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Abstract

We prove that if A is the inverse limit of a system of compact structures Ai
and continuous homomorphisms fij over an downward directed poset I, then the
natural map into the ultraproduct h : A→ ΠiAi/U is pure, provided that U is a
directed ultrafilter over I. This implies by general properties of atomic compact
structures that A is a retract of the ultraproduct, result which generalizes the
main theorem of Mariano and Miraglia in [MM07] for profinite structures. It
yields also a strengthening of known results on the preservation of first order
properties under these limits. We discuss the definability and continuity of the
obtained retractions.

Keywords: Inverse limits, compact structures, atomic compactness, retractions, ultra-
products.

Introduction

Inverse directed limits of first-order compact structures play a central role in several
branches of mathematics as group theory [RZ10], the theory of continua [IM12], and
the theory of dynamical systems [Kee08], and they are a main tool to build compactifi-
cations [HK99]. Profinite structures are the best known and most studied case of these
limits.

Mariano and Miraglia proved in [MM07] that given an inverse directed system of
finite structures Ai and homomorphisms fij, i ≤ j in I, and a directed ultra filter U over
(I,≤), then its profinite limit A is a retract of the ultraproduct ΠiAi/U , fact which they
have applied to the study of special groups [MM13]. In this paper we generalize their
result to any system of compact Hausdorff structures and continuous homomorphism.
For this purpose we prove that the natural map A ↪→ ΠiAi → ΠiAi/U is pure and
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utilize the known fact that an atomic compact structure is a retract of any of its pure
extensions [Weg66].

An interesting model theoretic question is the preservation of first order properties
by limits. For example, it is shown in [PW68] that any positive formula is preserved by
inverse directed limits of compact structures when the bonding homomorphism fij are
onto. It follows from our result that the surjectivity condition is unnecessary and the
preservation is achieved for the larger family of formulas preserved by retracts. This
family has been characterized by Keisler in [Kei65] and includes, among others, all
formulas of the form ∀~x(φ(~x)→ ψ(~x)) where φ(~x) is existential and ψ(~x) is positive.

In the next section we present some basic facts about atomic compact structures and
retracts, in the following one we explain inverse limits and the main result (Theorem
2.3) as well as some of its consequences, and in the last one we discuss the continuity
and definability of the retractions. General reference for the concepts utilized in this
note are [Grä08] and [Will68].

1 Preliminaries

Throughout this paper L denotes a fixed first order language. A first order L-formula
φ is existential (universal) if it has the form ∃~xψ(~x, ~y) (respectively, ∀~xψ(~x, ~y)) where
ψ(~x, ~y) is quantifier free; φ is positive if it is constructed from atomic formulas using
∧, ∨ and the quantifiers ∀ and ∃, and positive existential (positive universal) if it is
positive but does not contain ∀ (respectively, ∃). Here, ~x, ~y denote finite lists of variables
x1, . . . , xn, y1, . . . , yn (perhaps empty) and ∃~xψ(~x, ~y) abbreviates ∃x1 . . . ∃xnψ(x1, . . . , xn,
~y); similarly for ∀~xψ(~x, ~y).

Let A,B be first order L-structures. A function f : A → B is a L-homomorphism
if f(cA) = cB for each symbol of constant c ∈ L, f

(
hA(~a

)
) = hB (f(~a)) for each n-ary

functional symbol h ∈ L, and A |= R (~a) implies B |= R (f(~a)) for each n-ary relational
symbol R ∈ L, where ~a = (a1, . . . , an) is any n-tuple of elements of A and f(~a) denotes
the tuple (f(a1), . . . , f(an)).

Note that an homomorphism f : A → B preserves any positive existential formula
φ(~x). This means that A |= φ(~a) for a tuple ~a in A implies B |= φ(f(~a)). Moreover, if
f is onto it preserves all positive formulae.

Definition 1.1 An homomorphism f : A→ B is pure if it reflects positive existential
formulas with parameters in A. That is, for any positive existential formula φ(~x) and
tuple ~a in A, if B |= φ(f(~a)) then A |= φ(~a).
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Since it reflects the identity and the basic relations in L a pure homomorphism
f : A → B must be an embedding ; that is, it establishes an isomorphism between A
and the substructure induced by f(A) in B.

Definition 1.2 A retraction of an homomorphism f : A → B is an homomorphism
g : B → A such that g ◦ f is the identity function on A. In this case we say that A
(and f too) is a retract of B.

It’s easy to check that if f admits a retraction then it is a pure embedding. However
the converse is not always true, in fact the structures which are retracts of all their pure
extensions are exactly the atomic compact ones (see Lemma 1.7).

Keisler has characterized in [Kei65] the sentences preserved by retractions as those
which are equivalent to a prenex form Q1y1 . . . Qnynθ(y1, . . . , yn) where θ is quantifier
free in conjunctive (or disjunctive) normal form, and whenever Qi is the existential
quantifier the atomic subformulas containing the variable yi do not appear negated in
θ. Call these formulas, with possible additional free variables ~x, retract formulas.

Lemma 1.3 Any retract formula ϕ(~x) is reflected by retracts.

Proof. In a retract situation A
g

�
f

B, ϕ(~x) is reflected by the retract f if and only

the retraction g : (B, f(~a))→ (A,~a) preserves the sentence ϕ(c1, . . . , cn) for any ~a in A.
�

We turn now to topological conditions on structures.

Definition 1.4 (A, τ) is a topological structure if τ is a topology on A such that RA

is a closed subset of An (with the product topology) for any n-ary relation symbol
R ∈ L ∪ {=}, and fA : Ak → A is a continuous for any k-ary function symbol f ∈ L.

We will write A for (A, τ), the topology being understood from the context. As
the diagonal must be closed, topological structures are always Hausdorff. A simple
induction shows that if ϕ(~x, ~y) is a universal positive formula then for any ~b in A the

set of realizations {~a : A |= ϕ(~a,~b)} is a closed subset of Am.

Definition 1.5 A is a compact structure if it is a topological structure with a compact
topology.

In this case the projections Ak → A are closed and then the set {~a : A |= ϕ(~a,~b)} is
closed in Am for any positive formula ϕ(~y, ~x).
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A weaker notion of compactness for structures is atomic compactness, actually a
form of model theoretic saturation introduced originally by Kaplansky [Kap54] for
abelian groups and generalized by J. Mycielski [Myc64] to algebraic structures, where it
is usually called equational compactness, and to general relational structures by [Weg66].
Note that in the next definition we do not limit the number of variables or parameters
appearing on the set of atomic formulas.

Definition 1.6 A structure A is atomic compact if any set of atomic formulas with
parameters in A which is finitely satisfiable in A is satisfiable in A.

A compact structure is atomic compact by an straightforward application of Ty-
chonoff’s theorem. But the reciprocal is not always true and, in fact, it is an open
question whether it holds for many classes of structures. The next fact yields an useful
characterization of atomic compact structures.

Lemma 1.7 ([Weg66]) For any structure A the following are equivalent:
1. A is atomic compact.
2. A is retract of any pure extension.

Condition (2) in the lemma may be strengthened to: A is pure injective; that is,
for any pure homomorphism f : B → C, the map hom(C,A)→ hom(B,A) induced by
composition with f is surjective. This characterization is well known in the theory of
modules and has been noticed for arbitrary structures by several people (see Appendix
by G.H. Wenzel in [Grä08]).

2 Inverse directed limits of compact structures

Let I = (I,≤) be a partial ordered set (poset), we say that I is downward directed if
for any pair i, j of elements of I, there exists k ∈ I such that k ≤ i and k ≤ j.

If C is any category and (I,≤) is a downward directed poset, an (inverse directed)
system in C over I is a set of objects of C labeled by elements of I, say 〈Ai : i ∈ I〉,
together with a set of morphisms

〈fij : Ai → Aj : with i ≤ j in I〉

called bonding maps such that fii is the identity on Ai for each i ∈ I and fkj = fij ◦ fki
whenever k ≤ i ≤ j in I. We denote such a system A = 〈Ai, fij〉i.j∈I .

Definition 2.1 A cone over A is a pair (A, {fi}i∈I) where A is an object of C and for
any i ∈ I, fi : A→ Ai is a morphism such that fj = fij ◦fi whenever i ≤ j are elements
of I. An inverse limit of A is a cone (A, {fi}i∈I) over A such that for any other cone
(B, {hi}i∈I) over A there exist a unique φ : B→ A such that hi = fi ◦ φ for any i ∈ I.
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These limits may not exist in a given category but it is straightforward to show
that they are unique up to isomorphism when they do, in which case we talk about the
inverse limit of A, and denote it lim

←
A.

In the category of L-structures with L-homomorphisms, the inverse limit of any
system A = 〈Ai, fij〉i,j∈I always exists, if we allow empty structures and morphisms,
and it is given by

A = {X ∈ Πi∈IAi : fij (X(i)) = X (j) for any i ≤ j in I}

together with the restrictions of the projections πi : Πi∈IAi → Ai, that is, fi(X) = X(i).
It is easy to see that lim

←
A = (A, {fi}i,j∈I) satisfies the defining universal property. If L

does not have constants the inverse directed limit of a family of non-empty structures
may be empty even for surjective bonding maps. Since it determines completely lim

←
A,

we may identify the limit with the substructure A of Πi∈IAi.

In the category of topological structures with continuous homomorphism the same
construction works. In this case the limit object A is a closed subset of ΠiAi endowed
with the product topology, due to the continuity of the maps fij and the projections
of the product. Therefore, if each Ai is compact, ΠiAi and hence A are compact too.
Moreover, it is well known that in the compact case A is non-empty (cf. [Will68]).

Definition 2.2 If I is a downward directed poset, an ultrafilter U over I is directed if
for any j ∈ I the set (j] = {i ∈ I : i ≤ j} is an element of U .

Such ultrafilters exists because the directness condition ensures that for any j1, . . . , jn
elements of I the set (j1]∩, . . . ,∩(jn] is not empty. Now we are ready to state and prove
our main theorem.

Theorem 2.3 Let A = 〈Ai, fij〉i,j∈I be system of compact structures and continuous
homomorphism over a downward directed poset I, and suppose that U is a directed
ultrafilter over I. If A is the limit of A then the composite map

h : A
ι
↪→ ΠiAi

π→ ΠiAi/U

is pure. Here, ι is the inclusion and π is the natural projection from ΠiAi to the
ultraproduct ΠiAi/U .

Proof. For any X ∈ ΠiAi denote π(X) = X/U the class of X in the ultraproduct.
For any finite J ⊆ I, define

DJ := {X ∈ ΠiAi : fjk (X(j)) = X(k) for all j, k ∈ J such that j ≤ k}
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which is a closed subset of the product. Given Y1/U , . . . , Yn/U ∈ A, suppose φ(y1, . . . , yn,
x1, . . . , xm) is a quantifier free positive L-formula such that

ΠiAi/U |= ∃x1 . . . ∃xmφ (Y1/U , . . . , Yn/U , x1, . . . , xm)

Then there are elements X1/U , . . . , Xm/U in the ultraproduct such that, by  Loś theorem,

{i ∈ I : Ai |= φ (Y1(i), . . . , Yn(i), X1(i), . . . , Xm(i))} ∈ U .

Since U is directed there is i ≤ min J such that

Ai |= φ (Y1(i), . . . , Yn(i), X1(i), . . . , Xm(i))},

and thus, because φ is positive quantifier free,

Aj |= φ (fijY1(i), . . . , fijYn(i), fijX1(i), . . . , fijXm(i))

for all j ∈ J . That is,

Aj |= φ (Y1(j), . . . , Yn(j), X ′1(j), . . . , X ′m(j)) for all j ∈ J

where X ′t(j) = fij(Xt(i)) for j ∈ J and X ′t(j) ∈ Aj is chosen arbitrarily otherwise. Note
that X ′1, . . . , X

′
m ∈ DJ because for j ≤ k in J : fjkX

′
t(j) = fjkfij(Xt(i)) = fik(Xt(i)) =

X ′t(j). This means that the set

EJ := {(X1, . . . , Xm) ∈ Dm
J : Aj |= φ (Y1(j), . . . , Yn(j), X1(j), . . . , Xm(j)) for all j ∈ J}

is non-empty. In addition, this set is closed in (ΠiAi)
m because the realizations of

φ(Y1(j), . . . , Yn(j), x1, . . . , xm) in Am
j for j ∈ J are closed. Besides the family {EJ :

J ⊆fin I} has the finite intersection property because EJ1 ∩ . . . ∩ EJn = E∪iJi . Then
using compactness of (ΠiAi)

m we get

{(X1, . . . , Xm) ∈ Am : A |= φ (Y1, . . . , Yn, X1, . . . , Xm)} = ∩J⊆finIEJ 6= ∅.

Hence, A |= ∃x1 . . . ∃xmφ (Y1, . . . , Yn, x1, . . . , xm) . �

Clearly, the purity of h implies non-emptyness of A, therefore the compactness
hypothesis can not be dropped. Combining Theorem 2.3 with Lemma 1.7 we obtain:

Corollary 2.4 The natural map h of Theorem 2.3 is an embedding and has a retraction
g : ΠiAi/U → A.

Our corollary does not give a specific construction of the retraction g while a ca-
tegorical construction is provided in [MM07] for the profinite case. We give later a
topological construction for the general case (Proposition 3.4).
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Corollary 2.5 Under the hypothesis of Theorem 2.3, lim
←
A preserves retract formulas;

that is, if φ(~x) is a retract L-formula, Xj ∈ A, and Ai |= φ[X1(i), . . . , Xm(i)] for all
i ∈ I then A |= φ[X1, . . . , Xm].

Proof.  Loś theorem implies ΠiAi/U |= φ (X1/U , . . . , Xm/U) , and since h(Xi) = Xi/U
is a retract then Lemma 1.3 applies. �

Retract formulas include all universal formulas, all positive formulas, and all formu-
las of the form ∀~x(φ(~x)→ ψ(~x)) where φ(~x) is quantifier free or existential and ψ(~x) is
positive.

Examples 2.6 The limit of an inverse directed system of compact graphs where each
vertex has out-degree bounded by N has the same property because this is described
by the retract sentence: ∀x∃y1 . . . ∃yN∀y(Rxy → y = y1 ∨ . . . ∨ y = yN). Similarly, an
inverse directed limit of compact planar graphs is locally planar (each finite subgraph
is planar) because planarity is characterized by a set of universal sentences expressing
the absences of Kuratowski’s subgraphs (subdivisions of K5 or K3,3). Notice that these
properties are not preserved by products.

3 Continuity and definability of the retraction

Notice first that it is an immediate consequence of Corollary 2.4 that g◦π is a retraction
of the embedding A ↪→ ΠiAi. This fact may be extended to certain reduced filters
ΠiAi/F . Call a filter F over I compatible with a downward direct poset I if S ∩ (i] 6= ∅
for all S ∈ F and i ∈ I. For example, the smallest filter F = {I}, the Fréchet filter
F = {S ⊆ I : I r S is finite} if I does not have a minimum, or any directed ultrafilter
are compatible with I. Then we have the following generalization of 2.3

Theorem 3.1 Let A = 〈Ai, fij〉i,j∈I be a system of compact structures and continuous
homomorphism over a downward direct poset I. Then the limit objectA is a retract
of the product ΠiAi and, more generally, from any reduced product ΠiAi/F where F is
compatible with I.

Proof. F may be extended to a directed ultrafilter U over I and thus the projection

π factors in the form: ΠiAi
π′
→ ΠiAi/F

ρ→ ΠiAi/U . By Corollary 2.4, g ◦ρ is a retraction

of A
ι
↪→ ΠiAi

π′
→ ΠiAi/F . �

A natural question is wether the retraction g : ΠiAi/U → A may be chosen continu-
ous when ΠiAi/U is endowed with the quotient topology induced by π. The answer to
this question is in general negative. Notice first that by definition of quotient topology
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g is continuous if and only if the induced retraction g ◦ π : ΠiAi → A is continuous, but
the next examples show that in very simple situations there is no continuous map from
ΠiAi onto the limit A.

Examples 3.2 The “topologist’s sine curve” T is an inverse limit of the system

· · · f→ [0, 1]
f→ [0, 1]

f→ [0, 1]

where f(x) = 2x in [0, 1
2
] and f(x) = 3

2
− x in [1

2
, 1] (Example 16, [IM12]). Moreover,

[0, 1]ω is path connected while T is a favorite example of a non path connected space, and
continuous images preserve path connectedness; hence, there is no continuous surjection
[0, 1]ω → T . A similar situation is obtained for compact groups since the limit of the
inverse system

· · · z
2

→ S1 z2→ S1 z2→ S1,

where S1 is the circle group, is a “solenoid” which is not locally connected (see [Kee08]),
but a continuous image of the locally connected space (S1)ω should be locally connected
(Th. 27.12, [Will68]).

These examples show that path connectedness or local connectedness are not pre-
served by limits of compact Hausdorff systems. On the other hand it is well known that
connectedness is preserved (Th. 116, [IM12]).

To finish, we give a topological description of the retraction g : ΠiAi/U → A. For this
purpose we recall the definition of U -limit for an I-family {ai : i ∈ I} in a topological
space X and an ultrafilter over I (see [S78]):

Definition 3.3 {ai} →i∈I U x if and only if {i ∈ I : ai ∈ V } ∈ U for any open
neighborhood V of x.

The following properties are well known or part of the folklore on the subject:
- In Hausdorff spaces U -limits are unique, then we may write x = limi∈I U{ai}.
- In a compact space any I-family has a U -limit.
- In product spaces U -limits are computed componentwise.
- U -limits are preserve by continuous functions.
- Closed sets are closed under U -limits.
- If S ∈ U then limi∈I U{ai} = limi∈S U�S{ai}, where U �S = U ∩ P (S).

Proposition 3.4 Under the hypothesis of Theorem 2.3, define gU(X/U) = Y ∈ ΠiAi

coordinatewise as
Y (j) = lim

i≤j U�(j]
{fijX(i)} in Aj

Then the map gU is a retraction of the embedding h : A→ ΠiAi/U .
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Proof. To see that gU is well defined assume X/U = X ′/U , let S = {i ∈ I : X(i) =
X ′(i)} ∈ U and fix j ∈ I. As (j] ∩ S ∈ U we have:

lim
i≤j U�(j]

{fijX(i)} = lim
i∈(j]∩S U�(j]∩S

{fijX(i)}

= lim
i∈(j]∩S U�(j]∩S

{fijX ′(i)} = lim
i≤j U�(j]

{fijX ′(i)}.

gU is a retraction because by continuity of fjj′ :

fjj′Y (j) = lim
i≤j U�(j]

{fjj′fijX(i)} = lim
i≤j U�(j]

{fij′X(i)} = lim
i≤j′ U�(j′]

{fij′X(i)} = Y (j′).

and thus Y ∈ A. Moreover, if X ∈A then

Y (j) = lim
i≤j U�(j]

{fijX(i)} = lim
i≤j U�(j]

{X(j)} = X(j)

and thus gU(h(X)) = gU(X/U) = X. To see that gU is an homomorphism assume
(X1/U , . . . , Xm/U) ∈ RΠiAi/U , without loss of generality (X1(i), . . . , Xm(i)) ∈ RAi for all
i, and fixing j : (fijX1(i), . . . , fijXm(i)) ∈ RAj for any i ≤ j.Thus

(Y1(j), . . . , Ym(j)) = lim
i≤j U�(j]

{(fijX1(i), . . . , fijXm(i))} ∈ RAj,

because RAj is a closed in Am
j . Therefore, (g(X1/U), . . . , g(Xm/U)) = (Y1, . . . , Ym) ∈

RΠiAi . �

With a little patience it may be verified that for profinite limits our construction
yields the same retraction that the categorical construction given in [MM07]. Other
constructions we have attempted yield the same map thus we may wonder if the re-
traction is unique in some sense with respect to U . Clearly, the induced retraction
gU ◦ π : ΠiAi → A is not unique as there is one for each directed ultrafilter.

Although it may be impossible to have gU continuous for the Tychonoff topology,
the following last observation may be useful. Assume A = 〈Ai, fij〉i,j∈I is an inverse di-
rected system of equi-bounded compact metric structures Ai = (Ai, di) with 1-Lipschitz
bonding maps; that is, dj(fijx, fijy) ≤ di(x, y), then ΠiAi and the limit A may be endo-
wed with the sup metric: d(X,X ′) = supi∈I di(X(i), X ′(i)), which induces the uniform
topology. The ultraproduct ΠiAi/U inherits then a not necessarily metrizable quotient
topology. Compactness of the limit may be lost, but in this circumnstances we have:

Proposition 3.5 The retraction gU : ΠiAi/U → A defined in Proposition 3.4 is conti-
nuous for the uniform topology, and so is the retraction gU ◦ π : ΠiAi → A.
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Proof. It is enough to show that gU ◦ π is continuous. Assume gUπ(X) = Y and
gUπ(X ′) = Y ′ as in Proposition 3.4 and d(X,X ′) < ε in ΠiAi. Then di(X(i), X ′(i)) < ε
for all i and thus, for fixed j : dj(fijX(i), fijX

′(i)) < ε for any i ≤ j. Since dj is continu-
ous in Aj × Aj then dj(Y (j), Y ′(j)) = dj(limi≤j U�(j]{fijX(i)}, limi≤j U�(j]{fijX ′(i)}) =
limi≤j U�(j]{dj(fijX(i), fijX

′(i))} ≤ ε, which implies d(Y, Y ′) ≤ ε. �
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