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Abstract

In the 80’s AGM theory for Belief Revision was mainly developed by philoso-
phers and logicians, while at the same time, computer scientists were facing con-
crete problems as database update and model-based diagnoses.

Recently, with the advances in computational power, it became more plausible
to have implementations of the real theory. In this paper we explore two sides of
the relationship between AGM and Computer Science: (i) using AGM for CS, as
for example in proposals for AGM revision of system specification and (ii) using
CS for AGM, by means of real experimentation with the theory.

Keywords: belief revision, computer science, AGM, Alchourrón

1 Introduction

The seminal paper by Alchourrón, Gärdenfors and Makinson [AGM85] introduced what
is now known as the AGM theory of belief revision. The theory was was developed in
the 80’s as a means of describing how a rational agent should modify its beliefs when
confronted with new incoming information. The AGM theory of belief revision was de-
veloped by two philosophers, Peter Gärdenfors and David Makinson, and a lawyer(!),
Carlos Alchourrón, that devoted his brilliant carrier to the study of the logic of norma-
tive systems [AB71]. AGM theory quickly became a sort of a golden standard against
which one should evaluate any new ideas.

Parallel to the development of the AGM theory, Fagin et al. [FKUV86] described
the closely related problem of updating a database – the “view updating problem”.
The authors describe two main problems of view update: its lack of unique solution
and the difficulty of guarantying integrity constraints after an update.

The development of belief revision theory helped the understanding of such prob-
lems. Katsuno and Mendelzon [KM91], for example, argued that there is a subtle, but
very important difference between what they called revising and updating a theory. In
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the first case, the agent acquired new information about a static world that it must
incorporate in its beliefs. In the second, the world itself has evolved and, hence, the
agent should incorporate some information about the new state of affairs. Since each
of these types of change has is own characteristics, before dealing with view update in
a database, one must understand its nature.

Furthermore, the problem of the multiple solutions is dealt elegantly in belief re-
vision framework. Instead of proposing an unique, inevitably ad hoc, solution for a
revision operation, AGM theory states that it must satisfy certain rationality postu-
lates i.e. the theory describes constraints that a solution must satisfy.

Another classical example of application of Belief Revision in Computer Science is
its use in Artificial Intelligence. Following Newell [New82], knowledge should be under-
stood functionally in terms of what it does instead of how it is represented. Levesque
[Lev84] gives a step further arguing that an agent’s knowledge should be a kind of
abstract datatype accessible only through a fixed number of operations such as TELL,
FORGET and ASK. Belief revision theory follows this functional view of knowledge. The
beliefs of an agent are represented as a closed set of formulas and the theory describes,
from a very abstract and functional point of view, how it should incorporate incon-
sistent knowledge (TELL) and how it should abandon undesirable pieces of knowledge
(FORGET).

Besides providing important applications to belief revision theory, the converse, i.e.
using computers to model belief revision, is also possible and promising. According
to Bynum and Moor, computing should be seen as a tool for testing and evaluating
philosophical ideas:

“Computing and related concepts significantly enhance philosophy by pro-
viding a kind of intellectual clay that philosophers can mold and shape and
study. Through computing, abstract ideas – which philosophers like to ma-
nipulate – can be instantiated and investigated. There is nothing wrong with
good armchair reflection without the aid of a computer, (. . . ) But armchair
reflection has its limitations. As sophisticated as our imaginations and rea-
soning skills may be, there are practical limits to how much complexity we
can process without some assistance. Armchair recursion doesn’t recur very
many times. But when ideas are modeled on a computer, consequences,
especially consequences that emerge after complex processing, are revealed
in a way that would be completely overlooked without such computer pro-
cessing. Models and methods can be made more precise, tested and refined.
These philosophical results of computing can be shared with others who also
can submit them to their own scrutinity and development.”[BM98]

Even the theory of belief base revision [Han99], which seems to be closer to appli-
cation needs, lacks empirical studies which show how it performs in practice.
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This work, as a tribute to the work of Alchourrón, aims to present a short review of
current usages of belief revision theory in computer science. Furthermore, it presents
a concrete example on how computer science can be used to provide insights to belief
revision theory itself.

Section 2 presents the background, i.e. introduces the notation and briefly presents
belief revision theory. Sections 3 to 4 presents two important fields of CS that can
benefit from belief revision techniques: software specification and ontology evolution.
The following section describes a concrete example of how Computer Science can be
used to increase our understanding of Belief Revision through empirical testing. The
last section concludes the paper.

2 Preliminaries

Consider a logic as a pair 〈L , Cn〉 such that L is a language, i.e. the set of formulas,
and Cn : 2L → 2L a consequence operator.

In AGM theory, a belief set as a set of sentences closed under logical consequence
i.e. K = Cn(K). Three basic operations are defined over a belief set: expansion (+),
contraction (−) and revision (∗). The first is the simple addition of a new sentence in
K and is defined as K + α = Cn(K ∪ {α}). As mentioned in the introduction, the
other operations do not have a single solution, hence, they are defined through sets of
rationality postulates. In a few words, revision postulates state that K∗α is a consistent
belief set that contains α and contraction postulates state that K−α is a belief set that
does not contain α.

Besides presenting rationality postulates that the operations must satisfy, AGM
theory presents ways to construct such operation. One example of construction for
contraction, called partial meet contraction, consists of the intersection of some of the
maximal subsets of K that do not imply α. The choice of the maximal subsets of K to
be intersected is an extra-logical element of the theory. The construction is represented
as:

K − α =
⋂

γ(K⊥α)

where K⊥α is the set of maximal subsets of K not implying α and γ is a function that
selects some of these subsets.

The main result in AGM theory is the representation theorem which proves, on one
hand, that every partial meet contraction satisfies the AGM postulates for contraction
and, on the other hand, that every AGM contraction can be constructed as a partial
meet contraction.

Usually, revision is defined via contraction using the so called Levi identity:

K ∗ α = (K − ¬α) + α
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Again it is proved that the revision operation constructed via the Levi identity and
partial meet contraction satisfies AGM postulates.

One important limitation of AGM theory, from a computational point of view, is that
closed sets are typically infinite, even if in some cases they can be finitely represented.
In a series of papers and a book [Han99], Hansson proposes to generalize AGM theory
to arbitrary sets of formulas called belief bases. Besides being computationally easier
to handle, belief bases are more expressive than belief sets. For instance, there is only
one inconsistent belief set while there are many different inconsistent belief bases. This
is due to the fact that, differently from belief sets, belief bases distinguish explicit
from implicit beliefs. One may argue, however, that belief bases are much more syntax
dependent.

As in the AGM theory, the same basic three operations are defined. Expansion
in belief bases is simply B + α = B ∪ {α} and the other operations are also defined
via different sets of postulates and constructions, linked by representation theorems.
Besides partial meet contraction, an important construction proposed by Hansson is
that of kernel contraction [Han99]:

B − α = B \ σ(B ⊥⊥ α)

where B ⊥⊥ α is the set of minimal subsets of B implying α and σ is a function that
selects at least one element of each minimal subset.

In the next two sections, we present two areas of Computer Science where we have
recently applied belief revision operations.

3 Revision of Software Specification

Complex systems are usually maintained by different people. In the process of formally
specifying a system, a software engineer (or a team of engineers) may have to deal
with requirements coming from different users, which may be jointly inconsistent. The
engineer may also misunderstand the users’ requirements, leading to the need of a
revision of the specification. The need to update often arises when an user changes
some of the requirements which were modelled.

A popular and efficient method for automated verification of systems specification,
model checking consists in verifying whether a given system model satisfies the required
properties. In this paper, we will focus on problems where the system is described as a
Kripke model and the required properties to be checked are formalized in the temporal
logic CTL [CE81].

In the last decades, several tools for automated model checking have been proposed
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(CadenceSMV1, NuSMV2, SPIN3). A common characteristic of these systems is that
they provide a counterexample in the cases where the model does not satisfy a given
property. However, the systems do not help to solve the problem. Belief revision can
help with this task: given a counterexample, we would like to look for minimal changes
in the specification so that the property is satisfied.

What we would like to add to the existent model checkers is the ability to suggest
changes. As an example, de Sousa and Wassermann have implemented a belief revision
layer on top of NuSMV [dSW07]. The system provides, instead of a counterexample,
suggestions for the minimal changes needed in the model so that it satisfies the given
properties. The changes are given in the form of addition or removal of states or
transitions.

The implementation of BR-NuSMV was useful in order to test our initial ideas. How-
ever, there are still many interesting theoretical issues to be solved. The AGM theory
and even the results for belief base change depend on the compactness of the underlying
logic. Since CTL is not compact, the relation between constructions and rationality
postulates is still not clear. A first step was done in [GW10], where a construction was
defined and shown to satisfy a set of postulates. The proposed construction was based
on minimal changes in the Kripke model, as was the case in BR-NuSMV. While in classi-
cal AGM theory changes in models and changes in sets of formulas are interchangeable,
Guerra and Wassermann have shown that this is not the case in CTL [dTOGW13]. Re-
cently, van Zee et al. [vZDDvdT15] have provided representation theorems for changes
in temporal formulas, but restricting them to a certain time limit.

4 Revision of Ontologies

In the last decade, we have seen great interest in Computer Science for ontologies,
by means of formal languages used to represent knowledge about a certain domain.
The most widely used languages, the members of the OWL family [PH12], are based
on Description Logics [BCM+03]. There are already many tools available for building
and reasoning with ontologies, such as graphical editors (e.g. Protégé4), reasoners (e.g.
Pellet5, HermiT6) and APIs (e.g. Jena7, OWL API8). Ontologies may be used together
with databases in two different ways: the database system is used to store the data in

1http://www.kenmcmil.com/smv.html
2http://nusmv.fbk.eu/
3http://spinroot.com/spin/whatispin.html
4http://protege.stanford.edu/
5http://clarkparsia.com/pellet/
6http://hermit-reasoner.com/
7http://jena.apache.org/
8http://owlapi.sourceforge.net/



452 R. Wassermann and M. M. Ribeiro

the ontology or the ontology is used in order to access the data in a database in a more
flexible way.

More recently, we see a growing interest in the dynamics of ontologies, with the
need to revise, update or deal with inconsistencies. There are a number of workshops
dedicated to the matter (IWOD, later EvoDyn, ARCOE, ...). Most Description Logics,
however, are not compliant with AGM theory in the sense that no operation that
satisfies the AGM postulates can be constructed [FPA05]. More precisely, Flouris et. al.
defined a property of a logic called decomposability. In decomposable logic 〈L , Cn〉 for
every K,A ⊆ L such that ∅ 6= A ⊂ K there is X ⊂ K such that Cn(X ∪A) = Cn(K)
called the complement of A w.r.t. K. The authors proved first that, in order to be
compliant with AGM postulates for contraction, a logic must be decomposable. Second,
most DLs are not decomposable and, hence, not AGM compliant.

Makinson in [Mak87] proposes an operation called withdrawal which satisfies every
AGM postulate except recovery. It can be proved that any (Tarskian) logic is compliant
with the withdrawal postulates. Hence, The impossibility to construct AGM contrac-
tion in DLs seems to be related to the recovery postulate. Years before this finding,
Hansson already criticized this postulate in [Han91] and suggested to exchange it to
some postulate that directly guaranties the minimality of change. Two postulates were
presented for this purpose: relevance and core-retainment. Both, however, were proved
equivalent to recovery in the presence of the other AGM postulates for contraction
which led the author to conclude the following:

“[Recovery postulate should be accepted as an] emerging property, rather
than as a fundamental postulate, of belief set contraction”

In [RWFA13] the authors proved two important results. First it was proved the
representation theorem relating partial meet contraction to the AGM postulates when
recovery is exchanged by relevance. The novelty of the result is that, differently from
the original result in [AGM85], it holds for every logic which is Tarskian and compact.
Hence, a much wider class of logics is compliant when relevance is used instead of
recovery. Second, it was proved that for many logics, DLs in particular, the equivalence
between relevance and recovery doesn’t hold in general. Hence, in such cases, recovery
fails to capture the concept of minimality.

Furthermore, most DLs are not closed under negation, which poses interesting ques-
tions for applying belief revision operators. The lack of negation of axioms in most DLs
prevents the usage of Levy identity to construct revision. In [RW09a, RW10] we have
provided a direct construction (based on the set of maximal subsets of a belief set K
that is consistent with a sentence α), a set of postulates and a representation theorem
for revision of belief sets. This results are applicable for only a fraction of DLs, those
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we called distributive9. This work was complemented in [RW14] where the following
postulate was presented:

(strong inclusion) K ∗ α ⊆ (K ∩K ∗ α) + α

We proved that strong inclusion together with certain postulates from belief base
literature characterizes a construction very similar to partial meet revision. This result
hold not only to distributive logics, but for every (Tarskian) compact and explosive10

logic.
In [RW09b] we presented a collection of sets of postulates and the respective con-

struction that it characterizes. The strategy used to avoid negation was to first insert
the new sentence α and the remove the inconsistencies taking care not to remove α in
the process. To illustrate the theory developed in [RW09b], we have implemented a
Protégé Plugin [RW08] which revises or contracts the ontology being edited, giving the
user choices between the several different operators. The ReviewAndContractProtege-
Plugin 11 uses the OWL API and the reasoner Pellet.

Two hot topics in ontology management are conflict resolution (given a single in-
consistent ontology, either solve or isolate the inconsistencies) and merging (given two
or more ontologies, join them in a consistent way), both widely studied in the belief
revision literature [BDP95, KP11].

5 Empirical Testing

Even if we restrict ourselves to propositional logic, partial meet and kernel construc-
tions make extensive use of theorem provers, or SAT solvers. And the SAT problem
for propositional logic is long known to be intractable. However, with the advances in
computational power in the last years, we can now adventure ourselves in implemen-
tations that were not possible before. The recent SAT competitions12 show that it is
already possible to deal with a good part of the SAT problems. This means that we
can empirically evaluate the different operators proposed in the literature and see how
they behave in practice.

Around the time of the development of the AGM theory, Reiter has proposed his
theory for consistency based diagnoses [Rei87], together with an algorithm for comput-
ing minimal hitting sets. Although developed with a very particular purpose in mind,
Reiter’s algorithm was later shown to be easily adaptable to be used for computing

9In a distributive logic every A,B,C ⊆ L satisfies the following: Cn(A ∪ (Cn(B) ∩ Cn(C))) =
Cn(A ∪B) ∩ Cn(A ∪ C)

10A logic is explosive if there is a finite set A ⊆ L such that Cn(A) = L
11http://code.google.com/p/review-and-contract/wiki/ReviewAndContractProtegePlugin
12http://www.satcompetition.org/
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belief contraction operations [Was00]. This algorithm has served as a basis for many of
the implementations described in what follows.

5.1 BContractor

For this purpose, we have been working on a framework for general testing, the BCon-
tractor13, which allows us to compare the behavior of the operators and try to get new
insights that can be used to refine the theory.

BContractor [LRW12] was developed in order to provide a simple and uniform
ground for testing contraction operators. The idea was to have an architecture pro-
viding the common constructs used in the literature (remainders, kernels, incision func-
tions, selection functions), so that new operators based on them could be quickly coded.
As a result, translation from formulas and pseudo-code to real working code is direct.
An operation of partial meet contraction is encoded by:

public ISet<S> contract(ISet<S> base, S sentence) {

return intersection(this.selection(this.remainder(base, sentence)));

}

An important feature of BContractor is that it also abstracts away the particular
logic being used. One has to provide the preferred theorem prover for the logic chosen
and for some constructions, a method for calculating the negation of a formula. The
framework has been tested with propositional logic, using miniSAT14 and SAT4J15, and
with description logics, using HermiT16.

The framework also provides facilities for generating random tests and for measuring
different parameters such as time, size of the answer, and number of calls to the theorem
prover.

BContractor was used as a basis for different implementations and tests, such
as merging ontologies [CRW13], multiple contraction [RRW14] and ontology repair
[CW15].

5.2 Case Study - Kernel vs. Partial Meet

The initial motivation for the development of BContractor was to compare the per-
formance of kernel and partial meet contraction. Theoretically, the two constructions
have the same computational complexity. Moreover, it had been widely accepted that

13http://code.google.com/p/bcontractor/wiki/GettingStarted
14http://minisat.se/
15http://www.sat4j.org/
16http://hermit-reasoner.com/
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partial-meet only made sense as a theoretical construction, and that for implementa-
tions, kernel should be used, since it deals with minimal sets implying a formula instead
of maximal sets not implying the formula. Some preliminary and very näıve implemen-
tations have shown that usually, it takes longer to compute the kernel sets than the
remainders.

It is clear that dealing with smaller sets does not bring any advantages in the
performance. Extensive tests performed with BContractor have shown that indeed,
computing the remainder sets is on average faster [LRW12].

When trying to understand why this happens, we have measured a number of pa-
rameters during the executions. From the results, we see that computing remainders
usually involves less calls to the SAT-solver. There are also more kernel sets than
remainders.

One possible explanation of the difficulty in computing kernels may be related to the
phenomenon known as Phase Transition [CKT91]. For the SAT problem, this has been
studied and is now reasonably well-understood. Although the problem is NP-complete,
some instances are harder than others [SLM92]. The harder instances lie where the
ratio between the number of clauses and the number of variables is around 4.3 [GW94].

6 Conclusion

In this paper we made a case for the fact that computer science and belief revision can
both gain from interacting with each other. Distant fields from database updating to
ontology evolution and software specification can all get important insights from belief
revision. This has been illustrated by concrete examples.

In software specification belief revision has been used to provide the ability to suggest
model changes. In ontology evolution, revision and contraction are operations that
occur naturally. AGM solution, though, is not directly applicable in this framework.
In adapting the theory important results were achieved.

Furthermore, computational power, as argued by Bynum and Moor, can and should
be used to experiment in philosophical issues. In this direction we presented a concrete
example on how to use computers to empirically test an hypothesis, namely, that kernel
and partial meet contraction, although equivalent from a computational complexity
point of view, present very distinct efficiency results.
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[CW15] Raphael Cóbe and Renata Wassermann. Ontology repair through partial
meet contraction. In Richard Booth, Giovanni Casini, Szymon Klarman,
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[RRW14] Fillipe Resina, Márcio Moretto Ribeiro, and Renata Wassermann. Algo-
rithms for multiple contraction and an application to OWL ontologies.
In 2014 Brazilian Conference on Intelligent Systems, BRACIS 2014, Sao
Paulo, Brazil, October 18-22, 2014, pages 366–371. IEEE, 2014.
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[RW09a] Márcio Moretto Ribeiro and Renata Wassermann. A{G}{M} Revision
in Description Logics. In Proceedings the IJCAI Workshop on Automated
Reasoning about Context and Ontology Evolution (ARCOE), 2009.
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