ī

–
ÝÑ RpA{Iq and, since RpAq �

ś

pPSpecpAq kppAq, Ī can be identified

with RpAq X t~x “ pxpqpPSpecpAq P
ś

pPSpecpAq kppAq : @p Ě I, xp “ 0 P kppAqu. Note in

particular, that if IĎNilpAq, then RpqIq : RpAq
–
ÝÑ RpA{Iq, thus Ī “ t0u. �

The following results are specific to the functor R, i.e., they are not general conse-
quences of it being a left adjoint functor.

Proposition 28 R preserves localizations. More precisely, given a ring A and a mul-
tiplicative submonoid SĎA, denote S 1 :“ ηArSsĎRpAq the corresponding multiplica-
tive submonoid and let ηSA : ArSs´1ÝÑRpAqrS 1s´1 be the induced arrow, i.e., ηSA is
the unique homomorphism such that ηSA ˝ σpAqS “ σpRpAqqS1 ˝ ηA. Then ηArSs´1 :
ArSs´1ÝÑRpArSs´1q thus it is isomorphic to the arrow ηSA, through the obvious pair of
inverse (iso)morphisms RpArSs´1qÕ RpAqrS 1s´1.

Proof. First of all, note that RpAqrS 1s´1 is a vN-regular ring, cf. Prop. 5. For

each vN-regular ring V , the bijection p´ ˝ ηAq : RegRingspRpAq, V q
–
ÝÑ RingspA, V q

restricts to the bijection
p´ ˝ ηAqæ : tH P RegRingspRpAq, V q : HrS 1sĎUnitpV qu

.
–
ÝÑ th P RingspA, V q : hrSsĎUnitpV qu.

Composing the last bijection with the bijections below, obtained from the universal
property of localizations,

p´ ˝ σpAqSq
´1 : th P RingspA, V q : hrSsĎUnitpV qu

–
ÝÑ RingspArSs´1, V q,

p´ ˝ σpRpAqqS1q : RingspRpAqrS 1s´1, V q
–
ÝÑ tH P RingspRpAq, V q : HrS 1sĎUnitpV qu,

we obtain, since RegRings is a full subcategory of Rings, the bijection

p´ ˝ ηSAq : RegRingspRpAqrS 1s´1, V q
–
ÝÑ RingspArSs´1, V q.

Summing up, the arrow ηSA : ArSs´1ÝÑRpAqrS 1s´1 satisfies the universal property of
vN-regular hull, thus it is isomorphic to the arrow ηArSs´1 : ArSs´1ÝÑRpArSs´1q. �

Proposition 29 R preserves finite products. More precisely, let I be a finite set and
tAi : i P Iu any family of rings. Denote πj :

ś

iPI Ai � Aj the projection homomor-
phism, j P I. Then

ś

iPI ηAi :
ś

iPI AiÝÑ
ś

iPI RpAiq satisfies the universal property
of vN-regular hull, thus it is isomorphic to the arrow ηś

iPI Ai
:

ś

iPI AiÝÑRp
ś

iPI Aiq,
through the obvious pair of inverse (iso)morphisms Rp

ś

iPI AiqÕ
ś

iPI RpAiq.
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Proof. (Sketch) First of all, note that
ś

iPI RpAiq is a vN-regular ring. If I “ H,
then

ś

iPI Ai,
ś

iPI RpAiq and Rp
ś

iPI Aiq are isomorphic to the trivial ring t0u, thus
the result holds in this case.

By induction, we only need to see that pRpπ1q, Rpπ2qq : RpA1 ˆ A2q
–
ÝÑ RpA1q ˆ

RpA2q. But we have:
‚ rπ‹1, π

‹
2s : SpecpA1q \ SpecpA2q

«
ÝÑ SpecpA1 ˆ A2q, ppi, iq ÞÑ π´1

i rpis, i “ 1, 2.
‚ rπ‹1, π

‹
2s : SpecconstpA1q \ Spec

constpA2q
«
ÝÑ SpecconstpA1 ˆ A2q.

‚ Let a :“ pa1, a2q P A1 ˆ A2 and b̄ :“ tpb1,1, b2,1q, ¨ ¨ ¨ , pb1,n, b2,nquĎfinA1 ˆ A2, then
pA1 ˆ A2qa,b̄ – A1a1,b̄1 ˆ A2a2,b̄2 .
‚ \pPSpecpA1ˆA2qkppA1 ˆ A2q « p\p1PSpecpA1qkp1pA1qq \ p\p2PSpecpA1qkp2pA2qq.
‚ Let U P OpenpSpecpA1 ˆ A2qq, then U « U1 \ U2, where Ui “ pπ‹i q

´1rU s P
OpenpSpecpAiqq. Then any sheaf S satisfies SpAqpUq – SpA1qpU1q ˆ SpA2qpU2q.

Now the construction of R as the global sections of of a sheaf allows to conclude
RpA1ˆA2q “ SpA1ˆA2qpSpecpA1ˆA2qq – pSpA1qpSpecpA1qqˆSpA2qpSpecpA2qqq “

RpA1q ˆRpA2q.
�

Remark 30 By a combination of Theorem 26, Proposition 21.(ii) and Remark 15.(viii),
in some sense, any ring viewed as an object of Locringed has a ”nearest field”7. In more
details, for each affine scheme A (i.e A – ΣA), there is an affine scheme VA in Boofield
and there is a Locringed-morphism phA, τAq : AÝÑVA, such that for each pX,F q in
Boofield, and for each Locringed-morphism ph, τq : AÝÑpX,F q, then there is a unique
Locringed-morphism ph̃, τ̃q : VAÝÑpX,F q such that ph̃, τ̃q ˝ phA, τAq “ ph, τq. ˝

4 Some calculations and remarks

In Proposition 11.(iv) we saw that, given a ring A, then for each a P A, a P
NilpAqôηApaq P NilpRpAqq “ t0u. It is natural to ask if the canonical homomorphism
ηA : AÝÑRpAq reflects other ring-theoretic properties.

31 If V is a vN-regular ring then the diagonal ring homomorphism
δV : VÝÑ

ś

sPSpecpV q kspV q is injective (because kerpδV q “ NilpV q “ t0u), but much
more holds: as V is isomorphic to the ring of global sections of its spectral sheaf and the
space SpecpV q is boolean, it follows from Proposition 3.2.(d) in [DM7] that δV : V �
ś

sPSpecpV q kspV q is an Lring-pure embedding, i.e., if we consider the language Lring “

t`,´, 0, ¨, 1u and we take any existential positive Lring-formula, say φpx1, . . . , xnq, then

7Clearly, the inclusion functor Fields ãÑ Rings does not have a left adjoint. On other hand, each
ring A admits a essentially unique family of ”nearest fields”: tαA

p : AÝÑkppAqu, establishing that
Fields ãÑ Rings has a multi left adjoint.



230 P. Arndt and H. L. Mariano

for each b1, . . . bn P V , φrb1, . . . , bns is true in V iff φrδV pb1q, . . . , δV pbnqs is true in
ś

sPSpecpV q kspV q. ˝

32 Let us write B‚ for the set of invertible elements of a ring B. For a given ring A,
we have that for each a P A, a P A‚ ô ηApaq P RpAq

‚. Indeed, it follows from some
well known results in Commutative Algebra and the calculations in Section 2, that

a P A is invertible iff @p P SpecpAq a{p ‰ 0{p P A{p
iff @p P SpecpAqαAp paq P kppAq is invertible
iff δApaq P

ś

pPSpecpAq kppAq is invertible

iff xηA ˝ δApaq P
ś

qPSpecpRpAqq kqpRpAqq is invertible

iff δRpAq ˝ ηApaq P
ś

qPSpecpRpAqq kqpRpAqq is invertible

iff ηApaq P RpAq is invertible (since δRpAq is a pure embedding) ˝

33 The sheaf theoretic description of the vN-regular hull, and the fact that δRpAq :
RpAq �

ś

qPSpecpRpAqq kqpRpAqq is a pure embedding, give us a guide to “calculate”
some vN-regular hulls. For instance:

(i) Since RpAq is the ring of global sections of the sheafification of a known
(mono)presheaf, its elements are obtained by gluing of sections of this presheaf,
and the canonical map ηA : AÑ RpAq is the one that maps elements of A to the
compatible families they represent (and which appear in more general form in the
process of gluing). Potentially, this more concrete description of the vN-hull can
provide information easier than just by the use of the universal property.

(ii) Let A be a ring. Then the following are equivalent:
(a) SpecpAq is a finite spectral space.
(b) SpecconstpAq is a finite and discrete space.
(c) RpAq is isomorphic to a finite product of fields.
We analyze only the non-obvious implication: (b)ñ (c). Assuming SpecconstpAq is
a finite and discrete space, then SpAqptpuq – SpAqp – kppAq; moreover
SpAqpSpecconstpAqq “ SpAqp

Ť

pPSpecpAqtpuq –
ś

pPSpecpAq SpAqptpuq, since SpAq is

a sheaf. Thus RpAq “ SpAqpSpecconstpAqq –
ś

pPSpecpAq kppAq and ηA : AÝÑRpAq

can be identified with the diagonal homomorphism δA : AÝÑ
ś

pPSpecpAq kppAq.
In particular:
‚ RpAq is a trivial ring iff SpecpAq “ H iff A is a trivial ring.
‚ RpAq is a field iff SpecpAq “ tmu iff A is a zero-dimensional local ring; moreo-
ver, in this case, RpAq – RespAq “ A{m.
‚ If A is a finite ring, then SpecpAq is a finite space and kppAq – A{p. Then
RpAq “ SpAqpSpecconstpAqq –

ś

pPSpecpAqA{p is a finite ring (a finite product of fi-

nite fields) and ηA : AÝÑRpAq can be identified with the diagonal homomorphism
pqAp qpPSpecpAq : AÝÑ

ś

pPSpecpAqA{p.
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(iii) If F rxs the ring of polynomials in one variable over the field F , RpF rxsq is a pure
subring of F pxqˆ

ś

t simple algebraic extensions of F u and F rxs is in the diagonal.
In particular, when F is an algebraically closed field, then the (boolean) space of
1-types of F is homeomorphic to SpecconstpF rxsq and RpF rxsqĎF pxq ˆ F F is a
pure subring containing F rxs.

(iv) RpZq is a pure subring of Q ˆ
ś

pPN,p prime
Z{pZ. Consider n P Nzt0, 1u, say

n “ pe01 . ¨ ¨ ¨ .p
ek
k , with pi ą 0 distinct primes and ei ą 0, i ď n; if A “ Z{nZ

then the canonical arrow ηA : A Ñ RpAq can be identified with the projection
onto the quotient qn,n1 : Z{nZ � Z{n1Z, where n1 “ p1 ¨ . . . ¨ pk: as δZ{nZ “
pqn,piqiďk : Z{nZÝÑ

ś

iďk Z{piZ we get NilpAq “ kerpδAq “ n1Z{nZĎZ{nZ, and
because RpAq – RpA{NilpAqq, we just have to see that δZ{n1Z “ pqn1,piqiďk :
Z{n1ZÝÑ

ś

iďk Z{piZ is an isomorphism, this follows from the injectivity of δZ{n1Z
and a counting argument or by Chinese Remainder Theorem.

(v) If A is a ring with Krull dimension “ 0, then JacpAq “ NilpAq and A{NilpAq
is vN-regular, since it is reduced and zero dimensional. It is straightforward to
check that to the quotient map qNilpAq : A � A{NilpAq satisfies the universal
property of vN-hull. Thus we can conclude that ηA : A Ñ RpAq is isomorphic to
qNilpAq : A� A{NilpAq.

˝

5 The vN-Hull in categories of preordered rings and

applications

In this section, we extend the construction of the vN-Hull to categories of preordered
rings.

Remark 34 On preordered rings: ([Lam2], [Mar2])

(i) A preorder in a ring A is a subset TĎA such that A2 “ ta2 : a P AuĎT, T `
TĎT, T.TĎT . The intersection of any set of preorders in A is a preorder in A. It
follows that the set popAq “ tTĎA: T is a preorder in Au, ordered by inclusion,
is a complete lattice, in which

ř

A2 and A are the extremal preorders in A. A
preorder TĎA is proper if T ‰ A. If 2 P A‚ pô2 P RpAq‚q then TĎA is proper
iff ´1 R T . If TĎA is a preorder, then T X ´T is an ideal in A. An order in A
is a (proper) preorder PĎA such that P Y ´P “ A and P X ´P P SpecpAq. If
´1 R TĎA is a (proper) preorder then a maximal preorder P such that ´1 P P
and TĎP is a (maximal) order in A. Not every order is maximal under inclusion.
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(ii) The set SperpAq “ tPĎA: P is an order in Au is called the real spectrum of A and
has a natural spectral topology: it has as subbase the set tSaĎSperpAq : a P Au
where Sa :“ tP P SperpAq : a P P z ´ P u, a P A. For T P popAq we consider also
the subspace SperT pAq “ tP P SperpAq : TĎP u, then Sperř

A2pAq “ SperpAq.
There is a spectral map ΠA : SperpAq Ñ SpecpAq, P ÞÑ P X´P .

Now consider a ring homomorphism f : AÝÑA1.

(iii) The inverse image function induced by f is a contravariant increasing function be-
tween the complete lattices f ‹ : popA1qÝÑpopAq : T 1 ÞÑ f ‹pT 1q :“ f´1rT 1s. The
inverse image of a proper preorder is a proper preorder. Moreover, the image in-
verse function gives a well defined (spectral) function: f ‹ : SperS1pA

1qÝÑSperT pAq
, for each T P popAq, S1 P popA1q, TĎf ‹pS 1q. The direct image function induced by
f is a covariant increasing function between complete lattices f‹ : popAqÝÑpopA1q
: T ÞÑ f‹pT q :“

ř

A12f rT s (“
Ş

tS 1 P popA1q : f rT sĎS 1u).

(iv) The pair of functions given by direct and inverse image pf‹, f
‹q : popAqÕ popA1q

forms an adjunction: for each T P popAq, S1 P popA1q , (f rT sĎS 1 iff) f‹pT qĎS
1 ô

TĎf ‹pS 1q, in particular TĎf ‹ ˝ f‹pT q , f‹ ˝ f
‹pS 1qĎS 1 and f‹pT q “ f‹ ˝ f

‹ ˝ f‹pT q
, f ‹ ˝ f‹ ˝ f

‹pS 1q “ f ‹pS 1q.

(v) The direct and inverse image constitute, respectively, a covariant and a con-
travariant functor RingsÝÑCompleteLattices. I.e. pidAq‹ “ idpopAq “ pidAq

‹,
and if f 1 : A1ÝÑA2 is a ring homomorphism, then pf 1 ˝ fq‹ “ pf 1q‹ ˝ pfq‹ and
pf 1 ˝ fq‹ “ pfq‹ ˝ pf 1q‹.

˝

Fact 35 Consider the category poRings whose objects are the poRings pA, T q and ar-
rows h : pA, T qÝÑpA1, T 1q are the ring homomorphisms h : AÝÑA1 such that hrT sĎT 1.
Then:

(a) If h : AÝÑA1 is a ring homomorphism and T P popAq, T 1 P popA1q, then we have
the following equivalences: hrT sĎT 1 iff h‹pT qĎT

1 iff TĎh‹pT 1q.

(b) Let LpoRings “ p`, ¨,´, 0, 1, T p qq be the first-order language that extends the lan-
guage of rings by the addition of a unary predicate symbol T p q. Then poRings is a
full reflective subcategory of the category LpoRings ´ Str of all LpoRings-structures and
its LpoRings-homomorphisms.

(c) poRings ãÑ LpoRings ´ Str is an elementary subclass that is closed under upward
directed colimits, substructures, products, reduced products.

˝
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Proposition 36 Let A be a ring. Then the vN-hull, ηA : AÑ RpAq induces a (spectral)
bijection between spectral spaces SperpRpAqq Ñ SperpAq. This bijection fits into a
commutative diagram with the maps ΠA, ΠRpAq of Remark 34(ii), and the bijection
pηAq

‹ : SpecpRpAqq Ñ SpecpAq.

Proof. There is a natural bijection between SperpBq and equivalence classes of ring
homomorphisms from B to a real closed field: where f : BÝÑF , f 1 : BÝÑF 1 are
equivalent if there is a real closed field K and homomorphisms j : FÝÑK, j1 : FÝÑK 1

such that j ˝ f “ j1 ˝ f 1 8. Using this identification, the first claim follows from the
universal property of ηA.

The second claim follows simply from the definitions of ΠA, ΠRpAq and the fact that
taking preimage of a set under a ring homomorphism commutes with finite intersection
and negation. �

Remark 37 Consider the vN-Hull ηA : AÝÑRpAq.

• If T P popAq is proper, then there is an order P P SperT pAq. Since pηAq
‹ :

SperpRpAqqÝÑSperpAq is bijective (by Prop. 36), there is an order Q P

SperpRpAqq with TĎpηAq
‹pQq, i.e. pηAq‹pT qĎQ. Thus pηAq‹pT q P popRpAqq is

a proper preorder, too. On the other hand, as TĎpηAq
‹ppηAq‹pT qq, if pηAq‹pT q is

a proper preorder on RpAq, then T is a proper preorder on A.

• If P P SperpAq is a maximal order, then P P popAq is proper so pηAq‹pP q P
popRpAqq is proper and pηAq

‹ppηAq‹pP qq P popAq is proper, too. In this case,
as PĎpηAq

‹ppηAq‹pP qq, we get P “ pηAq
‹ppηAq‹pP qq; since pηAq

‹ : SperpRpAqq
ÝÑSperpAq is a increasing bijection, P “ pηAq

‹pQq for some (unique) Q P

maxSpecpRpAqq and, as P “ pηAq
‹ppηAq‹pP qq, then pηAq‹pP q “ Q P popRpAqq

is a maximal order. Summing up, we have the pair of inverse bijections tQ P

SperpRpAqq : Q is maximalu
pηAq

‹

Ø
pηAq‹

tP P SperpAq : P is maximal u.

˝

The remarks above suggest that the association pA, T q ÞÑ pRpAq, pηAq‹pT qq has a
privileged role. For simplicity, we will write T‹ :“ pηAq‹pT q.

Proposition 38 If poRegRings denotes the full subcategory of poRings formed by
pairs pV, Sq where V is a vN-regular ring, then the inclusion functor poRegRings ãÑ

poRings has a left adjoint. I.e., for each poring pA, T q, the poring-morphism ηA :

8This relation is transitive because the elementary class of real closed fields is model complete and
has the amalgamation property for (mono)morphisms.
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pA, T qÝÑpRpAq, T‹q has the following universal property: Given a poring pV, Sq with
V a vN-regular ring and a poring-morphism f : pA, T qÝÑpV, Sq, there exists a unique
poring-morphism F : pRpAq, T‹qÝÑpV, Sq that extends f through ηA i.e. F ˝ ηA “ f .

Proof. As the underlying functors poRingsÝÑRings, poRegRingsÝÑRegRings are
faithful and ηA : AÝÑRpAq has the universal property relatively to the inclusion
RegRings ãÑ Rings, it only remains verify that F rT‹sĎS. This can be seen as fol-
lows:

F rT‹sĎS iff F‹ppηAq‹pT qq “ F‹pT‹qĎS iff pF˝ηAq‹pT qĎS iff f‹pT qĎS iff f rT sĎS

�

Corollary 39 (Relative version of Prop. 36) For each ring A there is a natural
bijection between the orders in A and the equivalence class of ring homomorphisms
from A to a real closed field. Using these identification, it follows from the universal
property of ηA that it induces a continuous bijection pηAq

‹ : SperT‹pRpAqqÝÑSperT pAq.
˝

6 Applications to the theory of Quadratic Forms

In this section, we consider some applications of the previous constructions to some
abstract codifications of the theory of quadratic forms over rings, mainly to Special
Groups Theory ([DM1]).

For any ring A here, we will assume 2 P A‚. By preorder here we will always mean
proper preorder.

40 On real semigroups of porings:
In [DP1], [DP2] the authors introduce the concept of real semigroup. This is a first
order axiomatizable concept intended to deal with quadratic forms over general preor-
dered rings. The category of real semigroups is dual to the category of abstract real
spectra.

In [DP1, 9.1(A)] the authors describe a covariant functor S from the category of
porings into the category of real semigroups. In particular, the (canonical) poring-
morphism ηA : pA, T qÝÑpRpAq, T‹q induces a canonical morphism of real semigroups
SpηAq : SpA, T q ÝÑSpRpAq, T‹q.

The Post hull of a real semigroup M is defined as the algebra of continuous functi-
ons CpXM , 3q where 3 “ t1, 0,´1u and XM is the boolean space HompM, 3q with the
constructible topology, see [DP2, III.4]. ˝
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Theorem 41 The morphism of real semigroups SpηAq : SpA, T qÝÑSpRpAq, T‹q indu-
ces an isomorphism between Post hulls. In particular it is a complete embedding of real
semigroups and thus reflects the Witt-equivalence of forms.

Proof. When M “ SpA,
ř

A2q, then XM is the booleanization of the spectral space
SperpAq “ Sperř

A2pAq; this result can be easily extended to the relative version TĎA a
preorder. It follows from Corollary 39 above that η‹A : XSpRpAq,T ‹qÝÑXSpA,T q is a homeo-
morphism of boolean spaces. Therefore PostpsηAq : PostpSpA, T qqÝÑPostpSpRpAq, T ‹q
is an isomorphism of Post algebras.

By [DP2, Thm. III.4.5] a morphism of semigroups is a complete embedding (i.e.
it reflects reflects Witt-equivalence [DP2, I.2.7(c)], [DP2, III.4.3]) iff it induces an in-
jective map on Post-hulls, which proves the second claim. �

We will focus now on applications of the vN-hull construction to the first-order
theory of Special Groups in the language LSG “ p¨, 1,´1,”q ([DM1]). We begin by
registering the following facts:

Lemma 42 ([MS]) For each n P N, the functor k-theory functor kn : protoSGÝÑptGr
([DM6]), preserves pure embeddings, where the language of pointed groups is LptGr “
p¨, 1,´1q. ˝

Corollary 43 If f : G� G1 is a pure embedding of a protoSG, G, into a RSG, G1, that
satisfies the property [SMC] (Special Marshall’s conjecture, [DM6]), then G is a RSG
that satisfies [SMC] and [MC] (Marshall’s signature conjecture), [MWRC] (Milnor’s
conjecture for the graded Witt ring) ([DM7]).

Proof. As each of the axioms for RSGs is either a negation of an atomic formula
or the universal closure of φ Ñ ψ, where φ and ψ are positive primitive formulas,
we can conclude from the hypothesis that G is a RSG. Since G1 satisfies [SMC],
ωnpG

1q : knpG
1qÝÑkn`1pG

1q is injective (ωnpG
1q “ lp´1q b ´), @n P N. By Lemma

42, the homomorphism knpfq : knpGqÝÑknpG
1q is injective for each n P N and, as

ωnpG
1q˝knpfq “ kn`1pfq˝ωnpGq, we conclude that ωnpGq : knpGqÝÑkn`1pGq is injective

@n P N, i.e. G satisfies [SMC]. The equivalence between [SMC] and the conjunction of
[MC] and [MWRC] is established in Lemma 1.2 in [DM7]. �

44 On (proto-)special groups of porings:
Denote by G : poRingsÝÑprotoRSG the functor

ppA, T q
h
ÝÑ pA1, T 1qq P poRings ÞÑ pA‚{T ‚

h̄
ÝÑ A1‚{T 1‚q P protoRSG
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(i) It is straightforward that G preserves directed inductive limits, products and reduced
products. Moreover, as a consequence, G preserves pure embeddings.

(ii) Theorem 7.2 in [DM7] establishes that if V is a vN-regular ring (with 2 P V ‚) and
SĎV is a (proper) preorder in V , then GpV, Sq is a RSG that satisfies [MC], [SMC] and
[MWRC]. ˝

Now we will apply the previous results on poRegRings to describe classes of porings
and RSGs that are interesting under different criteria:
(I) Categorial: they are full subcategories of, respectively, poRings and RSG, closed
under many constructions.
(II) Logical: they are (relatively simple) first-order elementary classes in the appropriate
languages.
(III) Quadratic form theory: the associated RSGs satisfy the interesting properties
[MC], [SMC] and [MWRC].

Theorem 45 Consider the class

vNpur :“tpA, T q P poRings | GpηAq : GpA, T qÑGpRpAq, T‹q is an LSG-pure embedding u

(i) (Alternative descriptions of vNpur.) Let pA, T q P poRings. Then the following
are equivalent:

(i1) pGpαAp qqpPSpecpAq : GpA, T qÝÑ
ś

pPSpecpAq GpkppAq, pαAp q‹pT qq is an LSG-pure
embedding

(i2) GppαAp qpPSpecpAqq : GpA, T qÝÑGp
ś

pPSpecpAqpkppAq, pα
A
p q‹pT qqq is an LSG-pure

embedding

(i3) GpδAq : GpA, T qÝÑGpp
ś

pPSpecpAq kppAqq, pδAq‹pT qq is an LSG-pure embedding

(i4) GpηAq : GpA, T qÝÑGpRpAq, pηAq‹pT qq is an LSG-pure embedding

(i5) DpV, Sq P poRegRings, Dh : pA, T qÝÑpV, Sq poRings´morphism, such that
Gphq : GpA, T qÝÑGpV, Sq is an LSG-pure embedding.

(ii) The full subcategory vNpurĎpoRings is closed under: (a) isomorphisms; (b) pure
substructures; (c) directed inductive limits; (d) (non-empty) products; (e) proper
reduced products; (f) elementary equivalence.

(iii) vNpur is an LpoRings-elementary class that is axiomatizable by @D-sentences and
also by Horn sentences ([CK]).

(iv) If pA, T q P vNpur, then GpA, T q is a RSG that satisfies [SMC] and [MC], [MWRC].
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Proof. We already remarked in 32 that 2 P A‚ iff 2 P RpAq‚ and, in 37.(i), we saw
that T is a proper preorder on A iff pηAq‹pT q is a proper preorder on RpAq.

(i) The equivalence (i1)ô (i2) follows from the fact the G is a functor that preserves
products. (i2) ô (i3): follows from the characterization of products in poRings and of
direct image of preorders. (i4) ñ (i5): is clear. (i5) or (i3) ñ (i4): since whenever a
composition g ˝ f is pure, then f is pure, the result follows from the universal property
of the poRing-morphism ηAq : pA, T qÝÑpRpAq, T‹q. (i3) ñ (i4): it follows from Propo-
sition 3.2.(d) in [DM7] that the arrow δ̃A : pRpAq, T‹qÝÑp

ś

pPSpecpAq kppAqq, pδAq‹pT q
is a LpoRings-pure embedding. Since G is a functor that preserves pure embeddings, the
result then follows from the fact that if g, f are pure then g ˝ f is pure.

(ii) We use the characterization in (i5). The closure under (a) and (b) are clear
because the composition of pure embeddings is a pure embedding.

(c) Let pI,ďq be an upward directed poset and let tppAi, Tiq
hij
ÝÑ pAj, Tjq : i ď j P

Iu Ď vNpur be a directed system; consider the pure embeddings
GpηAiq : GpAi, TiqÝÑGpRpAiq, pTiq‹q. Since the directed colimit of pure embeddings
is a pure embedding ([MM2]), the colimit arrow lim

ÝÑ

iPI

GpηAiq :lim
ÝÑ

iPI

GpAi, TiqÝÑ lim
ÝÑ

iPI

GpRpAiq, pTiq‹q is a pure embedding. Since poRegRings Ď poRings is closed under
directed colimits and both functors R and G preserve directed colimits,

lim
ÝÑ

iPI

GpRpAiq, pTiq‹q – GpRplim
ÝÑ

iPI

Aiq, lim
ÝÑ

iPI

pTiq‹q,

there is a pure embedding F : Gplim
ÝÑ

iPI

pAi, TiqqÝÑGpRplim
ÝÑ

iPI

Aiq, lim
ÝÑ

iPI

pTiq‹q, with

GpRplim
ÝÑ

iPI

Aiq, lim
ÝÑ

iPI

pTiq‹q P poRegRing, i.e. lim
ÝÑ

iPI

pAi, Tiq P vNpur.

(d) Let I be a non-empty set and tpAi, Tiq : i P Iu Ď vNpur. For each i P I choose a
pure embedding Gpfiq : GpAi, TiqÝÑGpVi, Siq, with Vi a vN-regular ring. Since the pro-
duct of pure embeddings is a pure embedding ([MM2]), the product arrow

ś

iPI Gpfiq :
ś

iPI GpAi, TiqÝÑ
ś

iPI GpVi, Siq is a pure embedding. Since poRegRings Ď poRings is
closed under products and G preserves products, there is a pure embedding
F :“ Gp

ś

iPI fiq : Gp
ś

iPI Ai,
ś

iPI TiqÝÑGp
ś

iPI Vi,
ś

iPI Siq, with p
ś

iPI Vi,
ś

iPI Siq P
poRegRing, i.e.

ś

iPIpAi, Tiq P vNpur.
(e) Let F be a proper filter over a set I ‰ H and tpAi, Tiq : i P Iu Ď vNpur; it is
well-known that the reduced product p

ś

iPIpAi, Tiqq{F is isomorphic to the inductive

limit of the direct system x p
ś

iPJpAi, Tiqq
projJK
� p

ś

iPKpAi, Tiqq : pJ Ě Kq P F y (see,
for instance [MM1]), and the conclusion follows from items (a), (c) and (d).
(f) By Fraine’s Lemma (Lemma 8.1.1 in [BS]), pA, T q ” pA1, T 1q iff pA, T q is elementary
embeddable in some ultrapower of pA1, T 1q and the conclusion follows from (a), (b) and
(e).
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(iii) All the statements follow from well-known model-theoretic results applied to
item (ii). By Theorem 4.1.12 in [CK], a subclass of first-order structures is elementary
if and only if it is closed under ultraproducts and elementary equivalence, conditions
guaranteed by items (e) and (f) in (ii). By Theorem 6.2.5 in [CK], an elementary
class of structures is axiomatizable by Horn-sentences if and only if it is closed under
reduced products and this condition is assured by (ii).(e). By Theorem 5.2.6 in [CK],
an elementary class of structures is axiomatizable by @D-sentences if and only if it is
closed under direct inductive limits of embeddings: the desired conclusion comes from
(ii).(d).

(iv) By 44.(ii) and Corollary 43. �

Corollary 46 The full subcategory vNpur is weakly reflective in poRings, i.e. for every
preordered ring R there exist a preordered ring R̃ P vNpur and a morphism f : RÑ R̃
such that every morphism R Ñ P with P P vNpur factors through f (not necessarily
uniquely). Moreover it is weakly cocomplete, i.e. for every diagram in vNpur there is a
weakly initial cocone (i.e. for every cocone over the diagram there is a, not necessarily
unique, morphism of cones from this one).

Proof. The category vNpur is accessible, since it is first order axiomatizable by Thm.
45(iii). Moreover it is accessibly embedded into poRings by Thm. 45(ii)(c) and closed
under products by Thm. 45(ii)(d). By the equivalence of [AR, Thm. 4.8 (ii)] and [AR,
Thm. 4.8 (iii)], these properties guarantee that vNpur is weakly reflective in poRings.
[AR, Thm. 4.8 (ii)]. Finally, the weak cocompleteness follows from [AR, Thm. 4.11].
�

Remark 47 The notion of ”Faithfully Quadratic Ring” introduced and developed in
[DM9] gives an axiomatic approach to ”well-behaved” quadratic form theory of porings.
Instead, we provide in the Theorem 45 above an approach that selects a class of porings
that are relatively ”well-behaved”: i.e., its objects have a nice relation with a very well-
behaved class of porings (poRegRings), that is stable under many constructions. In
the sequel of the present research, we intend to:

• Provide explicit axiomatizations of vNpur by Horn sentences and @D-sentences.

• Understand the relation between representation and transversal representation of
forms defined on porings in vNpur.

• Establish precise connections of vNpur with the class of faithfully quadratic rings.

˝
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Theorem 48 Consider the class RSGvN :“ tG P RSG : DpV, Sq P poRegRings, Dj :
GÝÑGpV, Sq a LSG-pure embedding u. Then:

(i) The class RSGvN contains the class tGpA, T q : pA, T q P vNpuru.

(ii) The full subcategory RSGvNĎRSG is closed under: (a) isomorphisms; (b) pure
substructures; (c) (non-empty) products; (d) proper reduced products; (e) elementary
equivalence.

(iii) RSGvN is an LSG-elementary class that is axiomatizable by Horn sentences ([CK]).

(iv) If G P RSGvN , then G is a RSG that satisfies [SMC] and [MC], [MWRC].

Proof. Item (i) follows from Theorem 45.(i). Item (iv) follows from Corollary 43.
(ii) The closure under (a) and (b) are clear because the composition of pure em-

beddings is a pure embedding.
(c) Let I be a non-empty set and tGi : i P Iu Ď RSGvN ; select a pure embedding
fi : GiÝÑGpVi, Siq, with Vi a vN-regular ring. Since the product of pure embeddings
is a pure embedding ([MM2]), the product arrow

ś

iPI fi :
ś

iPI GiÝÑ
ś

iPI GpVi, Siq
is a pure embedding. Since poRegRingsĎpoRings is closed under products and G
preserves products

ś

iPI GpVi, Siq – Gp
ś

iPI Vi,
ś

iPI Siq, thus there is a pure embedding
F :

ś

iPI GiÝÑGp
ś

iPI Vi,
ś

iPI Siq, with p
ś

iPI Vi,
ś

iPI Siq P poRegRing, i.e.
ś

iPI Gi P

RSGvN .
(d) Let F be a proper filter over a set I ‰ H and tGi : i P Iu Ď RSGvN . Select a
pure embedding fi : GiÝÑGpVi, Siq, with Vi a vN-regular ring. The reduced product

p
ś

iPI Giq{F is isomorphic to the inductive limit of the directed system x p
ś

iPJ Gi

projJK
�

ś

iPK Giq : pJ Ě Kq P F y and the reduced product p
ś

iPI GpVi, Siq{F is isomorphic to

the inductive limit of the direct system x p
ś

iPJ GpVi, Siq
projJK
�

ś

iPK GpVi, Siqq : pJ Ě
Kq P F y. As the product and directed inductive limit of pure embeddings is a pure
embedding, then we have a pure embedding

lim
ÝÑ

JPF

p
ź

iPJ

fiq :lim
ÝÑ

JPF

p
ź

iPJ

GiqÝÑ lim
ÝÑ

JPF

p
ź

iPJ

GpVi, Siqq.

As the functor G preserves products and directed inductive limits and
poRegRingsĎpoRings is closed under products and directed inductive limits, we have
an isomorphism lim

ÝÑ

JPF

p
ś

iPJ GpVi, Siqq – Gplim
ÝÑ

JPF

p
ś

iPJpVi, Siqq. Thus there is a pure

embedding
F : p

ź

iPI

Giq{FÝÑGp
ź

iPI

pVi, Tiq{Fq

and
ś

iPIpVi, Tiq{F P poRegRings, i.e. (
ś

iPI Giq{F P RSGvN .
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(e) By Fraine’s Lemma (Lemma 8.1.1 in [BS]), G ” H iff G is elementary embeddable
in some ultrapower of H and the conclusion follows from (a), (b) and (d).

(iii) All the statements follow from well-known model-theoretic results applied to
item (ii) . By Theorem 4.1.12 in [CK], a subclass of first-order structures is elementary
if and only if it is closed under ultraproducts and elementary equivalence, conditions
guaranteed by items (e) and (f) in (ii). By Theorem 6.2.5 in [CK], an elementary class
of structures is axiomatizable by Horn-sentences if and only if it is closed under reduced
products and this condition is assured by (ii).(e). �

Remark 49 One of the main open tasks in the theory of Special Groups is to deter-
mine the extent to which this concept generalizes the theory of quadratic forms over
fields and rings. For instance:
(i) The Representation Conjecture means: Every reduced special group (rsg) is isomor-
phic to the rsg given by a pythagorean field, via the functor G.
(ii) The Weak Representation Conjecture means: Every rsg can be embedded, by an
LSG-elementary embedding (or, instead, by a LSG-pure morphism), into a representable
reduced special group (i.e., the rsg associated, via G, to a pythagorean field).
(iii) In [DM8] a relaxed version of (i) is established: Every rsg is isomorphic to a rsg
associated to (a part of) a ring real of continuous functions.
We provide in the Theorem 48 above a new approach to the representation problem
under a intermediary balance that selects a new and very well-behaved class of porings,
the class poRegRings, that contains the Pythagorean fields is stable under many con-
structions. Besides the very difficult representation question (is RSG “ RSGvN?) we
intend, in the sequel of our research:

• to analyze if the class RSGvN is closed under other constructions, like directed
inductive limits and extensions.

• provide explicit axiomatizations of RSGvN by Horn sentences.

˝
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