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Logic of deduction:
Models of pre-order and maximal theories

Hércules de Araujo Feitosa and Mauri Cunha do Nascimento

Abstract

In the decade of 1930 Alfred Tarski published several papers about a gen-
eral concept of deductive consequence. As usual nowadays we choose only three
conditions to characterize a consequence operator of Tarski: auto-deductibility,
monotonicity and idempotency. From that we obtain the concept of Tarski space.
With motivation started from Tarski spaces, we have introduced a formalization
for that notion in a modal propositional logic, the logic TK, and showed its ad-
equacy relative to an algebraic structure, the TK-algebras. In this paper we
present two other types of model for TK, one given by the concept of pre-order
and another by using maximal theories of TK.

Introduction

We begin with an abstract concept of consequence proposed by Alfred Tarski in the
decade of 1930, and consider the associated Tarski spaces. Based on the Tarski spaces
we present the logic TK and the TK-algebras. The logic TK can be presented also with
the operator dual of the deductive closure. So we must consider the almost topological
spaces where we can talk in a simple way about closed and open sets, pass from one
to the other and compare this structure with the Tarski spaces. After this, we prove
the adequacy of TK relative to almost topological spaces by using a particular almost
topological space given by the maximal consistent theories of TK. As a last result we
present a model for TK in pre-order style.

1 The space of a consequence operator

We present the consequence operator of Tarski and give emphasis to the structure
generated by the consequence operator.
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Definition 1.1 A consequence operator on E is a function − : P(E) → P(E) such
that, for every A,B ⊆ E:

(i) A ⊆ A;
(ii) A ⊆ B ⇒ A ⊆ B;

(iii) A ⊆ A.

The itens (i) and (iii) are enough to justify that, for every A ⊆ E, A = A.

Definition 1.2 A consequence operator − : P(E) → P(E) is finitary when, for every
A ⊆ E:

(iv) A = ∪{Af : Af is a finite subset of A}.
Definition 1.3 A Tarski space (or Tarski’s deductive system or closure space) is a pair
(E,− ) such that E is a set and − is a consequence operator on E.

Definition 1.4 If (E,− ) is a Tarski space and A ⊆ E, then A is the set of consequences
of A or the closure of A.

From (i), always A ⊆ A, but the converse does not hold in general.

Definition 1.5 If (E,− ) is a Tarski space, then a set A is closed in (E,− ) when A = A;
and A is open when its complement relative to E, denoted by AC, is closed in (E,− ).

Proposition 1.6 Any intersection of closed sets of (E,− ) is also a closed set of (E,− ).

Clearly, ∅ and E are the least and the greatest closed sets, respectively, associated
to (E,− ).

Proposition 1.7 In any Tarski space (E,− ), the set E is closed and the set ∅ is open.

Definition 1.8 A Tarski space (E,− ) is 0-closed if it holds:
(v) ∅ = ∅.
In general, ∅ is open, but not closed. In a space 0-closed we require that the empty

set be clopen, that is, closed and open at the same time.

Proposition 1.9 If (E,− ) is Tarski space 0-closed and holds:
(vi) A ∪B = A ∪B,

then (E,− ) is a topological space.

Definition 1.10 A Tarski space (E,− ) is vacuous when ∅ = ∅.
The previous definition of topological space coincide with the Kuratowski charac-

terization of topological spaces via the closure operator. Naturally every topological
space is a Tarski space, but the converse does not hold. Each topological space is an
instance of a vacuous Tarski space.

From this conception of Tarski space, we introduced in [13] an algebraic structure to
formalize the consequence operator, and afterwards we introduced in [8] a propositional
logic for the consequence operator. In the next section we recall these results.
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2 TK-algebras and the Logic TK

The definition of TK-algebras can be considered as the algebraic counterpart of the
notion of consequence operator.

Definition 2.1 A TK-algebra is a sextuple A = (A, 0, 1,∨,∼, •) where (A, 0, 1,∨,∼)
is a Boolean algebra and • is an unary operator, called operator of Tarski, such that:

(i) a ∨ •a = •a;
(ii) •a ∨ •(a ∨ b) = •(a ∨ b);
(iii) •(•a) = •a.

Examples 2.2
(a) The space of sets P(A) with A 6= ∅ and •a = a, for all a ∈ A, is a TK-algebra.
(b) The space of sets P(R) with •X = X ∪ {0} is a TK-algebra.
(c) The space of sets P(R) with •X = ∩{I : I is an interval and X ⊆ I} is a TK-
algebra.

Since we are working with Boolean algebras, the item (i) of the previous definition
asserts that, for every a ∈ A, a ≤ •a.

We define in a TK-algebra:

a→ b =df ∼a ∨ b;

a− b =df a ∧ ∼b.

Proposition 2.3 In any TK-algebra the following assertions are valid:
(i) ∼•a ≤ ∼a ≤ •∼a;
(ii) a ≤ b implies that •a ≤ •b;
(iii) •(a ∧ b) ≤ •a ∧ •b;
(iv) •a ∨ •b ≤ •(a ∨ b).

The propositional logic TK is the logical system constructed over the propositional
language of TK, that is, L = (¬,∨,→,�, p1, p2, p3, . . .), with the following axioms and
rules:

(CPC) ϕ, if ϕ is a classical tautology;

(TK1) ϕ→ �ϕ;
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(TK2) ��ϕ→ �ϕ.

(MP)
ϕ→ ψ, ϕ

ψ
;

(RM�)
` ϕ→ ψ

` �ϕ→ �ψ
.

As usual, we write `S ϕ to indicate that the formula ϕ is a theorem of the axiomatic
system S, and we drop the subscript when there is no risk of misunderstanding.

Definition 2.4 Let Γ ∪ {ψ} be a set of formulas of TK. The set Γ deduces ψ, what is
denoted by Γ ` ψ, if there is a finite sequence of formulas ϕ1, . . . , ϕn of TK such that
for every i ∈ {1, 2, . . . , n}:

ϕi is an axiom of TK or
ϕi ∈ Γ or
ϕi is obtained from previous formulas in the sequence by means of a deduction rule,

and
ϕn = ψ.

Proposition 2.5 ` �ϕ→ �(ϕ ∨ ψ).

Proposition 2.6 ` ϕ implies that ` �ϕ.

Proposition 2.7 Γ ` �ϕ ∨ �ψ → �(ϕ ∨ ψ)

In [8] we have proved the adequacy of TK relative to TK-lagebras.
The operator � is of course associated to the notion of closure, but we can define a

dual operator, denoted by �, associated to the notion of interior.

3 A dual operator of closure

The operator �, a dual of �, is defined in the following way.

Definition 3.1 �ϕ =df ¬�¬ϕ.

We could, alternatively, consider the operator � as primitive and substitute the
axioms TK1 and TK2 by the following ones:

(TK∗
1) �ϕ→ ϕ;

(TK∗
2) �ϕ→ �� ϕ;
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and the rule RM� is replaced by the rule RM�:

(RM�)
` ϕ→ ψ

` �ϕ→ �ψ
.

Proposition 3.2 ` ϕ→ ψ ⇒ ` �ϕ→ �ψ.

Corollary 3.3 ` ϕ↔ ψ implies that ` �ϕ↔ �ψ.

Proposition 3.4 ` �ϕ→ ϕ.

Proposition 3.5 ` �ϕ→ �� ϕ.

Proposition 3.6 ` �(ϕ ∧ ψ)→ �ϕ.

Corollary 3.7 ` �(ϕ ∧ ψ)→ (�ϕ ∧�ψ).

In the following we will show the adequacy of TK relative to some different models.
We will use this version with the operator � and the concept of interior.

4 Almost topological spaces and Tarski spaces

The almost topological spaces involve the Tarski space in the context of topological
spaces.

Definition 4.1 An almost topological space is a pair (E,Ω) such that E is a non empty
set and Ω ⊆ P(E) for which:

(i) If A ⊆ Ω, then ∪A ∈ Ω.

Definition 4.2 The collection Ω is called an almost topology, and each member of Ω
is an open set of (E,Ω). A set A ⊆ E is closed when its complement relative to E,
denoted by AC, is open in (E,Ω).

Proposition 4.3 In any almost topological space (E,Ω), the set ∅ is open and E is
closed.

Proposition 4.4 In any almost topological space (E,Ω), the intersection of closed sets
is a closed set.

Definition 4.5 Let (E,Ω) be an almost topological space. The closure of A is the set:

A =df ∩{XC : A ⊆ XC and X ∈ Ω}.

The interior of A is the set:

Å =df ∪{X ⊆ E : X ⊆ A and X ∈ Ω}.
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Proposition 4.6 If (E,Ω) is an almost topological space and A ⊆ E, then A is closed
and Å is open.

Proposition 4.7 If (E,Ω) is an almost topological space, then for every A,B ⊆ E:
(i) Å ⊆ A ⊆ A;

(ii)
˚̊
A = Å;

(iii) A = A;

(iv) ∅̊ = ∅;
(v) E = E;
(vi) A ⊆ B implies that Å ⊆ B̊;
(vii) A ⊆ B implies that A ⊆ B.

To describe the open sets in an almost topological space (E,Ω), we do not need to
consider necessarily all the members of Ω. Thus we have the concept of basis.

Definition 4.8 A basis for an almost topological space (E,Ω) is a subset B ⊆ Ω such
that for any A ∈ Ω there is a B ⊆ B such that:

A = ∪B.

The elements of B are called basic open sets.

Proposition 4.9 If E 6= ∅ and B ⊆ P(E), then B is basis of an almost topological
space (E,Ω), in which Ω = {∪B : B ⊆ B} ∪ {∅}.

Proof. Of course, ∅ ∈ Ω and arbitrary unions of members of Ω belong to Ω. So Ω
is an almost topology on E. �

Now we will see how to evolve the concepts of almost topological space and Tarki
space.

Proposition 4.10 If (E,Ω) is an almost topological space and, for A ⊆ E, the set A
is the closure of A, then (E,− ) is a Tarski space.

On the other hand.

Proposition 4.11 If (E,− ) is a Tarski space and Ω = {X ⊆ E : X is open}, then
(E,Ω) is an almost topological space.
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5 Models given by maximal consistent theories

Now we set up the almost topological spaces as models for TK.

We denote the set of propositional variables of TK by Var(TK ), and the set of its
formulas by For(TK ).

Definition 5.1 A TK-theory is a set ∆ ⊆ For(TK) such that ∆ = ∆, where ∆ = {ψ :
∆ ` ψ}.

Thus, a theory is a set of formulas closed relative to the deduction relation of TK.
When ∆ = ∅, the theory correspond to the theorems of TK.

Definition 5.2 Let (E,Ω) be an almost topological space. A restrict valuation is a
function 〈.〉: Var(TK) → P(E) that maps each variable of TK to an element of P(E).

Definition 5.3 Given an almost topological space (E,Ω), a valuation is a function [.]:
For(TK)→ P(E) that extends naturally and uniquely a restrict valuation 〈.〉 as follows:

(i) [p] = 〈p〉
(ii) [¬ϕ] = E − [ϕ]

(iii) [�ϕ] = [̊ϕ]
(iv) [ϕ ∧ ψ] = [ϕ] ∩ [ψ]
(v) [ϕ ∨ ψ] = [ϕ] ∪ [ψ].

Thus, [>] = E and [⊥] = ∅, where > is any tautology and ⊥ is any contradiction.

Definition 5.4 Let (E,Ω) be an almost topological space. A valuation [.]: For(TK)
→ P(E) is a model for a set Γ ⊆ For(TK) when, for each formula γ ∈ Γ, [γ] = E.

We denote this condition by 〈(E,Ω), [.]〉 � Γ. In particular, a valuation [.]: For(TK )
→ P(E) is a model for ϕ ∈ For(TK ) when [ϕ] = E. In this case we write 〈(E,Ω), [.]〉 �
ϕ. The notation shows the importance of both the space (E,Ω) and the valuation [.].

Definition 5.5 A subset Γ ⊆ For(TK) logically implies ψ, what is denoted by Γ � ψ,
if every model of Γ is a model of ψ.

Definition 5.6 A formula ϕ is valid in the almost topological space (E,Ω) if for every
valuation [.]: For(TK) → (E,Ω) it follows that 〈(E,Ω), [.]〉 � ϕ.

Definition 5.7 A formula ϕ ∈ For(TK) is valid if it is valid in any almost topological
space (E,Ω).
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Now we can show the easy direction of adequacy.

Lemma 5.8 [ϕ→ ψ] = E ⇔ [ϕ] ⊆ [ψ].

Proof. [ϕ→ ψ] = E ⇔ [¬ϕ ∨ ψ] = E ⇔ [¬ϕ] ∪ [ψ] = E ⇔ (E − [ϕ]) ∪ [ψ] = E
⇔ [ϕ] ⊆ [ψ]. �

Theorem 5.9 (Soundness) If Γ ` ϕ, then Γ � ϕ.

Proof. The proof is by induction on the length of a given deduction.
For n = 1, we have that ϕ is an axiom of TK or ϕ ∈ Γ.
If ϕ ∈ Γ, of course, Γ � ϕ. So let’s consider that ϕ is an axiom of TK.
If ϕ is a classical tautology, by condition (vi), we have [ϕ] = E.
If ϕ is of the form �ψ → ψ, then [�ψ → ψ] = [¬(�ψ ∧ ¬ψ)] = E − [�ψ ∧ ¬ψ]) =

E − ([�ψ] ∩ [¬ψ]) = E − ( ˚[ψ] ∩ (E − [ψ])) = E − ∅ = E;
If ϕ is of the form �ψ → � � ψ, then [�ψ → � � ψ] = [¬ � ψ ∨ � � ψ] =

(E − ˚[ψ]) ∪ ˚̊
[ψ] = (E − ˚[ψ]) ∪ ˚[ψ] = E.

In any case Γ � ϕ.
By induction hypothesis, the enunciate holds for k < n.
If ϕ was obtained from Γ by MP, then we have Γ ` ψ and Γ ` ψ → ϕ. By induction

hypothesis, [ψ] = E and [ψ → ϕ] = E and by the previous lemma [ψ] ⊆ [ϕ]. As
[ψ] = E, hence [ϕ] = E.

If ϕ was obtained from Γ by RM�, we have Γ ` ϕ→ ψ and by inductive hypothesis
[ϕ→ ψ] = E. By the previous lemma [ϕ] ⊆ [ψ] and, by Proposition 4.7 (vi), [̊ϕ] ⊆ ˚[ψ]
and from that �ϕ ⊆ �ψ, therefore [�ϕ→ �ψ] = E.

Hence Γ � ϕ. �

Now the difficult direction, the Completeness. We characterize a particular almost
topological space from collections of theories in TK. As usual, we name this model by
canonical almost topological space.

Definition 5.10 A set of formulas ∆ is maximal consistent if it is consistent, and no
proper extension of ∆ is consistent.

Proposition 5.11 Γ ` ψ ⇔ Γ ∪ {¬ψ} is inconsistent.

Proposition 5.12 If Γ is maximal consistent, then for every formula ψ of For(TK),
either ψ ∈ Γ or ¬ψ ∈ Γ.

Proposition 5.13 If Γ is maximal consistent and Γ ` ψ, then ψ ∈ Γ.
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Theorem 5.14 (Lindenbaum) Every consistent set of formulas Γ can be extended to a
maximal consistent set ∆.

Proof. The proof is standard; see, for instance, Fitting and Mendelsohn ([10], 1998,
p. 76). �

The domain of the canonical almost topological space is the set T of all maximal
consistent theories of TK.

Now we need an almost topology over T . As in the Soundness Theorem we want to
apply the interior to the operator �.

Definition 5.15 For each ϕ ∈ For(TK), ϕ̂ = {∆ ∈ T : ϕ ∈ ∆} and B = {�̂ϕ : ϕ ∈
For(TK)}.

Proposition 5.16 The set B is a basis for an almost topology over T .

Proof. It follows from Proposition 4.9. �

In this way, we have an almost topological space (T,Ω) such that T is the set of
maximal consistent theories of TK and each member of Ω is the set ∅ or any union of
elements of B. Each basic open set is of the form Vϕ = {∆ ∈ T : �ϕ ∈ ∆}.

Definition 5.17 A canonical valuation is any valuation [.]: For(TK) → P(T ) such
that:

(i) [p] = {∆ ∈ T : p ∈ ∆} = p̂.

Lemma 5.18 ϕ→ ψ ⇔ ϕ̂ ⊆ ψ̂.

Proof. (⇒) If ∆ ∈ ϕ̂, then ∆ ` ϕ. Since ∆ ` ϕ→ ψ, then ∆ ` ψ. Hence, ∆ ∈ ψ̂.
(⇐) If 0 ϕ → ψ, then there exists ∆ ∈ T such that ¬(ϕ → ψ) ∈ ∆. Hence,
∆ ` ¬(ϕ → ψ) ⇔ ∆ ` ϕ ∧ ¬ψ ⇔ (∆ ` ϕ and ∆ ` ¬ψ) ⇔ (∆ ∈ ϕ̂ and

∆ ∈ ¬̂ψ) ⇔ (∆ ∈ ϕ̂ and ∆ /∈ ψ̂) ⇔ ϕ̂ * ψ̂. �

Proposition 5.19 For every ϕ ∈ For(TK), it follows that [ϕ] = ϕ̂.

Proof. By induction on the complexity of ϕ.
If ϕ is a propositional variable, then [p] = p̂, by the above definition.

If ϕ is of the form ¬ψ, then by induction hypothesis, [ψ] = ψ̂. So [ϕ] = [¬ψ] =

T − [ψ] = T − ψ̂ = ¬̂ψ = ϕ̂.
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If ϕ is of the form ψ ∨ σ, then by induction hypothesis, [ψ] = ψ̂ and [σ] = σ̂ . So

[ϕ] = [ψ ∨ σ] = [ψ] ∪ [σ] = ψ̂ ∪ σ̂ = ϕ̂.

If ϕ is of the form �ψ, then by induction hypothesis, [ψ] = ψ̂.

(⊆) If ∆ ∈ [ϕ] = [�ψ] = ˚[ψ] ⊆ [ψ] = ψ̂, then there is an open basic set �̂σ ⊆ [�ψ]

such that ∆ ∈ �̂σ and �̂σ ⊆ ψ̂. From lemma above, we have that �σ → ψ and by the
rule RM�, �� σ → �ψ. From axiom (TK∗

2) it follows that �σ → �ψ and by lemma

above, �̂σ ⊆ �̂ψ = ϕ̂. Finally ∆ ∈ ϕ̂.
(⊇) If ∆ ∈ ϕ̂ = �̂ψ, then ∆ belongs to the basic open set �̂ψ ∈ B. From the axiom

(TK∗
1) and the above lemma, it follows that �̂ψ ⊆ ψ̂ = [ψ]. From Proposition 4.7 (vi),

�̂ψ =
˚̂
�ψ ⊆ ˚[ψ] = [�ψ] = [ϕ]. So, ∆ ∈ [ϕ]. �

Theorem 5.20 (Strong completeness) If Γ � ψ, then Γ ` ψ.

Proof. If Γ 0 ψ, then Γ ∪ {¬ψ} is consistent. By Lindenbaum Theorem, Γ ∪ {¬ψ}
can be extended to a maximal consistent theory ∆. So, ∆ � ¬ψ and hence ∆ 2 ψ.
Then Γ 2 ψ. �

In this way the compactness is very simple.

Corollary 5.21 (Compactness) If every finite Γ0 ⊆ Γ has model, then Γ has a model.

Proof. If Γ does not have a model, then for every ∆ ∈ T , Γ * ∆. So, by Lindenbaum
Theorem, Γ is inconsistent. Hence, there is a formula ψ such that Γ ` ψ and Γ ` ¬ψ,
that is, there is a finite set Γ0 ⊆ Γ such that Γ0 ` ψ and Γ0 ` ¬ψ. So, Γ0 does not have
a model. �

6 Pre-order models for TK

In this section it is proved the adequacy of TK relative to a kind of relational models
given by pre-order relations.

Definition 6.1 A pre-order is a structure (E,≤) such that E 6= ∅ and ≤ is a binary
relation on E that is reflexive and transitive, that is, for all x, y, z ∈ E we have: (i)
x ≤ x, and (ii) x ≤ y and y ≤ z implies that x ≤ z.

Example 6.2 An example of pre-order non antisymmetric:
Let E = P({0, 1, 2}) and define A ≤ B ⇔ A ⊆ B∪{0}. Hence, (E,≤) is a pre-order,
{1} ≤ {0, 1}, {0, 1} ≤ {1}, but {1} 6= {0, 1}.
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Definition 6.3 Let (E,≤) be a pre-order. For each x ∈ E the set of upper bounds of
x is the set −→x = {y ∈ E : x ≤ y}.

Let (E,≤) be a pre-order and x, y ∈ E. The reflexivity of ≤ ensures that x ∈ −→x ,
and the transitivity of ≤ ensures that if y ∈ −→x , then −→y ⊆ −→x .

Definition 6.4 Let (E,≤) be a pre-order. A restrict valuation is a function 〈.〉: Var(TK)
→ P(E) that interprets each variable of TK as an element of P(E).

Definition 6.5 A valuation in a pre-order (E,≤) is a function [.]: For(TK) → P(E)
that extends naturally and uniquely a restrict valuation 〈.〉 as follows:

(i) [p] = 〈p〉
(ii) [¬ϕ] = E − [ϕ]
(iii) [�ϕ] = {x ∈ E : −→x ⊆ [ϕ]}
(iv) [ϕ ∧ ψ] = [ϕ] ∩ [ψ]
(v) [ϕ ∨ ψ] = [ϕ] ∪ [ψ].

So [>] = E and [⊥] = ∅.

Proposition 6.6 Given a valuation in a pre-order (E,≤), the following hold:
(i) [�ϕ] ⊆ [ϕ];
(ii) [�ϕ] = [�� ϕ];
(iii) [ϕ] ⊆ [ψ] implies that [�ϕ] ⊆ [�ψ].

Proof. (i) If y ∈ [�ϕ], as ≤ is reflexive, then y ∈ −→y ⊆ [ϕ] and hence y ∈ [ϕ].
(ii) By (i) [��ϕ] ⊆ [�ϕ]. Now, if y ∈ [�ϕ] and x ∈ −→y , then −→x ⊆ −→y ⊆ [ϕ]. Hence

x ∈ [�ϕ], therefore −→y ⊆ [�ϕ], that is, y ∈ [�� ϕ].
(iii) If y ∈ [�ϕ], then −→y ⊆ [ϕ] ⊆ [ψ]. Thus y ∈ [�ψ]. �

Proposition 6.7 If (E,≤) a pre-order, then:
(i) [ϕ] = ∅ ⇒ [�ϕ] = ∅;
(ii) [ϕ] = E ⇒ [�ϕ] = E.

Proof. (i) [�ϕ] = {x ∈ E : −→x ⊆ ∅} = ∅;
(ii) By the reflexivity of ≤, [�ϕ] = {x ∈ E : −→x ⊆ E} = E. �

Definition 6.8 If (E,≤) is a pre-order, then a model for Γ ⊆ For(TK) is a valuation
[.]: For(TK) → P(E) such that, for each formula γ ∈ Γ, [γ] = E.
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〈(E,≤), [.]〉 � Γ denotes that 〈(E,≤), [.]〉 is a model of Γ.
In particular, if Γ = {ϕ} and the pre-order is clear from the context, then we can

just write [ϕ] = E.

Definition 6.9 A formula ϕ is valid in a pre-order (E,≤) if for every valuation over
(E,≤) it holds that [ϕ] = E.

We denote that by 〈(E,≤), [.]〉 � ϕ.

Definition 6.10 If for every pre-order (E,≤) and every valuation [.]: For(TK) →
P(E) it holds 〈(E,Ω), [.]〉 � ϕ, then the formula ϕ is valid, which is denoted by � ϕ.

Definition 6.11 A subset Γ ⊆ For(TK) logically implies ψ, which is denoted by Γ � ψ,
if every model of Γ is a model of ψ too.

Now, the easy direction of adequacy.

Lemma 6.12 [ϕ→ ψ] = E ⇔ [ϕ] ⊆ [ψ].

Proof. Analogous to that for Lemma 5.8. �

Theorem 6.13 (Soundness) If Γ ` ϕ, then Γ � ϕ.

Proof. The proof is by induction on the the length n of the deduction. Let ϕ with a
deduction from Γ of length n.

For n = 1, we have that ϕ is an axiom of TK or ϕ ∈ Γ.
If ϕ ∈ Γ, of course, Γ � ϕ. So let’s consider that ϕ is an axiom of TK.
If ϕ is a classical tautology, by condition (vi) above, [ϕ] = E.
If ϕ is of the form �ψ → ψ, then [�ψ → ψ] = E, by Proposition 6.6 (i) and Lemma

6.12.
If ϕ is of the form �ψ → � � ψ, then [�ψ → � � ψ] = E by Proposition 6.6 (ii)

and Lemma 6.12.
In any case Γ � ϕ.
By induction hypothesis, the proposition holds for k < n.
If ϕ was obtained from Γ by MP, then we have Γ ` ψ and Γ ` ψ → ϕ. By induction

hypothesis, [ψ] = E and [ψ → ϕ] = E and by Lemma 6.12 [ψ] ⊆ [ϕ]. As [ψ] = E,
hence [ϕ] = E.

If ϕ was obtained from Γ by RM�, we have Γ ` ϕ→ ψ and by induction hypothesis
[ϕ→ ψ] = E. By Lemma 6.12 [ϕ] ⊆ [ψ] and, by Proposition 6.6 (iii), [�ϕ] ⊆ [�ψ] and,
again, from Lemma 6.12, [�ϕ→ �ψ] = E.

Hence Γ � ϕ. �
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Theorem 6.14 If Γ is consistent, then Γ has a model.

Proof. By Lindenbaum Theorem, every consistent set Γ can be extended to a maximal
consistent set ∆. Thus, we will verify that ∆ has a model and, since Γ ⊆ ∆, also Γ has
a model.

We define the following valuation [.] for For(TK) in the pre-order (E,≤) such that
E = {0} and ≤ is given by 0 ≤ 0. Then, P(E) = {∅, E} and we obtain a natural
Boolean model.

For each propositional variable p, [p] = E ⇔ p ∈ ∆.
Now, we show that for every formula ψ, [ψ] = E ⇔ ψ ∈ ∆, that is, [.] is a model

for ∆.
The proof is by induction on the number of operators, and the Boolean part is very

easy. So let us develop the relevant part.
(⇐) If ψ ∈ ∆ and ψ is of the form �σ, then �σ ∈ ∆ and, by Axiom TK∗

1 , it follows
that σ ∈ ∆. By induction hypothesis, [σ] = E and, by Proposition 6.7, [�σ] = E.
Hence, [ψ] = E.

(⇒) If ψ /∈ ∆, then ¬ψ ∈ ∆. By (⇐), [¬ψ] = E. Hence, [ψ] = ∅ 6= E. �

Corollary 6.15 (Strong completeness) If Γ � ψ, then Γ ` ψ.

Proof. If Γ � ψ, then every model of Γ is a model of ψ, that is, there is no model
of Γ ∪ {¬ψ}. By the previous theorem, Γ ∪ {¬ψ} is inconsistent and, by Lemma 5.11,
Γ ` ψ. �

7 Final considerations

The Logic TK was originally motivated by the definition of Tarski operators. So it can
be thought as a modal logic of deductibility. Due to similarity between Tarski spaces
and topological spaces we have tried to develop models for TK in the topological style.
This paper show us that the almost topological spaces are adequate models to TK.
Particularly, we construct an almost topological space of maximal consistent theories
of TK. After this, we present a new model for TK given by pre-order structures. It is
interesting to observe that the Boolean part of TK is interpreted in the Boolean set
algebra of this structures. The pre-order aspects are relevant only for the modal part
of TK.

Of course there are common aspects in all these mathematical structures that are
models of TK. In next steps we plan to investigate the relations among these structures.
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