
South American Journal of Logic
Vol. 1, n. 2, pp. 401–434, 2015
ISSN: 2446-6719

Conditional Reasoning with String Diagrams

Clayton Peterson

Abstract

String diagrams are useful tools in many disciplines, including physics, com-
puter science and linguistics. Their language is closely related to category the-
ory. From an epistemological point of view, category theory offers a foundational
framework that enables us to see the common structure shared by these disci-
plines, namely the structure of a monoidal category. This structure can also be
found in other fields of study, for instance in logic. Accordingly, it appears that
string diagrams could be applied in logic to model reasonings. In this research ar-
ticle, we apply string diagrams to deontic logic and use them to model conditional
normative inferences. Building on previous work, we define a deductive system
for conditional normative reasoning CNR and show that it is sound and complete
with respect to a string diagrammatic semantics. A decision procedure is provided
and string diagrams are used to test the validity of conditional inferences.

Keywords: Deductive system, Deontic logic, Normative inference, Validity

1 Introduction
String diagrams are useful tools in physics and computer science. They allow to visually
represent the flow of information and the transformation processes. Recently, Baez and
Stay [3] proposed a string diagram calculus and showed how it offers common grounds
not only for physics and computer science, but also for logic and topology. Their
proposition is twofold. First, they argue that category theory offers a rich and powerful
foundational framework that enables us to abstract the common structure shared by
different fields of study. In this respect, they show how it offers a common framework
for physics, computer science, topology and logic. Secondly, they insist on the fact that
string diagrams offer an alternative way to present categorical notions (on this point, see
also [30]). Given that string diagrams are closely related to the language of category
theory, Baez and Stay argue that string diagrams could be used as a foundational



402 C. Peterson

framework, allowing a visual representation of the transformation processes that are
modeled within these disciplines.

In logic, these transformation processes happen between two formulas through a
consequence relation. Representing a proof or a deduction by an arrow ϕ −→ ψ, a
reasoning can be viewed as a transformation process where we input a list of formulas
(the conjunction of the premises) and obtain a new one (the conclusion) through the
application of some rules and axioms. From a categorical standpoint, logical systems
can be proven to be instances of free categories where arrows are proofs and objects
are formulas. Historically, this categorical understanding of logic is due to the ground-
breaking work of Lambek [19, 20]1, who provided a foundational framework that enables
us to classify different deductive systems as (free) categories with specific structures.2
In light of Baez’s and Stay’s proposal, this framework allows us to construct a string
diagrammatic semantics for deductive systems. Using diagrams as a semantics is not
in itself something new. For instance, Girard [12] used a proof net semantics to model
linear logic. The interest of Baez’s and Stay’s approach is that their string diagram-
matic language can be applied to a wide variety of deductive systems and substructural
logics.

The aim of the present paper is to apply Baez’s and Stay’s string diagrams to our
previous work in deontic logic and normative reasoning (cf. [26, 27]). The objective
is to introduce a diagrammatic semantics that allows to visually represent and to test
the validity of conditional normative inferences. To make this paper self-sufficient,
we begin by summarizing the foundational framework we adopt in section 2, where
we expose the relationship between category theory, monoidal deductive systems and
string diagrams. Then, we briefly present in section 3 the deductive system CNR. This
logic was introduced in [27] and is meant to model conditional normative reasoning. We
show that it is sound and complete with regards to a string diagrammatic semantics
and, further, we use string diagrams to show that it is decidable. In light of the
decidability of CNR, we analyze Chisholm’s [8] paradox in section 4 to exemplify how
string diagrams can be used to test the validity of normative inferences. We conclude
in section 5 with avenues for future research.

1See also Lambek and Scott [21].
2Note that we only partially follow Lambek in his categorical understanding of logic. We do not

define deductive systems as categories but rather use their categorical properties to classify them. See
[28, 27] for details.



Conditional Reasoning with String Diagrams 403

2 Category theory, string diagrams and deductive sys-
tems

String diagrams can be used in physics (e.g., [3]) and computer science (e.g., [23]) to
represent the flow of information and the transformation processes. They can also be
used in linguistic to model meaning (cf. [9]). This is possible given that these structures
can be compared on the basis that they all involve instances of monoidal categories,
which are coherent with specific diagrammatic languages (cf. [30]).

Following Mac Lane [22], a monoidal category is a category C equipped with an
associative tensor product ⊗ (a functor) and a unit object 1, satisfying the following
natural isomorphisms together with the triangle and pentagon identities.3

aϕ,ψ,ρ : (ϕ⊗ ψ)⊗ ρ −→ ϕ⊗ (ψ ⊗ ρ)
lϕ : 1⊗ ϕ −→ ϕ

rϕ : ϕ⊗ 1 −→ ϕ

In a nutshell, a category is a structure where each object has an identity arrow
that satisfies the identity laws (i.e., given f : ϕ −→ ψ and g : ψ −→ ρ, f = 1ψf
and g = g1ψ) and where composition gf : ϕ −→ ρ for two arrows f : ϕ −→ ψ and
g : ψ −→ ρ is defined and is associative (i.e., given h : ρ −→ τ , (hg)f = h(gf)). The
category becomes monoidal when we add an associative operation that comes with an
object that satisfies the aforementioned equations.

A symmetric monoidal category comes with a braiding morphism (a natural trans-
formation) βϕ,ψ : ϕ⊗ ψ −→ ψ ⊗ ϕ. This morphism is its own inverse.4 In a symmetric
monoidal category, the tensor product is commutative and it respects the hexagon
identities.

A monoidal category is closed when the tensor product possesses a right adjoint
functor(, which happens when HomC(ϕ⊗ ψ, ρ) ∼= HomC(ϕ,ψ( ρ).5

Following [28, 27], consider a language L = {Prop, (, ),⊗, 1,(, ., 0}, where Prop is
a collection of atomic formulas pi and well-formed formulas are recursively defined as
follows:

ϕ := pi | 0 | 1 | ϕ⊗ ψ | ϕ( ψ | ϕ . ψ

In this language, ⊗ is a tensor with unit 1 and ( /. are the conditionals (i.e., its
ajdoints). Monoidal logics are defined using the rules and axiom schemata presented
in figure 1. Negations are defined by ∼ ϕ =df ϕ( 0 and ¬ϕ =df ϕ . 0. A double line
means that the rule can be applied both top-down and bottom-up.

3See [22] for the explicit categorical definitions.
4If not, then it is a braided category.
5Note that if the category is not symmetric, then there can be two different adjoints( and . such

that HomC(ϕ⊗ ψ, ρ) ∼= HomC(ψ,ϕ . ρ).



404 C. Peterson

(1)ϕ −→ ϕ (∼ ¬)∼ ¬ϕ −→ ϕ (¬ ∼)¬ ∼ ϕ −→ ϕ
ϕ⊗ ψ −→ ρ

(cl’)
ψ −→ ϕ . ρ

ϕ −→ ψ ψ −→ ρ
(cut)ϕ −→ ρ

ϕ −→ ψ ρ −→ τ
(t)

ϕ⊗ ρ −→ ψ ⊗ τ
ϕ⊗ ψ −→ ρ

(cl)
ϕ −→ ψ( ρ

ϕ −→ ψ ⊗ 1
(r)

ϕ −→ ψ

ϕ −→ 1⊗ ψ
(l)

ϕ −→ ψ

τ −→ (ϕ⊗ ψ)⊗ ρ
(a)

τ −→ ϕ⊗ (ψ ⊗ ρ)
ϕ −→ ψ ⊗ τ

(b)
ϕ −→ τ ⊗ ψ

ϕ −→ ψ ϕ −→ ρ
(⊗-in)

ϕ −→ ψ ⊗ ρ
ϕ −→ ψ ⊗ ρ

(⊗-out)
ϕ −→ ψ

ϕ −→ ψ ⊗ ρ
(⊗-out)ϕ −→ ρ

Figure 1: Rules and axiom schemata for monoidal logics

A deductive system is defined as a collection of formulas together with a collection
of equivalence classes of proofs satisfying an axiom (1) expressing the reflexivity of the
consequence relation and a rule (cut) representing its transitivity. From a categorical
perspective, a deductive system can be proven to be an instance of a free category where
objects are formulas and arrows are (equivalence classes of) proofs. Depending on the
rules and axiom schema that are adopted, one can defined a monoidal deductive system
as a deductive system satisfying (t), (a), (l) and (r), a monoidal closed deductive system
as a monoidal deductive system satisfying (cl) and (cl’), a symmetric deductive system
as a monoidal deductive system satisfying (b) or a Cartesian deductive system as a
monoidal deductive system satisfying (⊗-in) and (⊗-out). Closed deductive systems can
have classical negations through the satisfaction of (¬ ∼) and (∼ ¬). These deductive
systems can be proven to be instances of free monoidal, closed, symmetric and Cartesian
categories, respectively. The logical connectives can be proven to be functors that act
on both formulas (objects) and proofs (arrows). Accordingly, deductive systems can be
classified with respect to their categorical structure and their functorial properties.6

The interest of using category theory as a foundation for logic is that it enables us
to bring to light the monoidal structure of logical systems. Considering that monoidal
categories have specific string diagrammatic languages, it follows that we can define
a string diagrammatic semantics for monoidal deductive systems. This semantics is
not a mere artifact but is a powerful tool that can be used to determine the validity
of normative inferences. There is a wide variety of monoidal categories and they all
can be represented via a diagrammatic language. We refer the reader to the paper of
Selinger [30] for a thorough presentation of the subject and to Joyal and Street [17, 16]
for a more formal treatment. In what follows, we summarize the string calculus of Baez
and Stay [3] and adapt it to our needs.

When one looks at logic from a categorical perspective, formulas are seen as objects
6If the deductive system is symmetric,( / ∼ can be reduced to ./¬ and vice versa.



Conditional Reasoning with String Diagrams 405

while proofs (deductions) are considered as arrows. In a string diagram language,
formulas are considered as oriented strings while proofs are seen as transformation
processes from one string to another. Hence, in string diagrams, a proof f : ϕ −→ ψ is
represented as follows. The orientation of the string is indicated by the arrowhead. In
this case, f transforms the input ϕ into the output ψ.

f

�� ϕ

�� ψ

The identity process 1ϕ is a transformation process that makes no change on a string
ϕ.

��ϕ 1ϕ

�� ϕ

�� ϕ

⇔

Equivalence between diagrams (denoted by ‘⇔’) should be understood as a rewrite
operation. Two diagrams are considered as ‘equivalent’ when one can be rewritten into
the other, and vice versa (i.e., the graphs can be deduced from one another through the
rewrite rules). For instance, the graph representing the string ϕ can be rewritten into
the graph representing the identity process 1ϕ that takes a string as an input, makes
no change and then gives the string back as an output. Similarly, the identity process
can be rewritten into the string ϕ. In this respect, these two graphs are equivalent. It
should be noted, however, that equivalent graphs do not necessarily represent the same
transformation processes (e.g., with the currying and uncurrying operations below).

This representation provides a language for categories, where the objects are strings
and the arrows are transformation processes. It is easy to show that this language
satisfies the definition of a category. Indeed, two strings f : ϕ −→ ψ and g : ψ −→ ρ
can always be composed. Further, given h : ρ −→ τ , the diagram of h(gf) is equiv-
alent to the diagram (hg)f . Indeed, we simply have to connect the strings to obtain
hgf : ϕ −→ τ .

f

�� ϕ

g

�� ψ

h

�� ρ

�� τ



406 C. Peterson

Moreover, composing with identity respects the identity laws (i.e., 1ψf = f and
g1ψ = g). In other words, one can strengthen at will either the string of the input or
the string of the output.

The string diagrammatic language for monoidal categories is obtained by requiring
that composition of strings respects the representation of parallel processes.

�� 





 ��

f ⊗ g

ϕ

ψ

ρ

τ

��

��

f ⊗ g

ϕ⊗ ρ

ψ ⊗ τ
f

�� ϕ

�� ψ

g

�� ρ

�� τ

⇔ ⇔

Note that this graph is constrained by f , g and f ⊗ g. For instance, if one replaced
f ⊗ g by h in the aforementioned diagram, then one could not conclude legitimately
that there are f : ϕ −→ ψ and g : ρ −→ τ . Given two processes f and g, one can make
them run in parallel via f ⊗ g.7 The unit is drawn as a blank space:

f

�� ϕ
⇔ f

�� ϕ

�� 1

f

�� ϕ

⇔ f

�� 1

�� ϕ

The commutativity of the tensor product is obtained by allowing for braiding be-
tween strings. From this, we obtain that if we braid and then undo the braid, we get
what we started with.

The symmetry of the braiding is obtained by requiring that the braiding rule is its
own inverse. This is represented by the following rewrite rule:

The representation of a conditional requires the introduction of an artifice (cf. [3]),
7This is related to the fact that ⊗ is a functor that acts on both objects and arrows. The arrow

f ⊗ g : ϕ⊗ ρ −→ ψ ⊗ τ is given by ⊗(f, g) form f : ϕ −→ ψ and g : ρ −→ τ .



Conditional Reasoning with String Diagrams 407

namely a string oriented in the other direction.8 Considering the orientation of a string,
we can flip it over and obtain its dual string, going in the opposite direction. The little
‘clasp’ is used to bind the two strings together and redirect the orientation of the string
ϕ.

OO
����ϕ( ψ ϕ ψ⇔

This ‘claps’ can be understood as a transformation process. The notation will be
better understood if we consider the rewrite rules governing the relation between the
tensor product and its adjoint. In string diagrams, the relation between ⊗ and ( is
represented by a currying and an uncurrying operation. The currying process is from
left to right while uncurrying is from right to left.

OO

��

��

�� ��

��

f f̃

ψϕ

ρ ϕ

ψ

ρ

⇔

A string can be considered as an input when it is oriented towards a transformation
process and, similarly, it can be seen as an output when it goes in the opposite direction.
Here, the ‘clasp’ binds the two strings together and redirect the orientation of the string
ϕ, turning ϕ( ρ into an output. Informally, currying means that one can bend down
the string of the input ϕ and attach it to ρ to create an output ϕ( ρ. In this case, the
string ϕ is linked to the output ρ via the ‘clasp’ binding the strings together. Similarly,
uncurrying means that one can ‘unclasp’ the strings and unbend the string ϕ. By doing
so, the string ϕ becomes an input which is oriented towards the transformation process.

From this rewrite rule and the fact that the unit can be drawn as a blank space, we
obtain that a string representing a conditional can be represented as a transformation
process, and vice versa. That is, if we assume that there is a transformation process
f : ϕ −→ ψ, then ϕ ( ψ is the output of the unit and, similarly, if from the unit
one gets as an output the conditional ϕ ( ψ, then there is a transformation process
f : ϕ −→ ψ.

8Baez and Stay use dual strings to represent compact closed categories. Here, we only use it as an
artifice to represent the conditionals. Hence, we will omit all the considerations regarding the zig-zag
equations and the bubbles restricting their use.



408 C. Peterson

OO

��

��

�� ��

��

1ϕ

ψ ϕ

1

ψ

⇔⇔ ⇔

ϕ ψ

f

�� ϕ

�� ψ

OO
��

Hence, the notation is meant to suggest that a conditional is, to some extent, a
transformation process. This can be exemplified further if we consider ©C below. From
the currying and uncurrying rewrite rules, we obtain the following equivalent diagrams.

OO
��

OO ��

ϕ ψ

ϕ ψ

��

��

OO ��

C

ϕ ψϕ

ψ

⇔⇔��ϕ( ψ

The string ϕ ( ψ can be understood as a transformation process in light of
©C . Indeed, if we input ϕ into ©C , then the process returns ϕ upward, which is then
redirected and transformed into ψ through the ‘claps’ binding the strings together and
returned into ©C to output ψ.9 Therefore, the graph of the string ϕ( ψ is equivalent
to the graph of a transformation process that allows to transform ϕ into ψ.

So far, we have presented the string diagrammatic language for a symmetric closed
category. To suit our purpose, we need to augment Baez’s and Stay’s string diagrams
with a transformation process allowing to eliminate double negations. Thus, we aug-
ment the language with a transformation process ©∼ that erases the double negation.

∼
�� ∼∼ ϕ

�� ϕ

From this, we obtain the following equivalence.

��∼∼ ϕ ��ϕ⇔

9This is an analogue to modus ponens in logic: from ϕ and ϕ( ψ one can derive ψ.



Conditional Reasoning with String Diagrams 409

As we will see, we will add two other transformation processes to our string diagram-
matic language. But first, let us present the logical system for conditional normative
reasoning.

3 Logic for conditional normative reasoning

3.1 Syntax

We showed in [27] how defining a deontic logic as a symmetric closed deductive system
with classical negation (which can be proven to be an instance of a free symmetric
closed category) enables us to answer the arguments in favor of non-monotonic or
adaptive foundations for deontic logic. These results were extended in [26] where we
constructed a deontic deductive system to model conditional (CNR) and unconditional
(OL) normative reasoning. Following [28], we defined these fragments as fibrations
based on an action logic AL and a propositional action logic PAL and we presented a
semantics within the framework of residuated partially ordered monoids (cf. [10]).

The aim of the present paper is to extend these results and provide a diagrammatic
semantics for CNR. This will be helpful to test the validity of conditional normative
inferences. The logic for conditional normative reasoning CNR was initially defined
on the grounds of an action logic AL. For the purpose of the present article, we leave
aside the semantical considerations of AL and concentrate only on CNR. Nonetheless,
we summarize the language of AL so the reader might understand the formulas in the
scope of the deontic operators.

Given Act a collection of atomic actions ai, the well-formed formulas WFFAL (of
type act, for actions) are recursively defined from the language LAL = {Act, •, ∗,	,y
, (, )} as follows:

α := ai | ∗ | α • β | α	 β | α y β

Here, • and y are two different tensors with unit ∗. The connective 	 is the adjoint
of •. Briefly, • represents (simultaneous) action conjunction, y action sequence and
	 means ‘without’. Action negation is defined by α∗ =df ∗ 	 α and AL is defined
as a compact closed deductive system (see [28] for details).10 It can be proven to be
an instance of a free compact closed category (cf. [18]). The fragment {Act, •, ∗,	, }
is defined as a symmetric closed deductive system with classical negation satisfying
(cpt1) and (cpt2) while the fragment {Act, ∗,y} is defined as a monoidal deductive
system. The connectives of AL are of the type that takes two formulas of type act and
transforms them into another one. The action ∗ is both trivial (it makes no change)
and impossible to perform.

10In this case, the notation for the adjoint is reversed. For instance, in comparison with the rules of
figure 1, ∗ 	 α would be written α( ∗.



410 C. Peterson

(cpt2)
α∗ • β −→ β 	 α (cpt1)

β 	 α −→ α∗ • β

Now, consider a collection Prop of atomic descriptive (declarative) formulas pi of
type d. Let AP be a collection of action propositions (of type ap) defined by the following
condition: if α ∈ WFFAL, then α ∈ AP. The bold notation α is used to represent
the declarative sentence referring to the action α (see [28]). Assuming a well-formed
formula α of type act, well-formed formulas of type np (for normative propositions)
are recursively defined from the language LCNR = {(, ),AP, P rop,⊗, 1,(, 0, O, Ps} as
follows:

ϕ := 1 | 0 | α | pi | Oα | Psα | ϕ⊗ ψ | ϕ( ψ

The connectives of CNR are of the type that takes either a proposition of type d
and one of type np, a proposition of type ap and one of type np or two propositions of
type np and transforms them into another proposition of type np. The logic CNR is
defined as a symmetric closed deductive system with classical negation satisfying (D)
and (P) with ∼ ϕ =df ϕ( 0.

(D)
Oα−→Psα

(P)
Psα−→ ∼ Oα∗

The axiom schema (D) states that what is obligatory is strongly permitted, while
(P) says that what is strongly permitted is weakly permitted. The operators O and
Ps are of the type that takes an action and transforms it into a proposition of type
np. Weak permission is defined by Pwα =df ∼ Oα∗ and interdiction is defined by
Fα =df Oα∗.
CNR is defined as a symmetric closed deductive with classical negation. It can be

proven to be an instance of a free symmetric closed category. If, further, it incorporates
a co-tensor defined by ϕ⊕ψ =df ∼ ϕ( ψ, then it can be proven to be an instance of a
free ∗-autonomous category (in the sense of [4]). To interpret CNR within framework
of string diagrams, we need to upgrade the diagrammatic language with two special
string processes ©D and ©P .

D

�� Oα

�� Psα

P

�� Psα

�� Pwα

3.2 Completeness: prerequisites

Before going further, let us first introduce some terminology and notational conven-
tions that will be used throughout the following constructions. A continuous string is
composed of string(s) and/or transformation process(es).



Conditional Reasoning with String Diagrams 411

Definition 3.1 (Path) A path between two formulas ϕ and ψ is a continuous string.

As we will see, the notion of path will be relevant for the definition of weak-
inconsistency. To clearly understand the notion of a path, consider how we proceed
to draw string diagrams, as illustrated in figure 2. A string diagram is drawn on
a board B from different strings and transformation processes. Informally, consider a
toolbox containing every string and transformation process schemata (obtained through
the rewrite rules) for the string diagrammatic language of a symmetric closed category
upgraded with ©∼ , ©D and ©P .

A string diagram is drawn on a board B from the tools in the toolbox and the strings
that are assumed as hypotheses. As a notational convention, we will write B : ϕ1, . . . , ϕn
to refer to a board where the formulas ϕ1, . . . , ϕn are assumed as hypotheses. If the list
is empty, we simply write B. To draw a diagram, one can, at will, add to or remove
from the board any string or transformation process from the toolbox. Note that the
strings and transformation processes of the toolbox are reusable. However, the strings
that are assumed as hypotheses cannot be removed from the board at will. If one starts
a drawing on a board with some strings in the box of hypotheses, then one must end
the drawing with these strings either on the board or in the hypotheses box. Note that
adding an identity string from the toolbox to the board amounts to assume another
hypothesis.

Having this terminology at our disposal, note that, as an example, there is no path
from ϕ to ψ on B or B : ϕ, ψ, but there is a path from ϕ⊗ (ϕ( ψ) to ψ.

Toolbox
Hypotheses

box

Board

B : ϕ1, . . . , ϕn

Figure 2: Drawing board for string diagrams

3.3 Soundness and completeness

We now turn our attention to the soundness and completeness theorems, or, in Selinger’s
[30] terms, the coherence theorem. It states that f is derivable within CNR if and only
if it can be drawn as a string diagram.



412 C. Peterson

Consider a string diagrammatic language for a symmetric closed category upgraded
with ©∼ , ©D and ©P .

Definition 3.2 (Validity) A proof f : ϕ −→ ψ is valid if and only if a path from ϕ
to ψ can be drawn on every board B : ϕ1, . . . , ϕn.

An equivalent formulation of this definition would be to say that f is valid if it can
be drawn as a continuous string on B. Indeed, f can be drawn on B if and only if it
can be drawn on every B : ϕ1, . . . , ϕn.

Theorem 3.3 If f : ϕ −→ ψ is a CNR-arrow, then it is valid.

The soundness theorem follows directly from the construction of the string dia-
grammatic language. Indeed, we only need to show that the rewrite rules preserve the
validity of the rules and axioms of CNR. In this respect, (1), (cut), (t), (a), (b), (cl),
(∼∼), (D) and (P) are quite straightforward (their proof are left to the reader). The
only exception is perhaps the rule (r). Bottom-up, it suffices to note that:

��

�� ��

ψ

ψ 1

�� ��

�� ��

ψ

ψ

1

1

⇔

Hence, assuming ϕ −→ ψ, the rest follows from composition. Top-down, it suffices
to draw 1 as a blank space.

��

�� ��

ϕ

ψ 1

�� ϕ

�� ψ

⇔

Consequently, CNR is sound with respect to our string diagrammatic language.
The completeness theorem follows from the procedure that enables us to convert

a string diagram into a proof. First, note that each tool within the toolbox has a
proof-theoretical counterpart. The identity, double negation, obligation and permission
processes are related to their corresponding axiom in CNR. The diagrams for currying
and uncurrying corresponds to (cl), the braiding diagram to (b) and the diagram for
parallel processes to (t). Finally, composition of strings corresponds to (cut).



Conditional Reasoning with String Diagrams 413

From the definition of validity, we know that f : ϕ −→ ψ is valid if and only if there
is a path from ϕ to ψ on every board B : ϕ1, . . . , ϕn, which happens if and only if f can
be drawn as a continuous string on B.

The length l of a string diagram is determined by the number of strings and trans-
formation processes required for its construction. Note that string diagrams are not
necessarily finite.

Theorem 3.4 (Completeness) If f : ϕ −→ ψ can be drawn as a continuous string
on B, then f is a CNR-arrow.
Proof. We proceed by induction on the length l of the diagram. If l = 1, then the
string is either identity, double negation ©∼ , ©D or ©P . In this case, the diagram can be
converted into a proof via their corresponding axiom in CNR.

Now, assume that the property holds for l = n but that it does not for l = n + 1.
Consider the number of continuous strings on the board.

1. If there is only one continuous string on the board, then there are three possible
combinations to obtain a diagram of length n+ 1.

(a) The diagram is obtained by adding another string on the board, in which
case it is either the identity, double negation ©∼ , ©D or ©P .

(b) The string diagram of length n + 1 is obtained by an application of the
braiding rule, in which case the diagram has the following form.

By inductive hypothesis, we have a proof of ρ −→ ϕ ⊗ ψ, and this can be
converted into a proof via the braiding rule (b).

...
ρ −→ ϕ⊗ ψ (b)
ρ −→ ψ ⊗ ϕ

(c) The string diagram of length n+1 is obtained by an application of currying
or uncurrying. Hence, the string diagram of length n has either of one of
these two forms.



414 C. Peterson

OO

��

��

�� ��

��

f f̃

ψϕ

ρ ϕ

ψ

ρ

By inductive hypothesis we have a proof of f or f̃ , hence it can be converted
into a proof by applying (cl).

...
ϕ⊗ ψ −→ ρ

(cl)
ϕ −→ ψ( ρ

...
ψ −→ ϕ( ρ

(cl)
ϕ⊗ ψ −→ ρ

2. The diagram of length n contains a number m > 1 of continuous strings. By the
inductive hypothesis, theses strings can be converted into proofs. The diagram of
length n+ 1 can be obtained in various ways.

(a) The diagram is obtained by adding another string on the board, in which
case it is either the identity, double negation ©∼ , ©D or ©P (and these strings
can be converted into proofs).

(b) The diagram of length n + 1 is obtained by an application of the braiding
rule, in which case 1(b) applies.

(c) The diagram of length n + 1 is obtained by an application of currying or
uncurrying, in which case 1(c) applies.

(d) The diagram of length n + 1 is obtained by an application of the parallel
process to two of its strings. In this case, the diagram of length n has the
form:

f

�� ϕ

�� ψ

g

�� ρ

�� τ

. . .

And the diagram of length n+ 1 has the form:



Conditional Reasoning with String Diagrams 415

�� 





 ��

f ⊗ g

ϕ

ψ

ρ

τ

. . .

This can be converted into a proof via the rule (t):

...
ϕ −→ ψ

...
ρ −→ τ (t)

ϕ⊗ ρ −→ ψ ⊗ τ

(e) The diagram of length n+1 is obtained by an application of the composition
process. Hence, we have two strings that can compose. This is represented
by the following situation.

f

�� ϕ

�� ψ

g

�� ψ

�� ρ

. . .

In this case, a proof can be obtained through the application of the (cut)
rule.

...
ϕ −→ ψ

...
ψ −→ ρ (cut)ϕ −→ ρ

�

Let us now illustrate how the procedure works. Figure 3 shows how to convert the
string diagram of (p( Oα)⊗ ∼∼ p −→ Psα into a proof.

We can see that the whole string is obtained by composing a braid with the string
below point 1. This substring is obtained by composing the string above point 2 with
the transformation process ©D . The string above 2 is obtained by composing a parallel
process between two strings at point 4 (the one on the left resulting from composition
with the double negation process at point 5) with the uncurrying process at point 3.
This yields the following proof schema:



416 C. Peterson

1.

4.

5.

3.

2.

��

��

OO ��

p Oαp

Oα

∼
��∼∼ p

�� p

D

�� Oα

�� Psα

Figure 3: How to convert a diagram into a proof

5 (∼∼)∼∼ p −→ p
(1)

p( Oα −→ p( Oα
4 (t)

∼∼ p⊗ (p( Oα) −→ p⊗ (p( Oα)

(1)
p( Oα −→ p( Oα

3 (cl)
p⊗ (p( Oα) −→ Oα

(cut)
∼∼ p⊗ (p( Oα) −→ Oα

...
∼∼ p⊗ (p( Oα) −→ Oα

(D)
Oα −→ Psα

2 (cut)
∼∼ p⊗ (p( Oα) −→ Psα

(1)
(p( Oα)⊗ ∼∼ p −→ (p( Oα)⊗ ∼∼ p

(b)
(p( Oα)⊗ ∼∼ p −→∼∼ p⊗ (p( Oα)

...
∼∼ p⊗ (p( Oα) −→ Psα

1 (cut)
(p( Oα)⊗ ∼∼ p −→ Psα

3.4 Decidability

In addition to the soundness and completeness theorems, string diagrams can also be
used to show that CNR is decidable. The construction provided within this section



Conditional Reasoning with String Diagrams 417

will be useful to determine the validity of conditional normative inferences. Consider
the following definitions.

Definition 3.5 (Weak-consistency) A list of formulas ϕ1, . . . , ϕn is weakly-consistent
if and only if there is no path from ϕ1 ⊗ · · · ⊗ ϕn to 0 on B : ϕ1, . . . , ϕn.11

The contraposition of this definition yields the following definition of weak-inconsistency.

Definition 3.6 (Weak-inconsistency) A list of formulas ϕ1, . . . , ϕn is weakly-inconsistent
if and only if there is a path from ϕ1 ⊗ · · · ⊗ ϕn to 0 on B : ϕ1, . . . , ϕn.

Proposition 3.7 Definitions 3.5 and 3.6 are logically equivalent.

From the definition of weak-inconsistency, it trivially follows that:

Corollary 3.8 If the list ϕ,∼ ψ is weakly-inconsistent, then a path between ϕ⊗ ∼ ψ
and 0 can be drawn on B : ϕ,∼ ψ.

Some remarks on weak-consistency are in order. Usually, the consistency of a theory
or a logical system is defined via its theorems. For instance, one might say that a
theory T is inconsistent when there is a formula ϕ such that both ϕ and ∼ ϕ are
consequences of T . Similarly, one could say that T is inconsistent when 0 (i.e., the
constant representing falsehood) is a consequence of T . This understanding, however,
cannot be applied to our framework. Indeed, a logical system is not understood as a list
of formulas (theorems) but is rather understood as a collection of (equivalence classes
of) proofs. By opposition to the usual notion of consistency, weak-consistency is not
the property of a deductive system. Instead of being the property of a collection of
(equivalences classes of) proofs, weak-consistency is the property of a list of formulas.

The notion of weak-inconsistency can be distinguished from the usual understanding
of inconsistency within Cartesian deductive systems (e.g., in intuitionistic or classical
logic). In a Cartesian deductive system, the members of a conjunction can always be
detached. From this property, one can see why weak-inconsistency is actually weaker
than the usual understanding of inconsistency. In a Cartesian deductive system, a list
ϕ1, . . . , ϕn would be inconsistent as soon as there is a path from some members of
the list to 0. This, however, does not apply to non-Cartesian deductive systems since
the list must be taken altogether. For example, ϕ ⊗ 0 is not weakly-inconsistent since
0 cannot be detached from the multiplicative conjunction. However, in a Cartesian
deductive system, ϕ⊗ 0 is weakly-inconsistent.

11Note that we are not using this terminology as it is used in consistency models or in [29]. Linear
consistency might have been another significant appellation, but as weak-consistency it also already
has a meaning in the literature. Monoidal consistency might also have been another candidate for the
terminology, but we preferred to go with the more malleable (and meaningful) term weak.



418 C. Peterson

Moreover, there is 0 −→ ϕ for any ϕ in a Cartesian deductive system. In monoidal
logics, this property does not necessarily hold. Hence, it is noteworthy that weakly-
inconsistent propositions are not necessarily isomorphic to 0 within monoidal deductive
systems, while inconsistent propositions are isomorphic to 0 within Cartesian deductive
systems. Therefore, it follows that weakly-inconsistent formulas within a monoidal de-
ductive system are not necessarily logically equivalent, unlike inconsistent propositions
within Cartesian deductive systems.12

The notion of weak-inconsistency is relevant to determine the validity of an inference
given the following lemmas.

Lemma 3.9 f : ϕ −→ ψ is a CNR-arrow if and only if f 0 : ϕ⊗ ∼ ψ −→ 0 is.
Proof. It follows from (cl) and the definition of negation. The proof from right to
left requires the axiom for classical negation. �

Lemma 3.10 f : ϕ −→ ψ is valid if and only if ϕ,∼ ψ is weakly-inconsistent.
Proof. Assume that f is valid. It follows that there is a path from ϕ⊗ ∼ ψ to 0 on
every B : ϕ1, . . . , ϕn.

The converse is proven similarly. �

We now provide a procedure to determine whether a list of formulas is weakly-
inconsistent or not. First, let us introduce some terminology. Since different string
diagrams can be drawn on a board B : ϕ1, . . . , ϕn depending on the order of the rules
that are applied, we need to introduce the notion of a page on a board. The notation
for the pages will be explained further in the next section, but for the moment let us
write B′, B′′, B′′′, etc., to refer to different pages of B. Consider for example the board
B : ϕ, ϕ( ψ, ϕ( ρ. Many continuous strings can be drawn on that board using all
the strings in the list. For instance, depending on whether we combine ϕ with ϕ( ψ

12Similarly, tautologies are not logically equivalent within monoidal deductive systems, while they
are within Cartesian deductive systems.



Conditional Reasoning with String Diagrams 419

or ϕ( ρ, we can have two continuous strings (without braiding) using all the strings
in the list. In this case, we have the following pages.

��

�� ��ψ

ϕ( ρ

ϕ( ρ

B′′

��

��

OO ��

ϕ ψϕ

ψ��

�� ��ρ

ϕ( ψ

ϕ( ψ

B′

��

��

OO ��

ϕ ρϕ

ρ

We will say that a board B : ϕ1, . . . , ϕn closes when it has one page on which there
is a path from ϕ1 ⊗ · · · ⊗ ϕn to 0, that is, if there is a continuous string linking every
member of the list to (and only to) 0.

Given the identities between the strings ϕ⊗ψ and ψ⊗ϕ and with ϕ and ∼∼ ϕ, we
do not need to bother with the braiding rules and the double negation process. We will
say that a list ϕ1, . . . , ϕn is in its standard form when every double negation is erased
and every tensor product of the form ϕ ⊗ ψ is written according to the same order.
Moreover, since contraposition of conditional strings is satisfied (the proof is left to the
reader), the conditionals must be written to facilitate composition. For example, the
standard form of the list ϕ, ψ ⊗ ρ,∼∼ ϕ( (ρ⊗ ψ),∼∼∼ τ,∼ ϕ(∼ σ would be the
list ϕ, ψ ⊗ ρ, ϕ( (ψ ⊗ ρ),∼ τ, σ( ϕ.

Let L be a list and L∗ be its standard form. If a string diagram can be drawn on a
board B : L, then it can also be drawn on B : L∗, and reciprocally.

We now provide a procedure that will enable us to determine every continuous string
that can be drawn from each and every member of the list.

Here are some basic rules of application.

• Each step is to be applied to only one string at a time.

• At each step, determine the number m of possible applications.

• If there are m strings to which the step can be applied, then do m copies of the
page, each containing a possible application.

• Apply the procedure to each page.

The procedure is as follows.



420 C. Peterson

Step 1 Rewrite the list in its standard form.

Step 2 Draw every string of the list in the hypotheses box.

Step 3 While the board remains open, copy the board on four different pages. Otherwise,
if the board is closed, stop.

Step 3.1 On the first page, apply the rule for parallel process to obtain a continuous
string joining all the strings on the board and then stop.

Step 3.1.1 If there is a path from ϕ1 ⊗ · · · ⊗ ϕn to (and only to) 0, then close the
board.

Step 3.2 On the second page, apply the string schema ©D to one of the strings of the
form Oϕ. Otherwise, if there is no such string, stop.

Step 3.2.1 If there is a path from ϕ1 ⊗ · · · ⊗ ϕn to (and only to) 0, then close the
board and stop. Otherwise, if the board remains open, repeat Step 3.

Step 3.3 On the third page, apply the string schema ©P to one of the strings of the
form Psϕ. Otherwise, if there is no such string, stop.

Step 3.3.1 If there is a path from ϕ1 ⊗ · · · ⊗ ϕn to (and only to) 0, then close the
board and stop. Otherwise, if the board remains open, repeat Step 3.

Step 3.4 On the fourth page, combine two formulas of the form ϕ and ϕ( ψ using
©C . Otherwise, if there are no such strings, stop.

Step 3.4.1 If there is a path from ϕ1 ⊗ · · · ⊗ ϕn to (and only to) 0, then close the
board and stop. Otherwise, if the board remains open, repeat Step 3.

Step 3 is the recursive step that allows us to obtain each and every possible contin-
uous string that can be formed using each and every member of the list ϕ1, . . . , ϕn. If
the board is closed and the procedure is stopped, then ϕ1, . . . , ϕn is weakly-inconsistent.
Otherwise, if the board remains open and the procedure is stopped, then there is no
path from ϕ1 ⊗ · · · ⊗ ϕn to (and only to) 0, hence ϕ1, . . . , ϕn is weakly-consistent.

From this procedure, we can list each and every continuous string that can be drawn
on B : ϕ1, . . . , ϕn using every member of the list. Hence, it enables us to prove theorem
3.11.

Theorem 3.11 (Decidability) For any arrow f : ϕ −→ ψ, we can show whether it
is valid or not. Similarly, we can show whether f is derivable or not.
Proof. Using the aforementioned procedure, we can determine whether ϕ,∼ ψ is
weakly-inconsistent or not. If it is, then f is valid. If it is not, then by lemma 3.10 it
is invalid. �



Conditional Reasoning with String Diagrams 421

In the following section, we will provide an example of application of this procedure.
For the moment, let us see why our proposal is relevant to the study of conditional
normative reasoning.

4 Applying string diagrams to conditional reasoning

4.1 Motivations

As it was mentioned at the beginning of this paper, our goal is to use string diagrams
to test the validity of conditional reasoning. In this respect, our initial intention was
to adapt Baez’s and Stay’s work to critical thinking. Our proposal is inspired and
motivated by Garson’s [11] work, who used semantical trees to test the validity of modal
inferences. Students in critical thinking courses are usually introduced to propositional,
first-order and, sometimes, modal logics to model and analyze inferences. While it is
known that propositional logic and the first-order calculus are insufficient to model
normative reasoning (cf. [24]), it happens that the usual (deontic) modal systems such
as K and KD face some serious problems when dealing with conditional normative
reasoning. A conditional normative reasoning is understood as a normative inference
within which there are conditional (and potentially conflicting) obligations.

The usual method in critical thinking to test the validity of an inference is to verify
whether or not it possesses a counter-example (cf. [25]). To accomplish this, one must
verify whether or not the premises are consistent with the negation of the conclusion.
If they are, then the reasoning is invalid, and if they are not, then it is valid. Despite
the important structural differences between CNR and the other approaches within the
literature, our aim was to analyze conditional normative reasoning without developing
a method that is too different from the usual tools in critical thinking, such as Garson’s
semantical trees. In this respect, we introduced the notion of weak-consistency to
test the validity of normative inferences. With the help of Baez’s and Stay’s string
diagrams, we obtain a method comparable to Garson’s that allows to visually represent
the structure of an argument.

It is well-known that a monadic standard system cannot properly model conditional
normative reasoning without considering further modalities or assuming a primitive
connective for conditional obligations. There are three major difficulties one faces when
trying to model conditional normative reasoning. Consider a standard system such as
KD for example (cf. [7]). The first obstacle is the problem of factual detachment of
deontic conditionals (cf. [33]). Given an obligation Oψ conditional to a context ϕ,
this problem amounts to the fact that even though we generally want to allow for the
detachment of the conditional obligation when the context is present, there can be other
specific situations where we want to block the detachment of Oψ given further relevant
information. However, modeling conditional obligations through a monadic O within a



422 C. Peterson

standard system implies that the following inference schema is satisfied. Hence, Oψ is
obtained as soon as ϕ is in the context (notwithstanding further relevant information
that might thwart Oψ).

ϕ ϕ ⊃ Oψ
Oψ

The second difficulty is the problem of augmentation (cf. [15]), also known as the
problem of strengthening the antecedent of a deontic conditional (cf. [1]). This problem
happens when we try to model conditional obligations through a material conditional
⊃. Indeed, it implies that the following inference pattern is always satisfied. Hence,
if Oψ is an obligation conditional to ϕ, then it is also conditional to any context that
includes ϕ.

ϕ ⊃ Oψ
(ϕ ∧ ρ) ⊃ Oψ

The third problem concerns conflicting obligations and is known as deontic explosion.
Given two conflicting obligations, it implies that anything is obligatory.

Oϕ ∧O¬ϕ
Oψ

These problems are usually presented as arguments in favor of non-monotonic or
adaptive foundations for deontic logic (e.g., [14], [31] or [5]). It is usually assumed
that these problems happen whenever one tries to model conditional normative rea-
soning without a primitive operator for deontic conditionals or further modalities. Re-
cently, however, we showed in [27] that these problems occur when one models deontic
conditionals via a monadic O within logics that satisfy the properties of a Cartesian
closed deductive system. Such deductive systems can be proven to be instances of free
Cartesian closed categories and are comparable from a proof-theoretical perspective to
intuitionistic and classical logics. While augmentation and detachment are related to
the fact that the usual conjunction ∧ satisfies the properties of a categorical product,
deontic explosion is a consequence of the fact that ⊥ satisfies the properties of an initial
object. We showed that conditional normative reasoning can be modeled via a monadic
O insofar as the logic does not satisfy these properties.

The logic CNR was thus introduced in [27] as a foundational framework for condi-
tional normative reasoning, able to model conditional normative inferences without fac-
ing augmentation, detachment or deontic explosion. This approach was then combined
with an action logic (cf. [28]) and CNR, as it is currently presented, was introduced



Conditional Reasoning with String Diagrams 423

in [26]. We already discussed at length the relevance of this system to model condi-
tional normative reasoning and we provided a detailed analysis of how it deals with
the aforementioned problems and the paradoxes of deontic logic. Accordingly, we will
not discuss these issues further and we refer the reader to these articles for a thorough
presentation.

For the remaining of this section, we will provide an example of application of the
decision procedure using Chisholm’s [8] paradox, which will then be followed by an
example of validity testing.

4.2 Chisholm’s paradox

According to the results of the previous section, we have the following situation: repre-
senting an inference from a list of premises ϕ1, . . . , ϕn to a conclusion ψ by a deduction
arrow ϕ1 ⊗ · · · ⊗ ϕn −→ ψ, we can determine whether this inference is valid or not
by determining if ϕ1, . . . , ϕn,∼ ψ is weakly-inconsistent (or not). The notion of weak-
consistency was thus introduced as a tool to facilitate the verification of an inference’s
validity using string diagrams.

Chisholm’s [8] paradox is without a doubt the most famous illustration of conditional
normative reasoning within the deontic logic literature. It has already been analyzed
extensively within the framework of CNR in [26, 27], to which we refer the reader for
a thorough discussion. The paradox results from the following list of sentences.

1. John ought to not lie.

2. If John lies, then he ought to tell that he lied.

3. John does not ought to tell that he lied if he does not lie.

4. John lies.

This is a paradox for many deontic logics given that these sentences seem consistent
within the natural language while they are not within the formal ones.

To properly model Chisholm’s paradox, one must first be able to provide an ap-
propriate translation of these sentences. Although there is a negation within the first
sentence, this negation is not a propositional one. Indeed, the first sentence does not
mean that it is false that ‘John ought to lie’ (i.e., ∼ Oα). Rather, it is an ought state-
ment stating that John ought to ‘not lie’ (i.e., Oα∗). The second sentence was initially
formulated by ‘it ought to be that if John lies, then he tells that he lied’ in Chisholm’s
presentation. This was mainly to avoid redundancy between the sentences and preserve
their independence within the formal language. Since in CNR we do not face the re-
dundancy problem (cf. [26, 27]), we can translate the second sentence by α ( Oβ.
The third sentence can have two different translation within CNR, depending on the



424 C. Peterson

intended meaning of the negation. On the one hand, it can mean that ‘if it is false
that John lies, then it is also false that he ought to tell that he lied’, which would be
translated by ∼ α(∼ Oβ. On the other hand, it can also mean that ‘if John does not
lie, then it is false that he ought to tell that he lied’, which would rather be translated
by α∗(∼ Oβ. The fourth sentence is simply translated by α.

To avoid the paradox, we must be able to model the fact that these sentences are
weakly-consistent within CNR. To do so, we must prove that there is no path from
Oα∗⊗ ((α( Oβ)⊗ ((∼ α(∼ Oβ)⊗α)) to 0 on B : Oα∗,α( Oβ,∼ α(∼ Oβ,α

As a notational convention, we will name the pages according to the recursive pro-
cedure of Step 3. For example, B1 is the page containing the parallel process joining
each and every string from the list, while B2.4 is the page resulting from applying
©D first, and then ©C .13

We now apply the procedure to determine whether the list Oα∗,α ( Oβ,
∼ α(∼ Oβ,α is weakly-consistent or not. The first step consists in rewriting the list
in its standard form: Oα∗,α( Oβ,Oβ ( α,α.

Loop 1

B3
Stop

B1

��Oα∗ ��

α( Oβ



 α
�� Oβ( α

��Oα∗ 



α( Oβ

��
α
�� Oβ( α

Stop

B2

D

�� Oα∗

�� Psα
∗

B4

C
��α

�� Oβ

MMα �� Oβ

Loop 2

B2.2
Stop

B2.3

D

�� Oα∗

�� Psα
∗

P
�� Pwα

∗

B2.1

D
��

Psα∗
��

α( Oβ




α
�� Oβ( α

��Psα
∗ 



α( Oβ

��
α
�� Oβ( α

��Oα∗

Stop

B2.4

C
��α

�� Oβ

MMα �� Oβ

D

�� Oα∗

�� Psα
∗

13If there are m copies of a page Bn, then it can also be indexed by i ≤ m to indicate the appropriate
page. In our case, we will write a, b, c, etc.



Conditional Reasoning with String Diagrams 425

B4.2a
See B2.4

B4.3
Stop

B4.2b

C
��α

D
�� Oβ

�� Psβ

MMα �� Oβ

B4.1

��Oα∗ ��

Oβ( α

��Oα∗ 



Oβ( α

�� Oβ

C
��α

		 Oβ

MMα �� Oβ

Stop

B4.4

C
��α

�� Oβ

MMα �� Oβ

C
��Oβ

�� α

MMOβ �� α

Note that on the page B4.2 there are two possible applications of©D . Hence, the page
is copied on two different pages. The string diagram obtained on page B4.2a is the same
as the one on page B2.4. The same phenomenon appears below at Loop 4.

Loop 3

B2.3.2
Stop

B2.3.3
Stop

B2.3.1

��Pwα∗ ��

α( Oβ



 α
�� Oβ( α

��Pwα
∗ 



α( Oβ

��
α
�� Oβ( α

D

��Oα∗

��Psα
∗

P
��

Stop

B2.3.4

C
��α

�� Oβ

MMα �� Oβ

D

�� Oα∗

�� Psα
∗

P
�� Pwα

∗

B2.4.3
See B2.3.4

B2.4.1

D

��Oα∗

��Psα
∗





Oβ( α

||Psα
∗ ��

Oβ( α

�� Oβ

C
��α

		 Oβ

MMα �� Oβ

Stop

B2.4.2

C
��α

D
�� Oβ

�� Psβ

MMα �� Oβ

D

��Oα∗

��Psα
∗

B2.4.4

C
��α

�� Oβ

MMα �� Oβ

C
��Oβ

�� α

MMOβ �� α
D

��Oα∗

��Psα
∗



426 C. Peterson

B4.2b.2
See B2.4.2

B4.2b.4
Stop

B4.2b.3

C
��α

D
�� Oβ

P

�� Psβ

��Pwβ

MMα �� Oβ

B4.2b.1

��Oα∗ ��

Oβ( α

��Oα∗ 



Oβ( α

�� Psβ

Stop

C
��α

D
�� Oβ

�� Psβ

MMα �� Oβ

B4.4.2
See B2.4.4

B4.4.3
Stop

B4.4.4
Stop

B4.4.1

��Oα∗

��Oα∗ �� α

C
��α

�� Oβ

MMα �� Oβ

C
��Oβ

�� α

MMOβ �� α

Stop

Loop 4

B2.3.4.3
Stop

B2.3.4.2

C
��α

D
�� Oβ

�� Psβ

MMα �� Oβ

D

��Oα∗

��Psα
∗

P
��Pwα

∗

B2.3.4.1

P

D
��Psα∗

��Oα∗

��Pwα
∗





Oβ( α

||Pwα
∗ ��

Oβ( α

�� Oβ

C
��α

		 Oβ

MMα �� Oβ

Stop

B2.3.4.4

C
��α

�� Oβ

MMα �� Oβ

C
��Oβ

�� α

MMOβ �� α
D

��Oα∗

��Psα
∗

P
��Pwα

∗



Conditional Reasoning with String Diagrams 427
B2.4.2.2
Stop

B2.4.2.3a
See B2.3.4.2

B2.4.2.3b
See B4.2b.3.2

B2.4.2.4
Stop

B2.4.2.1

D
��Oα∗

$$
Psα∗

��

Oβ( α

��Psα
∗ 



Oβ( α

�� Psβ

Stop

C
��α

D
�� Oβ

�� Psβ

MMα �� Oβ

B2.4.4.2
Stop

B2.4.4.3
See B2.3.4.4

B2.4.4.4
Stop

B2.4.4.1

D
��Psα∗

��Oα∗

��Psα
∗ �� α

C
��α

�� Oβ

MMα �� Oβ

C
��Oβ

�� α

MMOβ �� α

Stop

B4.2b.3.3
Stop

B4.2b.3.4
Stop

B4.2b.3.2

C
��α

D
�� Oβ

P

�� Psβ

��Pwβ

MMα �� Oβ

D

��Oα∗

��Psα
∗

B4.2b.3.1

��Oα∗ ��

Oβ( α

��Oα∗ 



Oβ( α

��Pwβ

Stop

C
��α

D
�� Oβ

P

�� Psβ

��Pwβ

MMα �� Oβ



428 C. Peterson

Loop 5

B2.3.4.2.2
Stop

B2.3.4.2.4
Stop

B2.3.4.2.3

C
��α

D
�� Oβ

P
��Pwβ

�� Psβ

MMα �� Oβ

D

��Oα∗

��Psα
∗

P
��Pwα

∗

B2.3.4.2.1

D

P

��Oα∗

��Psα∗

$$
Pwα∗

��

Oβ( α

��Pwα
∗ 



Oβ( α

�� Psβ

Stop

C
��α

D
�� Oβ

�� Psβ

MMα �� Oβ

B2.3.4.4.2
Stop

B2.3.4.4.3
Stop

B2.3.4.4.4
Stop

B2.3.4.4.1

P

D

��Pwα∗

��Oα∗

��Psα∗

��Pwα
∗ �� α

C
��α

�� Oβ

MMα �� Oβ

C
��Oβ

�� α

MMOβ �� α

Stop

B4.2b.3.2.2
Stop

B4.2b.3.2.2
See B2.3.4.2.3

B4.2b.3.2.4
Stop

B4.2b.3.2.1

P
��Psα∗

��Oα∗

��

Oβ( α

��Psα
∗ 



Oβ( α

��Pwβ

Stop

��α
C

D

P

�� Oβ

�� Psβ

��Pwβ

MMα �� Oβ



Conditional Reasoning with String Diagrams 429

B2.3.4.2.3.2
Stop

B2.3.4.2.3.3
Stop

B2.3.4.2.3.4
Stop

B2.3.4.2.3.1

P

D
��Oα∗

��Pwα∗

��Psα∗

��

Oβ( α

��Pwα
∗ 



Oβ( α

��Pwβ

Stop

C

D

P

��α

�� Oβ

�� Psβ

��Pwβ

MMα �� Oβ

Loop 6

The procedure stops and we obtain each and every continuous string that can be
formed using all (and only) the members of the list Oα∗,α( Oβ,Oβ ( α,α. Note
that if we had translated the third sentence using α∗(∼ Oβ instead of ∼ α(∼ Oβ,
we would have obtained the same recursion loops with ∼ α∗ instead of α. We thus
have a proof that the list is weakly-consistent (since there is no path from the tensor
product of the members of the list to 0), and hence Chisholm’s paradox can be modeled
within CNR.

Incidentally, we can also see that CNR can model situations within which obliga-
tions have been violated. Carmo and Jones [6] argued that a logic which aims to model
conditional obligations should be able to model contexts of violation.14 On page B4.4.1,
we have a path from the members of the list to Oα∗ ⊗ α: even though John lies, he
shouldn’t. In this case, we are able to model the fact that the obligation to not lie has
been violated. Had we translated the third sentence using ∼ α∗, we would obtain that
John ought to not lie but it is false that he did not lie.

So far, we have been able to show that Chisholm’s list of sentences is weakly-
consistent within CNR and that contexts of violation can be modeled. To properly
model Chisholm’s paradox, another criterion is that CNR must be able to preserve the
independence between the sentences (cf. [2]). This can be proven using the aforemen-
tioned procedure (the proof is left to the reader).15

That being said, one could also require that we should be able to derive from the
list that John ought to tell that he lied. This can be derived in conjunction with other
sentences (e.g., B2.4.1), but one might argue that it should be derivable alone: from
Chisholm’s list of sentences, it follows that there is a contrary-to-duty obligation for
John to tell that he lied. Following van der Torre and Tan [32], Chisholm’s paradox
is a case of factual defeasibility, where the contrary-to-duty obligation for John to tell

14They also argued that it should be able to deal with the pragmatic oddity. See [27] for a discussion.
15Note that 1 −→ α( (Oβ( α) is invalid within CNR.



430 C. Peterson

that he lied has priority over (but does not cancel) the obligation to not lie. Therefore,
the obligation Oβ holds under the circumstances described by the list. The contrary-
to-duty obligation can thus be derived if we properly translate this phenomenon within
CNR’s language and specify that Oβ holds under the context Oα∗⊗((Oβ ( α)⊗α).16

To conclude this section, we will show how our string diagrammatic semantics can be
used to test the validity of an inference. We will show that Oβ can actually be derived
if we properly translate the conditional obligation. Consider the following translation
of Chisholm’s sentences.

Oα∗ (1)
(Oα∗ ⊗ ((Oβ ( α)⊗α))( Oβ (2)
∼ α(∼ Oβ (3)
α (4)

We want to show that the following reasoning is valid.

(Oα∗ ⊗ ((Oβ ( α)⊗α))⊗ [(Oα∗ ⊗ ((Oβ ( α)⊗α))( Oβ] −→ Oβ

To accomplish this, we must determine whether the list Oα∗, Oβ ( α,α,
(Oα∗ ⊗ ((Oβ ( α)⊗α))( Oβ,∼ Oβ is weakly-consistent or not.

For visual clarity and due to space limitations, we will use ϕ instead of
Oα∗ ⊗ ((Oβ ( α) ⊗ α) in the following diagrams. At Loop 2, we will begin with
the copies of page B4 given that it will close the board and stop the procedure. We
thus obtain a path from (and only from) the members of the list to (and only to) 0,
hence the proof of the previous inference’s validity.

Loop 1

B3
Stop

B1

��Oα∗ ��

ϕ( Oβ



 α
�� Oβ( α

��Oα∗ 



ϕ( Oβ

��
α
�� Oβ( α

Stop

B2

D

�� Oα∗

�� Psα
∗

B4

C
��ϕ

�� Oβ

MMϕ
�� Oβ

16For further discussion, see [27]. See also [26] for a discussion of Goble’s [13] analysis of normative
conflicts and conditional obligations.



Conditional Reasoning with String Diagrams 431

Loop 2

B4.3
Stop

B4.2

C
��ϕ

D
�� Oβ

�� Psβ

MMϕ
�� Oβ

B4.1

C
��ϕ

��Oβ �� ∼ Oβ

��Oβ �� ∼ Oβ

MMϕ
�� Oβ

Stop

B4.4

C
��ϕ

��

MMϕ
�� Oβ

C
��Oβ

�� 0

MMOβ �� 0

Stop
Board closed

5 Conclusion
Summing up, we applied Baez’s and Stay’s [3] string diagrams to the deontic logic CNR.
The deductive system CNR was initially developed to model conditional normative
reasoning and was defined as a symmetric closed deductive system. This system was
further developed in [26] and was defined on the grounds of an action logic AL (cf.
[28]). Upgrading the string diagrammatic language of Baez and Stay [3], we provided a
semantics for CNR and proved that it is sound and complete. Furthermore, we provided
a decision procedure that allows to determine whether a proof is valid or not. This
procedure was then applied to test the validity of conditional normative inferences and
we showed how CNR can properly model Chisholm’s paradox. Despite the differences
between monoidal deductive systems and (the more familiar) intuitionistic or classical
logic, the procedure can be compared to the usual methods that are employed to test
the validity of inferences in critical thinking. Using the notion of weak-consistency, our
string diagrammatic semantics enables us to determine whether an inference is valid or
not by showing that the list including the premises and the negation of the conclusion
is weakly-inconsistent (or not).

For future research, we intend to extend this method to the whole deontic deductive
system presented in [26]. This will require that we adapt the diagrammatic language
to deal simultaneously with various structures such as compact closed, ∗-autonomous
and Cartesian categories. We also intend to study how this framework could be used
in artificial intelligence. Recently, Pavlovic [23] used the language of string diagrams
to define a monoidal computer. Basically, his idea is to conceive data as strings and
programs as transformation processes. The string diagrammatic language he uses is
the one of a symmetric monoidal category with the addition of operations for deleting,
copying, and filtering, the latter two respecting the Frobenius condition. As such, there
is common grounds between Pavlovic’s monoidal computers and our approach. It will
be interesting to see how our approach can be combined with Pavlovic’s to program
artificially intelligent agents, whose behaviors are regulated by norms.



432 C. Peterson

Acknowledgment
I would like to thank Jean-Pierre Marquis for valuable comments and discussions. I
am also in debt to the comments and suggestions of three anonymous referees for the
current version of this article. This research was financially supported by the Social
Sciences and Humanities Research Council of Canada.

References
[1] Carlos Alchourrón, Detachment and defeasibility in deontic logic, Studia Logica 57

(1996), no. 1, 5–18.

[2] Lennart Åqvist, Deontic logic, Handbook of Philosophical Logic (D. M. Gabbay
and F. Guenthner, eds.), vol. 8, Kluwer Academic Publishers, 2nd ed., 2002,
pp. 147–264.

[3] John C. Baez and Mike Stay, Physics, topology, logic and computation: A Rosetta
stone, New Structures for Physics (B. Coecke, ed.), Lecture Notes in Physics, vol.
813, Springer, 2011, pp. 95–174.

[4] Micheal Barr, ∗-autonomous categories, Lecture Notes in Mathematics, vol. 752,
Springer, 1979.

[5] Mathieu Beirlaen, Christian Straßer, and Joke Meheus, An inconsistency-adaptive
deontic logic for normative conflicts, Journal of Philosophical Logic 42 (2013),
no. 2, 285–315.

[6] José Carmo and Andrew J. I. Jones, Deontic logic and contrary-to-duties, Hand-
book of Philosophical Logic (D. M. Gabbay and F. Guenthner, eds.), vol. 8, Kluwer
Academic Publishers, 2nd ed., 2002, pp. 265–343.

[7] Brian F. Chellas, Modal logic: An introduction, Cambridge University Press, 1980.

[8] Roderick Chisholm, Contrary-to-duty imperatives and deontic logic, Analysis 24
(1963), no. 2, 33–36.

[9] Bob Coecke, Edward Grefenstette, and Mehrnoosh Sadrzadeh, Lambek vs. Lambek:
Functorial vector space semantics and string diagrams for Lambek calculus, Annals
of Pure and Applied Logic 164 (2013), no. 11, 1079–1100.

[10] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono (eds.), Residuated lattices: An
algebraic glimpse at substructural logics, Studies in Logic and the Foundations of
Mathematics, vol. 151, Elsevier, 2007.



Conditional Reasoning with String Diagrams 433

[11] James Garson, Modal logic for philosophers, Cambridge University Press, 2006.

[12] Jean-Yves Girard, Linear Logic, Theoretical Computer Science 50 (1987), no. 1,
1–102.

[13] Lou Goble, Normative conflicts and the logic of ‘ought’, Noûs 43 (2009), no. 3,
450–489.

[14] John Horty, Non-monotonic foundations for deontic logic, Defeasible Deontic Logic
(D. Nute, ed.), Kluwer Academic Publishers, 1997, pp. 17–44.

[15] Andrew J. I. Jones, On the logic of deontic conditionals, Ratio Juris 4 (1991), no. 3,
355–366.

[16] André Joyal and Ross Street, The geometry of tensor calculus, II, Available at
maths.mq.edu.au/ street/GTCII.pdf.

[17] , The geometry of tensor calculus, I, Advances in Mathematics 88 (1991),
55–112.

[18] Gregory M. Kelly and Miguel L. Laplaza, Coherence for compact closed categories,
Journal of Pure and Applied Algebra 19 (1980), 193–213.

[19] Joachim Lambek, Deductive systems and categories I, Mathematical Systems The-
ory 2 (1968), no. 4, 287–318.

[20] , Deductive systems and categories II. Standard constructions and closed
categories, Category Theory, Homology Theory and their Applications I (P. J.
Hilton, ed.), Lecture Notes in Mathematics, vol. 86, Springer, 1969, pp. 76–122.

[21] Joachim Lambek and Philip Scott, Introduction to higher order categorical logic,
Cambridge University Press, 1986.

[22] Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Springer,
1971.

[23] Dusko Pavlovic, Monoidal computer I: Basic computability by string diagrams,
Information and Computation 226 (2013), 94–116.

[24] Clayton Peterson, Normative inferences and validity: A heuristic, Cogency 5
(2013), no. 1, 85–105.

[25] , Pensée rationnelle et argumentation, Presses de l’Université de Montréal,
2013.



434 C. Peterson

[26] , The categorical imperative: Category theory as a foundation for deontic
logic, Journal of Applied Logic 12 (2014), no. 4, 417–461.

[27] , Contrary-to-duty reasoning: A categorical approach, Logica Universalis 9
(2015), no. 1, 47–92.

[28] , A logic for human actions, Applications of Formal Philosophy (G. Payette
and R. Urbaniak, eds.), Springer, 2015, To appear.

[29] Gemma Robles and José M. Méndez, Strong paraconsistency and the basic con-
structive logic for an even weaker sense of consistency, Journal of Logic, Language
and Information 18 (2009), no. 3, 357–402.

[30] Peter Selinger, A survey of graphical languages for monoidal categories, New Struc-
tures for Physics (B. Coecke, ed.), Lecture Notes in Physics, vol. 813, Springer,
2011, pp. 289–355.

[31] Christian Straßer, A deontic logic framework allowing for factual detachment, Jour-
nal of Applied Logic 9 (2011), no. 1, 61–80.

[32] Leendert van der Torre and Yao-Hua Tan, The many faces of defeasibility in de-
feasible deontic logic, Defeasible Deontic Logic (D. Nute, ed.), Kluwer Academic
Publishers, 1997, pp. 79–121.

[33] Job van Eck, A system of temporally relative modal and deontic predicate logic and
it’s philosophical applications, Logique et Analyse 25 (1982), no. 99, 249–290.

Clayton Peterson
Munich Center for Mathematical Philosophy
Ludwig-Maximilians Universität
Munich
E-mail: clayton.peterson@outlook.com


