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Abstract

In this short note, the free implication algebra over a poset is studied. Also,
the cardinality of this free algebra is computed for special posets. In addition,
examples of other algebraic structures are presented. Our work is done using a
general method for constructing the free algebra over a poset in finitely generated
varieties given in [8]. In the literature, there are different constructions of these
free algebras (for the classes of algebras presented here). The aim of this paper
is to show that this construction can be used in all these classes of algebras.
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1 Introduction

In 1945, R. Dilworth ([6]) introduced the notion of free lattice over a poset. Later, this
notion was adapted to different classes of algebras that arise from non-classical logics,
these classes constitute varieties of algebras which have an underlying order structure
definable by means of certain equations pi(x, y) = qi(x, y), 1 ≤ i ≤ n, in terms of
the algebra’s operations and some positive integer n. Constructions of this particular
free algebra have been exhibited for different kind of algebras such as bounded distri-
butive lattices, De Morgan algebras, Hilbert algebras (see [7, 8]) and, more recently,
 Lukasiewicz-Moisil algebras ([9]).

Consider, now, a set Ω of operations of type τ and the set E of identities. We
shall note Alg{Ω,E,≤} the category whose objects are {Ω, E}-algebras which have an
order structure definable from the operations of Ω and the arrows are the respective
{≤,Ω}-morphisms where ≤ is the order from the operations of Ω.
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The notion of free algebra over a poset relative to Alg{Ω,E,≤} can be defined as
follows:

Let (X,≤) = X≤ be a poset. We shall say that FreeAlg{Ω,E,≤}(X≤) is the free
{Ω, E}-algebra over X≤ if the following conditions are satisfied:

(F1) there is an one-to-one order-preserving function g : X≤ → FreeAlg{Ω,E,≤}(X≤),

(F2) for each A ∈ Alg{Ω,E,≤} and each one-to-one order-preserving function f : X → A,
there is a unique morphism h : FreeAlg{Ω,E,≤}(X≤)→ A such that h ◦ g = f .

It is clear that from (F1), we can assert that the algebra FreeAlg{Ω,E,≤}(X≤) contains
a sub-poset which is isomorphic to X≤. If X≤ is an anti–chain, then the algebra
FreeAlg{Ω,E,≤}(X≤) is the usual free algebra (see [3]). This make us believe that may be
cases where this new free algebra is not an object of the category Alg{Ω,E,≤}. Indeed, let
Alg{�,E1,�} be the category whose objects are algebras (A,�) of type 2 characterized
by the set of equations E1 = {x � y ≈ y}. The order relation � is given by x � y
iff x � y = x. Then, it is easy to see that every object Alg{�,E1,�} has an underlying
order structure of anti–chain. However, if we take the poset (I2,≤) where I2 is the two–
element chain, then we have that FreeAlg{Ω,E,≤}(I2,≤) is not an object of Alg{�,E1,�}.

The construction of this free algebra can be presented using techniques of the uni-
versal algebra (see [3]) or using the well–known Freyd’s Adjoint Functor theorem of
category theory (see [11]).

A general construction in varieties finitely generated in the following way can be
given ([8]):

Let V be a variety generated by n algebras Si, n < ω and where the variety V has an

order given by the basic operations. Suppose C =
n∏
i=1

Si is not an antichain. Let I be a

non-empty poset and let E be the set of all increasing functions from I to the V−algebra
C. Besides, let g : I → CE be defined by g(i) = Gi where Gi(f) = f(i), for all f ∈ E
and i ∈ I. Then, L = [G]V is the free V−algebra over I, where G = {Gi : i ∈ I}
and [G] is the V−algebra generated by G. Indeed, it follows easily that i ≤ j implies
Gi ≤ Gj, for all i, j ∈ I. On the other hand, let us suppose that there are i, j ∈ I such
that Gi ≤ Gj and i 6≤ j. Now, let us consider a, b ∈ C, a < b and define f ∗ : I → C by

f ∗(k) =

{
b if k ≥ i
a otherwise

.



On the Free Implication Algebra over a Poset 93

Hence, we have that f ∗ ∈ E, f ∗(i) = b and f ∗(j) = a. These statements imply that
Gi(f

∗) 6≤ Gj(f
∗), which is a contradiction. Thus, g is an order–embedding. Besides,

by the definition of g we get that G = g(I) and so, L = [g(I)]V. Therefore, (F1) holds.

Now we assume that A is a V−algebra and f : I → A is an increasing function.
Since V is the variety generated by C, we have that A is isomorphic to a subalgebra
A∗ of CX , where X is an arbitrary set. Then, there is an isomorphism ϕ : A → A∗

defined by the prescription ϕ(a) = Ha, where Ha ∈ CX for all a ∈ A and so, let us
consider the function ϕ∗ = ϕ ◦ f where ϕ∗(i) = ϕ(f(i)) = Hf(i). We claim that there is
a homomorphism h : L→ A∗ such that h ◦ g = ϕ∗. Indeed, for each x0 ∈ X we define
αx0 : I → C by αx0(i) = Hf(i)(x0). Then, we infer that αx0 ∈ E. This assertion allows
us to consider the function k : X → E, defined by k(x) = αx for all x ∈ X. Hence,
it is routine to check that h : L → CX where h(F ) = F being F (x) = F (k(x)), is a
homomorphism. Moreover, we have that (h ◦ g)(i) = h(Gi) = Gi. Thus, for all x ∈ X
we infer that Gi(x) = Gi(k(x)) = Gi(αx) = αx(i) = Hf(i)(x) = ϕ∗(i)(x), which enables
us to conclude that (h ◦ g)(i) = ϕ∗(i), for all i ∈ I. Finally, we have that h(L) ⊆ A∗.
Indeed, since L′ = {F ∈ CE : h(F ) ∈ A∗} is a V−subalgebra of CE and Gi ∈ L′ for all
i ∈ I, then L ⊆ L′ and consequently h(L) ⊆ A∗. Therefore, (F2) holds.

In this work, we shall study the free algebra over a poset in the variety of implication
algebras, De Morgan algebras and bounded distributive lattice. Many constructions of
this free algebras to different finitely generated varieties has been given. The aim of
this paper is to show all these constructions can be changed by our own. Some paper’s
results were presented in the preprint [7]. The paper is organized as follows. In section
2, we recall definitions and properties of these algebras to facilitate the reading of the
work. In Section 3, we calculate the cardinality of the free algebra over specials finite
posets. In sections 4 and 5, we show some examples.

2 Implication algebras

J. Abbott ([1]) and A. Monteiro (in the 60’s) studied independently and almost simulta-
neously implication algebras. The second author called them Tarski algebras in lectures
given at Universidad Nacional del Sur (see [10]). More recently, several authors have
been interested in these algebras (see for example [4]).

Recall that these algebras can be defined as algebras (A,→, 1) of type (2, 1) which
satisfy the following identities:

(I1) 1→ p = p,
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(I2) p→ p = 1,

(I3) p→ (q → r) = (p→ q)→ (p→ r),

(I4) (p→ q)→ q = (q → p)→ p,

The class of implication algebras will be denoted by I and we shall say that each
object A of I is an I-algebra.

We state here, without proof, some results of the theory of implication algebras that
are necessary in the sequel:

Theorem 2.1 [1, 10]

(I5) p→ p = 1,

(I6) p→ (q → p) = 1,

(I7) p→ (q → r)→ (p→ q)→ (p→ r) = 1,

(I8) ((p→ q)→ p)→ p) = 1,

(I9) the relation ≤ defined by x ≤ y if only if x→ y = 1 is a partial order on A, and
x ≤ 1 for all x ∈ A,

(I10) (A ≤) is a join-semillattice, where the supremum of the elements x, y is x ∨ y =
(x→ y)→ y,

(I11) if A = (A,→, 1) is an I-algebra with firts element 0, and the opertations ∨,∼,∧
are defined by x ∨ y = (x → y) → y, ∼ x = x → 0, x ∧ y =∼ (∼ x∨ ∼ y),
then B(A) = (A,∨,∧,∼, 0, 1) is a Boolean algebra. If A = (A,∨,∧,∼, 0, 1)
is a Boolean algebra and → is defined by the formula x → y =∼ x ∨ y, then
T (A) = (A,→, 1) is a I-algebra.

(I12) Let C2 = {0, 1} and→ be defined by x→ y = 1 if x ≤ y and x→ y = 0 otherwise,
then (C2,→, 1) is an I-algebra, moreover it is a Hilbert algebra (see [5]).

A subset D of an I-algebra A is said to be a deductive systems (d.s.) iff 1 ∈ D and
x, x → y ∈ D implies y ∈ D. It is well–known that there exists a lattice isomorphism
between the lattice of congruence relations of A and the set all deductive systems of A.
Then, we have the next theorem.

Theorem 2.2 [10] For every I-algebra A the following conditions hold:
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(i) The variety I is semi-simple, and A is simple iff A ' C2.

(ii) If A is finite and it has first element, then A ' Cr
2 where r is a positive integer.

(iii) The variety I has the congruence extension property.

(iv) The variety I is locally finite.

3 Free algebras over a poset

Let us consider a finite poset X≤ = (X,≤) and let E be the set

{f : X −→ C2; f is a order-preserving function }.

Then, the set G = {Gj}j∈X where Gj ∈ CE
2 defined by Gj(f) = f(j) is the set

of free-generators of FreeI(X≤), where FreeI(X≤) is the free I-algebra over the poset
X≤. Therefore, we have the following lemma.

Lemma 3.1 Let F ∈ FreeI(X≤) and D ∈ Π(2E). Then, F ∨D ∈ FreeI(X≤), where
Π(2E) is the set of atoms of 2E.

Proof. Let E = {h1, . . . , hs} with s < ω. If D ∈ Π(2E), then there is a unique
hj ∈ E, 1 ≤ j ≤ s such that D(hj) = 1 and D(hk) = 0 for all k 6= j, with 1 ≤ k ≤ s.
Then, it is verified that D =

∧
i∈X

Gi
′ where

G′i =

{
Gi, if Gi(hj) = 1
−Gi, if Gi(hj) = 0

.

It is clear that there is Hi ∈ LI(X≤) such that F ∨ Gi
′ = Hi → F , from which:

F ∨D = F ∨
∧
i∈X

Gi
′ =

∧
i∈X

(F ∨Gi
′) =

∧
i∈X

(Hi → F ) =
∧
i∈X

(−Hi∨F ) = −(
∨
i∈X

Hi)∨F =

(
∨
i∈X

Hi)→ F ∈ LI(X≤). �

On the other hand, we can see that the following lemma is verified for any finite
poset X.

Lemma 3.2 FreeI(X≤) =
⋃
i∈X

[Gi) where [Gi) = {x ∈ 2E : Gi ≤ x}.

Proof.
Since Gi ∈ [Gi) for all i ∈ I and

⋃
i∈X

[Gi) is a subalgebra of 2E, we have that

FreeI(X≤) ⊆
⋃
i∈X

[Gi).
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Reciprocally, if F ∈
⋃
i∈X

[Gi), then there is i0 ∈ X such that F ∈ [Gi0) and therefore

Gi0 ≤ F . Besides, as X is a finite set we have that 2E is a finite Boolean algebra. Since
F ∈ 2E we may assert that F =

∨
{DF : DF ∈ Π(2E), DF ≤ F} = Gi0 ∨

∨
{DF : DF ∈

Π(2E), DF ≤ F} =
∨
{(Gi0 ∨DF ) : DF ∈ Π(2E), DF ≤ F}.

Then, by Lemma 3.1, we have that F ∈ FreeI(X≤). �

In order to determine the number of elements of FreeI(X≤) when X is an antichain
with n elements, we can write the following equation:

|FreeI(X≤)| = |
n⋃
i=1

[Gi)| =
n∑
k=1

(−1)k+1αk(n),

where αk(n) =
∑

1≤i1<···<ik≤n
|[Gi1)∩ [Gi2)∩· · ·∩ [Gik)| and for every set Y we denoted

the cardinalty of Y by |Y |.

We can rewrite the above equation as:

|
k⋂
j=1

[Gij)| = |
k⋂
t=1

[Gt)|.

Let Sk =
k⋂
t=1

[Gt) and G∗k =
k∨
i=1

Gi. Then, we have that Sk = [G∗k) and therefore

Sk is an I-subalgebra of FreeI(X≤) which has first element. Besides, it is clear that
for each maximal d.s. D of Sk there is (by Theorem 2.2 (iii)) a maximal deductive
system M of FreeI(X≤) such that D = M ∩ Sk. Now, let M k be the set of all
maximal deductive system of FreeI(X≤) such that M ∈M k implies Sk 6⊆M . Hence,
according to Theorem 2.2 (ii), we have that Sk '

∏
D∈Mk

Sk/D ' C2
αk , where αk is the

number of maximal deductive systems of Sk. Therefore,

|FreeI(X≤)| =
m∑
k=1

(−1)k+1

(
m

k

)
|C2|αk

On the other hand, for each M ∈ M k there exists a unique I-epimorphism h :
FreeI(X≤) → C2 such that M = Ker(h) and Sk 6⊆ Ker(h). Also, for each I-
epimorphism h (in the same conditions above) there exists a funtion f : {Gi}i∈X → C2

such that h|{Gi}i∈X = f . It is clear that f(Gk) = 0 where Gk = {G1, G2, · · · , Gk} and
therefore αk = 2m−k. From what was sated above, we have that the following theorem
holds.
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Theorem 3.3
m∑
k=1

(−1)k+1

(
m

k

)
22m−k

is the cardinalty of the free implication algebra

with n generators.

Note that the theorem 3.3 was obtined by A. Monteiro in 60’s year (see [10]) using
different techniques.

4 De Morgan algebras

In what follows we shall exhibit the free De Morgan algebra over the two-element chain.
Firstly, we recall that an algebra L = 〈L,∨,∧,∼, 0, 1〉 of tipe (2, 2, 1, 0, 0) is said to be
a De Morgan algebra if the reduct 〈L,∨,∧, 0, 1〉 is a bounded distributive lattice, and
the following identities hold:

∼∼ x = x, ∼ (x ∧ y) =∼ x∨ ∼ y.

The next Hasse diagrams represent the poset I and the algebra K (respectively)
that generates the variety of De Morgan algebras:

Let E be the set of all order-preserving functions from I to K. Let us consider the
function g : I → KE defined by g(i) = Gi where Gi(f) = f(i), for all f ∈ E and all
i ∈ I.

Therefore, the set of E has 9 elements as we indicate in the following table:

I f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9

1 0 0 0 0 a a b b 1
2 0 a b 1 a 1 b 1 1

Then, the free De Morgan algebra FreeM(I,≤) over I has the following diagram:

Where, we obtain A, B, C, D, F, G, H, E and J from of G1 and ∼ G2 (free generators),
in the following way:
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A=G1∧ ∼ G2, B= G2∧ ∼ G2, C= G1∧ ∼ G1, F=B∨C, H=∼ G2∨C,
E=B∨G1, J=∼ G2 ∨G1.

O G=G1 D=∼ G2 A B C F H E J
0 0 1 0 0 0 0 1 0 1
0 0 a 0 a 0 a a a a
0 0 b 0 b 0 b b b b
0 0 0 0 0 0 0 0 0 0
0 a a a a a a a a a
0 a 0 0 0 a a a a a
0 b b b b b b b b b
0 b 0 0 0 b b b b b
0 1 0 0 0 0 0 0 1 1

Then, the rest of elements are obtained as follows:

X O A B C D F G H E J
∼X 1 T S R Q P N M K L
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5 Bounded distributive lattices

Now, we shall build the free bounded distributive lattice (for short, l-algebras) over a
poset I≤ with 3 elements which is represented by the following diagram:

where L is the algebra which generates the variety of l-algebras. In a similar way to
the one of section 4, we can define the set of all order-preserving functions from I into
L as is indicated in the next table:

I f 1 f 2 f 3 f 4 f 5 f 6

a 0 0 0 1 1 1
c 0 1 1 0 1 1
b 0 0 1 0 0 1

Therefore, the free l-algebras over the poset I has the following diagram:

where G1 = (0, 0, 0, 1, 1, 1), G2 = (0, 1, 1, 0, 1, 1) and G3 = (0, 0, 1, 0, 0, 1) are the
generators of FreeL(I,≤). Besides, the other elements are obtained in the following
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way: A = G1 ∧ G2, B = G1 ∧ G3, F = G1 ∨ G2, H = G1 ∨ G3, E = (G1 ∨ G2) ∧ G3

and the constants 0 = (0, 0, 0, 0, 0, 0) and 1 = (1, 1, 1, 1, 1, 1).
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