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Abstract

In the present paper, we first investigate the logics obtained by considering
frames with one or more kinds of non-normal worlds: Sylvan frames and Sylvan
logics, as we call them. Determination theorems for all the logics obtained are
proven, and their relation to classical systems of modal logic are discussed. In a
second part, we consider the strict logics obtained by taking, for instance, the set
of normal worlds as distinguished. We show, among other things, that Sylvan’s
claims about the semantics for S0.6◦ and S0.7◦, besides those for S0.9◦ and S1◦,
are also inadequate, determining, in fact, stronger logics.
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1 Introduction

In his very interesting paper [5], Richard Sylvan intended to present relational semantics
for all well-known systems of modal logic of Lewis, Lemmon and Feys’. The gist of
Sylvan’s semantics was to consider relational frames having, in addition to the normal
worlds, one or more sets of non-normal ones, where modalized formulas are evaluated
according to several different conditions. One well-known such condition is that all
necessities are false and all possibilities true: here we have the “queer” worlds of Kripke’s
[3]. Other kinds of non-normal worlds Sylvan considered were the following:

∗ opposite: 2α is true iff α is false in every accessible world;

∗ contrary: 2α is true iff α is false in some accessible world;

∗ perverse: 2α is true iff α is true in some accessible world;

∗ rafferty: 2α is arbitrarily true or false.
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By combining different kinds of non-normal worlds we obtain semantics for several
non-normal modal logics. In particular, Sylvan contended that frames consisting of
normal and opposite worlds would yield determination theorems for the logics S1◦ and
S1, if we take the set of normal worlds to be distinguished. This, however, was not so.
In his review of Sylvan’s paper, M. J. Cresswell guessed (what he later proved in [2])
that Sylvan’s semantics did not characterize S1, but a stronger system which Cresswell
called S1+. In short, Cresswell concluded, Sylvan’s proposed semantics for S1◦ and S1
were inadequate ([2], p.39).

Nevertheless, the logics characterized by frames with non-normal worlds remain
interesting in their own right. Our motivation to investigate them in this paper is
mainly technical, with a dash of historical curiosity. However, being non-normal, these
logics can find applications in the areas of epistemic and deontic logic (where usual
rules such as necessitation are deemed too strong). The fact that truth-conditions
for modalized formulas vary depending on the kind of world where the formulas are
evaluated also suggests applications such as modelling contextual modals in linguistics.
(But we won’t pursue these matters here.)

Both Sylvan and Cresswell considered just a few such systems, and only frames
where the set of normal worlds is distinguished. (Cresswell only discusses S1◦, S1 and
S1+. Sylvan’s original formulation, by the way, selects an actual world among the
normal worlds of the frame.)

In the present paper, we first investigate the logics obtained by considering frames
with one or more kinds of non-normal worlds: Sylvan frames and Sylvan logics, as we
call them. Determination theorems for all the logics obtained are proven, and their
relation to classical systems of modal logic are discussed. In a second part, we consider
the strict logics obtained by taking, for instance, the set of normal worlds, or normal
and perverse worlds, as distinguished. We show, among other things, that Sylvan’s
claims about the semantics for S0.6◦ and S0.7◦, besides those for S0.9◦ and S1◦, are
also inadequate, determining, in fact, stronger logics.

2 Logics and frames

We will work in a basic modal language consisting of a countable set Φ of propositional
variables, the propositional constant ⊥, and the primitive operators → and 2. The
remaining standard operators ¬, 3, ∧, ∨, ↔ and the constant > are defined in the
usual way.

All logics considered in this paper will be extensions of classical propositional logic,
so they include the set PL of all tautologies, as well as being closed under modus ponens
(MP) and uniform substitution (US). Thus, for the purposes of this paper, a logic is a
set of formulas that includes all tautologies and is closed under MP and US. Following
[1], we say that a formula belonging to a logic is a thesis of that logic. If all instances
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of some schema belong to a logic, or if the logic is closed under some rule of inference,
we say that it has or provides that schema or rule.

We start by characterizing our logics semantically, defining frames and models with
several kinds of non-normal points (or worlds, states, indices), and checking which
formulas turn out to be valid and which rules of inference hold.

Depending on the kinds of non-normal points we admit, we can have different frames:
we may have only normal points, perhaps opposite and perverse ones, and so on. In
the most general case, a frame F would be a structure 〈U,U1, . . . , Un, . . . , R〉, where
U is a nonempty set, the universe of of the frame, and the Uis are pairwise disjoint
subsets of U such that N = U1 is the set of normal points of the frame and all the
others are non-normal. We also require that

⋃
Ui = U and, of course, R ⊆ U ×U is an

accessibility relation.
Allowing different subsets of U to be empty will give us different logics. For instance,

if all but N are empty, we have normal modal logics, and if only N and a set Q of “queer
worlds” are nonempty, we have logics like E2◦ and its extensions.

In this paper, however, we will consider only frames with a nonempty set of nor-
mal points and one or more sets of non-normal ones which will include only opposite,
contrary and perverse points (in short, Sylvan frames), these being the main kinds of
worlds considered by Sylvan in his paper.1 Thus:

Definition 2.1. A frame F is a structure 〈U,N,O,C, P,R〉, where U is a nonempty
set, the universe of the frame; N , C, O and P are pairwise disjoint subsets of U ,
respectively, the set of normal, opposite, contrary and perverse points of the frame. We
also require that U = N ∪ O ∪ C ∪ P , and that N 6= ∅. Finally, R ⊆ U × U is an
accessibility relation.

Our definition of frame is also more general than Sylvan’s original one, since we do
not require his critical condition: that every point should be accessible to some normal
one. (But we discuss frames with this condition later on.)

We can also call the frames above defined nocp-frames, since they have all kinds
of non-normal points. But of course we can remove one or more kinds of such points,
thus obtaining noc-frames (that is, we remove the perverse points or, what amounts
to the same, require that the set P be empty), ncp-frames (without opposite points),
np-frames (only normal and perverse) and so on, until we reach n-frames, which are
just the ordinary relational frames in which all points are normal.2

We will use the names nocp, noc, ncp and so on for the logic of the corresponding
class of frames; they are related as depicted in Figure 1. We have the weakest logic,

1Having rafferty points would of course result in having only classical tautologies as valid — unless
such points were not distinguished.

2Notice that we are not imposing any restrictions on the accessibility relation R. We can do that,
requiring that R is reflexive, or transitive, and so on, but this would be the subject of another paper.
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nocp, on the left of the image, and n (which is just the smallest normal logic K) on
the right.
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Figure 1: Sylvan logics

We will show later on that all these logics are indeed distinct. Before going into
that, however, let us define models and truth — a general definition which will work
for all logics investigated in this paper.

Definition 2.2. Let F be a frame, as above defined. Then M = 〈F, V 〉 is a model,
where V is a valuation, that is, a function from the set Φ of variables to P(U). We
also say that M is based on F.

We have the usual definition of truth at a point in a model, except for modal clauses,
where the truth condition will depend on whether a point is normal or non-normal.

Definition 2.3. Let M = 〈U,N,O,C, P,R, V 〉 be a model, and x ∈ U . Then:

(a) M, x 
 p iff x ∈ V (p), for p ∈ Φ;

(b) M, x 
 ⊥ never;

(c) M, x 
 α→ β iff M, x 1 α or M, x 
 β;

(d) M, x 
 2α iff

1. x ∈ N and, for every y such that Rxy, M, y 
 α, or

2. x ∈ O and, for every y such that Rxy, M, y 1 α, or

3. x ∈ C and there is some y such that Rxy and M, y 1 α, or

4. x ∈ P and there is some y such that Rxy and M, y 
 α.

Obviously, the truth conditions for formulas with the possibility operator are the
following:

(e) M, x 
 3α iff
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1. x ∈ N and there is some y such that Rxy and M, y 
 α, or

2. x ∈ O and there is some y such that Rxy and M, y 1 α, or

3. x ∈ C and, for every y such that Rxy, M, y 1 α, or

4. x ∈ P and, for every y such that Rxy, M, y 
 α.

Definition 2.4. A formula α is true in a model M (M 
 α) if it is true in every state
of the model, that is, if M, x 
 α for every x in M. We say that α is satisfiable in a
model if true at some state of the model; falsifiable if its negation is satisfiable.

Definition 2.5. A formula α is valid at a state x in a frame F (F, x 
 α) if α is true
at x in every model based on F. We say that α is valid in a frame F (F 
 α) if it is
valid at every state in F, and valid in a class C of frames (
C α) if it is valid in every
frame in C.

Given these definitions, the following proposition is easily proved.

Proposition 2.6. Let C be any class of frames. Then:

(i) if α is a tautological consequence of α1, . . . , αm (m ≥ 0), and 
C α1, . . . , 
C αm,
then 
C α;

(ii) if 
C α↔ β, then 
C 2α↔ 2β.

Proof. The proof of (i) is straightforward. As for (ii), suppose that α↔ β is valid in a
class C of frames, but 2α ↔ 2β is not. Thus, it fails at some state x of some model
based on some frame in C; say, at x 
 2α but x 1 2β. We have four cases. (a) If x
is normal and x 1 2β, there is some y such that Rxy and y 1 β. But since we also
have y 
 α (because x 
 2α), it follows that y 1 α ↔ β, against the hypothesis that
α ↔ β is valid in C. (b) If x is opposite, we have, since x 1 2β, that there is some y
such that Rxy and y 
 β. But since we also have y 1 α (because x 
 2α), it follows
that y 1 α↔ β, against the hypothesis. (c) and (d) are analogous. �

Recall that a modal logic is classical if it provides the following rule:

(RE) α↔ β / 2α↔ 2β.

Thus, from the preceding proposition we gather that our logics are classical modal
logics.

Let us now consider Sylvan’s critical condition, that is, every point in a frame is
accessible to some normal one. Let us call a formula cc-valid if it is valid in the class
of all frames satisfying the critical condition. We can show the following result.

Proposition 2.7. α is valid iff α is cc-valid.



6 C. A. Mortari

Proof. If α is valid then it is obviously cc-valid, so suppose that α is not valid. Thus,
there is some frame F = 〈U,N,O,C, P,R〉, some model M based on this frame, and
some x ∈ U such that M, x 1 α. Suppose F does not satisfy the critical condition. We
define another frame F′ = 〈U ′, N ′, O, C, P,R′〉, where, for some z /∈ U , U ′ = U ∪ {z}
and N ′ = N ∪ {z} (z is thus a new normal point), and such that R′ = R ∪ {〈z, y〉 |
for all y ∈ U ′}. This new frame obviously satisfies the critical condition, because every

point is accessible to z. We now define another model M′, based of F′, such that
V ′(p) = V (p), for every p ∈ Φ. M′ is what we call a safe extension of M, and it is
straightforward to show that, for every y ∈ U and every formula β, M, y 
 β if and
only if M′, y 
 β. It follows that M′, x 1 α, so α is not cc-valid. �

The argument above will hold for ncp-frames and so on. In particular, it holds
because we are not putting any restrictions (like transitivity, symmetry and so on) on
the accessibility relation. We can show this will hold for reflexive, serial and transitive
frames also, but trouble arises with conditions such as symmetry and euclideanity.

Sylvan’s motivation to require the critical condition was to ensure that the logics
provide the rules 2α / α and 2> → 2α / α, but more on this further on.

3 The basic logic nocp

In this section we will consider the smallest of our Sylvan logics, namely, nocp, the
logic of the class of frames having all kinds of points: nocp-frames, in short. We will
present it in a little more detail, since the other logics will be extensions of it, and small
changes in the proofs will easily yield determination theorems for the other systems.

As we saw before, nocp is a classical modal logic (because it has RE); in fact we
will show that it properly extends the smallest classical modal system, E. A bit of
calculation from the semantics shows us that nocp provides the axiom schemes and
rules of inference listed in Table 1 and Lemma 3.1 below. Names of formulas are
mostly standard. We also follow Chellas and Segerberg’s naming procedure (in [1]) for
schemata: where N names the formula 2>, Q names 3⊥, and S is some schema, nS,
qS and 2S denote, respectively, 2> → (S), 3⊥ → (S), and 2(S).

Well-known axioms are M, C, F, K, and X. Table 1 below shows which of them
hold in which kinds of points, no matter what properties the accessibility relation may
have. We also added some new schemas (W, V, and so on) which will be important
with regard to some non-normal points.

As we can see, none of the above schemes are valid if all kinds of points are conside-
red. What about their n- and q-versions? As we gather from Table 2, nM, nV, nY, qW,
qC, qK and qA are valid in all points — and are thus provided by nocp and all other
Sylvan logics. Notice that axiom N, that is 2>, is true at any normal point of any
model. However, if the accessibility relation R is serial (there always is an accessible
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Axioms N O C P
M 2(α ∧ β)→ (2α ∧2β) X - - X
C (2α ∧2β)→ 2(α ∧ β) X X X -
F 2(α ∧ β)↔ (2α ∧2β) X - - -
K 2(α→ β)→ (2α→ 2β) X X X -
X (2(α→ β) ∧2(β → γ))→ 2(α→ γ) X X - -
W 2(α ∨ β)→ (2α ∧2β) - X X -
V (2α ∧2β)→ 2(α ∨ β) X X - X
Z 2(α ∨ β)↔ (2α ∧2β) - X - -
Y 2(α ∧ β)→ (2α ∨2β) X - X X
A (2α ∨2β)→ 2(α ∧ β) - X X -

Table 1: Some axioms and points in which they hold

point y to any point x), then N holds also at perverse points. Analogously, axiom Q,
that is, 3⊥, is true at any opposite point, and, if R is serial, it will also hold at contrary
ones.

N O C P
nM X X X X
nC X X X -
nF X X X -
nK X X X -
nX X X X -
nW - X X -
nV X X X X
nZ - X X -
nY X X X X
nA - X X -

N O C P
qM X - - X
qC X X X X
qF X - - X
qK X X X X
qX X X - X
qW X X X X
qV X X - X
qZ X X - X
qY X - X X
qA X X X X

Table 2: n- and q-versions

Lemma 3.1. The following rules of inference are provided by nocp and its extensions:

(RnM) α→ β / 2> → (2α→ 2β),

(RqW) α→ β / 3⊥ → (2β → 2α),

(RRE) α↔ β / γ ↔ γ[α/β],

(RnN∗) α / 2> → 2α,
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(RnN∗) 2> → 2α / α,

(RN∗) 2α / α.

Proof. The proof involves a bit of calculation, but is actually quite straightforward.
We will show RN∗ to illustrate the use of frames satisfying the critical condition. So
suppose α is not valid. Then it is not cc-valid and, for some model based on a frame
satisfying the critical condition, and some point x in it, x 1 α. But then there is some
normal point z such that Rzx, from what it follows that z 1 2α, so 2α is not valid. �

We axiomatize nocp by adding the following axioms and the rule RE to classical
propositional logic:

(nM) 2> → (2(α ∧ β)→ (2α ∧2β)),

(qW) 3⊥ → (2(α ∨ β)→ (2α ∧2β)),

(nNP) 2> → [((2α ∧2β)→ 2(α ∧ β)) ∨ (2(γ ∨ δ)→ (2γ ∨2δ))],

(qOC) 3⊥ → [((2α ∧2β)→ 2(α ∨ β)) ∨ (2(γ ∧ δ)→ (2γ ∨2δ))],

(RE) α↔ β / 2α↔ 2β.

As we see, nocp is a classical modal logic, because it provides RE. However, since
neither nM nor qW are valid in E (as a simple semantic argument will show), nocp is
a proper extension of E.

Instead of nM, qW and RE we could have used RnM and RqW. This is established
via the following proposition, whose proof is straightforward:

Lemma 3.2. (i) A modal logic provides nM and RE iff it provides RnM. (ii) A modal
logic provides qW and RE iff it provides RqW.

We actually have two classes of points in a nocp-frame: normal and perverse, on the
one side, where 2> ∨ 3> holds, and opposite and contrary, on the other side, where
2⊥∨3⊥ holds. Of course neither of these formulas is a thesis of nocp, whose frames
have all kinds of points. Axioms nNP and qOC are needed to distinguish, on the one
hand, normal and perverse point; on the other, opposite and contrary ones. They are
used to show that nocp has the two inference rules below, RvCn and RcPn, which will
be needed in proving completeness.

Lemma 3.3. nocp provides the following two rules:

(RvCn)
(α1 ∧ . . . ∧ αn)→ β

(3⊥ ∧2γ ∧2δ ∧ ¬2(γ ∨ δ) ∧2β)→ (2α1 ∨ . . . ∨2αn)
, for n ≥ 0,

(RcPn)
α→ (β1 ∨ . . . ∨ βn)

(2> ∧2γ ∧2δ ∧ ¬2(γ ∧ δ) ∧2α)→ (2β1 ∨ . . . ∨2βn)
, for n ≥ 0.
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Proof. (i) For RvCn, suppose n = 1, and that ` α → β. By RqW we have ` 3⊥ →
2β → 2α, which is equivalent to ` (3⊥∧2β)→ 2α, from which we get, by proposi-
tional logic,

` (3⊥ ∧2γ ∧2δ ∧ ¬2(γ ∨ δ) ∧2β)→ 2α.

Let now n > 1, and suppose we have the rule for n− 1. Suppose now that ` (α1 ∧ . . .∧
αn)→ β, that is, ` (α1 ∧ . . . ∧ (αn−1 ∧ αn))→ β. Then, by RvCn−1, we get

` (3⊥ ∧2γ ∧2δ ∧ ¬2(γ ∨ δ) ∧2β)→ (2α1 ∨ . . . ∨2(αn−1 ∧ αn)).

Consider now the following instance of qOC:

3⊥ → [((2γ ∧2δ)→ 2(γ ∨ δ)) ∨ (2(αn−1 ∧ αn)→ (2αn−1 ∨2αn))].

Now this is equivalent by propositional logic to

(3⊥ ∧2γ ∧2δ ∧ ¬2(γ ∨ δ))→ ((2(αn−1 ∧ αn)→ 2αn−1 ∨2αn)).

It follows from this and the above that

` (3⊥ ∧2γ ∧2δ ∧ ¬2(γ ∨ δ) ∧2β)→ (2α1 ∨ . . . ∨ (2αn−1 ∨2αn)),

that is,
` (3⊥ ∧2γ ∧2δ ∧ ¬2(γ ∨ δ) ∧2β)→ (2α1 ∨ . . . ∨2αn),

which is what we intended to prove.

(ii) For RcPn, the proof is analogous, using nNP. �

We need now to show that nocp, as axiomatized above, is indeed determined by
the class of nocp-frames. We will do that later; first, we will present the remaining six
Sylvan logics.

4 Prenormal Sylvan logics

Prenormal modal logics were introduced in by B. Chellas and K. Segerberg in [1]: a
classical modal logic is prenormal if it provides the schema nK. The smallest prenor-
mal logic was called P by Chellas and Segerberg. In their paper, they considered six
prenormal logics: P, PK, and PX, and their extensions with the schema T (2α→ α).
Using a more standard naming procedure, they could also be named EnK, EK, and
EX. Chellas and Segerberg also introduced a family PX1, . . . ,PXω of logics called
Cresswell logics : these are prenormal logics providing the rule

(RCn) α1 ∨ . . . ∨ αn / (2α1 ∧ . . . ∧2αn)→ 2>, for n ≥ 1.
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Semantically, Chellas and Segerberg use mixed frames 〈U,N,Q,R, S〉, where N
is a set of normal points, Q a set of queer ones, and R and S are, respectively, an
accessibility relation and a neighborhood function (with the proviso that U /∈ S(x), for
every x ∈ U). Truth conditions for modalized formulas are the standard relational ones
for x ∈ N , and the standard neigborhood semantics ones for x ∈ Q, that is:

• for x ∈ Q, x 
 2α iff {y ∈ U : y 
 α} ∈ S(x).

Notice that nocp itself is not a prenormal logic: nK is not valid in the class of all
frames. Could it, however, be contained in EnK? We can easily show that this is not
the case. Take this instance of nocp’s axiom qW: 3⊥ → (2(p ∨ q) → (2p ∧ 2q)).
Now consider an EnK model 〈U,N,Q,R, S, V 〉 such that U = {1, 2, 3}, N = {1},
Q = {2, 3}, R = ∅ and S is such that S(2) = S(3) = {{1, 2}}. Let us take V (p) = {1}
and V (q) = {2}. Notice that U /∈ S(x) for every x ∈ Q, so it is an EnK model
according to [1]. Now we have: 2 
 ¬2>, since U /∈ S(2), that is, 2 
 3⊥. And since
‖p ∨ q‖ = {1, 2} is in S(2), 2 
 2(p ∨ q). However {2} /∈ S(2), for instance, so 2 1 2q
and thus 2 1 2p ∧ 2q. But then qW is not EnK-valid. EnK and nocp are indeed
different logics.

In this section we will consider extensions of nocp which are prenormal. They
are the logics of frames which do not have perverse worlds, since nK fails to hold in
such worlds. We thus have three logics: noc, nc, and no. To illustrate the relations
among all logics considered in this paper, see Figure 2. This diagram also contains
two extensions of E which are not prenormal (and were not considered in [1]), but are
included in EnK: EnC and EnM. It is not difficult to show that semantics for these
logics are pure neighborhood semantics with conditions (nc) and (nm) below (what we
could also do alternatively for EnK with (nk)):

(nc) if U ∈ S(x), X ∈ S(x) and Y ∈ S(x), then X ∩ Y ∈ S(x),

(nm) if U ∈ S(x) and X ∩ Y ∈ S(x), then X ∈ S(x) and Y ∈ S(x),

(nk) if U ∈ S(x), X ∈ S(x) and −X ∪ Y ∈ S(x), then Y ∈ S(x).

4.1 noc

Here we consider frames with only normal, opposite and contrary points, for short,
noc-frames : these are structures 〈U,N,O,C, P,R〉 in which P = ∅, or, to simplify, just
structures 〈U,N,O,C,R〉. The logic of the class of all noc-frames will be called noc.

To axiomatize noc, we could only drop the corresponding clause to perverse points
on axiom nNP, obtaining

2> → ((2α ∧2β)→ 2(α ∧ β)).
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Figure 2: E and some of its extensions

But this, of course, is the schema nC. Together with nM, we have nF, and Lemma 3.2
of [1] tells us that a classical logic has nF iff it has nK iff it has nX iff it has RnK. As
we can show from Table 1, K is valid in all non perverse points — and if a logic has K,
it obviously has nK. So we could simply axiomatize noc adding the following schemes
to E:

(K) 2(α→ β)→ (2α→ 2β),

(qW) 3⊥ → (2(α ∨ β)→ (2α ∧2β)),

(qOC) 3⊥ → [((2α ∧2β)→ 2(α ∨ β)) ∨ (2(γ ∧ δ)→ (2γ ∨2δ))].

Obviously noc is a prenormal logic, because nK follows from K. The following two
propositions give us examples of what hold in noc, and what not.

Proposition 4.1. noc provides the following schemas and rules of inference:

(C) (2α ∧2β)→ 2(α ∧ β),

(nF) 2> → (2(α ∧ β)↔ (2α ∧2β)),

(RnK) (α1 ∧ . . . ∧ αn)→ β / 2> → ((2α1 ∧ . . . ∧2αn)→ 2β), for n ≥ 0,

Having C and K, noc also contains the classical logic ECK. (This inclusion is
proper, as shown in Lemma 4.3.) It is, however, neither monotonic nor a Cresswell
logic, as the next lemma shows.
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Proposition 4.2. The following schemas and rules are not provided in noc:

(M) 2(α ∧ β)→ (2α ∧2β),

(X) (2(α→ β) ∧ (2(β → γ))→ 2(α→ γ),

(RM) α→ β / 2α→ 2β,

(RCn) α1 ∨ . . . ∨ αn / (2α1 ∧ . . . ∧2αn)→ 2>, for n ≥ 1.

As we mentioned, RCn is the rule typical of Cresswell logics (see [1]). Thus noc, in
spite of being prenormal, is not a Cresswell logic. To wit, RCn fails at contrary worlds.
Since p ∨ ¬p is a tautology, it is a thesis of every Cresswell logic and, by RCn, so is
(2p∧2¬p)→ 2>. But this is not valid in noc: one can easily see that this formula is
falsifiable in contrary points. On the other hand, C is a thesis of noc, but not of EXn.

Proposition 4.3. ECK is properly contained in noc.

Proof. Consider the formula ¬(p→ q)→ (q → p). It is a tautology, so it is a theorem
of both ECK and noc. Now, since noc provides RqW, it follows that

3⊥ → (2(q → p)→ 2¬(p→ q)) (1)

is a thesis. However, it is not valid in ECK. Let M = 〈U, S, V 〉 be a neighborhood
model, where U = {1, 2, 3}, V (p) = {1, 2}, V (q) = {1, 3}, and S is such that

S(1) = S(2) = S(3) = {{1, 2}} .

This model satisfies the following conditions (where x ∈ U and X and Y are any subsets
of U):

(c) if X ∈ S(x) and Y ∈ S(x), then X ∩ Y ∈ S(x),

(k) if X ∈ S(x) and −X ∪ Y ∈ S(x), then Y ∈ S(x).

Thus, it is an ECK-model. We have ‖p → q‖ = {1, 3}, ‖q → p‖ = {1, 2}, and −‖p →
q‖ = {3}. Now, since ‖q → p‖ ∈ S(1), 1 
 2(q → p), and since −‖p → q‖ /∈ S(1),
1 1 2¬(p→ q). Thus 1 1 2(q → p)→ 2¬(p→ q). However, U /∈ S(1), thus 1 1 2>
and then 1 
 3⊥. Thus (1) fails in 1 and is not ECK-valid. �

4.2 no

Here we consider frames with only normal and opposite worlds, for short, no-frames.
We can drop the condition for contrary worlds on axiom OC, obtaining

3⊥ → (2α ∧2β → 2(α ∨ β)).

But this is the other direction of the consequent in qW. This way, we can axiomatize
no by adding the following axioms to E:
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(O) 2> ∨2⊥,

(K) 2(α→ β)→ (2α→ 2β),

(qZ) 3⊥ → (2(α ∨ β)↔ (2α ∧2β)).

Naturally, noc is properly contained in no, since, for instance, X fails at contrary
worlds, but holds in normal and opposite. no is thus a Cresswell logic, because it has
RCn, as is easily shown.

Proposition 4.4. no also provides the following schemas and rules of inference:

(O′) 3⊥ → 2⊥,

(ROn) β → (α1 ∨ . . . ∨ αn) / 3⊥ → ((2α1 ∧ . . . ∧2αn)→ 2β), for n ≥ 1.

(RCn) α1 ∨ . . . ∨ αn / (2α1 ∧ . . . ∧2αn)→ 2>, for n ≥ 1.

Proof. O′ follows easily from O. For ROn, suppose ` β → (α1 ∨ . . . ∨ αn). By RqW,
we have ` 3⊥ → (2(α1 ∨ . . . ∨ αn) → 2β), which gives us (*) ` 2(α1 ∨ . . . ∨ αn) →
(3⊥ → 2β). Now from axiom qZ we can easily obtain

` 3⊥ → ((2α1 ∧ . . . ∧2αn)→ 2(α1 ∨ . . . ∨ αn)).

From this and (*) we have

` 3⊥ → ((2α1 ∧ . . . ∧2αn)→ (3⊥ → 2β)),

from which it follows, by classical propositional logic, that

` 3⊥ → ((2α1 ∧ . . . ∧2αn)→ 2β).

For RCn, suppose α1 ∨ . . . ∨ αn is a theorem. Then so is > → (α1 ∨ . . . ∨ αn). By
ROn, we have 3⊥ → ((2α1∧ . . .∧2αn)→ 2>), from what it follows, by propositional
reasoning, (2α1 ∧ . . . ∧ 2αn) → (¬2> → 2>). Now, since (¬2> → 2>) → 2> is a
tautology, we have (2α1 ∧ . . . ∧2αn)→ 2>, which is the desired result. �

4.3 nc

Here we consider frames with only normal and contrary points, for short, nc-frames.
Dropping the condition for opposite points in OC gives us qY, so we can axiomatize nc
by adding the following axioms to E:

(K) 2(α→ β)→ (2α→ 2β),

(qY) 3⊥ → (2(α ∧ β)→ (2α ∨2β)).
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Proposition 4.5. nc also provides the following schemas:

(C) (2α ∧2β)→ 2(α ∧ β),

(nF) 2> → (2(α ∧ β)↔ (2α ∧2β)).

In spite of extending noc, nc is neither monotonic, nor regular, nor a Cresswell
logic, as the following result shows.

Proposition 4.6. The following schemas are not provided in nc:

(M) 2(α ∧ β)→ (2α ∧2β),

(F) 2(α ∧ β)↔ (2α ∧2β),

(X) (2(α→ β) ∧ (2(β → γ))→ 2(α→ γ),

(O) 2⊥ ∨2>.

noc is properly included in nc: Y hols in normal and contrary points, but not in
opposite ones. And since 2⊥ ∨ 2> is a thesis of no, but not of nc, neither logic
contains the other.

5 Logics of frames with perverse points

In this section we present the remaining three Sylvan logics, those whose frames contain
perverse points, that is, nop, ncp, and np.

5.1 nop

An axiomatics is provided by adding to E the following schemes:

(nM) 2> → (2(α ∧ β)→ (2α ∧2β)),

(nNP) 2> → [((2α ∧2β)→ 2(α ∧ β)) ∨ (2(γ ∨ δ)→ (2γ ∨2δ))],

(qZ) 3⊥ → (2(α ∨ β)↔ (2α ∧2β)).

nop properly contains nocp, since V is a thesis, but it fails in points which are
contrary. nop is also properly contained both in no and np: 2⊥ ∨ 2> is a thesis of
no but not of nop; M holds in np but not in nop.
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5.2 ncp

For the axiomatics, just add to E the following:

(nM) 2> → (2(α ∧ β)→ (2α ∧2β)),

(nNP) 2> → [((2α ∧2β)→ 2(α ∧ β)) ∨ (2(γ ∨ δ)→ (2γ ∨2δ))],

(qW) 3⊥ → (2(α ∨ β)→ (2α ∧2β)),

(qY) 3⊥ → (2(α ∧ β)→ (2α ∨2β)).

ncp properly contains nocp, since Y is a thesis, but it fails in opposite points. ncp
is also properly contained both in nc and np: C is a thesis of nc but not of ncp; M
holds in np but not in ncp.

5.3 np

For the axiomatics, just add to E the following:

(M) 2(α ∧ β)→ (2α ∧2β),

(nNP) 2> → [((2α ∧2β)→ 2(α ∧ β)) ∨ (2(γ ∨ δ)→ (2γ ∨2δ))].

Notice that np, having M, extends the smallest monotonic logic EM. It is, however,
neither normal nor regular, since C and K fail at perverse points. But it does extend
EM, as the next proposition shows:

Proposition 5.1. np is a proper extension of EM.

Proof. Consider the formula (p→ q) ∨ ¬q. It is a tautology, so it is a theorem of both
EM and np. Now, since np has RcPn, for every n, it follows that (taking k = 2 and
letting β1 and γ be the same formula p)

(2> ∧2p ∧2r ∧ ¬2(p ∧ r))→ (2q ∨2¬q) (2)

is a thesis. However, it is not valid in EM. Let M = 〈U, S, V 〉 be a neighbourhood
model, where U = {1, 2, 3, 4}, V (p) = {1, 2}, V (q) = {1, 3}, V (r) = {1, 4}, and S is
such that

S(1) = S(2) = S(3) = S(4) =
{
{1, 2}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, U

}
.

It is easy to see that this model satisfies the following condition (where x ∈ U and X
and Y are any subsets of U):

(m) if X ∩ Y ∈ S(x) then X ∈ S(x) and Y ∈ S(x).
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So it is an EM-model. We have ‖p‖ = {1, 2}, ‖q‖ = {1, 3}, ‖r‖ = {1, 4}, ‖¬q‖ = {2, 4},
and ‖p ∧ r‖ = {1}. Now, since ‖p‖ ∈ S(1) and ‖r‖ ∈ S(1), 1 
 2p and 1 
 2r. On
the other hand, ‖p ∧ r‖ /∈ S(1), 1 1 2(p ∧ r), so 1 
 ¬2(p ∧ r). And since U ∈ S(1),
1 
 2>. Thus the antecedent of (2) is true at world 1. However, neither ‖q‖ nor ‖¬q‖
are in S(1), so 1 1 2q and 1 1 2¬q. Hence, the consequent of (2), and thus (2) itself,
is false in world 1, so it is not EM-valid. �

6 Completeness

Completeness for all Sylvan logics discussed here can be proved in the standard way
using canonical models. Where Λ is a logic, let SΛ be the set of all maximal consistent
sets (MCSs) of formulas in Λ.

Definition 6.1. A set Γ of formulas is Λ-inconsistent if there is a finite subset of
formulas {α1, . . . , αn} ⊆ Γ such that `Λ ¬(α1 ∧ . . . ∧ αn); otherwise Γ is Λ-consistent.

If Γ is finite, i.e., Γ = {γ1, . . . , γn}, Γ is Λ-consistent if and only if 0Λ ¬(γ1∧ . . .∧γn).
And a singleton {α} is Λ-consistent, of course, if and only if 0Λ ¬α.

Definition 6.2. Let Γ be a set of formulas and α a formula. We say that Γ `Λ α if
there is a finite subset of formulas {α1, . . . , αn} ⊆ Γ such that `Λ (α1 ∧ . . . ∧ αn)→ α.

Definition 6.3. A set Γ of formulas is maximal if, for every formula α, either α ∈ Γ
or ¬α ∈ Γ. Γ is a maximal consistent set (MCS) if it is maximal and consistent.

The proofs of the following lemmas are standard, so we will omit them.

Lemma 6.4. Let ∆ be an MCS, and α and β any formulas. Then:

(i) ⊥ /∈ ∆

(ii) α ∈ ∆ iff ¬α /∈ ∆;

(iii) α ∧ β ∈ ∆ iff α ∈ ∆ and β ∈ ∆;

(iv) α ∨ β ∈ ∆ iff α ∈ ∆ or β ∈ ∆;

(v) α→ β ∈ ∆ iff α /∈ ∆ or β ∈ ∆;

(vi) α↔ β ∈ ∆ iff α ∈ ∆ and β ∈ ∆, or α /∈ ∆ and β /∈ ∆;

(vii) if α ∈ ∆ and α→ β ∈ ∆ then β ∈ ∆.

Lemma 6.5 (Lindenbaum). Let Γ be a consistent set of formulas. Then there is an
MCS ∆ such that Γ ⊆ ∆.

Lemma 6.6. `Λ α iff for every Λ-MCS Γ, α ∈ Γ.
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We need now a few more concepts, which will be useful for several logics.

Definition 6.7. Let Γ be a Λ-consistent set of formulas. We say that:

(i) Γ is C-distributive if there are no formulas α and β such that {2α,2β} ⊆ Γ and
Γ `Λ ¬2(α ∧ β);

(ii) Γ is D-distributive if there are no formulas α and β such that {2α,2β} ⊆ Γ and
Γ `Λ ¬2(α ∨ β).

Lemma 6.8. If Γ is a C-distributive Λ-MCS and {2α1, . . . ,2αn} ⊆ Γ, for n > 0, then
Γ `Λ 2(α1 ∧ . . . ∧ αn).

Proof. Start with 2α1 and 2α2. Since Γ is C-distributive, Γ 0Λ ¬2(α1∧α2) and, being
an MCS, Γ `Λ 2(α1∧α2). Take now 2(α1∧α2) and 2α3 to obtain Γ `Λ 2(α1∧α2∧α3).
Repeating this construction will give us Γ `Λ 2(α1 ∧ . . . ∧ αn). �

Lemma 6.9. If Γ is an D-distributive Λ-MCS and {2α1, . . . ,2αn} ⊆ Γ, for n > 0,
then Γ `Λ 2(α1 ∨ . . . ∨ αn).

Proof. Analogous to the preceding lemma. �

6.1 Completeness for nocp

We will be using canonical models, in which the points are MCSs. Since we have normal
and non-normal points, we need to specify when a certain MCS is normal, or opposite,
and so on.

Definition 6.10. Let ∆ be a maximal consistent set.

(a) ∆ is normal if 2> ∈ ∆ and either (i) for every α, 2α ∈ ∆ or (ii) for at least
some α, ¬2α ∈ ∆ and ∆ is C-distributive.

(b) ∆ is perverse if 2> ∈ ∆ and ∆ is not C-distributive.

(c) ∆ is contrary if 3⊥ ∈ ∆ and either (i) for every α, ¬2α ∈ ∆ or (ii) ∆ is not
D-distributive.

(d) ∆ is opposite if 3⊥ ∈ ∆, for at least some α, 2α ∈ ∆ and ∆ is D-distributive.

The intuition behind the above definition is this. Since R can be any relation, a
model may contain points which do not have any accessible points. If x is such a point,
and x is either normal or opposite, then x 
 2α for every α. Let T (x) be the set of
all formulas true at x. T (x) is obviously an MCS, but when it comes to classify it as
normal or opposite, in order to build a canonical model, we could do it either way. So
we will choose to call it normal. And should x be contrary or perverse, then x 
 ¬2α
for every α. Accordingly, we will choose to call the corresponding MCS, T (x), contrary.
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Barring this case, x will have at least one accessible point. If x is normal or perverse,
then 2> will be true at x (> is true at every point), and also ¬2α for at least one α —
for instance, ¬2⊥ (⊥ is false at every point). Only this, however, would not distinguish
normal from perverse points — we need the stronger requirement of C-distributivity
(C holds in normal points, but fails in perverse ones).

Similarly, the requirement of D-distributivity will be used to distinguish opposite
(D-distributive) and contrary (non D-distributive) points. We can then show that the
above definition exhaust all possibilities regarding MCSs.

Proposition 6.11. Every MCS is either normal, or opposite, or contrary, or perverse.

Proof. Let ∆ be an MCS. Suppose, first, that for every α, 2α ∈ ∆. By 6.10.(i), ∆ is
normal. If, on the other hand, ¬2α ∈ ∆, for every α, then by 6.10.(iii), ∆ is contrary.

Suppose, then, that for some α and some β, {2α,¬2β} ⊆ ∆. Now either 2> ∈ ∆
or 3⊥ ∈ ∆. Suppose 2> ∈ ∆. If ∆ is C-distributive, it is normal; if not, it is perverse.
On the other hand, if 3⊥ ∈ ∆, then ∆ is opposite if D-distributive, and contrary if
not. �

Definition 6.12. Let Γ and ∆ be MCSs. Then:

(a) n(Γ) = {α | 2α ∈ Γ};
(b) n−(Γ) = {¬α | 2α ∈ Γ};
(c) p(Γ) = {¬α | ¬2α ∈ Γ};
(d) p−(Γ) = {α | ¬2α ∈ Γ};
(e) Γρ∆ iff Γ is normal and n(Γ) ⊆ ∆, or

Γ is opposite and n−(Γ) ⊆ ∆, or

Γ is contrary and p−(Γ) ⊆ ∆, or

Γ is perverse and p(Γ) ⊆ ∆.

We have now four important lemmas.

Lemma 6.13. Let Γ be a C-distributive MCS containing 2> and ¬2α, for some for-
mula α. Then n(Γ) ∪ {¬α} is consistent.

Proof. Suppose that n(Γ) ∪ {¬α} is inconsistent. Since 2> ∈ Γ, n(Γ) 6= ∅. Now,
if n(Γ) ∪ {¬α} is inconsistent, then, for some finite subset {β1, . . . , βn} of n(Γ), we
have ` ¬(β1 ∧ . . . ∧ βn ∧ ¬α). (Should the inconsistency be in n(Γ), we would have
` ¬(β1 ∧ . . .∧βn), but from this the formula above follows, adding ¬α.) It thus follows
that ` β1 ∧ . . . ∧ βn → α.

Recall that RnM is provided in nocp. We then have ` 2> → (2(β1 ∧ . . . ∧ βn)→
2α), from which it tautologically follows that ` 2> → (¬2α → ¬2(β1 ∧ . . . ∧ βn)).
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Since 2> and ¬2α ∈ Γ, it follows that Γ ` ¬2(β1 ∧ . . . ∧ βn). On the other hand,
since {β1, . . . , βn} ⊆ n(Γ), {2β1, . . . ,2βn} ⊆ Γ, and it follows from Lemma 6.8 that
Γ ` 2(β1 ∧ . . . ∧ βn), what makes Γ inconsistent, against the hypothesis of the lemma.
Thus, n(Γ) ∪ {¬α} is consistent. �

Lemma 6.14. Let Γ be an D-distributive MCS such that 3⊥ ∈ Γ, ¬2α ∈ Γ and, for
at least some formula β, 2β ∈ Γ. Then n−(Γ) ∪ {α} is consistent.

Proof. Since there is at least one 2β ∈ Γ, n−(Γ) 6= ∅. So suppose n−(Γ) ∪ {α} is not
consistent. Then, for some β1, . . . , βn such that 2βi ∈ Γ, ` ¬(¬β1∧ . . .∧¬βn∧α). From
this it follows that ` α→ (β1∨. . .∨βn) and, by RqW, that ` 3⊥ → (2(β1∨. . .∨βn)→
2α. Now, since {2β1, . . . ,2βn} ⊆ Γ and Γ is D-distributive, 2(β1 ∨ . . . ∨ βn) ∈ Γ by
Lemma 6.9. Since we also have 3⊥ ∈ Γ, Γ ` 2α, what makes Γ inconsistent against
the hypothesis. �

Lemma 6.15. Let Γ be a consistent, but not D-distributive MCS such that 3⊥ ∈ Γ
and 2α ∈ Γ. Then p−(Γ) ∪ {¬α} is consistent.

Proof. Since Γ is not D-distributive, there are formulas γ and δ such that {2γ,2δ} ⊆ Γ
and Γ ` ¬2(γ ∨ δ), so ¬2(γ ∨ δ) ∈ Γ and p−(Γ) 6= ∅. Suppose now p−(Γ) ∪ {¬α} is
inconsistent. Thus, for some β1, . . . , βn such that ¬2βi ∈ Γ, ` ¬(β1 ∧ . . . ∧ βn ∧ ¬α).
But from this it follows that ` (β1 ∧ . . . ∧ βn) → α. Since RvCn is provided by nocp,
we have

` (3⊥ ∧2γ ∧2δ ∧ ¬2(γ ∨ δ) ∧2α)→ (2β1 ∨ . . . ∨2βn),

from which it follows that

` (3⊥ ∧2γ ∧2δ ∧ ¬2(γ ∨ δ) ∧ ¬2β1 ∧ . . . ∧ ¬2βn)→ ¬2α.

However, {3⊥,2γ,2δ,¬2(γ ∨ δ),¬2β1, . . . ,¬2βn} ⊆ Γ, so Γ ` ¬2α, what makes Γ
inconsistent against the hypothesis. Thus, p−(Γ) ∪ {α} is consistent. �

Lemma 6.16. Let Γ be a not C-distributive MCS such that 2> ∈ Γ and 2α ∈ Γ. Then
p(Γ) ∪ {α} is consistent

Proof. Since Γ is not C-distributive, there are formulas γ and δ such that {2γ,2δ} ⊆ Γ
and Γ ` ¬2(γ ∧ δ), so ¬2(γ ∧ δ) ∈ Γ and p(Γ) 6= ∅. Suppose now p(Γ) ∪ {α}
is inconsistent. Thus, for some finite subset ¬2β1, . . . ,¬2βn of Γ, we have that
{¬β1, . . . ,¬βn, α} is inconsistent, that is, ` ¬(¬β1 ∧ . . . ∧ ¬βn ∧ α). From this it
follows that ` α→ β1 ∨ . . . ∨ βn. Since RcPn is provided by nocp, we have

` (2> ∧2γ ∧2δ ∧ ¬2(γ ∧ δ) ∧2α)→ (2β1 ∨ . . . ∨2βn),

from which it follows that

` (2> ∧2γ ∧2δ ∧ ¬2(γ ∧ δ) ∧ ¬2β1 ∧ . . . ∧ ¬2βn)→ ¬2α.
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However, {2>,2γ,2δ,¬2(γ ∧ δ),¬2β1, . . . ,¬2βn} ⊆ Γ, so Γ ` ¬2α, what makes Γ
inconsistent against the hypothesis. Thus, p(Γ) ∪ {α} is consistent. �

We now define a canonical model for nocp and, by extension, for all other Sylvan
logics — we only need to drop one or more sets of non-normal points. Where α is some
formula, let |α|Λ be the set of all Λ-MCSs Γ such that α ∈ Γ.

Definition 6.17. Let Λ be a Sylvan logic. We say that MΛ = 〈UΛ, NΛ, OΛ, CΛ, PΛ,
RΛ, VΛ〉 is the canonical model for Λ iff it satisfies the following conditions:

(i) UΛ = SΛ;

(ii) NΛ = {Γ ∈ SΛ : Γ is normal };
(iii) OΛ = {Γ ∈ SΛ : Γ is opposite };
(iv) CΛ = {Γ ∈ SΛ : Γ is contrary };
(v) PΛ = {Γ ∈ SΛ : Γ is perverse };
(vi) RΛ = ρ;

(vii) VΛ(p) = |p|Λ, for every p ∈ Φ.

Lemma 6.18. Let M be a canonical model for a logic Λ. Then, for every wff α and
every Γ ∈ U , M,Γ 
 α iff α ∈ Γ.

Proof. By induction on formulas. Let Γ be some element of U . We show only the modal
case, so let α = 2β. We have four cases to consider, according to whether Γ is normal,
opposite, contrary or perverse.

(i) Suppose that Γ ∈ NΛ. By definition, Γ 
 2β iff for every ∆ such that Γρ∆, ∆ 
 β.
Suppose Γ 1 2β. Then there is some ∆ such that Γρ∆ and ∆ 1 β. By the induction
hypothesis (henceforth IH), for every ∆ ∈ U we have that ∆ 
 β iff β ∈ ∆. Thus,
β /∈ ∆. Since Γρ∆, n(Γ) ⊆ ∆ and it follows that 2β /∈ Γ.

On the other hand, suppose that 2β /∈ Γ. Then ¬2β ∈ Γ and, since Γ is also normal,
by definition Γ is C-distributive and 2> ∈ Γ; hence n(Γ) 6= ∅. From lemma 6.13 it
follows that n(Γ)∪{¬β} is consistent and, from Lindenbaum’s lemma, that it is included
in some MCS ∆. But then Γρ∆ and ¬β ∈ ∆. It follows that β /∈ ∆ and, by IH, that
∆ 1 β. Thus Γ 1 2β.

(ii) Suppose that Γ ∈ OΛ. By definition, Γ 
 2β iff for every ∆ such that Γρ∆, ∆ 1 β.
Suppose Γ 1 2β. Then there is some ∆ such that Γρ∆ and ∆ 
 β. By IH, for every
∆ ∈ U we have that ∆ 
 β iff β ∈ ∆. Hence, β ∈ ∆ and ¬β /∈ ∆. Since Γρ∆,
n−(Γ) ⊆ ∆ and so 2β /∈ Γ.

On the other hand, suppose that 2β /∈ Γ. Then ¬2β ∈ Γ. Since Γ is opposite, by
definition 3⊥ ∈ Γ, Γ is D-distributive and, for at least some γ, 2γ ∈ Γ, so n−(Γ) 6= ∅.
From lemma 6.14 it follows that n−(Γ)∪β is consistent and, from Lindenbaum’s lemma,
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that it is included in some MCS ∆. But then Γρ∆ and β ∈ ∆. It follows, by IH, that
∆ 
 β. Thus Γ 1 2β.

(iii) Suppose now that that Γ ∈ CΛ. By definition, Γ 
 2β iff there is some ∆ such
that Γρ∆ and ∆ 1 β. Suppose Γ 
 2β. Then there is some ∆ such that Γρ∆ and
∆ 1 β. By IH, for every ∆ ∈ U we have that ∆ 
 β iff β ∈ ∆. Thus, β /∈ ∆. Since
Γρ∆, that is, p−(Γ) ⊆ ∆, if ¬2β were in Γ we would have β ∈ ∆, what cannot be. It
follows that 2β ∈ Γ.

On the other hand, suppose that 2β ∈ Γ. Since Γ is a contrary MCS, by definition
3⊥ ∈ Γ and, given that 2β ∈ Γ, ∆ is not D-distributive. Now this means that there
are γ and δ, {2γ,2δ} ⊆ Γ and ¬2(γ∨δ) ∈ Γ, so p−(Γ) 6= ∅. From lemma 6.15 it follows
that p−(Γ) ∪ {¬β} is consistent and, from Lindenbaum’s lemma, that it is included in
some MCS ∆. But then Γρ∆ and ¬β ∈ ∆. It follows by IH that ∆ 1 β. Thus there is
some MCS ∆ such that Γρ∆ and ∆ 1 β, that is, Γ 
 2β.

(iv) Suppose now that that Γ ∈ PΛ. By definition, Γ 
 2β iff there is some ∆ such that
Γρ∆ and ∆ 
 β. Suppose Γ 
 2β. Then there is some ∆ such that Γρ∆ and ∆ 
 β.
By IH, for every ∆ ∈ U we have that ∆ 
 β iff β ∈ ∆. Thus, β ∈ ∆. Since Γρ∆, that
is, p(Γ) ⊆ ∆, if ¬2β were in Γ we would have ¬β ∈ ∆, what cannot be. It follows that
2β ∈ Γ.

On the other hand, suppose that 2β ∈ Γ. Since Γ is a perverse MCS, 2> ∈ Γ and
Γ is not C-distributive. Now this means that there are γ and δ, {2γ,2δ} ⊆ Γ and
¬2(γ∧ δ) ∈ Γ, so p(Γ) 6= ∅. From lemma 6.16 it follows that p(Γ)∪β is consistent and,
from Lindenbaum’s lemma, is is included in some MCS ∆. But then Γρ∆ and β ∈ ∆.
It follows by IH that ∆ 
 β. Thus there is some MCS ∆ such that Γρ∆ and ∆ 
 β,
that is, Γ 
 2β.

It follows that Γ 
 2β iff 2β ∈ Γ. �

6.2 Completeness for the remaining systems

The overall strategy is the same; we only need to adapt the definitions of normal,
opposite, contrary and perverse MCSs to each of the logics considered and prove the
corresponding versions of Lemmas 6.13–6.16.

6.2.1 Completeness for noc

Not having perverse points simplifies our definition of a normal MCS: an MCS ∆ is said
to be normal if 2> ∈ ∆. As for contrary and opposite points, there are no changes
with regard to Definition 6.10, and we can show without difficulty that every MCS is
either normal, opposite or contrary.

For completeness, we have only a small change in the proof of the following lemma
concerning normal MCSs.
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Lemma 6.19. Let Γ be an MCS containing 2> and ¬2α, for some formula α. Then
n(Γ) ∪ {¬α} is consistent.

Proof. Suppose that n(Γ) ∪ {¬α} is inconsistent. Since 2> ∈ Γ, n(Γ) 6= ∅. Now,
if n(Γ) ∪ {¬α} is inconsistent, then, for some finite subset {β1, . . . , βn} of n(Γ), we
have ` ¬(β1 ∧ . . . ∧ βn ∧ ¬α). It thus follows that: ` (β1 ∧ . . . ∧ βn) → α, and, since
RnK is provided in noc, we have ` 2> → ((2β1 ∧ . . . ∧ 2βn) → 2α). Now, since
{β1, . . . , βn} ⊆ n(Γ), {2>,2β1, . . . ,2βn} ⊆ Γ, and it follows that Γ ` 2α, what makes
Γ inconsistent, against the hypothesis. �

6.2.2 Completeness for no

Definition 6.20. An MCS ∆ is said to be normal if 2> ∈ ∆; otherwise, ∆ is opposite.

Notice that to show that every MCSs is either normal or opposite we need O, that
is, 2> ∨ 2⊥. Without this thesis we could have an MCS ∆ such that ¬2α ∈ ∆ for
every α (a contrary nocp-MCS). Having O rules this out.

Lemma 6.21. Let Γ be an MCS containing 2> and ¬2α, for some formula α. Then
n(Γ) ∪ {¬α} is consistent.

Proof. As in noc. �

Lemma 6.22. Let Γ be an MCS such that 3⊥ ∈ Γ and, for some formula α, ¬2α ∈ Γ.
Then n−(Γ) ∪ {α} is consistent

Proof. Since no has O, Γ also contains 2⊥, and so n−(Γ) 6= ∅. Suppose n−(Γ)∪{α} is
inconsistent. Thus, for some finite subset 2β1, . . . ,2βn of Γ, we have ` ¬(¬β1 ∧ . . . ∧
¬βn ∧ α), from what ` α→ β1 ∨ . . . ∨ βn follows. Using RqW, we obtain

` 3⊥ → (2(β1 ∨ . . . ∨ βn)→ 2α).

Since qZ is an axiom, we then have

` 3⊥ → ((2β1 ∧ . . . ∧2βn)→ 2α).

Since {3⊥,2β1, . . . ,2βn} ⊆ Γ, Γ ` 2α and is not consistent, against the lemma’s
hypothesis. Thus, n−(Γ) ∪ {α} is consistent. �

6.2.3 Completeness for nc

Definition 6.23. A MCS ∆ is said to be normal if 2> ∈ ∆; otherwise, ∆ is contrary.

We have only a small change in the proof of the following lemma concerning contrary
worlds.
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Lemma 6.24. Let Γ be an MCS such that 3⊥ ∈ Γ, 2α ∈ Γ. Then p−(Γ) ∪ {¬α} is
consistent.

Proof. Given that 3⊥ ∈ Γ, ¬2> ∈ Γ, so p−(Γ) 6= ∅. Suppose p−(Γ) ∪ {¬α} is not
consistent. Then, for some ¬2β1, . . . ,¬2βn in Γ, we have ` ¬(β1∧ . . .∧βn∧¬α), from
what ` (β1∧ . . .∧βn)→ α follows. Using RqW we obtain ` 3⊥ → (2α→ 2(β1∧ . . .∧
βn)), from what we get, using qY, which is also provided in nc, ` 3⊥ → (2α→ (2β1∨
. . . ∨ 2βn)), and thus ` 3⊥ → (¬(2β1 ∨ . . . ∨ 2βn) → ¬2α). Now this is equivalent
to ` 3⊥ → ((¬2β1 ∧ . . . ∧ ¬2βn) → ¬2α), and, since {3⊥,¬2β1, . . . ,¬2βn} ⊆ Γ,
¬2α ∈ Γ, making Γ inconsistent against the hypothesis. �

6.2.4 Completeness for nop

Normal MCSs are as in Definition 6.10. As for perverse and opposite ones, we have:

Definition 6.25.

(a) An MCS ∆ is perverse if either (i) for every α, ¬2α ∈ ∆ or (ii) 2> ∈ ∆ and ∆
is not C-distributive.

(b) An MCS ∆ is said to be opposite if 3⊥ ∈ ∆ and, for at least one formula α,
2α ∈ ∆.

We have only a small change in the proofs of the lemmas concerning opposite and
perverse MCSs.

Lemma 6.26. Let Γ be an MCS such that 3⊥ ∈ Γ, ¬2α ∈ Γ and, for at least some
formula β, 2β ∈ Γ. Then n−(Γ) ∪ {α} is consistent.

Proof. Since we have at least one β such that 2β ∈ Γ, n−(Γ) 6= ∅. So suppose n−(Γ)∪
{α} is not consistent. Then, for some β1, . . . , βn such that 2βi ∈ Γ, ` ¬(¬β1∧. . .∧¬βn∧
α), that is, ` α→ (β1∨. . .∨βn). Using RqW we obtain ` 3⊥ → (2(β1∨. . .∨βn)→ 2α)
and, by means of qZ, we get ` 3⊥ → ((2β1 ∧ . . . ∧ 2βn) → 2α). From this we see
that 2α ∈ Γ, making Γ inconsistent agains the hypothesis. �

Lemma 6.27. Let Γ be a not C-distributive MCS such that 2> ∈ Γ and, for some α,
2α ∈ Γ. Then p(Γ) ∪ {α} is consistent

Proof. As in nocp. �

6.2.5 Completeness for ncp

Not having opposite worlds simplifies our definition of a contrary MCS: an MCS ∆ is
said to be contrary if 3⊥ ∈ ∆. Normal and perverse ones are as in Definition 6.10.
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Lemma 6.28. Let Γ be an MCS such that 3⊥ ∈ Γ and 2α ∈ Γ. Then p−(Γ) ∪ {¬α}
is consistent.

Proof. Since 3⊥ ∈ Γ, that is, ¬2> ∈ Γ, p−(Γ) 6= ∅. So suppose p−(Γ) ∪ {α} is not
consistent. Then, for some β1, . . . , βn such that ¬2βi ∈ Γ, ` ¬(β1∧ . . .∧βn∧¬α), that
is, ` (β1∧ . . .∧βn)→ α. Using RqW we obtain ` 3⊥ → (2α→ (2(β1∧ . . .∧βn)) and,
by means of qY, we get ` 3⊥ → (2α→ (2β1 ∨ . . . ∨ 2βn)). From this it follows that
` 3⊥ → ((¬2β1 ∧ . . . ∧ ¬2βn) → ¬2α). But then ¬2α ∈ Γ, making Γ inconsistent
agains the hypothesis.

�

6.2.6 Completeness for np

Here we have only normal and perverse MCSs to deal with. The definitions have a
slight alteration, and the first two lemmas below can be proven as in nocp.

Definition 6.29.

(a) ∆ is normal if either (i) for every α, 2α ∈ ∆ or (ii) 2> ∈ ∆, for at least some
α, ¬2α ∈ ∆ and ∆ is C-distributive.

(b) ∆ is perverse if either (i) for every α, ¬2α ∈ ∆ or (ii) 2> ∈ ∆ and ∆ is not
C-distributive.

Lemma 6.30. Let Γ be a C-distributive MCS containing 2> and ¬2α, for some for-
mula α. Then n(Γ) ∪ {¬α} is consistent.

Lemma 6.31. Let Γ be a not C-distributive MCS such that 2> ∈ Γ and 2α ∈ Γ. Then
p(Γ) ∪ {α} is consistent

Lemma 6.32. Every MCS is either normal or perverse.

Proof. Let ∆ be some MCS. If, for every α, 2α ∈ ∆, then ∆ satisfies the first re-
quirement for normalcy. Obviously such a set will not contain any negated necessity,
for it would be inconsistent. Similarly, if, for every α, ¬2α ∈ ∆, then ∆ satisfies the
first requirement for perversity. Else we have the situation where, say, 2α ∈ ∆ and
¬2β ∈ ∆. Now if ∆ is C-distributive, it is normal. If not, since np has RM, from the
tautology α→ > we obtain 2α→ 2>, so 2> ∈ ∆ and thus ∆ is perverse. �

7 Strict classical Sylvan logics

Let us go back to Sylvan’s paper. His intention was to present relational semantics for
several strict classical systems of modal logic. We say that a modal logic is strict classical
if it includes the necessitations of all tautologies and is closed under the replacement of
strict equivalents, that is, we have the following:
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(2PL) {2α : α is a tautology},

(RRSE) αL β, γ / γ[α/β].

Well-known strict modal logics are the Lewis systems S1–S5, as well as the systems
S0.9◦ and S0.9 of Lemmon’s. In [4], Sylvan says that it is usually assumed that tau-
tologies are necessary, that whatever is strictly implied by a necessity is also necessary,
and that if something is necessary, it is also true. He thus presents a basic strict clas-
sical modal logic, called S0.6◦ in [5], which can be axiomatized adding the following
rules to classical propositional logic (where α J β is defined as 2(α→ β)):

RP1. α J β, 2α / 2β,

RN+. α / 2α, α is a tautology,

RN∗. 2α / α,

RS. α J β, β J α / 2α J 2β.

Sylvan also presents an extension of this logic, S0.7◦, obtained by adding the axiom
K to S0.6◦. Axiomatizations of S0.9◦ and S1◦ are also considered ([5], p.25).

Before going into the details of Sylvan’s proposed semantics, a few words regar-
ding strict equivalence, L. There are two ways to define it, which are not in general
interchangeable (cf. [1], p.3):

(i) αL β =df (α J β) ∧ (β J α),

(ii) αL β =df 2(α↔ β)).

However, the two definitions are equivalent (cf. [1], p.5) in a logic that provides

(RF) 2(α ∧ β) / 2α ∧2β 2α ∧2β / 2(α ∧ β).

Following Chellas and Segerberg’s distinction, we can call a logic strictT classical
(‘T ’ for ‘traditional way’) if it is closed under the replacement of strictT equivalents
(using (i) above), and strict classical if it is closed under the replacement of strict
equivalents (using (ii) above). Accordingly, there are actually two versions of Sylvan’s
rule RS, namely:

RST . 2(α→ β), 2(β → α) / 2(2α→ 2β).

RS. 2(α↔ β) / 2(2α↔ 2β).

This gives us two versions of the basic strict classical logic. We will rename Sylvan’s
version (which use RST ) to S0.6◦T , reserving the name S0.6◦ for the axiomatization
with RS. (Later we will show that they are the same logic, but there are a few results
we need to show first.) As for S0.7◦ and stronger logics, Chellas and Segerberg have
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shown ([1], p.5) that a logic that has 2PL and K also has RF, and this is the case of
S0.7◦.

For S0.6◦T and S0.6◦, then, we will also have two versions of replacement of strict
equivalents, that is:

(RRSET ) 2(α→ β), 2(β → α), γ / γ[α/β].

(RRSE) 2(α↔ β), γ / γ[α/β].

Proposition 7.1. (i) S0.6◦T is closed under RRSET and (ii) S0.6◦ is closed under
RRSE.

Proof. By standard induction on the complexity of formulas. �

Sylvan proposed semantics for S0.6◦T–S1◦ considering frames in which the normal
points are distinguished, or normal and perverse. Let us use the following naming
convention: Nocp is the logic of the class of all nocp-frames, if the set of normal points
is distinguished, that is, validity and satisfiability are relativized to the normal points
of a model. NocP is the logic of the same class of frames, but taking both normal and
perverse points as distinguished. Analogously for other logics. Sylvan’s proposal thus
amounts to this:

S1◦: No, the logic of the class of all no-frames, with normal points distinguished;

S0.9◦: Noc, all noc-frames, with normal points distinguished;

S0.7◦: Nop, all nop-frames, with normal points distinguished;

S0.6◦T : NoPs, all nop-frames, with normal and perverse points distinguished, and
the extra requirement that R is serial with regard to perverse points (that is,
for every x ∈ P there is some y such that Rxy).3

As we know, however, his proposed semantics for S0.9◦–S1 failed — they characte-
rize stronger logics. We can also show they are inadequate for S0.6◦T and S0.7◦. Which
are, then, the logics of the corresponding classes of frames above? And how do we
obtain semantics for Sylvan’s strict logics?

In their paper, Chellas and Segerberg show us a way of obtaining strict classical
logics out of classical ones — they are the Lewis versions of classical modal logics. If
Λ is a logic, Lew(Λ) is the smallest set of formulas that includes Λ, 2> and is closed
under modus ponens and uniform substitution. In general, such logics are not classical,
not being closed under RE.

An important theorem relating classical logics and their strict versions is the follo-
wing one ([1], Lemma 9.1 on p.11):

3This extra requirement is need in order to make 2> true also at perverse points — it fails if R is
not serial.
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Theorem 7.2 (Chellas–Segerberg). Let Λ be a classical modal logic and α any formula.

(a) `Λ 2> → α iff `Lew(Λ) α;

(b) `Λ α iff `Lew(Λ) 2α, if Λ provides RnN∗;

(c) Lew(Λ) is strict classical and provides RN∗, if Λ provides RnN∗.

In particular, if Λ provides RnN∗, we then have:

`Λ α→ β iff `Lew(Λ) α J β.

As we mentioned, they use mixed frames for the semantics, and validity for the
Lewis versions of the prenormal logics is defined taking the set of normal points as
distinguished: a formula is true in a model, say, if it is true at all normal points, and
valid if true at all normal points of every model based on every frame.

Thus they show that Lew(EK) is S0.9◦, and Lew(EX) is S1◦. We can additionally
show that the weaker logic, Lew(EnK) is Sylvan’s S0.7◦. Although in their paper a
Lewis version of E is mentioned (Fig. 5 on p.21), a semantics for this logic is not
provided. In fact, adding a set of normal worlds to a neighborhood frame and taking
them as distinguished does not yield the Lewis version of E, but what we could call the
normal version of E, N(E). It is easy to see that K is a thesis of N(E) (because true
at normal points), but not of Lew(E) (since E does not have nK). We will provide
semantics for Lew(E) later below, but let us now return to the strict versions of Sylvan’s
logics.

As we know from Lemma 3.1, all our Sylvan logics are classical and provide RnN∗,
so their Lewis versions are strict classical according to the theorem above.

If we add 2> as an additional axiom, we need to avoid taking opposite and contrary
worlds are distinguished, since it fails on them. 2> also fails on perverse worlds per
se — but if every perverse world sees at least another world, that is, if R is serial only
regarding perverse worlds, then N also holds. This is what Sylvan does in his paper,
when he distinguishes perverse worlds in a frame, suggesting that S0.6◦T is NoPs.

Accordingly, we have two ways of validating 2> in a frame: taking only the set of
normal worlds as distinguished, or taking both normal and perverse worlds, restricting
our attention to frames where R is P -serial.

In the next section, we discuss the strict logics obtained by distinguishing normal
worlds. An overview of the strict logics discussed in this paper can be found in Figure 3.4

4The diagram also includes a few more logics, like NocPs, N(E), Lew(EnM), which, for reasons
of space, we will not be able to examine here. Further work, in preparation, will present frames and
models for these logics, and also discuss the results of placing restrictions like reflexivity, seriality etc.
on the accessibility relation R.
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Figure 3: Strict modal logics

8 Distinguishing normal worlds

In this section we consider the logics Nocp, Noc, Ncp, Nop, No, Nc, Np, which
are, respectively, the logics of nocp-frames, noc-frames, and so on, if we take the set of
normal worlds as distinguished, that is, the validity and satisfiability of a formula in a
frame are relativized to the normal worlds of the frame. If nx is a Sylvan logic, let us
call the logic Nx thus obtained its normal version.

Some of these logics are not Lewis versions of the logic on which they are based.
Since normal worlds are distinguished, M, C, K, and X, are easily shown to be valid in
Nocp, Ncp, Nop and Np. However, nK, nC and nX are not theses of nocp, ncp,
nop, or np (recall, from Table 2, that they all fail at perverse worlds). But they should
be, according to Theorem 7.2 above, if Nocp were a Lewis version of nocp, and so on.
On the other hand, Noc, No and Nc are indeed the Lewis versions of noc, no, and
nc, respectively, since they are all prenormal, having nK, and thus nM, nC and nX,
as theses. Take noc, for example. Adding 2> as an axiom does give us C, M, K and
X. Noc is thus the Lewis version of noc — and, similarly, Nc and No are the Lewis
versions of no and nc.

If nx is a Sylvan logic, we can axiomatize its normal version Nx taking the closure
under modus ponens and substitution of the following set of formulas:

(i) all theses of nx;
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(ii) N, that is, 2>;

(iii) nC, that is, 2> → ((2α ∧2β)→ 2(α ∧ β)).

Since nM is already provided in nocp (and all its extensions), adding N and nC will
give us M, C, K and X.

Theorem 8.1. Let nx be a Sylvan logic strongly determined by some class of frames.
Then Nx is strongly determined by the same class of frames if the set of normal points
is distinguished.

Proof. For correctness, all theorems of nx are valid at any normal point of a frame, and
so are N and nC. And of course MP and US preserve validity.

For completeness, suppose Γ is an Nx-consistent set of formulas. Then Γ∪ {N,nC}
is Nx-consistent, too, and, since nx is contained in Nx, it is also nx-consistent. So
there is an nx-MCS ∆ containing Γ, N, and all instances of nC — and of C, since it
contains N. By Lemma 6.18 and its analogous for other logics, all formulas of ∆ are
true at some point of some model in the appropriate class of frames. We must now
show, for each logic, that ∆ is normal for that logic.

Since ∆ contains 2>, it is a normal MCS for noc, no, and nc.
Now the other four logics. Suppose first that, for every α, 2α ∈ ∆. Then ∆ is

nocp-, nop-, ncp- and np-normal.
Suppose now this is not the case, that is, for at least one formula β, 2β /∈ ∆, and

so ¬2β ∈ ∆. It is easy to see that ∆ is C-distributive and thus a normal point in the
canonical model for nocp-, nop-, ncp- and np, since contains all instantes of C: for
no formulas α1, . . . , αn we have {2α1, . . . ,2αn} ⊆ ∆ and 2(α1 ∧ . . . ∧2αn) /∈ ∆. �

Now two negative results regarding Sylvan’s proposed semantics.

Proposition 8.2. S1◦ is Lew(EX), not No.

Proof. That S1◦ is not No was established in [2]. Chellas and Segerberg showed further
that S1◦ is Lew(EX). Now 2C is valid in No, since C comes out true at every normal
and opposite points. But 2C is not a thesis of S1◦, what can be shown by constructing
an EX-model where C is falsifiable. On the other hand, EX is properly included in
no; thus, No includes S1◦. �

Proposition 8.3. S0.9◦ is Lew(EK), not Noc.

Proof. Chellas and Segerberg showed that S0.9◦ is Lew(EK). Again, 2C is Noc-valid,
but not a thesis of S0.9◦, since C is not EK-valid. On the other hand, EK is properly
included in noc; thus, Noc includes S0.9◦. �

We will now discuss Sylvan’s S0.6◦T , S0.6◦, and S0.7◦. But first a small preliminary
result. In analogy to the distinction between the rules RS and RST , we can introduce
two versions of the rule RE, namely:
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(RE) α↔ β / 2α↔ 2β,

(RET ) α→ β, β → α/ 2α→ 2β

The proof of the following lemma is quite easy:

Lemma 8.4. A logic is closed under RE iff it is closed under RET .

Accordingly, the smallest classical logic E can be characterized either using RE, as
it is usually done, or by means of RET . We will use this second version in the proof of
the following lemma.

Lemma 8.5. If `E α then `S0.6◦
T
2α.

Proof. By induction on theorems. If α is a tautology, then `S0.6◦
T
2α by RN+.

Suppose α was obtained by MP from β and β → α. By the induction hypothesis,
`S0.6◦

T
2β, `S0.6◦

T
2(β → α), that is, `S0.6◦

T
β J α. By RP1, `S0.6◦

T
2α.

Suppose α was obtained by US from β. By the induction hypothesis, `S0.6◦
T
2β

and, since S0.6◦T provides US, `S0.6◦
T
2α.

Suppose α = 2β → 2γ and was obtained by RET from β → γ and γ → β. By
the induction hypothesis, `S0.6◦

T
2(β → γ) and `S0.6◦

T
2(γ → β), meaning that β

and γ are strictlyT equivalent. Now 2β → 2β is a tautology; thus, by RN+, `S0.6◦
T

2(2β → 2β). And since S0.6◦T is closed under the replacements of strictT equivalents,
`S0.6◦

T
2(2β → 2γ). �

The same proposition, now for S0.6◦.

Lemma 8.6. If `E α then `S0.6◦ 2α.

Proof. The proof is analogous to the preceding lemma. We only need to consider RE
instead of RET . So suppose α = 2β ↔ 2γ and was obtained by RE from β ↔ γ.
By the induction hypothesis, `S0.6◦ 2(β ↔ γ), meaning that β and γ are strictly
equivalent. Now 2β ↔ 2β is a tautology; thus, by RN+, `S0.6◦ 2(2β ↔ 2β) and, by
replacements of strict equivalents, `S0.6◦ 2(2β ↔ 2γ). �

Lemma 8.7. If `E α then `S0.6◦
T
α and `S0.6◦ α.

Proof. Suppose `E α. By the two preceding lemmas, `S0.6◦
T
2α and `S0.6◦ 2α. Since

both logics have RN∗, `S0.6◦
T
α and `S0.6◦ α. �

Lemma 8.8. If `S0.6◦
T
α then `Lew(E) α.

Proof. If `S0.6◦
T
α then α is a tautology (in which case `Lew(E) α) or was obtained in a

proof by some of the inference rules MP, US, RP1, RN+, RN∗ or RST . Since Lew(E)
is closed under MP and US, we need to show that it provides the remaining rules.
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For RP1, suppose `Lew(E) 2(α→ β), and `Lew(E) 2α. By Theorem 7.2, `E α→ β,
and `E α. Then `E β by MP and, again by Theorem 7.2, `Lew(E) 2β.

For RN+, suppose α is a tautology. Then it is a theorem of both E and Lew(E).
By Theorem 7.2, `Lew(E) 2α.

For RN∗, suppose `Lew(E) 2α. Then `E α by Theorem 7.2, and thus `E 2> → α.
Using again Theorem 7.2, we get `Lew(E) α.

For RST , suppose `Lew(E) 2(α → β) and `Lew(E) 2(β → α). Then α → β, β → α
are theorems of E, and thus, by RET , so is 2α → 2β. But then 2(2α → 2β) is a
theorem of Lew(E) by Theorem 7.2. �

Lemma 8.9. If `S0.6◦ α then `Lew(E) α.

Proof. Analogous to the preceding lemma. We only need to consider RS instead of
RST . So suppose `Lew(E) 2(α↔ β). Then α↔ β is a theorem of E, and thus, by RE,
so is 2α↔ 2β. But then 2(2α↔ 2β) is a theorem of Lew(E) by Theorem 7.2. �

Theorem 8.10. `Lew(E) α iff `S0.6◦
T
α iff `S0.6◦ α.

Proof. Suppose `Lew(E) α. We have three cases. (i) If α is a theorem of E, by Lemma 8.7
`S0.6◦

T
α and `S0.6◦ α. (ii) If α = 2>, then `S0.6◦

T
α and `S0.6◦ α, since both logics are

closed under RN+. (iii) α was obtained by MP or US, the result also holds, since both
logics have these rules.

The other direction follows from Lemmas 8.8 and 8.9. �

From the above theorem we gather that Lew(E), S0.6◦T and S0.6◦ are actually the
same logic. We get thus the following result, against Sylvan’s contention:

Proposition 8.11. S0.6◦ is Lew(E), not NoPs.

Proof. Consider 2nM and suppose it is not a thesis of NoPs. Then 2nM fails at a
normal or perverse point x. If x is normal, there is an accessible world where nM fails.
But nM holds in all points, so that can’t be. If x is perverse, nM fails at all accessible
points. Since we are supposing that R is serial regarding to elements of P , there is at
least one accessible world y, in which nM fails. And again that can’t be. So 2nM is
NoPs-valid. Now, if it were a theorem of S0.6◦, that is, Lew(E), then nM would be a
theorem of E and thus valid. But nM is not E-valid. �

Finally, let us consider S0.7◦. This logic is obtained by adding K to S0.6◦. Now
EnK has nK, so Lew(EnK), its Lewis version, has K. We can show the following:

Theorem 8.12. `Lew(EnK) α iff `S0.7◦ α.

Proof. The overall strategy is the same as in the proof of Theorem 8.10. �

Proposition 8.13. S0.7◦ is Lew(EnK), not Nop.
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Proof. That S0.7◦ and Lew(EnK) are the same logic follows from the preceding the-
orem. Now consider nK: it is not valid in nop, so 2nK is not valid in Nop. On the
other hand, nK is valid in EnK, making 2nK valid in Lew(EnK). On the other hand,
qW is a theorem of nocp and thus of nop, making 2qW is not a thesis of Nop. Ho-
wever, as we saw on p.10 above, qW is not valid in EnK, so 2qW is not a thesis of
Lew(EnK). �

9 Final remarks

In this paper, inspired by a paper of Richard Sylvan’s, we presented a few so-called
Sylvan logics, that is, the logics of relational frames containing one or more kinds of
non-normal worlds. We proved determination theorems for several of the logics thus
obtained, and discussed theire relation to classical systems of modal logic. In a second
part of the paper, drawing on work by B. Chellas and K. Segerberg, we considered
strict logics obtained by taking, for instance, the set of normal worlds as distinguished.
We showed, among other results, that Sylvan’s claims about the semantics for S0.6◦

and S0.7◦, besides those for S0.9◦ and S1◦, are also inadequate, determining, in fact,
stronger logics.

However, many questions remain, which could not be adressed here. For instance,
we did not discuss Lewis versions of nocp, ncp, nop, and np, neither the logics of the
class of frames serial with regard to P -points, which we could call nocps, ncps, nops,
and nps, and their corresponding strict logics. Besides this, adding other conditions on
the relation R will give rise to some interesting results, at least from the technical point
of view. A related question is whether such weak logics can find interesting applications,
philosophical or other: a question for further work. As Sylvan said ([5], p.22), regarding
weak modal logics, “philosophical virtue lies in weakness”.5
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