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Abstract

The epsilon calculus contains terms of the form ‘εxFx’ for every predicate
in the language. This means that it includes what I shall call ‘empty’ terms
(when there are no F s) and also what I shall call ‘indexical’ terms (when there
is more than one F ). These particular terms give the epsilon calculus a very
distinctive character in comparison with the standard predicate calculus. For
instance, an ‘empty’ term is central to understanding how we can do things
that Whitehead and Russell’s Principia Mathematica cannot do, in connection
with Gödel’s theorems. And attention to ‘indexical’ terms is crucial to solving
the major logical paradoxes that have been a puzzle for over a century. Most
particularly they are crucial to the solution of what has been called ‘Gödel’s
Paradox’, which has been claimed to show that natural language is paraconsistent.
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1 Proofs and Derivations

The overall point that has to be grasped to understand what is true in the standard
model of Gödelian sentences is quite simple. For Gödel showed in his first theorem
that, if the appropriate system is consistent, then we can say something of the form

(∀z)¬B(z, ‘(∀x)Fx’),

although also
(∀x)(∃z)B(z, ‘Fx’)

for a certain ‘F ’, where ‘B(z, ‘Fx’)’ says that z is the Gödel number of a derivation of
a formula ‘Fx’ in the system, and ‘x’ is the numeral for the natural number x in that
system [13]. It is important in connection with what follows that only such numerals
are involved in the formula, since only such can be used in the Gödel numbering. But
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on account of the second of these results we get the curious Gödelian conclusion: for it
seems that it is thereby proved that every natural number is F . So it seems that we
can obtain a universal conclusion that the system itself cannot establish.

But how do we do it? Do we have some ‘näıve’ method of proof that cannot be
formalised? The classic epsilon calculus comes from adding to propositional logic the
first epsilon axiom

Fy ⊃ FεxFx,

where ‘εxFx’ is an individual term, defined for all predicates in the language, making
it invariably the case that

(∃y)(y = εxFx).

On this basis, one can define the quantifiers, viz:

(∃y)Fx ≡ FεxFx, (∀x)Fx ≡ Fεx¬Fx.

Epsilon treatments of arithmetic have been presented by a number of people influenced
by Hilbert. Within this tradition one adds an axiom of extensionality

(∀x)(Fx ≡ Gx) ⊃ εxFx = εxGx,

and the least number principle in the form

(εx¬Fx = sn) ⊃ Fn,

where snis the successor of n.
It is the distinctive way that generality is expressed in epsilon arithmetics that

matters, and that can be illustrated in an epsilon proof of induction. For if we assume

F0&(∀m)(Fm ⊃ Fsm),

then, if εx¬Fx = 0, we know that Fεx¬Fx and so (∀m)Fm, while if εx¬Fx = sn,
then Fn by the least number principle, and so Fsn from the universal premise, giving
Fεx¬Fx and so (∀m)Fm again. But in the Gödelian case, while there would be deri-
vable ‘(∃y)(y = εx¬Fx’, there would not be derivable ‘y = εx¬Fx’ for any numeral ‘y’,
since otherwise we would have

(∃y)[(∃z)(B(z, ‘Fy’&(∃z)B(z, ‘y = εx¬Fx’)]

from which to derive
(∃z)B(z, ‘(∀x)Fx’).

And likewise from
(∀y)(∃z)B(z, ‘Fy’)
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we cannot get
(∃z)B(z, ‘Fεx¬Fx’),

since the epsilon term is not a numeral, and so is not available as a substitution instance.
On the other hand, when we are talking about the standard model we are not talking

about numerals and formulae using a predicative locution. We are talking about natural
numbers and propositions (i.e., what numerals refer to and what the formulae express)
using an operator locution, i.e. the crucial locution is ‘It is provable that p’ rather than
“‘p” is derivable’. The distinctiveness of the operator locution is not always appreciated,
leading to some of the confusion in this area, since the derivability of a formula within
a formal system has also come to be called the ‘proof’ of that formula. I shall here
reserve the word ‘proof’ for the propositional notion, and word ‘derivation’ for the
formula notion. Once crucial difference, as we shall see later, is that Löb’s Theorem is
not applicable to the propositional operator, as with the derivability predicate, since
the operator ‘It is provable that’ necessarily entails the operator ‘It is true that’. More
specifically to the present point, since we know, if we choose the standard model, that
for some natural number y, y = εx¬Fx, then given that for that particular number
there is a proof that Fy we have a proof that (∀x)Fx via the resulting proof that
Fεx¬Fx. In symbols, if ‘Pp’ says ‘It is provable that p’ and we have

P (∃y)(y = εx¬Fx&(∀y)PFy,

then from this there follows that (∃y)(y = εx¬Fx), and so that PFεx¬Fx, and hence
that P (∀y)Fy. The epsilon term is now a possible substitution instance of the variable
since, even though it is not a numeral, it still refers, through our choice of the standard
model, to the natural number in question.

The epsilon treatment therefore shows that one can derive no formula of the form
‘y = εx¬Fx’ when ‘y’ is a numeral, yet we can still know that a sentence of this form
expresses a truth in the standard model. But we know this by a process quite different
to any formal proof procedure. Indeed, knowing any fact about the standard model
must involve some non-formal process at some stage, since knowing the standard model
is a model of the formulas in question (those in Peano’s Axioms, for example) must
be a non-formal process. Specifically we know the sentence above expresses a truth
simply by interpreting the symbolism in a certain way, specifically the standard way.
A Turing machine cannot specify what model its results are to be applied to, but we
can. The point substantiates Searle’s view about the limits of mechanism [7], [8]: only
humans have the power to interpret what Turing machines might produce. Searle made
this point in the extensive debate that arose from Lucas’s paper ‘Minds, Machines and
Gd̈el’ [2]. Lucas even suggested that the limits of mechanism demonstrated mankind’s
freedom of the will [3], and Penrose, following him, tried to locate some quantum
structures in the brain that might account for this freedom [5], [6].
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Whatever is happening in the brains of humans, though, the epsilon calculus,
through the introduction of choice functions, breaches the mechanistic understanding
of human language that dominated logic elsewhere in the twentieth century. We shall
see this more fully in the remainder of this paper, where what I have called ‘indexical’
epsilon terms are taken as a simplified model for the complexities in natural langua-
ges brought about through considerations of context. Wider attention to epsilon terms
would have alerted logicians to the presence of indexical terms in language, since ‘εxFx’
does not have a determinate reference unless (∃!x)Fx. As a result there is no guarantee
of self-reference in such an equation as “a = ‘Pa”’ if ‘a’ is an epsilon term. If you
say that εxFx = ‘PεxFx’ then the choice of reference of the unquoted epsilon term is
made. But the reference of the epsilon term within the quotes is not necessarily the
same. The identity is with a sentence on the right hand side, and so is independent of
its propositional interpretation.

2 The Liar

There are at least three reasons why Francesco Berto missed the above points in his
recent discussion of Gödel’s theorems [1]. The first was that he repeated, without
qualification, improvement, or criticism much of what Graham Priest has said with
regard to elementary paradoxes like that supposed to exist with sentences such as ‘This
sentence is false’. The second was that he also repeated what Priest has had to say about
the more technical and specialised difficulties supposed to exist with sentences like ‘This
sentence is not provable’. But the third, and major reason concerns his attachment to
the standard predicate calculus, and his inattention to Hilbert’s conservative extension
of it, the epsilon calculus. On page 210 of his paper Berto says:

Gödel himself pointed out the analogies between his undecidable sentence
and such paradoxes as Richard’s or the Liar. But it seems clear that, whe-
reas the Liar, ‘This sentence is false’, produces an antinomy, with the Gödel
sentence, metamathematically read as ‘This sentence is not provable’, no
contradiction is forthcoming.

But there is no contradiction forthcoming in the Liar case either, once one carefully
separates sentences from the propositions they might be used to make. Sentences are
mentioned commonly by using quotes; propositions, by contrast, are the referents of
‘that’-clauses. So they are categorically different. Separating the two is particularly
necessary when indexical expressions, like ‘this’, are involved. For ‘This sentence is
false’ has many different uses, and so this same sentence can be used to express many
different propositions. One may express, for instance, the proposition that the sentence
‘The earth is square’ is false thus:
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This sentence is false: ‘The earth is square’.

So Berto’s sentence is not self-referential in itself, since its subject phrase has to be
given the specific ‘self-referential’ interpretation in order for this to happen. And the
most important thing to notice then is that the specific interpretation then involved
makes its subject phrase refer to a sentence that contains a subject phrase without a
determinate referent. For in

This sentence is false: ‘This sentence is false’,

the first ‘this sentence’ has a reference, but the second ‘this sentence’ has none, because
at that second occurrence it is within quotation marks, and so is only mentioned,
and not used. That means the proposition then expressed is simply false, since the
referred-to sentence is neither true nor false. A host of other ‘self-referential’ paradoxes
– including Grelling’s and Russell’s – yield to similar analyses [12].

3 Paraconsistency?

There is clearly no paradox with ‘This sentence is not provable’, on any basis. But an
attempted application of the situation with formal derivability to natural language has
led Priest, and now Berto, to hold that a very severe meta-paradox is derivable. For
if Gödel’s Theorems were applicable to natural language and not just a formal system
like Whitehead and Russell’s Principia Mathematica (PM), then that would seemingly
make natural language paraconsistent. As Priest and Berto understand the matter, we
would then both be able, and yet also be unable, to ‘prove’ the same thing, namely, a
sentence of the form ‘(∀x)Fx’. Of course application of reductio to this supposed result
would have automatically shown there was something wrong with the assumption that
natural language could be formalised in an appropriate way, but neither Priest nor
Berto, as is well known, has been inclined to obey this logical law. In fact it is only
recognition, on the above basis, of the difference between propositions and sentences
that resolves the matter fully and thereby cancels the major theoretical argument Priest
has run against the existence of classical contradiction, i.e. Boolean negation, in natural
language.

For, first of all, what it is that we can prove in our natural language, in connection
with Gödel’s theorems, and what a formal system like PM cannot derive are categori-
cally different [11]. One is a proposition – that all natural numbers are F, for a certain
predicate ‘F’– and the other is a sentence ‘(∀x)Fx’. We get our propositional result by
interpreting the formal symbolism a certain way, in terms of its standard model, as we
have seen. That is a feat the system itself cannot even attempt, since it has no power
over how its symbols are interpreted, being entirely formal.



88 H. Slater

But, second, there can be no replication of this separation starting not from PM but
from natural language itself. So there are no Gödelian theorems for natural language.
For it is easy to see that the fixed-point theorem, which is crucial to the Gödelian con-
struction (and also Tarski’s theorem), cannot arise in our natural language, since that
is a language including indexicals (also empty referential terms), making the proposi-
tions expressible in such a language innumerable. It is here that my calling ‘εxFx’ an
‘empty’ term when there are no Fs and an ‘indexical’ term when there is more than
one F becomes relevant. For the indexical and empty terms in natural language are like
certain epsilon terms, specifically ‘εxPx’ when it is not the case that (∃!x)Px. Indeed
it is the presence of such individual terms that distinguishes the epsilon calculus. If for
every ‘P ’ it were true that there was just one P , then this calculus would reduce to the
standard predicate calculus.

Priest’s argument is surprisingly weak at this point, since he simply assumes that
natural language can be formulated as a standard predicate calculus, and does not
address the problems that empty terms and indexicals pose to trying to get all propo-
sitions expressible in that language syntactically represented. The technical impasse,
making the point especially clear in the case of the formal epsilon calculus, is that
functions taking the related epsilon terms as arguments do not have calculable values,
and so cannot be represented in a formal system. The upshot is that the supposition
that natural language is itself paraconsistent cannot be defended using the Priest-Berto
argument. In addition there is a simple proof, improving on Tarski’s theorem, that the
truth predicate attached to ‘that’-clauses is consistent, since all operators are equivalent
to predicates of ‘that’-clauses (N.B., not predicates of formulas), and in line with this
general equivalence ‘that p is true’ is the same as ‘it is true that p’. But ‘it is true
that’ is the vacuous modality in the logic KT, which is consistent, so truth predicated
of propositions is consistent.

Likewise the provability of propositions is consistent, since as before ‘It is provable
that p’ unconditionally entails ‘It is true that p’. It is here that the fact that Löb’s
theorem does not apply to the proof of propositions, mentioned before, is most relevant.
Of course it is crucial for this result to hold that the associated provability predicate
is attached to ‘that’-clauses as subjects, not formulas (or their names, or their Gödel
numbers). For Löb’s theorem does apply in connection with the derivation of formulas.
But the fixed-point theorem on which this theorem is based does not hold for proposi-
tions, as we have seen. So, because of the close connection between Löb’s theorem and
Gödel’s second theorem, that means that Gödel’s proof of his second theorem does not
hold for propositions.

What has probably led many people astray on the above two issues has been at-
tachment to what often was their best friend, the standard predicate calculus. In
twentieth-century formal logic it is presumed that a model for some predicative formu-
las consists in a non-empty universe where every individual term has a unique referent.
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That means, as we have seen, that no individual term is an ‘empty name’, or an indexi-
cal, context-dependent expression. The numerals discussed at the start of this paper are
a prime example; and there we also saw how different are epsilon terms. But thinking
of all elementary terms as like numerals, every elementary sentence ‘Pa’ is taken to
express a proposition, and just one such – that a is P . That means that self-reference
does occur as a feature of the language, when a = ‘Pa’, for instance. For the quoted
‘a’ has to have the same referent as the unquoted one on the given understanding. The
result is that truth and provability cannot be defined in the language, i.e., Tarski’s and
Gödel’s theorems hold. But that is no loss since the language so interpreted is unusable
in any practical way. The formal predicative languages that have been common since
the days of the logical positivists are abstractions from natural language, and it is that
abstraction that has produced the limitative results. Indeed it has led to many para-
doxes being produced that are not features of the richer forms of expression available
in natural language.

The abstraction that has been involved has, as we have seen, removed the ‘that’-
clauses in natural language (trying to replace them with mentioned sentences or formu-
las), and it has also removed individual terms that either have no definite referent at all,
or only one that is dependent on context. The two matters are intimately linked, since
without such terms in the language there is little need to discriminate propositions from
formulas, since every formula containing an individual term then expresses one and just
one proposition. The conflation of predicates of ‘that’-clauses with predicates of formu-
las has therefore been a central part of the subsequent difficulties, but the particular
practical problem in the case of individual terms is that it overlooks the fact that we
are not omniscient about what exists in the physical world. For we can sometimes be
wrong when saying things like ‘There is a mouse in the room’ [i.e. ‘(∃x)(Mx&Rx)’],
and even if we are right, then there might be more than one thing we could be talking
about. So the individual term ‘it’ in any subsequent elementary remark, like ‘It is on
the carpet’ [i.e. ‘Cεx(Mx&Rx)’], may have no determinate referent at all, or only one
that has yet to be specified. As the epsilon symbolisation of these remarks shows, the
epsilon calculus can handle these two further options, since the cross-reference is secured
through the term ‘εx(Mx&Rx)’ arising not only in the elementary remark, but also in
the epsilon equivalent of the existential remark. Many other cases have been analysed
in a similar way [4], [9], [10]. But analyses cannot be formulated using any individual
term in the standard predicate calculus, as we have seen. If we were omniscient, and
knew beforehand the truth of any sentence of the form ‘(∃!x)Px’, we might be able to
use the logical positivists’ predicate language in the supposed way, i.e. in line with the
standard model for the predicate calculus. But the humbling fact is that we are not
omniscient in this way, making Tarski’s and Gödel’s theorems of academic interest only,
being irrelevant to our practical use of ordinary language. Most particularly it means
that natural language is not paraconsistent, as Priest and Berto have both maintained.
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