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Equivalent
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Abstract

Dickson’s lemma says that for every f : N→ Nn there are indices k < l such
that f(k) ≤ f(l), component-wise. Higman’s lemma says that for every sequence
(ui) of binary words there are indices k < l such that uk is a subword of ul.
We show that these axioms are equivalent in the following sense: given f , we
can introduce a sequence (ui), apply Higman’s lemma and find a suitable pair of
indices for f . And, vice versa, given (un), we can introduce a function f , apply
Dickson’s lemma and find a suitable pair of indices for (ui).

We use the variable i for the elements of the set {0, 1}. Set N = {0, 1, 2, . . .} and
N+ = {1, 2, 3, . . .}. We use the variables k, l,m, n for the elements of N. The set {0, 1}∗
of finite binary words is defined inductively by

() ∈ {0, 1}∗
u ∈ {0, 1}∗

ui ∈ {0, 1}∗
.

Here () stands for the empty word. The length |u| of u ∈ {0, 1}∗ is given by

|()| = 0 |ui| = |u|+ 1 .

We define the subword relation v on {0, 1}∗ by

() v ()

u v w

u v w0

u v w

u v w1

u v w

u0 v w0

u v w

u1 v w1
.

Higman’s lemma [2] is the following axiom.

HL For every function g : N→ {0, 1}∗ there are k, l such that
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• k < l

• g(k) v g(l) .

Dickson’s lemma [1] is the following axiom.

DL For every n and every f : N→ Nn there are k, l such that

• k < l

• f(k) ≤ f(l) (component-wise) .

Proposition 1 The axioms DL and HL are equivalent.

In order to prove this proposition, we work with slightly altered but obviously equivalent
versions of the axioms.

HL’ For every function g : N→ {0, 1}∗0 there are k, l such that

• k < l

• g(k) v g(l) ,

where {0, 1}∗0 is given by

0 ∈ {0, 1}∗0
u ∈ {0, 1}∗0
ui ∈ {0, 1}∗0

.

DL’ For every n and every f : N→ Nn
+ there are k, l such that

• k < l

• f(k) ≤ f(l) (component-wise).

Define λ : {0, 1}∗0 → {0, 1} by

λ(0) = 0 λ(ui) = i .

For every u ∈ {0, 1}∗0 we define Φ(u) by

Φ(0) = 1 Φ(ui) =

{
Φ(u) if λ(u) = i
Φ(u) + 1 if λ(u) 6= i

.

Φ(u) is called the weight of u. Next, we define a bijection

F : {0, 1}∗0 → ∪m≥1Nm
+ .

Set F (0) = (1) and suppose that F (u) = (k1, . . . , km). Set

F (ui) =

{
(k1, . . . , km + 1) if λ(u) = i ,
(k1, . . . , km, 1) if λ(u) 6= i .

Fix n ∈ N+. Let Wn denote the elements of {0, 1}∗0 with weight n. Let Fn be the
restriction of F to Wn.
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Lemma 2 Fn :Wn → Nn
+ is bijective and order-preserving.

Define Gn : ∪m≥1Nm
+ → Nn

+ by

Gn(k1, . . . , km) =

{
(k1, . . . , km, 1, . . . , 1) if m < n ,
(k1, . . . , kn) if n ≤ m.

For u ∈ {0, 1}∗0 set
u!n = F−1

n (Gn(F (u))).

Note that

• Φ(u!n) = n

• if Φ(u) = n then u!n = u

• if Φ(u) < n then u!n is the shortest extension of u with weight n

• if Φ(u) > n then u!n is the largest restriction of u with weight n

• if Φ(u) > n then |u!n| < |u|.

Lemma 3 For all u,w in {0, 1}∗0 we have

(2 · |u| ≤ Φ(w)) ⇒ u v w .

Proof. In order to avoid nested induction, we prove the decidable formula

∀u,w ∈ {0, 1}∗0 (|u| ≤ k ∧ |w| ≤ k ∧ (2 · |u| ≤ Φ(w)) ⇒ u v w) ,

by induction on k. For k = 1, there is nothing to prove. Now assume that the formula
holds for k ∈ N+. Fix u,w ∈ {0, 1}∗0 such that

|u| ≤ k + 1 ∧ |w| ≤ k + 1 ∧ (2 · |u| ≤ Φ(w))

holds. We can assume that u = vi for some v ∈ {0, 1}∗0. Set l = 2 · |v|. Note that
2 · |v| = Φ(w!l). Therefore, the induction hypothesis implies that v v w!l, thus we can
conclude that u v w. �

Lemma 4
Gn(F (u)) = Fn(u!n) .
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Lemma 5 Fix u,w ∈ {0, 1}∗0 with

Φ(u) ≤ Φ(w) ≤ n and u!n v w!n .

Then we have
u v w.

Proof. Set k = Φ(u). The assumption u!n v w!n implies Gn(F (u)) ≤ Gn(F (w)) and
therefore

Fk(u) = Gk(F (u)) ≤ Gk(F (w)) = Fk(w!k).

Thus we obtain
u v w!k.

Since k ≤ Φ(w), we obtain w!k v w and therefore u v w. �

“HL’ ⇒ DL’”

Fix n ∈ N+ and f : N→ Nn
+. Applying HL to F−1

n ◦ f yields k < l with

F−1
n ◦ f(k) v F−1

n ◦ f(l),

which implies f(k) ≤ f(l).

“DL’ ⇒ HL’”

Fix g : N→ {0, 1}∗0. Set n = 2 · |g(0)|. Then DL yields k < l in N such that

(Fn(g(k)!n),Φ(g(k))) ≤ (Fn(g(l)!n),Φ(g(l))) .

If n < Φ(g(l)), we obtain g(0) v g(l) by Lemma 3. Otherwise, we have

Φ(g(k)) ≤ Φ(g(l)) ≤ n and g(k)!n v g(l)!n.

Thus g(k) v g(l) by Lemma 5.

Remark 6 This result is of combinatorial nature. However, we work within intuitio-
nistic logic (the law of excluded middle is not applied) and use inductive proofs only for
quantifier-free formulas. Moreover, we do not use any instance of the axiom of choice.
Therefore, results on Dickson’s lemma correspond to results on Higman’s lemma, in
any formal system which allows the definition of the basic string operations, like Hey-
ting Arithmetic. To see that Dickson’s lemma and Higman’s lemma are practically the
same statements is of interest even though it is well-known that both are provable within
intuitionistic logic [3, 4].
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