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Abstract

The aim of this paper may be regarded as pure fun with numbers and their
generalizations. But it can also be seen as a modest essay on the philosophy
of mathematics, hinting to some distinctive views by which mathematicians and
philosophers approach mathematics. I discuss here, by completely elementary
mathematical means, some ‘exotic’ domains that exhibit some unexpected con-
ceptual connections to logic. A number ring is a subring of a number field, where
a number field is a finite field extension of the field of rational numbers Q. Num-
ber rings naturally arise when solving equations in ordinary integers, and that
was precisely how they made their historic appearance in the mathematical sce-
nario. They usually encompass unusual mathematical objects that expand the
mathematical province, separating properties such as irreducibility and prima-
lity. They may originate, however, intriguingly unusual number theories, and I
venture some conjectures here illustrating this point.

Keywords: Gaussian integers, exotic number-theoretical conjectures, philosophy of
mathematics.

1 Cardano, Descartes, Euler, Gauss · · ·
This paper intends to play with some uncommon numbers and their generalizations,
hoping this may be of some interest. Some ‘exotic’ number rings (at least for the non-
mathematician) and new problems concerning them are posed as conjectures. Such
domains usually formalize some new mathematical objects that expand the possibilities
of expressing previously unknown ideas, distinguishing properties that were previously
seen as inseparable. The ideas of a unit element, of an irreducible element as something
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which is not a product of two non-units, and of a prime element, as distinct concepts are
commonplace in Algebra today, but that was not always the case. Now we know clearly
that irreducible elements, for instance, should not be confused with prime elements. In
logic, as I discuss in the last section, we are only now accepting that a contradictory
theory should not be confused with an inconsistent theory, nor that a non-contradictory
theory should not be confused with a consistent one. Mathematicians came first, phi-
losophers are trying to keep the pace. From this point of view, there is something to be
learned from the viewpoint of the philosophy of mathematics, as hinted in Section 5.

A number ring is a subring of a number field, where a number field is a finite field
extension of the field of rational numbers Q.

Exotic objects typically arise when solving problems, and the history is full of exam-
ples. Without any attempts to write novelty in mathematical history here, it is known
that negative numbers were not well regarded, and that Heron of Alexandria (circa 50
AD) in his Stereometria was possibly the first to notice the possibility of imaginary
numbers when trying to solve a geometric problem that needed

√
81− 144. Suspecting

that something was wrong, he switched the calculation to
√

144− 81. But the first in
the Western literature to bravely compute with square roots of negative quantities was
Girolamo Cardano in his Ars Magna, sive de Regulis Algebraicis (The Great Art, or
The Rules of Algebra), published in Nuremberg in 1545.

Cardano was looking for the solution to a classical general problem: Find two num-
bers whose sum and product are given. In the case the sum is 10 and the product 40,
he knew it was impossible to find two numbers under such conditions. Nonetheless,
he went into providing two objects that satisfied the given conditions. He offered the
following method of solution: say that we seek two numbers so that their sum is S and
their product is P . Divide S by 2, so that we obtain a number x, with x+x = S. Form
two new expressions, x+m and x−m By forcing these two expressions whose sum is S
to behave like their product is P , we give birth to two new objects, in the case S = 10
and P = 40: 5 −m and 5 + m. Therefore 25 −m2 = 40 or m2 = −15, building some
‘truly sophistic’ arithmetic subtleties, ‘fictitious” numbers’ that originated the complex
numbers, as they are now called.

As Cardano disdainfully puts it in his Ars Magna (pp. 219-220):

“So progresses arithmetic subtlety the end of which. . . is as refined as it
is useless”.

But besides his disdain, Cardano believed that even if his computation would be
mistaken in the light of his contemporary theory, naming these objects as ‘impossible
quantities’ and using them for calculations was a sharp improvement. Cardano was im-
prisoned as a heretic by the Inquisition circa 1570, and the fact that he was maintained
under surveillance until his death and forbidden from publishing and from lecturing in
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public, according to [11], may have affected his work on square roots of negatives and
his view about it.

Descartes was responsible for the introduction of the expression ‘imaginary quanti-
ties’ in his Geometry of 1637, a contemptuous expression used until the introduction
by Gauss of the more respectful terminology ‘complex numbers’ in his lectures of 1831.

Gauss is to be credited with the clarification of the status of these quantities in his
important treatise Theoria residuorum biquadraticorum, Commentatio Secunda, publis-
hed in 1832 ([6]) in which he considered the numbers a+bi, for i =

√
−1. Despite being

used in calculations, until the mid 19th century these mysterious entities were always
surrounded by philosophical suspicion and used with some concern, as it happened with
the infinitesimals.

Euler had already introduced the notation i in his Elements d’Algèbre (1774), but
this notation, also used by Gauss, had not been immediately accepted.

In the second part of his work, dedicated to biquadratic residues, Gauss explicitly
says that number theory is revealed in its ‘entire simplicity and natural beauty’ when
the field of arithmetic is extended to the imaginary numbers, by admitting numbers of
the form a + bi, numbers which ‘will be called complex integers’.

Gauss gave the rules for calculating with such numbers, and a way to represent
complex numbers by points in the plane. The idea had already occurred before, to
John Wallis (in the Treatise of Algebra, 1685), to Caspar Wessel in 1792, and to Jean
Robert Argand in 1806. As Gauss was the first to use complex integers in a systematic
way, the planar representation worked as a kind of “real model”, helping to dissipate
some ghosts. Gauss helped much in widening the concept of number, and influenced
the growth of abstract algebra. Section 5 offers some additional comments on this
point.

The papers by Gauss exerted an enormous influence on the 20th and 21st-century
mathematics and had a profound effect on the subsequent development of number
theory and algebraic geometry.

2 A glimpse of the Gaussian integers and alien pri-

mes

The domain of Gaussian integers is the number ring formed by all elements in the set
Z[i] = {a+ b.i : a, b ∈ Z, for i =

√
−1
′
.

The most interesting notions associated with these exotic numbers is the concept of
prime Gaussian integers, which conveys the idea that Gaussian primes cannot be further
factored, as well as the unique factorization by primes. An important consequence is the
property of Unique Factorization Theorem for the Gaussian integers, is an analogue of
the Fundamental Theorem of Arithmetic of standard integers, which states that each
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Gaussian integer can be factored as a product of Gaussian primes in an essentially
unique way.

As much as in Z the size of an element is measured by its absolute value, in Z[i] the
size of an element is measured by its norm.

Definition 2.1 1) For α = a + bi ∈ Z[i], its norm is the product N(α) = αα =
(a+ bi)(a− bi) = a2 + b2.

2) For α, β ∈ Z[i] we say that β divides α (or that β is a factor of α) and write
β|α, if α = βγ for some γ ∈ Z[i].

Theorem 2.2 1) The norm is multiplicative: for α and β in Z[i], N(αβ) = N(α)N(β).
2) A Gaussian integer α = a + bi is divisible by a standard integer c if and only if

c|a and c|b in Z.
3) For α, β ∈ Z[i], if β|α in Z[i] then N(β)|N(α) in Z.

Proof. 1) Just check that for α = a+ bi and β = c+ di, αβ = (ac− bd) + (ad+ bc)i
and that N(α)N(β) and N(αβ) coincide.

2) Routine.
3) If β|α then α = βγ for some γ ∈ Z[i]. Take the norm of both sides and obtain

an equation in Z.
�

A first consequence of Theorem 2.2 characterizes the multiplicative inverses in Z[i]:

Corollary 2.3 The only Gaussian integers which have multiplicative inverses in Z[i]
are unities ±i and ±1.

Proof. Suppose α ∈ Z[i] is invertible, so there exists β ∈ Z[i] such that αβ = 1. Thus
N(αβ) = N(α)N(β) = 1, and since N(α), N(β) ∈ Z and the norm must be a positive
integer, N(α) = a2 + b2 = 1. Therefore a2 = 1 or b2 = 1 and α = ±i or α = ±1 or
β = ±i β = ±1.

On the other hand, clearly ±i and ±1 have multiplicative inverses in Z[i]: i and −i
are inverses of each other, and 1 and -1 are their own inverses. �

A more subtle property of Gaussian integers, whose proof is not difficult but cum-
bersome, is the analogue of the ordinary process of division with remainder of Z:

Theorem 2.4 Division Theorem: For α, β ∈ Z[i] with β 6= 0, there are γ, δ ∈ Z[i] such
that α = βγ + δ and N(δ) ≤ (1/2)N(β).
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Proof. See [9] or [8]. �

There are however some subtle differences between the division theorem in Z[i] and
the (usual) division theorem in Z; so, for instance the quotient and the remainder
are not unique in Z[i]. But uniqueness of the quotient and remainder is irrelevant for
critical applications such as Euclid’s algorithm: what is essential is that the remainder
is bounded.

The next appropriate notion is that of primality. For any ordinary integer n with
|n| > 1 there are four trivial factors of n, ±1 and ±n, Similarly, for any α in Z[i] such
that N(α) > 1, ±1, ±i, ±α, and ±iα are always eight obvious factors of α: these are
the trivial factors of α (other factors are called non-trivial).

Clearly, if if p is an ordinary prime which can be written as a sum of two squares
p = a2+b2, then p is not a prime (i.e., irreducible) as a Gaussian integer, since it factors
as p = (a+ bi)(a− bi). But are a+ bi and a− bi Gaussian primes?.

Definition 2.5 Let α be a Gaussian integer with N(α) > 1. α is said to be composite
if it has a non-trivial factor, and prime if it has only trivial factors.

It can be proved that Gaussian primes can be characterized in the following way:

Theorem 2.6 Gaussian primes are Gaussian integers π = a+ bi satisfying one of the
following properties.

1. If both a and b are nonzero, then a + bi is a Gaussian prime iff a2 + b2 is an
ordinary prime.

2. If a = 0 or b = 0, then a Gaussian integer of the form c or ci, c ∈ Z, is a
Gaussian prime iff |c| is an ordinary prime and |c| ≡ 3 (mod 4).

Proof. This proof is available in several places, see e.g. [9] or [8]. �

Consequently, no prime number p such p ≡ 1 (mod 4) is a Gaussian prime; indeed
there are exactly two Gaussian primes π and π̄ of norm p such that p = ππ̄

Primes in Z[i], by definition, enjoy the property that, when π divides a product αβ,
then π divides α or else π divides β. This property has as a consequence that every
Gaussian integer factors as a product of primes in a unique way; in other words, Z[i] is
a Unique Factorization Domain (UFD) (details in e.g. [8]).

Taking unique factorization for granted is a source of many historical mistakes in
mathematics. Besides Z[i], Z[

√
−2] is also an UFD (or an Euclidean ring), but Z[

√
−n]

for n ≥ 3 is not an UFD. As a counterexample, in Z[
√
−3] it holds 4 = 2 · 2 =

(1 +
√
−3)(1 −

√
−3), but 2 does not divide either factor, so Z[

√
−3] cannot be an

UFD. It can be proved that Z[
√
−n] is an UFD if and only if n = 1 or n = 2, for

natural numbers n. The problem is still unsolved for Z[
√
n]; it is known that Z[

√
n]

is not an UFD if n ≡ 1 (mod 4) ([18], Theorem 8.25). A proof that Z[
√

14] is an
Euclidean ring appeared in [7] only in 2004 .
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3 Some exotic conjectures and devilish counterex-

amples

In a one-page note, [21] generalizes Andrew Wiles’ famous proof of the Fermat’s Last
Theorem, showing that the equation xn + yn = zn has no solution in positive inte-
gers x, y, and z when n is a non-real Gaussian integer. However, Z[

√
−7] provides

(3 +
√

7i)4 + 44 = (−1 +
√

7i)4, so Gaussian integers produce a surprising (folklo-
ric) counterexample to the Fermat’s Last Theorem. Interestingly enough, 3 +

√
7i,

4, and −1 +
√

7i are factors of 16 in Z[
√
−7], since (3 +

√
7i)(3 −

√
7i) = 16 and

(−1 +
√

7i)(1 +
√

7i) = 8. There is even space for a question: are there Gaussian
integers such that (a+ bi)3 = (c+ di)3 + (e+ fi)3?

In an analogous fashion, Beal’s conjecture1 is false for Gaussian integers. A genera-
lization of Fermat’s Last Theorem, Beal’s conjecture states that, if ax + by = cz , where
a, b, c, x, y, and z are positive integers and x, y and z are all greater than 2, then a, b
and c must have a common prime factor.

A counterexample in Z[
√
−1] (unpublished) to a generalized version of Beal’s conjec-

ture was found by Fred W. Helenius employing Gaussian primes: (−2+i)3+(−2−i)3 =
(1 + i)4.

This illustrates how subtle exotic domains as Gaussian integers can be. Some pro-
perties that are obviously true or conjectured to be true in the ordinary integers are
falsified in the Gaussian domain; on the other hand, some new conjectures can be posed.
Some examples follow.

Definition 3.1 Two Gaussian primes a + bi and c + di are Gaussian twin primes if
(a+ bi)− (c+ di) = ±1 + (±i).

Conjecture 3.2 (Carnielli) There are infinitely many Gaussian twin primes.

Some examples:
(12 + 13i) = (1 - i) + (11 + 14i)
(99 + 94i) = (1 + i) + (98 + 93i)
In the (failed) attempts to prove it, another conjecture on ordinary integers emerged:

Conjecture 3.3 (Carnielli) If q is an ordinary prime, then there exists a natural num-
ber n such that the sum of q and the n-th power of 2 is an ordinary prime number. More
formally, (∀q)(Prime(q)→ (∃n)(∃p)(Prime(p) ∧ (p = 2n + q)))

1The Beal Prize, funded by the banker and amateur mathematician D. Andrew Beal, offers currently
US$1,000,000 for either a proof or a counterexample of the Beal Conjecture. The prize money is being
held by the AMS.
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Both conjectures have been computer- tested for a reasonable number of cases. They
may have some connections to a result of Y. Zhang about bounds on gaps between
primes (see [19]).

Several other conjectures are possible, of course, but what should be emphasized
is the heuristic role of the Gaussian integers in guiding us towards such conjectures,
which (if solved) may shed some light on their natural numbers counterpart.

4 Gaussian versions of the generalized Collatz con-

jecture

The Collatz conjecture, also known as the Syracuse problem, Kakutani’s problem,
Hasse’s algorithm, Ulam’s problem, Thwaites’s problem and Hailstone Algorithm, or
3x + 1 Conjecture, is perhaps one of the most perplexing unsolved mathematical pro-
blems. Differently from other hard problems such as Goldbach’s conjecture, some of its
generalizations are even undecidable (cf. [13]).

This apparently innocent conjecture was proposed by Lothar Collatz (1910-1990) in
1928, originally stated as follows: consider the function which inputs a non-zero integer
x and outputs 3x + 1 if x is odd, and x/2 if x is even. The 3x + 1 Conjecture asserts
that, starting from any positive integer x, repeated iteration of this function eventually
produces the value 1. In a more appropriate notation, the conjecture is usually rephra-
sed by considering the function:

T2(x) =

{
x/2 if x ≡ 0 (mod 2))

(3x+ 1)/2 if x ≡ 1 (mod 2))

The (rephrased) conjecture states that every trajectory starting from a non-zero
integer will end into the cycle (1,2) if inputs are restricted to positive integers x. For
negative inputs, there are three additional cycles: (-1), (-5,-7,-10), and (-17,-25,-37,-
55,-82,-41,-61,-91,-136,-68,-34). A standard reference on this problem is [14].

Some quite natural generalizations of Collatz Problem and corresponding conjectu-
res have been proposed in [2]: the generalized Collatz functions Td and Tk,d. For d amd
k natural numbers, Td and Tk,d constitute an infinite class of numeric functions that
behave analogously with the primary 3x + 1-problem of Lothar Collatz, and give rise
to infinitely many open problems in number theory.

Define a mapping Td : Z 7→ Z by:

Td(x) =

{
x/d if x ≡ 0 (mod d)

((d+ 1)x+ (d− i))/d if x ≡ i (mod d), 1 ≤ i ≤ d− 1.
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Since x ≡ i (mod d) implies Td(x) ≡ 0 (mod d), the mappings Td(x) are well-
defined over Z. In particular, for d = 2 the mapping T2(x) gives the original 3x+1
function.

For d = 3 the mapping T3(x) defines the function:

T3(x) =


x/3 if x ≡ 0 (mod 3)

4x+ 2/3 if x ≡ 1 (mod 3)

4x+ 1/3 if x ≡ 2 (mod 3)

Computer simulations ([2]) suggest that T3(x) has only two non-trivial cycles (7,
10, 14, 19, 26, 35, 47, 63, 21) (cycle of length 9) and (-22, -29, -38, -50, -66) (cycle of
length 5), besides the trivial cycles (1,2,3) and (-2,-1).

Those functions can be conveniently extended to mappings T̂ from Z[i] into Z[i],
as discussed below. With the aim of generalizing such problems to Gaussian integers,
residue classes are defined in Z[i] through the following equivalence: a + bi ≡ c + di
(mod r + si) iff (r + si)|(ac+ (bd)i), for a+ bi a Gaussian prime. The first problem is
to compute how many residue classes are there. For instance, for the prime 1 + i, it is
not difficult to see that every Gaussian integer is congruent to 0 or 1 (mod 1 + i). In
fact, a+ bi ≡ ab (mod 1 + i) since (1 + i)|(a+ bi)− (ab) = b(1 + 1).

Since 1 + i ≡ 0 (mod 1 + i), then i ≡ 1 ≡ i2 (mod 1 + i). This implies i2 ≡
(−1)2(mod1 + i), and consequently −1 ≡ 1 (mod 1 + i), or 2 ≡ 0 (mod 1 + i). To sum
up, a+ bi ≡ ab ≡ 0 (mod 1+ i) if ab is even, or a+ bi ≡ ab ≡ 1 (mod 1+ i) if ab is odd,
since ab is an ordinary integer. Thus {0, 1} is a complete system of residues modulo
1 + i.

For 2, a + bi ≡ c + di (mod 2) iff 2|(a − c) and 2|(b − d). The possibilities for
c+ di are thus 0 + 0i, 0 + i, 1 + 0i, or 1 + 1i, depending whether a, b are odd or even.
Hence Z[i]/(2) = {0, 1, 1 + i, i} is a complete set of residues, as they are not equivalent
(mod 2).

An analogous reasoning shows that, for primes c+di with norm p ≡ 1 (mod 4), the
set {0, 1, ..., p− 1} forms a complete system of residues modulo a+ bi.

For primes q ≡ 3 (mod 4), it is not difficult to see that the set S = {r + si : 0 ≤
r, s < p} is a complete system of residues modulo p with p2 elements.

This line of reasoning can be condensed in the following result:

Theorem 4.1 A complete system of residues modulo a Gaussian prime a + bi has
exactly N(a+ bi) = a2 + b2 elements.

Proof. Folklore. �

The generalized Collatz functions Td can be extended to mappings T̂ from Z[i] to

Z[i] as follows. To fix ideas, let us start with T̂2(x) and T̂3(x):
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T̂2(x) =


x/2 if x ≡ 0 (mod 2)

3x+ 1/2 if x ≡ 1 (mod 2)

3x+ i/2 if x ≡ i (mod 2)

3x+ 1 + i/2 if x ≡ 1 + i (mod 2)

This particular problem coincides with the one studied in [10], of which [12] deter-
mined all cycles having period less than or equal to 400, finding 77 distinct cycles. For
instance, 2 + 3i generates a cycle with length 5: T̂2(2 + 3i) = 3 + 5i, and by applying

T̂2 successively one obtains 2 + 3i, 3 + 5i, 5 + 8i, 2 + 3i. It is not known whether the
number of cycles is finite or not.

The functions T̂d(x) : Z[i] 7→ Z[i] are defined, in general, by:

T̂d(x) =

{
x/d if x ≡ 0 (mod d)

((d+ 1)x+ (d− n) + (d−m)i)/d if x ≡ n+mi (mod d), 1 ≤ n,m ≤ d− 1.

As a second example, consider T̂3(x); recall that by Theorem4.1, S = {0, i, 2i, 1, 1 +
i, 1 + 2i, 2, 2 + i, 2 + 2i} form a complete system of residues modulo 3 for 0, 1, 2 ∈ Z3 .

T̂3(x) =



x/3 if x ≡ 0 (mod 3)

4x+ 2/3 if x ≡ 1 (mod 3)

4x+ 1/3 if x ≡ 2 (mod 3)

4x+ 2i/3 if x ≡ i (mod 3)

4x+ 2 + 2i/3 if x ≡ 1 + i (mod 3)

4x+ 1 + 2i/3 if x ≡ 2 + i (mod 3)

4x+ i/3 if x ≡ 2i (mod 3)

4x+ 2 + i/3 if x ≡ 1 + 2i (mod 3)

4x+ 1 + i/3 if x ≡ 2 + 2i (mod 3)

Notice that Z[i] ⊂ T̂d[Z[i]], so T̂d are well-defined.
Some conjectures analogous to the Finite Cycles Conjecture for the original 3x+ 1

problem can be naturally formulated for the generalized Collatz problems concerning
Gaussian integers. Of course, such problems are not expected to be easier, since they
would settle the original 3x+ 1 problem and their generalizations Td(x).

Conjecture 4.2 (Carnielli) T̂d has finitely many finite cycles For each d, the sequence
of iterates

x, T̂d(x), T̂d2(x), . . . , T̂dk(x), . . .
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always eventually enters a cycle, for finite k, and there are only finitely many such
cycles.

Computer simulations for Td(x) (cf. [2]) suggested that cycles get bigger and rarer
for increasing values of d, which suggests an obvious conjecture on the distribution of
cycles and gaps on cycle lengths for T̂d:

Conjecture 4.3 (Carnielli) Lower bounds for cycles. For each M there is a d such

that the minimal cycle length of the mapping T̂d is greater than M .

Another generalization of the 3x+1 mapping, as proposed in [2], is a two-parameter
extension of Td which exhibits an even more chaotic character. Define, for each k ≥ 3
and d ≥ 2, a mapping Tk,d : Z 7→ Z as follows:

Tk,d(x) =


x/d if x ≡ 0 (mod d)

(kx+ r(d− i))/d if x ≡ i (mod d), 1 ≤ i ≤ d− 1

and k ≡ r (mod d), 1 ≤ r ≤ d− 1

For k = d + 1, Td+1,d gives the above defined mapping Td, and T3,2 defines the
original Collatz mapping.

It is a natural step to extend Tk,d to Gaussian integers, but such generalizations
await for more work. Nothing is known about them, albeit a conjecture similar to
Conjecture 4 can be ventured for them.

Several other conjectures can be adapted for Gaussian integers, extending for in-
stance the following: when is the sum of the squares of two successive integers also a
square, i,e, when n2+(n+ 1)2 = m2? It was shown in [16] that this happens for ordinary
integers if and only if n is 0, 3, 20, 119, 696 · · · , un, un+1, · · · where un+1 = 6un−un−1+2.

Can the same argument be applied to Gaussian integers? What is the successor of
a + bi? Clearly, Z[i] cannot be put in any order that is compatible with addition and
multiplication. Indeed, a well-known elementary argument applies: since i 6= 0, either
i > 0 or i < 0. In any case, 12 = 1 > 0. If i > 0 then i2 > 0 which means −1 > 0
or equivalently 1 < 0, a contradiction. If i < 0 a contradiction also arises. We may,
however, consider the ‘local successor’ of a+ bi either as (a+ 1) + bi, or as a+ (b+ 1)i.

Is there always a prime between (a+ bi)2 and ((a+ 1) + bi)2? And between (a+ bi)2

and (a+ (b+ 1)i)2?
Nice problems to be considered– I do not know the answer of neither of them. But

here is an invitation to try to solve some of them, or to formulate new conjectures.



On Alien Primes, Exotic Number Theory, and Mathematical Pluralism 197

5 On exotic and alternative objects and concepts,

and their relevance

Logical pluralism is the thesis that there is more than one genuine deductive conse-
quence relation. The main opposing view, logical monism, is the thesis that there is
only one correct logic, or that the notion of consequence relation is absolute.

In a similar way, we can naturally think of mathematical pluralism - the discovery
or invention of apparently exotic or deviant mathematical theories or objects such as
complex numbers, the infinitesimals, non-euclidean geometries, non-standard analysis,
or the taming of the infinite by Georg Cantor showing that an infinite collection can be
treated as a totality, forming a mathematical object as ‘real’ as the natural numbers.
However, this position seems to be at odds with mathematical Platonism (or realism),
a view that abstract mathematical objects exist (and couldn’t, supposedly, be freely
created). Indeed, even if very few mathematicians would defend any ‘mathematical
monism’ (perhaps because, as Cantor has said, ‘the essence of mathematics lies in its
freedom’), some mathematical abstractions are yet a bit difficult to be conceived by
certain philosophers of mathematics.

Eighty years after Gauss, and more than 350 years after Cardano, in 1911 A. N.
Whitehead ([20], p. 87) still warned of the discomfort caused by imaginary numbers
among philosophers:

But their [the imaginary numbers, as Whitehead called them] success has
been of a different character, it has been what the French term a succès de
scandale. Not only the practical man, but also men of letters and philosop-
hers have expressed their bewilderment at the devotion of mathematicians
to mysterious entities which by their very name are confessed to be imagi-
nary. At this point it may be useful to observe that a certain type of minor
intellect is always worrying itself and others by discussion as to the ap-
plicability of technical terms. Are the incommensurable numbers properly
called numbers? Are the positive and negative numbers really numbers?
Are the imaginary numbers imaginary, and are they numbers? – are types
of such futile questions. Now, it cannot be too clearly understood that, in
science, technical terms are names arbitrarily assigned, like Christian names
to children.

The case of pluralism in the foundations of mathematics is typical. A number of
alternative axioms have been proposed defining variants of traditional set theory, repla-
cing some principles of Zermelo-Frankel set theory with different purposes. The search
for new axioms that could decide the value of the continuum led to the development of
such theories. An example of a new principle that defies the Axiom of Choice, the so-
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called Principle of Ariadne, is proposed and studied in [4]. A well-balanced discussion
on the role of new axioms in mathematics is found in [5].

The fact that there may be exotic accounts of integers which are irreducible but
not prime, as well as the failure of unique factorization, were at the origin of several
mistakes in mathematical proofs, as in the famous case of the purported ‘proof’ of
Fermat’s Last Theorem by Gabriel Lamé in a talk at the French Academy of Science
in 1847 .

The French Academy had offered a gold medal and a prize of 3000 francs for the
solution of this problem, but Lamé could not imagine that unique factorization was not
a universal property carrying over integral domains in general.

Making a parallel, the distinction between triviality and contradictoriness that
founds the paraconsistent logics in the family of Logics of Formal Inconsistency (LFIs),
as well as the distinction between consistency and non-contradictoriness is also a case
of the logico-mathematical pluralism, Indeed, in the LFIs the consistency connective
◦ is a primitive notion not necessarily equivalent to non-contradiction (¬(A ∧ ¬A)),
which reminds one too much of the symbol i. Breaking the equivalence between ◦A
and ¬(A ∧ ¬A) allows for some quite interesting developments, as expounded in [3].

The fact that questions about primes in the integers Z can also be naturally posed
to the integral domains Z[

√
−1] and Z[

√
−2], but not to all, opens a wide room for

research and poses the question of ‘class numbers’, namely, how badly a number system
misses the test of unique prime factorization. This kind of problem is, according to [17],
‘rumored to have frustrated Kurt Gödel enough to make him give up number theory
for logic’.

The famous abc Conjecture2 was proposed in the 80’s by J. Oesterlé and D.W.
Masser, and proposes a fundamental connection between products and sums of natural
numbers, something mathematicians do not understand yet. If proved, several impor-
tant theorems in number theory, such as Roth’s Theorem, Faltings’ Theorem, Baker’s
Theorem, and Wiles’ Theorem would fall as just particular cases. Proofs of this con-
jecture appear to be particularly elusive, but there is no reason why one should not
extend this conjecture to Gaussian integers and other UFD’s. This would make our
focus even more conceptual, towards an ‘inter-galactic’ mathematics, as the Japanese
mathematician Shinichi Mochizuki who published four papers on the Internet claiming
to have proven the abc Conjecture (to this date, still under review) puts it.

Gaussian integers and domains like Z[
√
−2] are not abstruse inventions– they can

find applications in cryptography extending public key algorithms such as RSA ([15]),
in coding theory or in the zero-knowledge proofs. For the mathematicians and phi-
losophers that adopt Platonism, alien primes, exotic number systems and alternative
mathematical objects do not need to bother: a careful analysis in [1] surprising conclu-

2A good source of information on this conjecture, with lots of updated references, is The abc
Conjecture Home Page at http://www.math.unicaen.fr/~nitaj/abc.html#Consequences.
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des that mathematical Platonism and mathematical pluralism are ‘perfectly compatible
with one another’. Shouldn’t we be prepared for alien mathematics, and perhaps alien
philosophy?
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