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Abstract
The purpose of this paper is to describe a set of counterfactual temporal

alethic-deontic systems, i.e. systems that include counterfactual, temporal, ale-
thic and deontic operators. All systems are described both semantically and
proof theoretically. We use a kind of possible world semantics, inspired by the
so-called T × W semantics, to characterise our systems semantically and seman-
tic tableaux to characterise them proof theoretically. Our models contain several
different accessibility relations and a similarity relation between possible worlds,
which are used in the definitions of the truth conditions for the various operators.
Soundness results are obtained for every tableau system and completeness results
for a subclass of them.
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1 Introduction
The purpose of this paper is to describe a set of counterfactual temporal alethic-deontic
systems, i.e. systems that include counterfactual, temporal, alethic and deontic ope-
rators. All systems are described both semantically and proof theoretically. We use a
kind of possible world semantics, inspired by the so-called T × W semantics (see Section
3), to characterise our systems semantically and semantic tableaux (see Section 4) to
characterise them proof theoretically. Our models contain several different accessibility
relations and a similarity relation between possible worlds, which are used in the defini-
tions of the truth conditions for the various operators. Soundness results are obtained
for every tableau system and completeness results for a subclass of them.

The systems developed in this essay are combinations of the counterfactual systems
and temporal alethic-deontic systems introduced by Rönnedal [37] and Rönnedal [38],
respectively. (See also Rönnedal [39] and Rönnedal [40].) However, the results in
the present paper are not only a straightforward extension of previous results. This
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paper also contains some major novelties. The most important difference is that [37]
only described some ordinary frames and models (see Section 3.1), without a similarity
relation between possible worlds. In this paper, I will introduce a set of so-called
supplemented frames and models (see Section 3.1) that includes a ternary similarity
relation between possible worlds. In supplemented models, the truth conditions of the
counterfactual operators can be defined in terms of this similarity relation (see Section
3.1.3). This kind of semantics seems to be intuitively more plausible than the kind of
semantics used in [37]. Furthermore, I will establish several interesting relationships
between ordinary and supplemented models (see Theorem 1 in Section 3.2). Therefore,
the results in this paper are logically significant and non-trivial.

Pioneering contributions to counterfactual logic can be found in Robert Stalnaker’s
[42] and David Lewis’s works [31]. The semantic conditions C − cc5 and C − cc7 play
an important part in systems inspired by Stalnaker, and the semantic condition C −cc6
plays an important part in systems inspired by Lewis (see Section 3.2). Many logics
described by Stalnaker and Lewis are included in our counterfactual temporal alethic-
deontic systems.

Several philosophers and logicians have developed logical systems that deal with
various combinations of the conditions governing temporal, alethic and deontic elements
(e.g. Chellas [14], Bailhache [3, 4, 5, 6], van Eck [20], Thomason [43, 44], Åqvist and
Hoepelman [48], Åqvist [51], Bartha [7], Horty [27], Belnap, Perloff and Xu [8], Brown
[9, 10, 11]). However, as far as I know, no one has developed any systems that include
temporal, alethic and deontic operators, as well as counterfactuals. Consequently, all
of the systems in this essay are entirely new.

Most temporal alethic-deontic logicians use some kind of tree-like structure to des-
cribe their systems semantically, for instance the so-called Ockhamist frames perhaps
first hinted at in Prior [35], and they try to find different axioms that correspond to
different conditions that may be imposed on these structures. In this paper, we use
semantic tableaux instead. The tableau approach makes our systems unique.

Other interesting works that deal with combinations of tense and modality include
Ciuni and Zanardo [16], DiMaio and Zanardo [19], von Kutschera [30], Zanardo [47],
Åqvist [50] and Wölfl [46]. For some informal philosophical reflections, see e.g. [2] and
[21]. For more information on various mono-modal systems and on how to combine
different systems, see e.g. [4, 5, 6], [12], [15], [17], [25], [29], [36], [49].

There are basically three kinds of semantics that have been used by temporal alethic-
deontic logicians, T × W semantics (e.g. [14], [3], [4], [5], [6], [45], [48], [51]), moment
based (branching time) semantics (e.g. [7], [27], [8]) and branch based semantics (e.g.
[9], [10]). We use a kind of T × W semantics in this essay. According to this approach,
truth is relativised to world-moment pairs. A sentence may be true in one possible
world at a time and false in another possible world at the same time, or true in one
possible world at a time and false in the same world at another time. This leads to
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quite rich and flexible semantics.
There are many good philosophical reasons to be interested in the systems in this

paper. One reason is that we seem to be able to use them to symbolise many diffe-
rent forms of conditionals and principles that are difficult or impossible to formalise
adequately in other systems. Another reason is that there are many arguments that
are intuitively valid that cannot be shown to be valid in any existing systems. I will
now consider one example of such an argument. Let us call this deduction “The Test
Argument”.

The Test Argument
1. If it ought to be the case that it is always going to be the case that she is

completely honest and courageous, then if you were in her situation it would be the case
that it is always going to be the case that you are completely honest and courageous.

2. It ought to be the case that it is always going to be the case that she is completely
honest and courageous.

3. It is absolutely necessary that if you are completely honest, then you do not lie.
It follows that:
4. If you were in her situation, then it would not be permitted that some time in

the future it will be the case that you lie.1
This argument is intuitively valid. It seems impossible for the premises to be true

while the conclusion is false. In other words, it appears to be necessary that if the
premises are true, then the conclusion is true also. I am only speaking about the
validity of the argument, not about its soundness. I am not claiming anything about
the truth-value of the premises. As is widely recognised, an argument can be valid even
if the premises are not true. However, it seems impossible to prove that this argument
is valid in any known logical systems. To be able to formalise this argument adequately
it seems necessary to have a logical system that includes deontic operators, temporal
operators, alethic operators and counterfactual operators, as well as ordinary truth
functional connectives. I.e. we seem to need systems of the kind used in this paper.
This is a good reason to be interested in counterfactual temporal alethic-deontic logic.

Premise 1 in The Test Argument is an instance of one kind of universalisability
principle: If A is obligatory for x, then A is obligatory for anyone that is in x’s situation.2
It has proved very difficult to find exact and plausible formalisations of this principle.
To me it seems that we need some kind of counterfactual operator to be able to formalise
different versions of this principle.3 I am not in your situation and you are not in my

1The sentences in this argument are not particularly “natural”; some might even want to question
their grammaticality. However, they are not much different from other similar sentences that are often
used by logicians, and it seems possible, and not too difficult, to understand the thoughts that they
express.

2See e.g. Adler and Gowans [1] and Potter and Timmons [33] for more information about this
well-known principle in ethics and for some relevant references.

3The interpretation of “the” universalisability principle that entails premise 1, is not the only
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situation. In fact, it appears to be historically impossible for me to be in your position
and for you to be in my position. Yet, it seems reasonable for me to think about what
would be the case if I were in your situation etc. It is an important ethical skill to be
able to see things from another person’s perspective, to “walk in someone else’s shoes”,
to project oneself into another individual’s situation. In Section 5.1, I will show how
we can prove that the conclusion in The Test Argument is entailed by the premises.

The essay is divided into 6 sections. In Section 2, I describe the syntax of our
systems and in Section 3 their semantics. Section 4 deals with the proof theoretic
characterisation of our logics and Section 5 includes some examples of theorems. Finally,
Section 6 contains soundness proofs for every system and completeness proofs for a
subclass of them. My conjecture is that at least all of the systems based on ordinary
models are complete, but I have not been able to prove this.

2 Syntax

2.1 Alphabet
(i) A denumerably infinite set Prop of proposition letters p, q, r, s, p1, q1, r1, s1, p2, q2,
r2, s2, . . ., (ii) a denumerably infinite set NT of names of times t0, t1, t2, t3 . . ., (iii) the
primitive truth-functional connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction),
→ (material implication) and ↔ (material equivalence), (iv) the alethic operators U ,
M , ◻, ◇, ⊡, and �, (v) the temporal operators R, A, S, G, H, F and P , (vi) the
deontic operators O and P , (vii) the counterfactual operators� and�, and (viii) ⊺
(verum), � (falsum) and the brackets (, ).

2.2 Language
The language L is the set of well-formed formulas (wffs) generated by the usual clauses
for proposition letters and propositionally compound sentences, and the following clau-
ses: (i) if A is a wff, then UA (“it is universally (or absolutely) necessary that A”), MA
(“it is universally (or absolutely) possible that A”), ◻A (“it is historically necessary
(or settled) that A”), ◇A (“it is historically possible that A”), ⊡A (“it is temporally
necessary that A”), �A (“it is temporally possible that A”), AA (“it is always the case
that A”), SA (“it is some time the case that A”), GA (“it is always going to be the
case that A”), HA (“it has always been the case that A”), FA (“it will some time in
the future be the case that A”), PA (“it was some time in the past the case that A”),
OA (“it ought to be the case that A”) and PA (“it is permitted that A”) are wffs, (ii)

one that is possible, and it is not necessarily the best. Again, I am not primarily interested in the
truth-value of the premises. The point of the argument is to illustrate the usefulness of the systems
introduced in this paper.
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if A is a wff and t is in NT, then RtA (“it is realised at time t that A”) is a wff, (iii) if
A and B are wffs, so are (A� B) (“If it were the case that A, then it would be the
case that B”) and (A� B) (“If it were the case that A, then it might be the case
that B”), and (iv) nothing else is a wff.

Capital letters A, B, C . . . are used to represent arbitrary (not necessarily atomic)
formulas of the object language. The upper case Greek letter Γ represents an arbitrary
set of formulas. Brackets around sentences are usually dropped if the result is not
ambiguous.

2.3 Definitions
xA (“it is historically impossible that A”) = ¬ ◇ A, FA (“it is forbidden that A”)
= ¬PA, ▽A (“it is historically contingent that A”) =◇A∧◇¬A, △A (“it is historically
non-contingent that A”) = ¬ ▽ A (or ◻A ∨ ◻¬A), [G]A = A ∧ GA, ⟨F ⟩A = ¬[G]¬A
(or A ∨ FA), [H]A = A ∧ HA, ⟨P ⟩A = ¬[H]¬A (or A ∨ PA), A ⇒ B = ◻(A → B),
A⇔ B = ◻(A ↔ B), A� B = (A� ⊺) ∧ (A� B) (“If A were the case, then B
would be the case”), A� B = ¬(A� ¬B) (or (A� �)∨ (A� B)) (“If A were the
case, then B might be the case”).

A� B is an alternative to (A� B), and A� B is an alternative to (A� B).

3 Semantics

3.1 Basic concepts
3.1.1 Counterfactual temporal alethic-deontic frame

We will consider two kinds of frames in this essay: ordinary and supplemented (counter-
factual temporal alethic-deontic) frames. An ordinary (counterfactual temporal alethic-
deontic) frame F is a relational structure ⟨W,T,<,R,S,{RA ∶ A ∈ L}⟩, where W is a
non-empty set of possible worlds, T is a non-empty set of times, < is a binary relation
on T (<⊆ T × T ), R and S are two ternary (alethic or deontic) accessibility relations
(R ⊆W ×W ×T and S ⊆W ×W ×T ), and {RA ∶ A ∈ L} is a set of ternary counterfactual
accessibility relations, one for each sentence, A, in L (RA ⊆W ×W × T ).

A supplemented (counterfactual temporal alethic-deontic) frame Fs is a relational
structure ⟨W,T,<,R,S,{RA ∶ A ∈ L} ≥⟩, where W , T , <, R, S and {RA ∶ A ∈ L} are
exactly as in an ordinary frame, and ≥ is a ternary similarity relation defined over the
elements in W (≥⊆W ×W ×W ). If it is clear that we are talking about a supplemented
frame, we will sometimes drop the subscript.

R “corresponds” to the alethic operators ◻ and ◇, < to the temporal operators G, F ,
H and P , RA and ≥ to the counterfactual operators � and �, and S to the deontic
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operators O and P . Informally, τ < τ ′ says that the time τ is before the time τ ′ (or that
τ ′ is later than τ), Rωω′τ says that the possible world ω′ is alethically accessible from
the possible world ω at time τ , Sωω′τ says that ω′ is deontically accessible from ω at
τ , RAωω′τ says that the possible world ω′ is A-accessible from the possible world ω at
time τ , and ω ≥ω′ ω′′ says that the possible world ω is at least as similar to (“near” to)
world ω′ as is world ω′′. To “decide” whether ω ≥ω′ ω′′, we place ourselves in possible
world ω′, and ask which world is more similar to ours, ω or ω′′. We can think of ω ≥ω′ ω′′

as a dyadic similarity relation relativised to ω′. In temporal aletic-deontic logic it is
also possible to relativise our similarity relation to points in time (or just points in time
or both). However, we will not do this in the present paper. We are here interested in
“global” similarity between possible worlds, not in similarity between possible worlds
at moments in time or between world-moment pairs.

3.1.2 Counterfactual temporal alethic-deontic model

We will use two kinds of models in this essay: ordinary and supplemented counterfactual
temporal alethic-deontic models. An ordinary model M is a triple ⟨F,V, v⟩ where: (i) F
is a counterfactual temporal alethic-deontic frame; (ii) V is a valuation or interpretation
function, which to every proposition letter p in Prop assigns a subset of W × T , i.e. a
set of ordered pairs ⟨ω, τ⟩, where ω ∈ W and τ ∈ T ; and (iii) v is a function which to
each temporal name in NT assigns a time in T .

A supplemented model Ms is a triple ⟨Fs, V, v⟩ where: Fs is a supplemented frame,
and V and v are exactly as in an ordinary model.

We will sometimes drop the subscript if it is clear from the context that we are
talking about supplemented models (or if we are talking about any model whatsoever,
ordinary or supplemented).

Let M,ω, τ ⊩ A abbreviate “A is true in the possible world ω at the time τ in the
model M” (or “A is true at the pair ⟨ω, τ⟩ in M”), and let x, y, z, w etc. range over
possible worlds in W , and t over times in T . In a supplemented model the counterfactual
accessibility relations can be defined in terms of the similarity relation over our possible
worlds in the following way:

γ0. For every A, RAxyt if and only if (iff) M,y, t ⊩ A ∧ ∀z(M,z, t ⊩ A→ y ≥x z).
Intuitively, this condition says that the possible world y is A-accessible from the

possible world x at the time t iff y is one of the closest worlds to x in which A is true
at t.

Note that M stands for a class of models and F for a class of frames.

3.1.3 Truth in a model, validity, satisfiability, logical consequence etc.

Let M be any (ordinary or supplemented) counterfactual temporal alethic-deontic mo-
del based on a frame ⟨W,T,<,R,S,{RA ∶ A ∈ L}⟩ (⟨W,T,<,R,S,{RA ∶ A ∈ L} ≥⟩). Let
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ω ∈ W , τ ∈ T and let A be a well-formed sentence in L. The truth conditions for
proposition letters and complex sentences are given in the following list. Those for
truth-functional connectives are the usual ones (illustrated by conjunction):

(i) M,ω, τ ⊩ p iff ⟨ω, τ⟩ ∈ V (p) for any p in Prop,
(ii) M,ω, τ ⊩ A ∧B iff M,ω, τ ⊩ A and M,ω, τ ⊩ B,
(iii) M,ω, τ ⊩ ◻A iff ∀ω′ ∈W s.t. Rωω′τ : M,ω′, τ ⊩ A,
(iv) M,ω, τ ⊩◇A iff ∃ω′ ∈W s.t. Rωω′τ : M,ω′, τ ⊩ A,
(v) M,ω, τ ⊩ ⊡A iff ∀ω′ ∈W : M,ω′, τ ⊩ A,
(vi) M,ω, τ ⊩ �A iff ∃ω′ ∈W : M,ω′, τ ⊩ A,
(vii) M,ω, τ ⊩ AA iff ∀τ ′ ∈ T : M,ω, τ ′ ⊩ A,
(viii) M,ω, τ ⊩ SA iff ∃τ ′ ∈ T : M,ω, τ ′ ⊩ A,
(ix) M,ω, τ ⊩ GA iff ∀τ ′ ∈ T s.t. τ < τ ′: M,ω, τ ′ ⊩ A,
(x) M,ω, τ ⊩ FA iff ∃τ ′ ∈ T s.t. τ < τ ′: M,ω, τ ′ ⊩ A,
(xi) M,ω, τ ⊩HA iff ∀τ ′ ∈ T s.t. τ ′ < τ : M,ω, τ ′ ⊩ A,
(xii) M,ω, τ ⊩ PA iff ∃τ ′ ∈ T s.t. τ ′ < τ : M,ω, τ ′ ⊩ A,
(xiii) M,ω, τ ⊩ Rt′A iff M,ω, v(t′) ⊩ A, for all t′ ∈ NT ,
(xiv) M,ω, τ ⊩ OA iff ∀ω′ ∈W s.t. Sωω′τ : M,ω′, τ ⊩ A,
(xv) M,ω, τ ⊩ PA iff ∃ω′ ∈W s.t. Sωω′τ : M,ω′, τ ⊩ A,
(xvi) M,ω, τ ⊩ UA iff ∀ω′ ∈W and ∀τ ′ ∈ T : M,ω′, τ ′ ⊩ A,
(xvii) M,ω, τ ⊩MA iff ∃ω′ ∈W and ∃τ ′ ∈ T : M,ω′, τ ′ ⊩ A,
(xviii) M,ω, τ ⊩ A� B iff ∀ω′ ∈W s.t. RAωω′τ : M,ω′, τ ⊩ B,
(xix) M,ω, τ ⊩ A� B iff ∃ω′ ∈W s.t. RAωω′τ : M,ω′, τ ⊩ B.
A� B is true in a world ω at time τ iff B is true in all possible worlds that are

A-accessible from ω at τ . And A� B is true in a world ω at time τ iff B is true in
at least one possible world that is A-accessible from ω at τ . According to a popular
view, a would-counterfactual is true (roughly) just in case the consequent is true in the
nearest possible world(s) where the antecedent is true. If we define the counterfactual
accessibility relations in terms of the similarity relation as in γ0, we can extend this
basic idea to our temporal alethic-deontic systems. The following truth conditions can
then be derived.

M,ω, τ ⊩ A� B iff ∀ω′ ∈ W s.t. M,ω′, τ ⊩ A ∧ ∀ω′′(M,ω′′, τ ⊩ A → ω′ ≥ω ω′′):
M,ω′, τ ⊩ B.

M,ω, τ ⊩ A� B iff ∃ω′ ∈ W s.t. M,ω′, τ ⊩ A ∧ ∀ω′′(M,ω′′, τ ⊩ A → ω′ ≥ω ω′′):
M,ω′, τ ⊩ B.

Intuitively, this means that A� B is true in the world ω at the time τ iff in every
world ω′ that is as close to ω as possible in which A is true at τ , B is true at τ . And
A� B is true in the world ω at the time τ iff there is a world ω′ that is as close to ω
as possible in which A is true at τ , in which B is true at τ .

Other basic semantic concepts like validity, satisfiability, logical consequence etc.
are defined as in [38].



64 D. Rönnedal

3.2 Conditions on frames and models
In [38] several different frame- and model-conditions were introduced. All of these
conditions can be used to characterise and classify our counterfactual temporal alethic-
deontic frames and models. We can also use the conditions on the temporal accessibility
relation < mentioned by [40]. In this section, I will explore some conditions that say so-
mething about the formal properties of the counterfactual accessibility relations. Some
of these conditions are modifications of conditions introduced by [37]. The conditions
on the similarity relation are “new”.

In Table 1 and Table 2 the symbols ∧, →, ↔, ∀ and ∃ are used as metalogical
symbols in the standard way. Let F be a counterfactual temporal alethic-deontic frame,
M a counterfactual temporal alethic-deontic model based on F , {RA ∶ A ∈ L} the set
of counterfactual accessibility relations and ≥ the similarity relation in F . Intuitively,
∥A∥

M,t is the set of all A-worlds at t (in M), i.e. the set of all worlds where A is true at
t (in M). If for all RA in {RA ∶ A ∈ L}, ∀t∀x∀y(RAxyt→ M,y, t ⊩ A), we say that RA

satisfies or fulfills condition C − c1 and also that M satisfies or fulfills condition C − c1
and similarly in all other cases. C − c1 is called “C − c1” because the tableau rule T − c1
“corresponds” to C − c1 and the sentence T1 is valid in the class of all models that
satisfy condition C − c1 and similarly in all other cases. Let C be any of the conditions
we explore. Then a C-model is a model that satisfies condition C and similarly for the
frame-conditions. If it is clear that we are talking about a condition, the initial C will
often be dropped.

For all A and for all B
C − c0 ∀t∀x∀y((∥A∥

M,t
= ∥B∥

M,t
)→ (RAxyt↔ RBxyt))

C − c0′ ∀t∀x((∀y(RAxyt→M,y, t ⊩ B) ∧ ∀y(RBxyt→M,y, t ⊩ A))

→ (RAxyt↔ RBxyt))
C − c1 ∀t∀x∀y(RAxyt→M,y, t ⊩ A)

C − c2 ∀t∀x∀y((RAxyt ∧M,y, t ⊩ B)→ RA∧Bxyt)

C − c3 ∀t∀x((∥A∥
M,t

≠ ∅)→ ∃yRAxyt)
C − c4 ∀t∀x∀y∀z((RAxyt ∧M,y, t ⊩ B)→ (RA∧Bxzt→ (RAxzt ∧M,z, t ⊩ B)))

C − c5 ∀t∀x(M,x, t ⊩ A→ RAxxt)
C − c6 ∀t∀x∀y((RAxyt ∧M,x, t ⊩ A)→ x = y)
C − c7 ∀t∀x∀y∀z((RAxyt ∧RAxzt)→ y = z)

Table 1
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For all A and for all B
γ0 ∀t∀x∀y(RAxyt ↔ M,y, t ⊩ A ∧ ∀z(M,z, t ⊩ A→ y ≥x z))
C − cc2 ∀w∀x∀y((x ≥w y ∨ y ≥w x) ∨ (x ≥w y ∧ y ≥w x))
C − cc3 If ∣∣A∣∣

M,t
≠ ∅ then ∀x∃y(M,y, t ⊩ A ∧ ∀z(M,z, t ⊩ A→ y ≥x z))

C − cc4 ∀w∀x∀y∀z((x ≥w y ∧ y ≥w z)→ x ≥w z)
C − cc5 ∀x∀yx ≥x y
C − cc6 ∀x∀y(y ≥x x→ y = x)
C − cc7 ∀x∀y∀z((y ≥x z ∧ z ≥x y)→ y = z)

Table 2

Let us say a few words about the conditions in Table 2. We have already mentioned
the condition γ0 (see Section 3.1.2). In any γ0-model the following sentences are valid:
⊡(p ↔ q) → ((p� r) ↔ (q� r)), (p� p), ⊡(p → q) → (p� q) and ((p ∧ q)�
r)→ (p� (q → r)).

Intuitively, C −cc2 means that ≥w is complete (strongly connected, total), i.e. world
x is as close to world w as is world y or y is as close to w as is x (or x and y are
equally close to w). ∀w∀x∀y((x ≥w y ∨ y ≥w x) ∨ (x ≥w y ∧ y ≥w x)) is equivalent to
∀w∀x∀y(x ≥w y ∨ y ≥w x).

C − cc3, or the limit assumption, roughly says that there is always a closest A-world
(for any A), or in other words, any sentence A that is true in some world w at t, is true
in some closest-to-x world at t (for any x). More precisely the condition says that if
A is true in some possible world w at t, then no matter what world x you’re in, there
will always be some world y in which A is true at t that is at least as close to your
world x as is any other world where A is true at t. The assumption prohibits that there
are no closest A-worlds, only an infinite sequence of closer and closer A-worlds, so to
speak. If there are only finitely many worlds in a model, the limit assumption holds
automatically. �p→ ((p� q)→ (p� q)) is valid in any γ0cc3-model.

According to C − cc4, ≥w is transitive, i.e. if world x is at least as close to world w
as is y and y is at least as close to w as is world z, then x is at least as close to w as is
z.

According to C − cc5 (“Stalnaker’s base-condition”), every world x is at least as
similar to itself as is any world z. In other words, there is no world z distinct from
world x that is closer to x than is x itself, i.e. each world is at least as close to itself as
is every other. (p� q)→ (p→ q) is valid in any γ0cc5-model.

C − cc6 (“Lewis’s base-condition”) says that if world y is at least as similar to world
x as is x, then y is identical to x. In other words, there is no world y distinct from
world x that is as similar to x as is x, i.e. each world is closer to itself than any other
is. (p ∧ q)→ (p� q) is valid in any γ0cc6-model.

Intuitively, C − cc7 says that ≥x is anti-symmetric. If world y is at least as close to
world x as is world z and z is at least as close to x as is y, then y is identical to z, i.e. there
are no two distinct worlds that are equally similar to a possible world x. This condition
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is connected to systems of the kind developed by Stalnaker. (p� q) ∨ (p� ¬q) and
(p� (q ∨ r))→ ((p� q) ∨ (p� r)) are valid in any γ0cc7-model.

Note that {C − c5,C − c7} entails C − c6. If every world is at least as close to itself
as is every other and there are no two distinct worlds that are equally similar to any
possible world, then obviously each world is closer to itself than any other is.

The following theorem tells us something about the relations between these condi-
tions.

Theorem 3.1 (i) Let M be a supplemented γ0-model. Then M satisfies C − c0, C − c1
and C − c2. (ii) Let M be a supplemented γ0cc3-model. Then M satisfies C − c3.
(iii) Let M be a supplemented γ0cc4-model. Then M satisfies C − c4. (iv) Let M be
a supplemented γ0cc5-model. Then M satisfies C − c5. (v) Let M be a supplemented
γ0cc6-model. Then M satisfies C − c6. (vi) Let M be a supplemented γ0cc7-model.
Then M satisfies C − c7.

Proof. In the following proof, “CL” means that the step is valid in “classical logic”.
(i) (C − c0). 1. ∣∣A∣∣

M,t
= ∣∣B∣∣

M,t [Assumption]. 2. RAxyt [Assumption]. 3. M,y, t ⊩
A ∧ ∀z(M,z, t ⊩ A → y ≥x z) [2, (γ0)]. 4. M,y, t ⊩ B ∧ ∀z(M,z, t ⊩ B → y ≥x z)
[1, 3, CL, Definition of ∣∣A∣∣

M,t]. 5. RBxyt [4, (γ0)]. 6. RAxyt → RBxyt [2-5, CL]. 7.
RBxyt → RAxyt [similarly]. 8. RAxyt↔ RBxyt [6, 7, CL]. 9. If ∣∣A∣∣

M,t
= ∣∣B∣∣

M,t then
RAxyt↔ RBxyt [1-8, CL].

(C −c1). 1. RAxyt [Assumption]. 2. M,y, t ⊩ A∧∀z(M,z, t ⊩ A→ y ≥x z) [1, (γ0)].
3. RAxyt→M,y, t ⊩ A [1, 2, CL]. 4. ∀t∀x∀y(RAxyt→M,y, t ⊩ A) [3, CL].

(C − c2). 1. RAyxt [Assumption]. 2. M,x, t ⊩ B [Assumption]. 3. not RA∧Byxt
[Assumption]. 4. M,x, t ⊩ A [1, (γ0)]. 5. M,x, t ⊩ A ∧B [2, 4, CL]. 6. not (M,x, t ⊩
A ∧ B ∧ ∀z(M,z, t ⊩ A ∧ B → x ≥y z)) [3, (γ0)]. 7. ∃z(M,z, t ⊩ A ∧ B ∧ ¬(x ≥y z))
[5, 6, CL]. 8. M,z, t ⊩ A ∧ B ∧ ¬(x ≥y z) [7, CL]. 9. M,z, t ⊩ A [first conjunct in 8,
CL]. 10. M,z, t ⊩ A → x ≥y z [1, (γ0)]. 11. x ≥y z [9, 10, CL]. 12. Contradiction
[second conjunct in 8 and 11]. 13. (RAyxt ∧M,x, t ⊩ B) → RA∧Byxt [1-12, CL]. 14.
∀t∀x∀y((RAxyt ∧M,y, t ⊩ B)→ RA∧Bxyt) [13, CL].

(ii) (C − c3). 1. ∣∣A∣∣
M,t

≠ ∅ [Assumption]. 2. ∃y(M,y, t ⊩ A ∧ ∀z(M,z, t ⊩ A →
y ≥x z)) [1, C − cc3, CL]. 3. ∃yRAxyt [2, (γ0)]. 4. ∣∣A∣∣

M,t
≠ ∅ → ∃yRAxyt [1-3, CL]. 5.

∀t∀x((∣∣A∣∣
M,t

≠ ∅)→ ∃yRAxyt) [4, CL].
(iii) (C − c4). Note that ∀t∀x∀y∀z((RAxyt ∧M,y, t ⊩ B) → (RA∧Bxzt → (RAxzt ∧

M,z, t ⊩ B))) is equivalent to ∀t∀x∀y(∃z(RAyzt∧M,z, t ⊩ B)→ (RA∧Byxt→ (RAyxt∧
M,x, t ⊩ B))). So to prove the former it suffices to prove the latter. 1. ∃z(RAwzt ∧
M,z, t ⊩ B) [Assumption]. 2. RA∧Bwxt [Assumption]. 3. not (RAwxt ∧M,x, t ⊩ B)

[Assumption]. 4. M,x, t ⊩ A∧B∧∀z(M,z, t ⊩ A∧B → x ≥w z) [2, (γ0)]. 5. M,x, t ⊩ B
[first conjunct in 4, CL]. 6. not RAwxt or not M,x, t ⊩ B [3, CL]. 7. not RAwxt [5,
6, CL]. 8. not (M,x, t ⊩ A ∧ ∀z(M,z, t ⊩ A → x ≥w z)) [7, (γ0)]. 9. M,x, t ⊩ A [first
conjunct in 4, CL]. 10. not ∀z(M,z, t ⊩ A → x ≥w z) [8, 9, CL]. 11. ∃z(M,z, t ⊩
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A ∧ ¬(x ≥w z)) [10, CL]. 12. M,y, t ⊩ A ∧ ¬(x ≥w y) [11, CL]. 13. RAwvt ∧M,v, t ⊩ B
[1, CL]. 14. M,v, t ⊩ A ∧B [13, (γ0), CL]. 15. x ≥w v [14, second conjunct in 4, CL].
16. ∀u(M,u, t ⊩ A → v ≥w u) [first conjunct in 13, (γ0)]. 17. v ≥w y [16, first conjunct
in 12, CL]. 18. x ≥w y [15, 17, (C − cc4)]. 19. Contradiction [second conjunct in 12 and
18]. 20. ∀t∀x∀y(∃z(RAyzt∧M,z, t ⊩ B)→ (RA∧Byxt→ (RAyxt∧M,x, t ⊩ B))) [1-19,
CL].

(iv) C − c5. 1. M,x, t ⊩ A [Assumption]. 2. RAxxt iff M,x, t ⊩ A ∧ ∀z(M,z, t ⊩
A→ x ≥x z) [γ0]. 3. x ≥x z [C −cc5]. 4. ∀z(M,z, t ⊩ A→ x ≥x z) [3, CL]. 5. M,x, t ⊩ A
∧ ∀z(M,z, t ⊩ A → x ≥x z) [1, 4, CL]. 6. RAxxt [2, 5, CL]. 7. M,x, t ⊩ A → RAxxt
[1-6, CL]. 8. ∀t∀x(M,x, t ⊩ A→ RAxxt) [7, CL].

(v) C − c6. 1. RAxyt ∧ M,x, t ⊩ A [Assumption]. 2. RAxyt [From 1]. 3. M,x, t ⊩ A
[From 1]. 4. RAxyt iff M,y, t ⊩ A ∧ ∀z(M,z, t ⊩ A → y ≥x z) [γ0]. 5. M,y, t ⊩ A ∧

∀z(M,z, t ⊩ A → y ≥x z) [2, 4, CL]. 6. M,y, t ⊩ A [5, CL]. 7. ∀z(M,z, t ⊩ A → y ≥x z)
[5, CL]. 8. M,x, t ⊩ A→ y ≥x x [7, CL]. 9. y ≥x x [3, 8, CL]. 10. y ≥x x→ x = y [C −cc6].
11. x = y [9, 10, CL]. 12. ∀t∀x∀y((RAxyt ∧M,x, t ⊩ A)→ x = y) [1-11, CL].

(vi) C − c7. 1. RAxyt ∧ RAxzt [Assumption]. 2. RAxyt [1, CL]. 3. RAxzt [1, CL].
4. RAxyt iff M,y, t ⊩ A ∧ ∀z(M,z, t ⊩ A → y ≥x z) [γ0]. 5. RAxzt iff M,z, t ⊩ A
∧ ∀w(M,w, t ⊩ A → z ≥x w) [γ0]. 6. M,y, t ⊩ A ∧ ∀z(M,z, t ⊩ A → y ≥x z) [2, 4,
CL]. 7. M,z, t ⊩ A ∧ ∀w(M,w, t ⊩ A → z ≥x w) [3, 5, CL]. 8. M,y, t ⊩ A [6, CL]. 9.
∀z(M,z, t ⊩ A→ y ≥x z) [6, CL]. 10. M,z, t ⊩ A [7, CL]. 11. ∀w(M,w, t ⊩ A→ z ≥x w)

[7, CL]. 12. M,z, t ⊩ A → y ≥x z [9, CL]. 13. M,y, t ⊩ A → z ≥x y [11, CL]. 14. y ≥x z
[10, 12, CL]. 15. z ≥x y [8, 13, CL]. 16. y ≥x z ∧ z ≥x y [14, 15, CL]. 17. (y ≥x z ∧ z ≥x

y) → y = z [C − cc7]. 18. y = z [16, 17, CL]. 19. ∀t∀x∀y∀z((RAxyt ∧RAxzt) → y = z)
[1-18, CL]. ∎

3.3 Classification of model classes and the logic of a class of
models

The conditions on our models listed in Tables 1 and 2 can be used to obtain a categori-
sation of the set of all models into various kinds. I shall say that M(C1, . . . ,Cn) is the
class of (all) models that satisfy the conditions C1, . . . ,Cn. E.g. M(C −dD,C −aT,C −

MO,C − c1) is the class of all models that satisfy C − dD, C − aT , C −MO (see [38])
and C − c1.

The set of all sentences (in L) that are valid in a class of models M is called the
logical system of (the system of or the logic of) M, in symbols S(M) = {A ∈ L ∶ M ⊩ A}.
E.g. S(M(C − dD,C − aT,C −MO,C − c1)) is the set of all sentences that are valid in
the class of all models that satisfy C − dD, C − aT , C −MO and C − c1.
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4 Proof theory

4.1 Semantic tableaux
The kind of semantic tableau systems I use is inspired by e.g. Melvin Fitting and Gra-
ham Priest (Fitting [22], Fitting and Mendelsohn [23], Priest [34]). The propositional
part is similar to systems introduced by Raymond Smullyan [41] and Richard Jeffrey
[28]. The concepts of semantic tableau, branch, open and closed branch etc. are es-
sentially defined as in [38], [39] and [40] (see also Priest [34]). For more on semantic
tableaux, see D’Agostino, Gabbay, Hähnle and Posegga [18].

4.2 Tableau rules
I use the same (temporal, alethic, deontic etc.) tableau rules as in [38] and [40]. In
addition, I will consider a set of tableau rules for the counterfactual operators and some
rules for the “temporal” necessity operators.

4.2.1 New basic alethic rules
⊡ − pos (⊡) � − pos (�) ⊡ − neg (¬⊡) � − neg (¬�)
⊡A,witk �A,witk ¬ ⊡A,witk ¬�A,witk
↓ ↓ ↓ ↓

A,wjtk A,wjtk ⟐¬A,witk ⊡¬A,witk
where wj is new

4.2.2 Basic counterfactual rules
� −pos (�) � −pos (�) � −neg (¬�) � −neg (¬�)
A� B,witk A� B,witk ¬(A� B),witk ¬(A� B),witk
rAwiwjtk ↓ ↓ ↓

↓ rAwiwjtk A� ¬B,witk A� ¬B,witk
B,wjtk B,wjtk

where wj is new
Table 4

4.2.3 CUT, CId(I), CId(II)

I will include CUT, CId(I) and CId(II) in every tableau system; however, in many
systems these rules are redundant (see [37]). I call the identity rules in this section
C-identity rules, CId(I) and CId(II), to distinguish them from the temporal identity
rules in [38].
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CUT CId (CIdI) CId (CIdII)
∗ α(wi) α(wi)

↙↘ wi = wj wj = wi

¬A,witk A,witk ↓ ↓

for every A α(wj) α(wj)

Table 5

4.2.4 Counterfactual (accessibility) rules (c-rules)

T − c0 T − c0′
If D is of the form If D is of the form

⊡(A↔ B)→ ((A� B) ∧ (B� A))→

((A� C)↔ (B� C)), ((A� C)↔ (B� C)),
D,witl can be added to any open D,witl can be added to any open

branch on which witl occurs. branch on which witl occurs.
Table 6

T − c1 T − c2 T − c3 T − c4
rAwiwjtl rAwiwjtl A,witl rAwiwjtl
↓ B,wjtl ↓ B,wjtl

A,wjtl ↓ rAwjwktl rA∧Bwiwktl
rA∧Bwiwjtl where wk is new ↓

rAwiwktl
B,wktl

T − c5 T − c6 T − c7
A,witl A,witl rAwiwjtl
↓ rAwiwjtl rAwiwktl

rAwiwitl ↓ ↓

wi = wj wj = wk

Table 7

4.3 Tableau systems
A tableau system is a set of tableau rules. A counterfactual temporal alethic-deontic
tableau system includes all propositional rules, all basic alethic rules, all basic deontic
rules, all basic temporal rules (including the rules for A and S (see [40])), all basic
counterfactual rules (and CUT and the C-identity rules) (Sections 4.2.1 - 4.2.3, Tables
3 - 5). The minimal counterfactual temporal alethic-deontic tableau system is called
“T”. The temporal identity rules, Id(I) and Id(II), are added to every system that
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includes T − FC, T − PC ([38]) or T − C ([40]) (they are redundant in every other
system). By adding any subset of the rules introduced in Section 4.2.4 (Tables 6 - 7)
or various accessibility rules introduced by [38] or [40], we obtain an extension of T
(note that some of these are deductively equivalent). I use the following conventions for
naming systems. “aA1 . . .AidB1 . . .BjcC1 . . .CkadD1 . . .DltE1 . . .EmadtF1 . . . Fn” is a
system, where A1 . . .Ai is a list (possibly empty) of a-rules, B1 . . .Bj is a list (possibly
empty) of d-rules, C1 . . .Ck is a list (possibly empty) of c-rules (counterfactual rules),
D1 . . .Dl is a list (possibly empty) of ad-rules, E1 . . .Em is a list (possibly empty) of
t-rules, and F1 . . . Fn is a list (possibly empty) of adt-rules. I sometimes abbreviate
by omitting “redundant” letters in a name, if it doesn’t lead to any ambiguity. E.g.
aTdDc1235adOCt4adtSP is the counterfactual temporal alethic-deontic system that
includes the rules T − aT , T − dD, T − c1, T − c2, T − c3, T − c5, T −OC, T − t4 and
T − SP ([38]).

4.4 Some proof-theoretical concepts
The concepts of proof, theorem, derivation, consistency, inconsistency in a system etc.
are defined as in [38] and [40]. Let S be a tableau system. Then the logic (or the
(logical) system) of S, L(S), is the set of all sentences (in L) that are provable in S,
in symbols L(S) = {A ∈ L ∶ ⊢S A}. E.g. L(aTdDc125t4) is the set of all sentences that
are provable in the system aTdDc125t4, i.e. in the system that includes the basic rules
and the (non-basic) rules T − aT , T − dD (see [38]), T − c1, T − c2, T − c5 and T − t4
([38]).

5 Examples of theorems
In this section, I will consider some examples of theorems in some systems. The proofs
are usually straightforward and are left to the reader.

Theorem 5.1 The sentences in Table 8 are theorems in the indicated systems.

T0 ⊡(p↔ q)→ ((p� r)↔ (q� r)) C − c0
T0′ ((p� q) ∧ (q� p))→ ((p� r)↔ (q� r)) C − c0′
T1 p� p C − c1
T2 ((p ∧ q)� r)→ (p� (q → r)) C − c2
T3 �p→ ((p� q)→ (p� q)) C − c3
T4 (p� q)→ ((p� (q → r))→ ((p ∧ q)� r)) C − c4
T5 (p� q)→ (p→ q) C − c5
T6 (p ∧ q)→ (p� q) C − c6
T7 (p� q) ∨ (p� ¬q) C − c7

Table 8
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Theorem 5.2 Let S be a counterfactual (tableau) system in [37] that includes e.g. the
accessibility rules Tc1, Tc3, and Tc4. Then the corresponding counterfactual temporal
alethic-deontic (tableau) system S′ is the counterfactual temporal alethic-deontic (ta-
bleau) system that includes the rules T − c1, T − c3, and T − c4, and similarly in every
other case. Furthermore, let A be a sentence in any of the tables 9 - 15 in [37] and
let t(A) be the result of replacing every occurrence of ◻ by ⊡, every occurrence of ◇ by
� and every occurrence of x by ¬�. Then if A is a theorem in the counterfactual sy-
stem S, t(A) is a theorem in the corresponding counterfactual temporal alethic-deontic
system S′.

Theorem 5.3 The following sentences are theorems in every system described in this
essay: (p� q) ↔ ¬(p� ¬q), ¬(p� q) ↔ (p� ¬q), (p� ¬q) ↔ ¬(p� q),
¬(p� ¬q) ↔ (p� q), (p� q) ↔ ¬(p� ¬q), ¬(p� q) ↔ (p� ¬q), (p�
¬q) ↔ ¬(p� q), ¬(p� ¬q) ↔ (p� q), (p� q) ↔ ((p� �) ∨ (p� q)) and
(p� q)↔ ((p� ⊺) ∧ (p� q)).

A counterpossible is a counterfactual with an impossible antecedent. In many coun-
terfactual systems the following sentences are valid: xp → (p� q) and xp → ¬(p�
q). They are not theorems in any of our systems. However, we do have ¬�p→ (p� q),
¬�p → ¬(p� q), ¬Mp → (p� q) and ¬Mp → ¬(p� q) in every system that
includes T − c1. Hence, it is not the case that every would counterfactual with an
(historically) impossible antecedent is vacuously true. And it is not the case that every
might counterfactual with an (historically) impossible antecedent is vacuously false. In
other words, in the systems in this paper not all would counterpossibles are vacuously
true and not all might counterpossibles are vacuously false. This seems to be intuitively
plausible. Consider the following sentences: 1. If I were a very famous philosopher,
many people would read my papers; and 2. If I were a very famous philosopher, very
few people would read my papers. Suppose 1 and 2 are uttered by a person who in
fact is not a very famous philosopher. Since the person is not in fact a very famous
philosopher, the antecedent in 1 and 2 is historically impossible (not just false) at the
time of the utterance, even though she might have been a very famous philosopher and
she might become a very famous philosopher in the future. Then both 1 and 2 are
counterpossibles. However, 1 seems true and 2 false. Countless similar examples are
conceivable. This suggests that counterpossibles of this kind should not be vacuously
true.

All of the following sentences are valid in T and every stronger system: Up → ⊡p,
⊡p→ ◻p, ◇p→ �p, �p→Mp, ⊡p→ ◻ ⊡ p, �p→ ◻�p.

If the system includes T − c1, then U(p → q) → (p� q) and ⊡(p → q) → (p� q)
are theorems.

If the system includes T − c2, then ((p� q) ∧ ((p ∧ q) � r)) → (p� r) and
((p� (p ∧ q)) ∧ ((p ∧ q)� r))→ (p� r) are theorems.
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If the system includes T − c7, then (p� (q ∨ r)) → ((p� q) ∨ (p� r)) is a
theorem.

If the system includes T − c2 and T − c4, then (p� q) → ((p� (q → r)) ↔
((p ∧ q)� r)) is a theorem.

Let S be a counterfactual temporal alethic-deontic system. Then if S includes T −c5
and T − c6, then A → ((A� B) ↔ (A → B)) and A → ((A� B) ↔ (A → B)) are
theorems in S. If S includes T −c3, T −c5 and T −c6, then A→ ((A� B)↔ (A→ B))

and A → ((A� B) ↔ (A → B)) are theorems in S. In other words, counterfactuals
with true antecedent reduce to material conditionals. This is true for both would and
might counterfactuals of both kinds. In fact, a counterfactual with true antecedent is
true iff the consequent is true in the indicated systems, i.e. the following sentences
are theorems in the relevant systems: A → ((A� B) ↔ B), A → ((A� B) ↔ B),
A→ ((A� B)↔ B) and A→ ((A� B)↔ B).

In every system we have U(A → B) → ⊡(A → B), in every system that includes
T − c1 we have ⊡(A → B) → (A� B) and in every system that includes T − c5 we
have (A� B) → (A → B). The implications in the other direction do not hold. So,
in these systems U(A → B) is stronger than ⊡(A → B) that is stronger than A� B
that is stronger than A → B. In every system we have ⊡(A → B) → ◻(A → B) and
in every system that includes T − aT we have ◻(A → B) → (A → B), but not the
converse implications. So, ⊡(A → B) is stronger than ◻(A → B) that is stronger than
A → B. It is neither the case that ◻(A → B) entails A� B nor that A� B entails
◻(A → B). In every system, (A� B) → (A� B) and (A� B) → (A� B)

are theorems, but not vice versa, i.e. it is not the case that A� B entails A� B
and it is not the case that A� B entails A� B. So, A� B is stronger than
A� B and A� B is weaker than A� B. In every system that includes T − c1
and T − c3, A� ⊺ is equivalent to ⟐A. Hence, in these systems A� B is equivalent
to ⟐A ∧ (A� B) and A� B is equivalent to ⟐A → (A� B). This entails that
the following sentences are theorems in every system that includes T − c1 and T − c3:
⟐A→ ((A� B)↔ (A� B)) and ⟐A→ ((A� B)↔ (A� B)).

Suppose the system contains T − c0, T − c5 and T − dD. Then all of the following
sentences are theorems.

O(A� B)→ O(A→ B)

O(A� B)→ (OA→ OB)

(A ∧ (A� OB))→ OB
(A� OC)→ ((A ∧B)→ OC)

(A� OB)→ (A� O(B ∨C))

(OA ∧O(A� B))→ OB
O(A� C)→ O((A ∧B)→ C)

O(A� B)→ O(A� (B ∨C))

O(A� B)→ (PA→ PB)
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(PA ∧O(A� B))→ PB
(FB ∧O(A� B))→ FA
O(A� B)→ (FB → FA)

((OA ∧OB) ∧O((A ∧B)� C))→ OC
(O(A� (B ∨C)) ∧ (FB ∧ FC))→ FA
((OA ∨OB) ∧O((A ∨B)� C))→ OC
(OA ∧O(A� (B ∧C))→ (OB ∧OC)

(FC ∧O((A ∨B)� C))→ (FA ∧ FB)

((PA ∨ PB) ∧O((A ∨B)� C))→ PC
((FB ∨ FC) ∧O(A� (B ∧C)))→ FA
⊡(A↔ B)→ ((A� OC)↔ (B� OC))

⊡(A↔ B)→ ((C� OA)↔ (C� OB))

⊡(A↔ B)→ (O(A� C)↔ O(B� C))

⊡(A↔ B)→ (O(C� A)↔ O(C� B))

(O(A ∨B) ∧ (O(A� C) ∧O(B� C)))→ OC
(O(A ∨B) ∧ (O(A� C) ∧O(B�D)))→ O(C ∨D)

(OA ∧ (O(A� B) ∧O(A� C)))→ (OB ∧OC)

(O(A ∧B) ∧ (O(A� C) ∨O(B�D)))→ O(C ∨D)

(OA ∧ (O(A� B) ∨O(A� C)))→ O(B ∨C)

(O(A ∧B) ∧ (O(A� C) ∧O(B�D)))→ (OC ∧OD)

(O(A ∨B) ∧ (O(A� C) ∧O(B� C)))→ PC
(O(A ∨B) ∧ (O(A� C) ∧O(B�D)))→ (PC ∨ PD)

(OA ∧ (O(A� B) ∧O(A� C)))→ (PB ∧ PC)

(O(A ∧B) ∧ (O(A� C) ∨O(B�D)))→ (PC ∨ PD)

(OA ∧ (O(A� B) ∨O(A� C)))→ (PB ∨ PC)

(O(A ∧B) ∧ (O(A� C) ∧O(B�D)))→ (PC ∧ PD)

5.1 The Test Argument
In this section, I will prove that The Test Argument that was described in the intro-
duction is valid. I will use the following sentences: H = She is completely honest; C
= She is courageous, I = You are completely honest; D = You are courageous, L =
You lie, and S = You are in her situation. To prove this I will create a closed semantic
tableau that begins with the premises (1)-(3) and the negation of the conclusion (4).
This tableau shows that it is impossible that the premises are true while the conclusion
is false, and hence that the argument is valid. We do not use any special accessibility
rules in our proof. This means that the conclusion follows from the premises in every
system in this paper. And this entails that the argument is valid in the class of all
models. Here is our proof (at step 11 and at the last step (step 20) we use the derived
rule MP (Modus Ponens)).
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(1) OG(H ∧C)→ (S� OG(I ∧D)),w0t0
(2) OG(H ∧C),w0t0
(3) U(I → ¬L),w0t0

(4) ¬(S� ¬PFL),w0t0
(5) S� ¬¬PFL,w0t0 [4, ¬�]

(6) rSw0w1t0 [5, �]
(7) ¬¬PFL,w1t0 [5, �]

(8) PFL,w1t0 [7, ¬¬]
(9) sw1w2t0 [8, P ]

(10) FL,w2t0 [8, P ]
(11) S� OG(I ∧D),w0t0 [1, 2, MP ]

(12) OG(I ∧D),w1t0 [6, 11, �]
(13) G(I ∧D),w2t0 [9, 12, O]

(14) t0 < t1 [10, F ]
(15) L,w2t1 [10, F ]

(16) I ∧D,w2t1 [13, 14, G]
(17) I,w2t1 [16, ∧]
(18) D,w2t1 [16, ∧]

(19) I → ¬L,w2t1 [3, U ]
(20) ¬L,w2t1 [17, 19, MP ]

(21) ∗ [15, 20]

6 Soundness and completeness theorems
The soundness and completeness proofs in this section are modifications and extensions
of proofs found in [37] and [38] (see also [39] and [40]).

Let “aA1 . . .AidB1 . . .BjcC1 . . .CkadD1 . . .DltE1 . . .EmadtF1 . . . Fn” be a counter-
factual temporal alethic-deontic tableau system as defined above. Then I shall say that
the class of models, M, corresponds to S just in case M = M(C −A1, . . . ,C −Ai,C −

B1, . . . ,C−Bj,C−C1, . . . ,C−Ck,C−D1, . . . ,C−Dl,C−E1, . . . ,C−Em,C−F1, . . . ,C−Fn).
S is strongly sound with respect to M iff Γ ⊢S A entails M,Γ ⊩ A. S is strongly

complete with respect to M just in case M,Γ ⊩ A entails Γ ⊢S A.

6.1 Soundness theorems
Let M be any model and b any branch of a tableau. Then b is satisfiable in M iff there
is a function f from w0,w1,w2, . . . to W and a function g from t0, t1, t2, . . . to T such
that (i) A is true in f(wi) at g(tj) in M , for every node A,witj on b, (ii) if rwiwjtk is
on b, then Rf(wi)f(wj)g(tk) in M , (iii) if swiwjtk is on b, then Sf(wi)f(wj)g(tk) in
M , (iv) if rAwiwjtk is on b, then RAf(wi)f(wj)g(tk) in M , (v) if ti < tj is on b, then
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g(ti) < g(tj) in M , (vi) if wi = wj is on b, then f(wi) = f(wj) in M , (vii) if ti = tj is on
b, then g(ti) = g(tj) in M . If these conditions are fulfilled, we say that f and g show
that b is satisfiable in M .

Lemma 6.1 (Soundness lemma). Let b be any branch of a tableau and M be any
counterfactual temporal alethic-deontic model. If b is satisfiable in M and a tableau
rule is applied to it, then it produces at least one extension, b′, of b such that b′ is
satisfiable in M .

Proof. The proof proceeds by going through all the tableau rules. I will only sketch
some parts to illustrate the method.

(T − c2). Suppose that rAwiwjtl and B,wjtl are on b, and that we apply T − c2
to give an extended branch of b containing rA∧Bwiwjtl. Since b is satisfiable in M ,
RAf(wi)f(wj)g(tl) and B is true in f(wj) at g(tl). Accordingly, RA∧Bf(wi)f(wj)g(tl),
since M satisfies condition C − c2.

(T − c4). Suppose that rAwiwjtl, B,wjtl and rA∧Bwiwktl are on b, and that we
apply T − c4 to give an extended branch of b containing rAwiwktl and B,wktl. Since b
is satisfiable in M , RAf(wi)f(wj)g(tl), RA∧Bf(wi)f(wk)g(tl) and B is true in f(wj)

at g(tl). Accordingly, RAf(wi)f(wk)g(tl) and B is true in f(wk) at g(tl), since M
satisfies condition C − c4.

(T − c5). Suppose that A,witl is on b and that we apply T − c5 to obtain an ex-
tended branch, b′, of b containing rAwiwitl. Since b is satisfiable in M , A is true in
f(wi) at g(tl). Hence, RAf(wi)f(wi)g(tl). For M satisfies condition C − c5. Conse-
quently, T −c5 produces at least one extension, b′, of b such that b′ is satisfiable in M . ∎

Theorem 6.2 (Soundness theorem I). Let S be any of the tableau systems discussed in
this essay and let M be the class of models that corresponds to S. Then S is strongly
sound with respect to M.

Proof. Once the Soundness lemma is established the proof is an easy modification of
similar proofs found elsewhere (see e.g. [34], [37], [38], [39] and [40]). ∎

Theorem 6.3 (Soundness theorem II). (i) Tc012 is sound with respect to the class of
all supplemented models that satisfy γ0. (ii) Tc0123 is sound with respect to the class
of all supplemented models that satisfy γ0 and C − cc3. (iii) Tc01234 is sound with
respect to the class of all supplemented models that satisfy γ0, C − cc3 and C − cc4.
(iv) Tc012345 is sound with respect to the class of all supplemented models that satisfy
γ0, C − cc3, C − cc4 and C − cc5. (v) Tc0123456 is sound with respect to the class of
all supplemented models that satisfy γ0, C − cc3, C − cc4, C − cc5 and C − cc6. (vi)



76 D. Rönnedal

Tc01234567 is sound with respect to the class of all supplemented models that satisfy
γ0, C − cc3, C − cc4, C − cc5, and C − cc7 (and hence also C − cc6). (Soundness results
for other combinations of these conditions are easily obtained.)

Proof. This follows from Soundness theorem I and Theorem 1 in Section 3.2. ∎

6.2 Completeness theorems
Let b be an open complete branch of a tableau and let I be the set of numbers on b
immediately preceded by a “t”. We shall say that i ⇌ j just in case i = j, or “ti = tj”
or “tj = ti” occur on b. ⇌ is an equivalence relation and [i] is the equivalence class of
i. Furthermore, let K be the set of numbers on b immediately preceded by a “w”. We
shall say that k ≈ l just in case k = l, or “wk = wl” or “wl = wk” occur on b. ≈ is an
equivalence relation and [k] is the equivalence class of k.

Definition 6.4 (Induced model) The counterfactual temporal alethic-deontic model,
M = ⟨W,T,< R,S,{RA ∶ A ∈ L} , V, v⟩, induced by b is defined as follows. W = {ω[k] ∶ k ∈K},
T = {τ[i] ∶ i ∈ I}, τ[i] < τ[j] iff ti < tj occurs on b, Rω[i]ω[j]τ[k] iff rwiwjtk occurs on b,
Sω[i]ω[j]τ[k] iff swiwjtk occurs on b, RAω[i]ω[j]τ[k] iff rAwiwjtk occurs on b. If p,witj
occurs on b, then p is true in ω[i] at τ[j] (i.e. then ⟨ω[i], τ[j]⟩ ∈ V (p)); if ¬p,witj occurs
on b, then p is false in ω[i] at τ[j] (i.e. then it is not the case that ⟨ω[i], τ[j]⟩ ∈ V (p)). If
ti occurs on b, then v(ti) = τ[i].

If our tableau system neither includes T − FC, T − PC ([38]) nor T − C ([40]),
⇌ is reduced to identity and [i] = i. Hence, in such systems, we may take T to be
{τi ∶ ti occurs on b} and dispense with the equivalence classes. Likewise, if our tableau
system neither includes T − c6 nor T − c7, ≈ is reduced to identity and [k] = k. Accor-
dingly, in such systems, we may take W to be {ωi ∶ wi occurs on b} and dispense with
the equivalence classes.

Lemma 6.5 (Completeness lemma). Let b be an open branch in a complete tableau
and let M be a temporal alethic-deontic model induced by b. Then: (i) A is true in ω[i]
at τ[j], if A,witj is on b, and (ii) A is false in ω[i] at τ[j], if ¬A,witj is on b.

Proof. The proof is by induction on the complexity of A.
I will go through one example to illustrate the method.
A = ⊡B. Suppose A,witk occurs on b, i.e. ⊡B,witk is on b. Since b is complete (⊡)

has been applied to ⊡B,witk. Thus, for all wj on b, B,wjtk is on b. By the induction
hypothesis, for all ω[j] such that Rω[i]ω[j]τ[k], B is true in ω[j] at τ[k]. Hence, ⊡B is true
in ω[i] at τ[k]. Suppose that ¬A,witk occurs on b, i.e. ¬⊡B,witk is on b. Then �¬B,witk
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is on b (by (¬⊡)). For b is complete. Furthermore, since b is complete (�) has been app-
lied to �¬B,witk. Thus, for some wj, rwiwjtk and ¬B,wjtk are on b. By the induction
hypothesis, Rω[i]ω[j]τ[k] and B is false in ω[j] at τ[k]. Hence, ⊡B is false in ω[i] at τ[k]. ∎

Theorem 6.6 (Completeness theorem). Let S be any of the tableau systems discussed
in this essay, not including T − c0 or T − c0′, and let M be the class of models that
corresponds to S. Then S is strongly complete with respect to M.

Proof. The proof is a modification of similar proofs in [37] and [38] (see also e.g. [34],
[39] and [40]).

First we show that the weakest system is complete. Then we have to check that
the model induced by the open branch, b, is of the right kind in every case. I will only
consider some cases to illustrate the method.

(C − c4). Suppose that RAω[i]ω[j]τ[l], RA∧Bω[i]ω[k]τ[l] and that B is true in ω[j] at
τ[l]. Then rAwiwjtl and rA∧Bwiwktl occur on b [by the definition of an induced model].
Since the tableau is complete CUT has been applied and either B,wjtl or ¬B,wjtl is
on b. Assume that ¬B,wjtl is on b. Then B is false in ω[j] at τ[l] [by the completeness
lemma]. But this is absurd. So, B,wjtl is on b. Since the tableau is complete T − c4
has been applied and rAwiwktl and B,wktl occur on b. It follows that RAω[i]ω[k]τ[l] and
that B is true in ω[k] at τ[l], as required [by the definition of an induced model and the
completeness lemma].

(C − c5). Suppose that A is true in ω[i] at τ[j]. Since the tableau is complete CUT
has been applied and either A,witj or ¬A,witj is on b. Suppose ¬A,witj is on b. Then
A is false in ω[i] at τ[j] [by the Completeness Lemma]. But this is impossible. Hence,
A,witj is on b. Since the tableau is complete T − c5 has been applied and rAwiwitj is
on b. Accordingly, RAω[i]ω[i]τ[j], as required [by the definition of an induced model].

(C−c7). Assume that RAω[i]ω[j]τ[l] and RAω[i]ω[k]τ[l]. Then rAwiwjtl and rAwiwktl
occur on b [by the definition of an induced model]. Since the tableau is complete T − c7
has been applied and wj = wk is on b. Hence, j ≈ k. So, [j] = [k]. It follows that
ω[j] = ω[k], as required. ∎

Problem 6.7 Whether or not any other system discussed in this paper is complete is
left as an open question.

Acknowledgement: I want to express my thanks to the reviewers for some good
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