
South American Journal of Logic

Vol. 1, n. 1, pp. 219–247, 2015

ISSN: 2446-6719

Epistemic-Temporal Logic and Sortal Predicates

Max A. Freund

Abstract

A formal semantics for epistemic-tense formal languages for sortal predicates
is formulated. Conceptualism is the philosophical background of this semantic
system. Completeness and soundness theorems are proved for a restriction of the
semantics. The restriction is motivated by a nativist view of concept-formation.
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1 Introduction

The syntax of classical first-order logic does not distinguish monadic predicates that
provides criteria of counting, identity and classification from those that do not. Exam-
ples of the former kind of predicates are most of our common nouns (such as “spider”
and “horse”)1. Adjectives and mass terms, on the other hand, are clear cases of pred-
icates not supplying all of the three sort of criteria at the same time. Although mass
predicates, like “water” for example, gives criteria for identity and classification, they
do not do it for counting. Adjectives provides criteria for classification but not for iden-
tity and counting. Predicates providing all of the three criteria in question are known
as “sortal predicates”.

Sortal predicates have important logico-linguistic properties that taken together
would differentiate them from other kinds of predicates. These properties are byprod-
ucts of the criteria provided by sortal predicates. Such properties include the possibility
of forming relative identities, relative quantifications and predications. In other words,
with sortal predicates we can form relative (sortal) identities such as “a is the same
spider as b” and “a is the same horse as b”, and relative (sortal) quantifications, such
as “every spider” and “some horse”. In addition to these features, sortal predicates can
occur in predications. For example, regarding the sortal predicate “person”, one can
assert that John is a person. In general, for any sortal predicate S, it is meaningful to
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claim that a is an S. We should note that by means of mass terms relative identities
can be formed, but not relative quantifications and predications. With adjectives, we
can construct predications, but not relative identities or relative quantifications.

Now, when a formal language allows for the formal representation of sortal quantifi-
cation and identity, and it is such that its logical syntax assumes such representations
as undefinable, we shall speak here of a (formal) language for sortal predicates 2. In
previous papers, we have studied extensional and intensional languages for sortal terms
(see Freund (2007),(2004), (2002) and (2001)) and constructed semantic systems for
such languages. These papers have assumed a modern form of conceptualism (as a
theory of universals) as part of the philosophical background theory for those systems.
With the exception of sentences, such a philosophical theory presupposes, in general,
that meaningful linguistic expressions stand for concepts and constitute their semantic
basis. Thus, in particular, for conceptualism, sortal predicates have to be assumed to
represent concepts. We shall refer to this sort of concepts as sortal concepts.

Another main feature of the above modern version of conceptualism is its view of
concepts as cognitive capacities or structures based on such capacities. As such, the
set of concepts might vary from one time-point to another. Also, if possible worlds
are taken into consideration, the set in question can also vary through possible worlds.
Now, since construction of knowledge depends on the set of concepts we might possess,
a clear link between the development of knowledge and the development of concept-
formation can be presumed. In other words, a connection between the dynamics of
knowledge and the dynamics of concept formation can be clearly supposed.

Now, the above link between knowledge and concept-formation suggests different
epistemic notions. We are here interested in one of these possible notions, namely: the
notion of knowability relative to development of sortal concepts. Our goal, in this
paper, is to inquiry into the logic of such a notion, within the context of a formal sortal
language. Since the notion of development is being involved in the notion itself, we shall
here take into account the dimension of temporality. Thus, the language for sortals
characterized in this paper will also include temporal propositional conectives. In other
words, the formal language for sortals we shall here consider will be two dimensional:
epistemic and temporal. The language will also be second-order regarding sortal term
variables, that is, the logical syntax of the language will allow for the concatenation of
universal quantifiers with sortal term variables. This syntactic feature together with its
semantic interpretation will be an important part of the representation of the dynamic
factor in conceptual development.

Now, regarding the development of concepts, two sort of theories will be in perspec-
tive in the present paper, namely: radical nativist, on the one hand, and partial and
non-nativist theories of concept-formation, on the other hand. A radical nativist theory
assumes that all of our concepts are innate or formed from innate concepts by logical
and other mental operations. The role of the environment is just instrumental in the ac-
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tivation of those cognitive capacities. But no other role is assigned to the environment
in the content of the concepts themselves. Partial nativist and non-nativist theories
have a different conception. For partial nativism, there clearly are innate concepts, but
also there are concepts that are not. These latter ones get formed from the interaction
of the individuals with their environment. According to the non-nativist theories, all
of the concepts are not innate and are a byproduct of the experience of the individuals
with the environment. The environment plays an essential role in the content of the
concepts.

The semantics we shall here formulate might be viewed as formally representing dif-
ferent aspects of the non-nativist theories regarding the epistemic notion of knowability
relative to the development of sortal concepts. However, there is a subclass of the models
of the semantics fulfilling certain conditions, which might be justified by appealing to a
radical nativist-view of concept-formation. We shall prove soundness and completeness
with respect to the notion of logical validity provided by that subclass. Soundness and
completeness proofs for the semantics in general is left as an open problem.

As the readers will notice, the semantics provides a variable-domain interpretation
of the second-order quantifiers over sortals, that is, the range of such quantifiers at a
possible world and time point will be the set of concepts that have been formed at
that world and time point only. This is in consonance with one of the aspects in
the philosophical motivation of the paper, namely: the variation of the set of concepts
through time and possible worlds as a factor in the determination of knowledge. A
variable-domain interpretation of second-order quantification is the interpretation more
in accord with such a motivation.

2 Philosophical preliminaries

As indicated, we shall assume a modern version of conceptualism as philosophical back-
ground. In the present section, we shall briefly present some features of this philosophi-
cal theory. These features are relevant for the philosophical justification of the semantics
and syntax of the epistemic logical system for sortals here characterized 3.

In general, in contrast with nominalism and realism, conceptualism as a theory
of universals postulates concepts as the semantic grounds for general terms. In the
modern version of conceptualism assumed in this paper, this view is extended to all
meaningful linguistic expressions other than sentences. Also, in this contemporary
variant of conceptualism, there is an interpretation of concepts as cognitive capacities
or structures based on such capacities. Depending on the nature of such capacities or
structures different sorts of concepts may be distinguished.

We begin by differentiating between sortal and predicable concepts, the former being
intersubjectively realizable cognitive capacities whose uses in thought and communi-
cation are associated with certain criteria by which we are able to distinguish, count,
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identify and classify objects. Clearly, sortal predicates will represent sortal concepts.
So, for example, the predicate “house” will stand for a cognitive capacity that allow us
to count, identify and classify houses.

Predicable concepts, on the other hand, are intersubjectively realizable cognitive ca-
pacities enabling us to classify and relate objects. Non-sortal monadic predicates terms
and n-place predicate expressions, for each n > 1 (also known as relational predicates),
will stand for predicable concepts. Thus, terms like “red”, “run” and “smaller than”
will represent predicable concepts.

Apart from sortal and predicable concepts, there is another sort of concepts relevant
for the topic of the present paper. We shall refer to them as referential concepts. Their
exercise allow us to refer. But here again we can make distinctions.

There are referential concepts based solely on sortal concepts. Cases of this kind
of concepts constitute concepts represented by expressions of the form “every S” and
“some S” (where S is a sortal predicate expression), such as “every horse” and “some
houses”. In general, referential concepts based on sortal concepts are intersubjectively
realizable cognitive structures that enable us to refer to objects distinguished and clas-
sified by sortal concepts.

Second-order referential constitute another kind of referential concepts, in particu-
lar, those whose exercise allows us to refer to the sortal concepts themselves. Linguistic
expressions such as “every sortal concept” and “some sortal concept” stand for con-
cepts of this kind. Now, two different interpretations can be provided to these sort of
expressions, namely: a counterfactual and a variable-domain interpretation. That is,
second-order reference to sortal concepts can be understood as reference to all possible
concepts or only to the concepts constructed at the time-interval and possible world at
which the referential concept is being exercised.

We shall here adopt the variable-domain interpretation. This is because our goal
is to construct an epistemic logic that will take into account the determination of
knowledge through time and/or possible worlds by the formation of sortal concepts.
A variable-domain interpretation will formally represent much better the dynamics of
such a concept-construction. The interpretation in question will be an aid in the formal
representation of the link between the dynamics of knowledge and the dynamics of
concept formation.

We now wish to consider the notion that constitutes the focus of our paper. This is
the notion of what in principle can be known relative to the sets of constructed sortal
concepts or, in other words, knowability relative to the development of sortal concepts.
Formation of these concepts at a time interval impiges on the content of knowledge we
could have access to at that interval. This is due to the fact that propositions, as they are
viewed in the present philosophical theory, are formed out of concepts and, in particular,
sortal concepts. Thus, for example, at any time-point at which the sortal concept of
being a house is being formed, certain propositions involving such a concept can be
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possibly constructed. For instance, propositions involving relative sortal quantification
over houses will contain the concept of being a house, such as the proposition that some
houses are white. This proposition is composed out of a referential concept (the concept
represented by “some house” ) and the predicable concept of being white. Construction
of that proposition and many others presuppose formation of the sortal concept of being
a house.

In accordance with the above, the continuing transformation of the set of sortal
concepts at different time-intervals might be a factor determining the propositions that
in principle can be constructed at different temporal points. But this, at the same time,
might imply a transformation of what can be known in principle at a period of time: for
an agent to know in principle that p, s/he must in principle believe that p. But for the
agent to believe in principle that p, an awareness of p must be possible and for this to
occur within the present conceptualist framework, a construction of the proposition p
by the agent is a necessary condition. Thus, the set of propositions that in principle can
be validated as knowledge at a time-point will be a subset of the propositions that in
principle can be constructed out of the concepts formed at the time-point in question.
Consequently, transformation of the set of sortal concepts might imply transformation
of what can be known in principle.

Given the above, from now on we shall refer to a subclass of propositions as an
epistemic matrix of a time-point when it fulfills the following: (1) they can in principle
be constructed out of the sortal and other kind of concepts formed at that point and
(2) they can in principle be validated as knowledge. It is a matrix because such a
subclass is the source from which knowledge at that time-point could arise. Thus, any
proposition constructed by a agent at a time-interval on the basis of the sortal concepts
formed and validated by the agent as knowledge, at that interval, will belong to the
epistemic matrix at that period of time. In this idea of validation, we are not assuming
a particular philosophical conception of epistemic validation.

Clearly, the continuing change of the set of sortal concepts might imply a constant
change of the epistemic matrix. That is, at different time points we might get different
epistemic matrices. Correlative to the formation of sortal concepts at a time-point, we
get a group of possible propositions that in principle can be formed at that time-point.
Within this group of propositions, we get a class of possible propositions that could in
principle be validated as knowledge.

We should point out that, in the present paper, we shall not discuss or logically
explore the notion of a possible construction of a proposition as presupposed in the
above explanations. The same applies to the notions of awareness and belief of a
proposition. We shall here assume these different notions as basic or primitive. We
shall also note that we are not assuming that there is an epistemic matrix for every
time-interval. Since the knowing agent is one of the essential factor in the formation of
concepts and propositions, unexistence of the agent at a time-point implies unexistence
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of an epistemic matrix at that point.
Now, the notion of an epistemic matrix for the actual world at a time-point suggests

the idea of worlds alternative to that world sharing the same epistemic matrix at the
same point. That is, we can envisage the class of worlds different from ours (in many
different ways) but having in common at a given time-point the same epistemic matrix
as that of the actual world at the same time-point. We can generalize this idea by con-
sidering possible worlds in general and their associated temporal matrices. Knowability
(or knowledge in principle) relative to sortal concepts constructed at a given time-point,
with respect to a possible world (actual or otherwise), will amount to truth in all al-
ternative possible worlds that share the same epistemic matrix at the same time-point.
For this interpretation of relative knowability, it is clear then that epistemic versions of
the S5 modal system is the adequate system of epistemic logical principles.

We want now to consider another important philosophical point. This is question of
the role of the environment in the development of concepts. We shall focus here on two
kinds of answers to this question. One of this two answers upholds the idea that all of
our concepts are innate or derived from innate concepts by mental operations (including
logical operations among them). The role of the environment is only instrumental in
triggering those concepts. This is called radical nativism. A contemporary version of
this philosophical approach can be found, for example, in Fodor (1975) and (1981) (see
Fodor (2008) for an assessment of his earlier views on nativism). Fodor’s theory would
seem to imply that sortal concepts are innate. He explicitly states, for example, that
the concept of being a doorknob is innate.

The other kind of answers are constituted by either partial nativist or non-nativist
theories of concept-formation. The former sort of theories allows for some innate con-
cepts, but also for other concepts in which the environment does not reduce to the
instrumental role of awaking the concepts. Such concepts do not exist previously to
the interaction with the environment. Kantian oriented epistemologies are usually of
this sort of nativism. Non-nativist theories clearly assumes that all concepts are de-
rived from experience. Empiricist philosophies are generally committed to this sort of
approach.

In the present paper, we shall not argue in favor or against any of the above theories,
nativist or otherwise. We shall try to represent formally some elements of the non-
nativist and the radical nativist theories as far as the epistemic operator of this paper
is concerned. The semantics we shall formulate in the next section can be justified on
the basis of a non-nativist conception. The set of sortal concepts and the knowledge
in principle as based on such concepts may vary from one time-point to another in
the semantics. This is the view that would be sanctioned by a non-nativist approach.
However, certain models of the semantics allow for a uniform or constant formation of
sortal concepts and, consequently, for a constant set of knowable propositions. Although
this does not imply necessarily a nativist view of concept-formation, this view can
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philosophically ground such models. In other words, if we assume radical nativism,
those models might be interpreted as representing this view as far as the concept of
knowability is concerned. Partial nativism is not being taken into account.

3 Language and Semantics

We proceed now to caracterize the formal language of this paper. The set of its primitive
logical symbols will be constituted by the expressions ¬,→,=,∀, (, ), G,H and [K].
The first two symbols will stand for classical negation and material implication, the
penultimate and antepenultimate symbols will formally represent the “it will always be
the case” and the “it has always been the case” temporal propositional operators, and
the last symbol the epistemic operator “it is known in principle that p relative to the
set of sortal concepts that have been developed”. The classical propositional operators
of conjunction, disjunction and material equivalence will be represented by the symbols
&, ∨ and ↔, respectively, and defined in the usual way.

We shall assume denumerably many individual variables, sortal term variables and,
for each positive integer n, n-place predicate variables. We shall use “x”, “y” and
“z” with or without numerical subscripts to refer (in the metalanguage) to individual
variables and upper case letters in italics (except for “P”, “F”, “G”, “H” and “K”)
to refer to sortal term variables. Atomic well formed formulas are expressions either
of the form of a relative identity (a =L b), where a and b are individual variables and
L is a sortal term variable, or of the form πx1 . . . xn, where π is an n-place predicate
variable and x1, . . . , xn are individual variables. The set of well formed formulas (wffs,
for short) is the smallest set containing the atomic well formed formulas and such that
¬ϕ, (ϕ → δ), ∀xLϕ, Gϕ, Hϕ, [K]ϕ and ∀Lϕ are in the set whenever ϕ, δ are in the
set, and L is a sortal term variable.

Intuitively speaking, the expressions “x =L y” will represent sortal identity. For
example, if L stands for the sortal concept of being a tiger, then x is the same tiger
as y will be represented by the expression “x =L y”. Expressions of the form “∀xSϕ”,
for any given sortal term S, will formally represent a relative sortal quantification
with respect to the sortal concept L. Thus, when S stands for the concept of being
a horse, and π for the concept of being black, the expression “every horse is black”
will be represented by “∀xSπx”. Finally, “∀Lϕ” will represent universal (second-order)
quantification over sortal concepts. That is, it will stand for expressions like “every
sortal concept is such that ϕ”.

Hereafter, we shall make use of lower case greek letters ϕ, σ, δ, ψ and γ to refer to
wffs, π to refer to predicate variables and upper case greek letters such as Γ, ∆ and Σ to
refer to sets of wffs. We shall generally drop the use of parentheses in a given context, if
ambiguity is not possible in that context. The concepts of a bound and free occurrence
of a variable are understood in the usual way. If α and β are variables of the same type,
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then by ϕα/ β is meant the wff that results by replacing each free occurrence of β by a
free occurrence of α, if such a wff exists; otherwise ϕα/ β is ϕ itself. We shall say that
α is free for β in ϕ, if ϕα/ β is not ϕ unless α is β.

We shall now proceed to characterize the semantic system for the above language.
We begin by defining a frame for an epistemic-tense language for sortals predicates
(ETS -frame, for short) as a structure 〈D,S,W , T ,R,K t〉 t∈T , where

1. D is a domain of discourse, empty or otherwise.

2. W and T are non-empty sets.

3. S is a function from W × T into ℘(℘(D)W ×T ) (where ℘(D) is the power set of
D and ℘(D)W ×T is the set of functions from W × T into ℘(D)).

4. R is a serially ordered relation in T , i.e., R ⊆ T × T , and R is transitive, ir-
reflexive and connected. In other words, R satisfies the following conditions: (i)
for every α, β, γ ∈ T , if αR β and βR γ, then αR γ; (ii) for every α, β, ∈ T ,
either α = β or αR β or βR α; and for every α ∈ T , it is not the case that αRα.

5. for each t ∈ T , K t is an equivalence relation in a subset of W , that is, K t ⊆
W ×W and K t is symmetric, reflexive and transitive.

We should note that D represents the set of objects existing at some possible world
or other, W the set of (epistemically accessible) possible worlds, T the set of time-
points, and R the earlier-than relation.

For each t and w, S(t,w) stands for the set of sortal concepts that have been
constructed at a possible world w at time t (and maybe previously to t). Each function
f that is a member of S(t,w) set-theoretically represents a sortal concept C. Each
one of such functions are to be intuitively understood as assigning to each possible
world j and time-point k the set of objects existing at j and k that fall under the sortal
concept C . This expresses the way sortal concepts are understood in the philosophical
framework of this paper. According to this view, sortal concepts are cognitive capacities
providing identity criteria only for things that exist.

Now, regarding time-points, that is, the members of T , we should note that a
common sense view is assumed according to which time is serially ordered by the earlier-
than relation. This relation is represented by R in the ETS -frame and its clause 4
gathers the common sense view on the ordering of time we have referred to.

Clause 5 represents the relativity of the notion of knowability to the set of concepts
developed at a certain time point. The worlds accesible to a time-point will not be
epistemically isolated from each other. They conform the same epistemic matrix based
on the set of concepts developed at a time-point. For this reason, for every t ∈ T , K t

is an equivalence relation.
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By an assignment (of values to variables) in an ETS -frame 〈D, S,W , T ,R, K t〉 t∈T ,
we shall understand a function A with the set of variables (of all types) as domain and
such that (1) A(x) ∈ D, for each individual variable x, (2) A(L) ∈ ∪(i,j)∈W×T S(i, j), for
each sortal term variable L, and (3) for each positive integer n and n-place predicate
variable π, A(π) ∈ ℘(D)W ×T . Clause 2 states that no concept exists other than those
formed in a possible world. This corresponds to the nature of concepts as cognitive
capacities or structures based on such capacities. Concepts ontologically depend on the
concrete individuals existing at one world or other, and so there cannot be concepts
other than those formed at a possible world.

By an epistemic-tense sortal model (ETS -model, for short) we shall mean an ordered
pair A = 〈〈D,S,W , T ,R,K t〉t∈T ,A〉, where A is an assignment in the ETS -frame
〈D,S,W , T ,R,K t〉 t∈T . If A is 〈〈D,S,W , T ,R,K t〉 t∈T ,A〉, by A(d/a) should be
understood the ordered pair 〈〈D,S,W , T ,R,K t〉 t∈T ,A(d, a)〉, where A(d, a) is like A
except for assigning d to a, and a is either an individual or sortal term variable.

Let A be a ETS -model 〈〈D,S,W , T ,R,Kt〉t∈T ,A〉. Where i ∈ W , j ∈ T , we shall
define the truth-value of ϕ in A at i and j (in symbols, V al(ϕ,A, i , j ) ) as follows:

1. V al(x =L y, A, i, j) = 1 if A(x) = A(y) and A(y) ∈ A(L)(i, j); otherwise
V al(x =S y, A, i, j) = 0.

2. V al(πx1 . . . xn, A, i, j) = 1 if 〈A(x1), . . . ,A(xn)〉 ∈ A(π)(< i, j >); otherwise
V al(πx1 . . . xn, A, i, j) = 0.

3. V al(¬ϕ, A, i, j) = 1 if V al(ϕ, A, i, j) 6= 1; otherwise V al(¬ϕ, A, i, j) = 0.

4. V al(ϕ → γ, A, i, j) = 1 if V al(¬ϕ, A, i, j) = 1 or V al(γ, A, i, j) = 1; otherwise
V al(ϕ→ γ, A, i, j) = 0.

5. V al(∀Lϕ, A, i, j) = 1 if for every d ∈ S(i, j), V al(ϕ,A(d/L), i, j) = 1; otherwise
V al(∀Sϕ, A, i, j) = 0.

6. V al(∀xLϕ, A, i, j) = 1 if for every d ∈ A(L)(i, j), V al(ϕ,A(d/x), i, j) = 1;
otherwise V al(∀xSϕ, A, i, j) = 0.

7. V al(K[ϕ], A, i, j) = 1 if for every k ∈ W , if iKjk, V al(ϕ, A, k, j) = 1; otherwise
V al([K]ϕ, A, i, j) = 0.

8. V al(Gϕ, A, i, j) = 1 if for every k ∈ T , if jRk , V al(ϕ, A, i, k) = 1; otherwise
V al(Gϕ, A, i, j) = 0.

9. V al(Hϕ, A, i, j) = 1 if for every k ∈ T , if kRj , V al(ϕ, A, i, k) = 1; otherwise
V al(Hϕ, A, i, j) = 0.
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Finally, a wff ϕ is said to be ETS -valid if and only if V al(ϕ, A, i, j) = 1 for any
ETS -model A, possible world i and time-point j in A; and a set of wffs Γ is ETS -
satisfiable if and only if there are an ETS -model B, possible world i and time-point j
in B such that for every ϕ ∈ Γ, V al(ϕ, B, i, j) = 1.

As the reader can verify, the present semantic system allows that an object (in the
sense of a value of a free individual variable) may not be identifiable by any sortal
concept at all, that is, [K]¬∃S(x =S x) is consistent in the semantic system. In
other words, the semantics does not assume that every entity of the domain should fall
under a sortal concept. Note also that, according to clause 6 above, first order (sortal)
quantification at a given world is over objects that exist at that world (although the free
individual variables have objects that exist at any world as values). This will have the
consequence that the formal system characterized in the present paper will constitute
a free logic regarding individual terms. By clause 5, such a formal system will also be
a free logic with respect to sortal terms.

It is important to point out that the semantic system preserves Leibniz’s law under
relative (sortal) identity. Several strong arguments in favor of Leibniz’s law for relative
identity have been formulated, especially in Wiggins (2001) and Stevenson (1972)).
These arguments justify our assuming the law in question for our semantics 3. Now,
semantic validation of Leibniz’ law does not mean that the semantics does not allow for
contingent identities. On the contrary, since we are assuming an approach to proper
names according to which those names constitute sortal terms standing for (sortal)
concepts that provide identity criteria for uniquely identifying (at most) one thing.

Now, as stated above, we are here taking into account three possible views regarding
the influence of the environment in concept-formation. These are the radical, partial
nativist and the non-nativist theories. ETS -models might be viewed as representing
a non-nativist approach to the epistemic operator [K]. That is, the class of ETS -
models might be interpreted as formally portraying a non-nativist approach regarding
the epistemic operator [K]. Together both clauses 5 and 3 of an ETS frame convey
this idea.

Now, the above semantics can allow for a formal representation of radical nativism.
This is because it includes ETS -models that might represent a nativist approach to
concept-development. These will be the models in which the set of concepts at a
possible world of a ETS model does not vary through the different time-points of the
same model. In formal terms, if A be a ETS -model 〈〈D,S,W , T ,R,Kt〉t∈T ,A〉, for
i,m ∈ W , j, k ∈ T , if (i,m) ∈ Kt, then S( i, t) = S( i, j). In addition to this condition,
in such models, Kt = Km, for every t,m ∈ T . The set of knowable propositions does not
vary through time, because we have the same set of sortal concepts at any time-point.

An ETS -model that fulfills the above two conditions will be here called a Nativist
ETS model (NETS -model). On this basis, we can define the following notion of logical
validity:
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A wff ϕ is said to be NETS -valid if and only if V al(ϕ, A, i, j) = 1 for any NETS -
model A, possible world i and time-point j in A; and a set of wffs Γ is NETS -satisfiable
if and only if there are a NETS -model B, possible world i and time-point j in B such
that for every ϕ ∈ Γ, V al(ϕ, B, i, j) = 1.

In section 5, we shall prove the completeness and soundness of NETS -validity. Com-
pleteness and soundness for ETS -validity is left as an open problem.

4 The Formal System NETS

We proceed now to formulate a tense-modal formal logical system for sortals. We shall
prove that this formal system is complete and sound with respect to NETS -validity,
that is, with respect to the notion of logical validity provided by nativist epistemic-tense
semantics for sortal predicates. For this reason, we shall refer to the formal system in
question as NETS. Before characterizing the formal system NETS, we shall need the
following definitions and convention:

Definition 0 :

1. 〈K〉ϕ = ¬[K]¬ϕ

2. Pϕ = ¬H¬ϕ

3. Fϕ = ¬G¬ϕ

4. [t]ϕ = Gϕ & Hϕ & ϕ

Clearly, the operators 〈K〉, P and F here defined, correspond to epistemic, future
and past-tense possibility, respectively. The operator [t] represents temporal necessity.

In the next definition, we assume that two sortal concepts are the same if and only
they are co-extensive at any possible world and time-point.

Definition 1 : If L and M are sortal term variables, y and x individual variables, then
(L=M) = [t][K](∀yM∃xL(x =L y) &∀yL∃xM(x =M y))
Convention 0: If ϕ be a wff, then (a) �ϕ will represent one of the wffs Gϕ,Hϕ

and [K]ϕ; and (b) �∗ϕ will represent the wff Gϕ if �ϕ is Hϕ, the wfff Hϕ if �ϕ is Gϕ
and the wff [K]ϕ if �ϕ is [K]ϕ.

Convention 1: (a) By �ϕ we shall mean ¬�¬ϕ. So �ϕ might represent one of the
wffs Fϕ, Pϕ and 〈K〉ϕ, depending clearly on what �ϕ is.

We are ready now to present NETS.
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Axioms of NETS

A0. All tautologies
A1. ∀L∃M(L = M)
A2. ∀xL∃yL(y =L x)
A3. ϕ→ ∀yLϕ, provided y does not occur free in ϕ
A4 ϕ→ ∀Lϕ, provided L does not occur free in ϕ
A5.x =L x→ ∃yL(y =L x), where y is a variable other than x
A6.∃L(L=M)→ (∀Lϕ→ ϕM/L), provided M is free for L in ϕ
A7. x =L y → x =L x
A8. ∀xL(ϕ→ γ)→ (∀xLϕ→ ∀xLγ)
A9. ∀L(ϕ→ γ)→ (∀Lϕ→ ∀Lγ)
A10. (〈K〉(y =L z) ∨ F 〈K〉(y =R z) ∨ P 〈K〉(y =A z)) → [t][K](∃xM(y =M x) →

(y =M z)), where y is a variable other than x
A11. x =L y → (ϕ → ϕ∗), where ϕ∗ is obtained from ϕ by replacing one or more

free occurrences of x by free occurrences of y.
A12. [K]ϕ→ ϕ
A13. 〈K〉ϕ→ [K]〈K〉ϕ
A14. [K](ϕ→ σ)→ ([K]ϕ→ [K]σ).
A15. ϕ→ GPϕ
A16. ϕ→ HFϕ
A17. Pϕ→ H(Fϕ ∨ ϕ ∨ Pϕ)
A18. Fϕ→ G(ϕ ∨ Pϕ ∨ Fϕ)
A19. Gϕ→ GGϕ
A20. Hϕ→ HHϕ
A21 G(ϕ→ σ)→ (Gϕ→ Gσ)
A22 H(ϕ→ σ)→ (Hϕ→ Hσ)
A23 F [K]ϕ→ [K]Fϕ
A24 P [K]ϕ→ [K]Pϕ
A25 ∃L(L=M)→ [K][t]∃L(L=M)
A26[K]ϕ→ [t][K][t]ϕ
(Note: Hereafter, we shall refer respectively to axioms A11, A14, A21, A22, A23

and 24 as axioms (LL), (DIST [K]),(DISTG), (DISTH)), and bridge axioms

Rules of NETS:

�Gen : from σ → �1(γ1 → . . . → �n(γn → �ϕ) . . .) infer σ → �1(γ1 → . . . →
�n(γn → �∀uϕ) . . .), provided u does not occur free in σ → �1(γ1 → . . . → �n(γn →
�∀uϕ) . . .); γ1. . . γnare wffs, u is either an individual variable or a sortal term variable,
and for 0 < i ≤ n, �i ∈ {G, H and [K]}

UG(s) : from ϕ infer ∀Lϕ
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UG: from ϕ infer ∀xLϕ
MP : from ϕ and ϕ→ σ infer σ
RG: from ϕ infer Gϕ
RH: from ϕ infer Hϕ
RN : from ϕ infer [K]ϕ
Irr: from ([K](πx &H¬πx)→ ϕ, infer ϕ, provided π does not occur in ϕ

(Note: In the case of �Gen, when n = 0, it becomes “from σ → �ϕ infer σ →
�∀uϕ”)

We shall say that a wff ϕ is a theorem of NETS (in symbols, ` ϕ) if and only if there
are wffs γ1, . . . , γn such that for every i (1 ≤ i ≤ n), γi is either an axiom or follows
from previous wffs in the sequence by one of the rules of NETS, and γn is ϕ. A wff ϕ is
an NETS-theorem of Γ (in symbols, Γ ` ϕ) if and only if there are wffs ψ1, . . . , ψn ∈ Γ
such that (ψ1& . . .& ψn)→ ϕ is a theorem of NETS.

Convention 2: From now on, a proof requiring reasoning in accordance with classical
propositional logic will be denoted by PL.

We now state several theorems that are essential for the completeness proof in
section 5. We shall also briefly indicate how to prove them.

Theorems

T0. ∃xS(x =S y)→ (∀xSϕ→ ϕy/x), provided y is a variable other than x free for
x in ϕ

( LL, PL, UG, A3, A8)
T1. ∀ySϕ↔ ∀zSϕz/y, provided z is free for y in ϕ and does not occur free in ϕ

(T0, UG, A8, A2, A3)
T2. ∀Sϕ↔ ∀HϕH/S, provided H is free for S in ϕ and does not occur free in ϕ

(A6, UG(s), A9, A4)
T3. x =S y → y =S x

( LL, A7, PL)
T4. x =S y → ∃zS(z =S x)

(A7, A5 and PL)
T5. ∃yS(x =S y)→ x =S x

(A7, PL, UG, A8, A3, definition)
T6. [K]ϕ→ [K](ϕ & ϕ)

(PL, R[K], Dist−[K])
T7.[K](ϕ & ψ)→ [K](ψ & ϕ)

(PL, R[K], Dist−[K])
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T8.([K](ϕ & ψ)&[K](ψ & δ))→ [K](ϕ & δ)
(PL, R[K], Dist−[K])

T9.〈K〉(x =S y)→〈K〉(y =Sx )
(T3, R[K], Dist[K], PL, definition)

T10.F 〈K〉(x =S y)→ F 〈K〉(y =Sx )
(T9, PL, RG,DistG, PL, definition)

T11. P〈K〉(x =S y)→ P〈K〉(y =Sx )
(T9, PL, RH,DistH, PL, definition)

T12.(G[K]ϕ → G[K](ϕ & ϕ)
(T6, PL, RG, DistG)

T13.(H[K]ϕ → H[K](ϕ & ϕ)
(T6, PL, RH, DistH)

T14. ([K]ϕ&〈K〉γ)→ 〈K〉(ϕ&γ)
(PL, R[K], Dist−[K], PL)

T15 (Hϕ&Pγ)→ P (ϕ&γ)
(PL, RG, DistG,PL)

T16. (Gϕ&Fγ)→ F (ϕ&γ)
(PL, RH, DistH,PL)

T17.(〈K〉(x =M y) & 〈K〉(y =L z))→ 〈K〉(x =L z)
(A10, T9, T4, T6, T14, PL, R[K], LL)

T18.F ([K]ϕ&〈K〉γ)→ F 〈K〉(ϕ&γ)
(T14, RG,DistG, , PL)

T19.P ([K]ϕ&〈K〉γ)→ P 〈K〉(ϕ&γ)
(T14, RH,DistH,PL)

T20.〈K〉(x =S y) & F 〈K〉(y =L z)→ F 〈K〉(x =L z)
(A10, T9, T4, T6, T16, PL, R[K], RG, LL)

T21.〈K〉(x =S y) & P 〈K〉(y =L z)→ P 〈K〉(x =L z)
(A10, T9, T4, T6, T15, PL, R[K], RG, LL )

T22.F 〈K〉(x =S y) & P 〈K〉(y =L z)→ P 〈K〉∃S(x =L z)
(A10, T9, T4, T15, PL, R[K], RG, LL)

T23.P 〈K〉(x =S y) & F 〈K〉∃S(y =L z)→ F 〈K〉(x =S z)
( A10, T9, T4, T16, PL, R[K], RG, LL)

T24.P 〈K〉(x =S y) & P 〈K〉(y =L z)→ P 〈K〉(x =L z)
(A10, T9, T4,T6, T17, PL, R[K], RH, LL)

T25.F 〈K〉(x =S y) & F 〈K〉(y =L z)→ F 〈K〉∃S(x =L z)
(A10, T9, T4, T16, PL, R[K], RG, LL )

T26. [K]ϕ→ [K][K]ϕ
(A12, A13, PL, and definitions)

T27. P 〈K〉(x =S y)& 〈K〉(y =L z)→ P 〈K〉∃S(x =L z)
( A10, T9, T4, T6, T14, PL, R[K],RH LL )
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T28. F 〈K〉(x =S y)& 〈K〉(y =L z)→ F 〈K〉(x =L z)
(A10, T9, T4, T6, T14, PL, R[K], RG, LL )

T29. ([t][K](ϕ & ψ)& [t][K](ψ & δ))→ [t][K](ϕ & δ)
(T8, RG, RH, DistG, DistH,PL)

T30. ([t][K](ϕ & ψ))→ [t][K](ψ & ϕ)
(T7, RG, RH, DistG, DistH,PL)

T31. ([K]ϕ & [K]ψ)→ [K](ϕ & ψ)
T32. [K]Gϕ → G[K]ϕ

(PL, A15, A24, T16, A16, T14)
T33. G[K]ϕ→ [K]Gϕ

(PL, A23, A13, RG, A12, RN)
T34. [K]Hϕ → H[K]ϕ

(PL, A16, A23, T15, A15, T14)
T35. H[K]ϕ→ [K]Hϕ

(PL, A24, A13, RH, A12, RN)
T36.ϕ→ [K]〈K〉ϕ

(PL, A12, A13)

Derived rule 1 ( Replacement rule) : if ` ϕ ↔ ψ, then ` δ ↔ δ*, where δ* is the
result of replacing one or more occurrences of ϕ by ψ in δ.
Proof. By strong induction on the complexity of δ. �

Derived rule 2(a) if ` σ → �1(ϕ1 → . . . �n (ϕn → �n+1(∃xS(x =S y) → ψ) . . .),
then ` σ → �1(ϕ1 → . . .�n (ϕn → �n+1∀yψ) . . .), provided y is an individual variable
that does not occur free in σ → �1(ϕ1 → . . . �n (ϕn → �n+1∀yψ) . . .) and for every
i ∈ ω, �i+1 ∈ {G,H, [K]}.
Proof. By �Gen, the fact that (by A2, A8, UG and PL) ` ∀y(∃xS(x =S y)→ ψ)↔
∀yψ and derived rule1. �

Derived rule 2(b) if ` σ → �1(ϕ1 → . . . �n (ϕn → �n+1(∃L(L =S M) → ψ) . . .),
then ` σ → �1(ϕ1 → . . . �n (ϕn → �n+1∀Mψ) . . .), provided M is a sortal term
variable that does not occur free in σ → �1(ϕ1 → . . . �n (ϕn → �n+1∀Mψ) . . .) and
for every i ∈ ω, �i+1 ∈ {G,H, [K]}.
Proof. Similar to the above proof. �

Derived rule 3: If ` σ → �0(ϕ1 → . . . �n−1 (ϕn → �n¬ψ) . . .), then ` ψ →
�∗n(ϕn → . . .�∗1 (ϕ1 → �∗0¬σ) . . .) for every i ∈ ω, 0 < i ≤ n, �i ∈ {G, H and [K]}.
Proof. Assume hypothesis. By A12-13, A15, A16, RN, RG, RH, DistG, DistH and
Dist[K], it can be shown by weak induction that ` �j−1(ϕj &.�j (ϕj+1 & . . .&�n−1(ϕn
& �nψ) . . .) → (ϕj−1 → �∗j−2(ϕj−2 → . . . �∗1 (ϕ1 → �∗0¬σ) . . .). Then by j = n + 1,
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` �nψ → (ϕn → �∗n−1(ϕn−1 → . . . �∗1 (ϕ1 → �∗0¬σ) . . .). By RN, RG or RH ; DistG,
DistH or Dist[K],` �∗n �nψ → �∗n(ϕn → �∗n−1(ϕn−1 → . . . �∗1 (ϕ1 → �∗0¬σ) . . .) and
so by A12-13,and A15-A16, ` ψ → �∗n(ϕn → �∗n−1(ϕn−1 → . . . �∗1 (ϕ1 → �∗0¬σ) . . .).
�

5 Completeness and soundness of NETS

We proceed to show that system NETS is sound and complete. First, we assume the
following conventions and define certain notions, most of which are instrumental for
the completeness proof.

Convention 3: Let ϕ be a wff. By bϕc we shall mean any wff of the form �1(γ1

& . . . �n−1 (γn−1 & �ϕ) . . .), where γ1 . . . γn are wffs, for 0 < i ≤ n, �i ∈ {P, F and
〈K〉} and � ∈ {P, F and 〈K〉}.(Note: when n = 1, then bϕc is �ϕ).

Convention 4: If bϕc is �1(γ1 & . . . �n (γn & �ϕ) . . .), then in any given context
in which a wff bϕc occurs, then bψc in the same context will be �1(γ1 & . . . �n (γn &
�ψ) . . .) unless otherwise stated

Definition 2
Let Γ be a set of wffs.

1. Γ is ω-complete if and only if Γ satisfies the following three clauses:(a) if ∃xSϕ ∈
Γ, then there is a variable y other than x which is free for x in ϕ such that
(∃xS(x =S y) & ϕy/x) ∈ Γ;(b) for all wff ϕ, if ∃Sϕ ∈ Γ, then there is a sortal
term T free for S in ϕ such that (∃S(S = T ) & ϕT/S) ∈ Γ; and (c) for all wff
ϕ, if b∃xSϕc ∈ Γ, then there is a variable y other than x which is free for x in ϕ
such that b∃xS(x =S y) & ϕy/xc ∈ Γ

2. Γ is irreflexive if and only if both (a) for all wff ϕ, if bϕc ∈ Γ. then there is
an one-place predicate variable R which does not occur in bϕc and an individual
variable x such that b[K](Rx & H¬Rx) & ϕc ∈ Γ ; and (b) there is an one-place
predicate variable R and individual variable x such that [K](Rx & H¬Rx) ∈ Γ

3. Γ is a NETS-maximally consistent set of wffs if and only if Γ is NETS-consistent
and for every wff ϕ, either ϕ ∈ Γ or ¬ϕ ∈ Γ.

4. Γ is a maxc set of wffs if and only if Γ is an irreflexive, maximally consistent
ω-complete set of wffs.
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Definition 3
Let ϕ be a wff, α an individual or sortal term variable. By recursion, we shall define

the expression “[ϕ(α)]”, which intuitively should be understood as the result of rewriting
all bound occurrences of α by variables new to ϕ of the same type as α.

• If ϕ is an atomic wff, then [ϕ(α)] = ϕ

• If ϕ is of the form¬ψ, then [ϕ(α)] = ¬[ψ(α)]

• If ϕ is of the form ψ → γ, then [ϕ(α)] = [ψ(α)]→ [γ(α)]

• If ϕ is of the form ∀zSψ, then
[ϕ(α)] = ∀zS[ψ(α)], if z is not α
[ϕ(α)] = ∀kS[ψ(α)]k/α, if z is α

and k is the first individual variable new to both [ψ(α)] and ϕ.

• If ϕ is of the form ∀Sψ, then
[ϕ(α)] = ∀S[ψ(α)], if S is not α

[ϕ(α)] = ∀H[ψ(α)]H/α, if S is α
and H is the first sortal term variable new to both [ψ(α)] and ϕ

• If ϕ is of the form [K]ψ, then [ϕ(α)] = [K][ψ(α)]

Definition 4 :For every maxc Γ,Σ,ΓR�Σ if and only if for every wff ϕ, if �ϕ ∈ Γ,
then ϕ ∈ Σ (where � ∈ {G,H, [K]})

We shall now state and prove or indicate how to prove several lemmas indispensable
for the completeness or soundness proofs.

Lemma 0: For any maxc Γ and Σ, and for any wff ϕ
I.The following are equivalents
(a) whenever ϕ ∈ Γ, we have Pϕ ∈ Σ
(b) whenever ϕ ∈ Σ, we have Fϕ ∈ Γ
(c) whenever Gϕ ∈ Γ, we have ϕ ∈ Σ
(d) whenever Hϕ ∈ Σ, we have ϕ ∈ Γ
II.The following are equivalents:
(e)whenever [K]ϕ ∈ Σ, we have ϕ ∈ Γ
(f) whenever ϕ ∈ Γ, we have 〈K〉ϕ ∈ Σ

Proof. By A15, A16, A12, A13 and PL. �

Lemma 1. R[K] is an equivalence relation in the set of maxc sets.
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Proof. by A12, A13. �

Definition 5 : For every maxc set Γ, [Γ]
R[K]

is the equivalence class of Γ determined

by R[K] in the set of maxc sets.

Definition 6 : For every maxc Γ,Σ,Γ '
G

Σ if and only if Γ = Σ or ΓRGΣ or ΣRGΓ

Lemma 2. (a) RG is transitive (b) the restriction of RG to an arbitrary set of maxc
sets of wffs is an irreflexive relation (c) RG is left- and right-serial (d) '

G
is an equiva-

lence relation in the set of maxc sets.
Proof. (a) By axiom A19; (b) By A12, Lemma 0 and condition (b) of definition
of irreflexive sets; (c) By axioms A17, A18, A19, A20 and (b) of this lemma; (d) By
definition of ', symmetry and reflexivity are obvious; its transitivity follows from (a)
and (c) of this lemma. �

Definition: Let [Γ]'
G

the equivalence class of Γ determined by '
G

in the set of maxc
consistent sets.

Lemma 3. The relation RG is a serial order on every equivalence class [Γ]'
G

Proof. By lemma 2. �

Lemma 4. If Γ and Σ are maxc sets of wffs such that Γ '
G

Σ and there is a
one-place predicate variable P and an individual variable x such that

(Px&H¬Px) ∈ Γ ∩ Σ, then Γ =Σ.
Proof. By definitions of '

G
and RG, lemma 0 and the consistency of both Γ and Σ.

�

The following lemmas 5 and 6 can be easily proved by induction on the complexity
of γ using T1 (for Lemma 5) and T2 (for Lemma 6).

Lemma 5 . For any individual variable x, ` [γ(x)]↔ γ

Lemma 6 .For any sortal term variable S, ` [γ(S)]↔ γ.

Note that : (i) If x is free for y in γ, then [γx/y(x)] is [γ(x)]x/y and so by Lemma 5,
` [γ(x)]x/y ↔ γx/y; and (ii) If S is free for H in γ, then [γS/H(S)] is [γ(S)]S/H and

so by Lemma 6, ` [γ(S)]S/H ↔ γS/H

Lemma 7. For any wff ϕ, if A = 〈〈D,S,W , T ,R,K t〉 t∈T ,A〉, is a NETS-model and
y is an individual variable free for x in ϕ, then for every j ∈ W , t ∈ T , V al(ϕ,A(A(y)/x),
j, t) = 1 if and only if V al(ϕy/x, A, j, t) = 1.
Proof. Let C = {n ∈ ω| For any wff ϕ, if ϕ is of complexity n and A = 〈〈D,S,W , T ,
R,K t〉 t∈T ,A〉 is a NETS-model and y is an individual variable free for x in ϕ, then for
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every j ∈ W , t ∈ T , V al(ϕ, A(A(y)/x), j, t) = 1 if and only if V al(ϕy/x, A, j, t) = 1}.
By strong induction it can be shown that ω ⊆ C. �

Lemma 8. For any wff ϕ, If A = 〈〈D, S, W , T , R, K t〉t∈T ,A〉 is a NETS -model
and M is a sortal term variable free for L in ϕ, then for every j ∈ W , t ∈ T , V al(ϕ,
A(A(L)/M), j, t) = 1 if and only if V al(ϕM/L, A, j, t) = 1.

Proof for lemma 8 proceeds in a way analogous to the above proof for lemma 7.

Lemma 9: If ϕ is a wff, A = 〈〈D,S,W , T ,R,K t〉t∈T ,A〉 and B = 〈〈D,S,W , T ,R,
K t〉t∈T ,B〉 are NETS -models such that A and B agree on all variables occurring free
in ϕ, then V al(ϕ, A, i, j) = 1 if and only if V al(ϕ, B, i, j) = 1, for every i ∈ W and
j ∈ T .
Proof. By a straightforward induction on the complexity of sub-wffs of ϕ. �

Metatheorem I (Soundness theorem): if ϕ is a theorem of NETS, then ϕ is NETS -
valid
Proof. By induction on theorems. Directly from the semantic clauses, it can be
shown the validity of axioms A1, A2, A5, A7-A10, A14-A16, A21-A26, and rules RG,
RH, RN, UG, UG(s), �Gen and MP. The validity of A19-A20 and A17-18 follows
from the transitivity and connectivity of the later-than relation, respectively, and the
semantic clauses, and that of A12-13 follows from the assumption that the epistemic
accessibility relation is reflexive and euclidean, respectively. For axioms A3 and A4,
lemma 9 is needed, and for A6 lemma 8, in addition to the semantic clauses. For the
case of Irr, assume first ϕ is not valid (where π does not occur in this latter formula).
Therefore, there is a NETS -model A = 〈〈D,S,W , T, R,Kt〉t∈T ,A〉 and w ∈ W , t ∈ T ,
such that V al(ϕ,A, w, t) = 0. Let A∗ = 〈〈D,S,W , T, R,Kt〉t∈T ,A∗〉, where A∗ is like A
except for what it assigns to the monadic predicate variable π. The function A∗ assigns
to π that function fπ ∈ ℘(D)W ×T such that, for every (j, k) ∈ W × T ,

fπ(j, k) =

{
A(π)((j, k)) ∪ {A(x)}, if either t = k or tRk

A(π)((j, k))− {A(x)} otherwise

Clearly, by lemma 9 and the irreflexivity of the R-relation among the members of
T in A∗, V al(([K](πx &H¬πx))→ ϕ)), A∗, w, t) = 0,and so [K](πx &H¬πx)→ ϕ) is
not valid. �

Lemma 10 . If Γ is maxc and �γ ∈ Γ, then there is a maxc Σ such that γ ∈ Σ and
{ψ | �ψ ∈ Γ} ⊆ Σ, (where � ∈ {G,H and [K]}).
Proof. Assume hypothesis. By Convention 0, “�γ” stands for ¬ � ¬γ. Let
δ1, . . . , δn, . . . be an ordering of wffs of the form either ∃ySϕ, bϕc or ∃Sϕ 4. Recur-
sively define a sequence of wffs ψ0, . . . , ψn, . . . as follows.
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i) ψ0 = γ
ii) If �(ψ0& . . .&ψn& δn+1) /∈ Γ, then ψn+1 = ψn
iii) If �(ψ0& . . .&ψn& δn+1) ∈ Γ, then
iiia) if δn+1 is of the form ∃ySϕ,
ψn+1 = (∃yS(y =S x)&ϕx/y))}
where x is the first variable other than y which is free for y in ϕ such that �(ψ0

& . . .& ψn & (∃yS(y =S x) & ϕx/y) ∈ Γ, (see footnote 5 )
iiib) if δn+1 is of the form bϕc, then

ψn+1 =


b[K](Rx&H¬Rx) & ∃yS(y =S z)& σz/y)c, if ϕ is ∃ySσ, for

some wff σ;
b(�(Rx&H¬Rx) & ∃S(S = T )& σT/S)c, if ϕ is ∃Sσ, for

some wff σ;
b[K](Rx&H¬Rx)& ϕc otherwise

(where (1) both R is the first predicate variable and x the first individual variable
which do not occur in �(ψ0& . . .&ψn& δn+1), if ϕ is not of the form ∃ySσ, for some
wff σ; and (2) if ϕ is of the form ∃ySσ, for some wff σ, z is the first individual variable
other than y which is free for y in σ such that �(ψ0& . . . & ψn& b ∃yS(y =S z)&
σz/y)c ∈ Γ and R is the first predicate variable which do not occur in �((γ0& . . . &
γn)& b∃yS(y =S z) & σz/y)c) and x the first individual variable such that �((γ0& . . . &
γn)& b[K](Rx&H¬Rx)& ∃yS(y =S z)&σz/yc) ∈ Γ. (See footnote 5 ).;(3) if ϕ is of the
form ∃Sσ for some wff σ, T is the first sortal variable other than S which is free for S
in σ such that �(ψ0& . . . & ψn& b∃S(S = T )& σT/Sc) ∈ Γ and R is the first predicate
variable which does not occur in �((γ0& . . . & γn)& b∃S(S = T )&σT/Sc) and x the
first individual variable such that �((γ0& . . . & γn)& b�(Rx&H¬Rx)& (∃S(S = T )&
σT/Sc) ∈ Γ.(See footnote 5 ).

iiic) if δn+1 is of the form ∃Sϕ, then ψn+1 = (∃S(S = L)& ϕL/S) (where L is the
first sortal term variable such that �(ψ0& . . . & ψn & (ϕL/S) . . .) ∈ Γ. (see footnote 5 )

On the basis of the above recursion, it can be easily shown that for all n ∈ ω, �(ψ0&
. . . & ψn) ∈ Γ and then that for all n ∈ ω, {ψ0& . . . & ψn} is consistent. Let Σ = {ϕ|
�ϕ ∈ Γ} ∪ {ψn : n ∈ ω}. By reductio ad absurdum, we will show that Σ is consistent.

So suppose Σ is not consistent. Then there are n, m ∈ ω such that {ϕ0, . . ., ϕn,
ψ0, . . ., ψm} ⊆ Σ and ` ¬(ϕ0& . . . & ϕn& ψ0 & . . .&ψm). So, by R� and definitions,
` ¬ � (ϕ0& . . . & ϕn& ψ0& . . .& ψn); then by maximality of Γ,¬ � (ϕ0& . . . & ϕn&
ψ0& . . .& ψn) ∈ Γ. On the other hand (since {�ϕ0& . . . & �ϕn} ⊆ Γ, Γ is maxc,
and �(ψ0& . . .& ψn) ∈ Γ), by T14-16 �(ϕ0& . . . & ϕn& ψ0 & . . .& ψn) ∈ Γ, which is
impossible by the consistency of Γ. Therefore, Σ is consistent.

We assume without loss of generality that there are one-place predicate variables
not occurring in Σ. Otherwise for each m ∈ ω, replace the m-th one-place predicate
variable in all the wffs in Σ by the 2m-th one-place predicate variable. It can be easily
shown that the replacement set for Σ is consistent if Σ is consistent. In the order-
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ing of one-place predicate variables, let R be the first of the predicate variables not
occurring in Σ. Let K = Σ ∪ {[K](Rx&H¬Rx)}. By the Irr rule and PL, K is con-
sistent. By Lindenbaum’s method, extend K to a maximally consistent set K∗. Since
{ψn : n ∈ ω} ⊆ K∗, K∗ is ω-complete. It is clearly irreflexive as well. Also by con-
struction, γ ∈ K∗ and {ϕ | �ϕ ∈ Γ} ⊆ K∗. �

Metatheorem II (Completeness Theorem for NETS): If ∆ is NETS-consistent, then
∆ is NETS-satisfiable.
Proof. Assume the hypothesis of the theorem. Without loss of generality, assume
there are denumerably many individual variables y1, . . . , yn, . . ., denumerably many
sortal term variables L0, . . . , Ln . . ., and denumerably one-place predicate variables
R0, . . . , Rn . . . which do not occur in ∆. (Otherwise for each k,m, n ∈ ω, replace
the k-th individual variable, the m-th-sortal term variable and n-th one-place predicate
variable in all the wffs in ∆ by the 2k -th individual variable, the 2m-th sortal term vari-
able and 2n-th one-place predicate variable, respectively. It can then be easily shown
that ∆ is satisfiable if and only if the replacement set for ∆ is and that the replacement
set for ∆ is consistent if ∆ is consistent). Let δ0, . . . , δn . . . be an enumeration of the
wffs of the form ∃ySϕ, bϕc, or ∃Sϕ. Let R+ be the first predicate variable not occurring
in ∆. By assumption and the Irr rule, ∆∪ {[K](R+x&H¬R+x)} is consistent. Define
a chain of sets Γ0, . . . ,Γn, . . . as follows.

1) Γ0 = ∆ ∪ {[K](R+x&H¬R+x)}
2) if δn is of the form ∃ySϕ,

Γn+1 = Γn ∪ {(∃ySϕ→ (∃yS(y =S x)&ϕx/y))}
(where x is the first individual variable new to Γn ∪ {δn}),
3) if δn is of the form bϕc, then

Γn+1 =


Γn ∪ {bϕc → b[K](Rx&H¬Rx)& ∃yS(z =S y)& σz/y)c} , if ϕ is

∃ySσ, for some wff σ; or
Γn ∪ {bϕc → b[K](Rx&H¬Rx)& ∃M(L =M M)& σL/M)c} , if ϕ is

∃Mσ, for some wff σ;
otherwise Γn ∪ {bϕc → b[K](Rx&H¬Rx) & ϕc}

(where (a) both R is the first predicate variable and x is the first individual variable
new to Γn ∪ {δn}, if ϕ is not of the form ∃ySσ or ∃Sσ for some wff σ and, (b) if
ϕ is ∃ySσ for some wff σ, z is the first individual variable new to Γn ∪ {δn}), and
both R is the first predicate variable and x is the first individual variable new to
Γn ∪ {bϕc → b∃yS(z =S y)& σz/y)c}; (c) if ϕ is ∃Mσ for some wff σ, L is the first
sortal term variable new to Γn ∪ {δn}), and both R is the first predicate variable and x
is the first individual variable new to Γn ∪ {bϕc → b∃M(L =M M)& σL/M)c}

4) if δn is of the form ∃Mϕ,
Γn+1 = Γn ∪ {∃Mϕ → ∃M(L =M M)&ϕL/M} (where L is the first sortal term

variable new to Γn ∪ {δn}).



240 M. A. Freund

By weak induction, it can be shown that Γn is consistent, for every n ∈ ω. Set Γ∗ =⋃
n∈ω

Γn. Clearly, Γ∗ is consistent. By Lindenbaum’s method, extend Γ∗ to a maximally

consistent set ∆∗. Note that by construction ∆∗ is ω-complete and irreflexive. So ∆∗

is maxc.
Define now a relation among the set of individual variables as follows:
x ∼= z if and only if either for some sortal term variable M , F 〈K〉(x =M z) ∈ ∆∗

or P 〈K〉(x =M z) ∈ ∆∗ or 〈K〉(x =M z) ∈ ∆∗; or for every sortal term variable M ,
[t][K]((¬∃yM(y =M x)&¬∃yM(y =M z)) ∈ ∆∗.

Statement 0: ∼= is an equivalence relation in the set of individual variables
Proof :
1) ∼= is reflexive, i.e., x ∼= x, for every individual variable x: by Reductio Ad

Absurdum, PL, T5,T14, T18 and T19.
2) ∼= is symmetric, that is, if x ∼= z, then z ∼= x, for every individual variable z and

x: by T9, T10, T11, T30 and PL.
3) ∼= is transitive, i.e., if x ∼= z and z ∼= w, then x ∼= w, for every individual variable

x, z and w: by PL, T17, T20-T25, T27-8, T29, T14-16 and consistency of ∆∗. N
Let [x] be the equivalence class of x determined by∼= in the set of individual variables

and set D = {[x]| x is an individual variable}. Define now a relation among the
equivalence classes of maxc sets of wffs modulo '

G
as follows: [Γ]'

G
≡ [Γ′]'

G
if and

only if there are Σ, Σ′ such that Σ 'G Γ and Σ′ 'G Γ′ and ΣR[K]Σ
′.

Statement 1: ≡ is an equivalence relation.
Proof : Clearly, by A12, A13, ≡ is symmetric and reflexive. By A23-24, lemma 10,

the irreflexivity of maxc sets, T31, lemma 4 and the fact that R[K] is an equivalence
relation, it can be shown that ≡ is transitive. N

Set
∑

=
⋃
{[Γ]'

G
| [Γ]'

G
≡ [∆∗]'

G
}. Obviously, every equivalence class modulo

R[K] or modulo '
G

is a subset
∑

or is disjoint with
∑

.

Statement 2: If A is an equivalence class modulo '
G

and B an equivalence class
modulo R[K] both of which are subsets of

∑
, then there is exactly one maxc Ξ of wffs

such that Ξ ∈ A ∩B.
Proof : Assume hypothesis. Then for some Φ,Ψ ∈

∑
, [Φ]'

G
= A and [Ψ]R[K]

=
B, [Φ]'

G
≡ [∆∗]'

G
; also, [Ψ]'

G
≡ [∆∗]'

G
(since Ψ ∈

∑
). Since ≡ is symmetric

and transitive, [Φ]'
G
≡ [Ψ]'

G
. Also, by the irreflexivity of Ψ, A12 and lemma 4,

[Ψ]R[K]
∩[Ψ]'

G
= Ψ. By A23, A24, lemma 10, the irreflexivity of maxc sets, T31, lemma

4, there is a unique maxc Ξ ∈ [Φ]'
G

such that ΨR[K]Ξ, i.e., Ξ ∈ [Ψ]R[K]
.Consequently

there is a unique maxc Ξ such that Ξ ∈ [Φ]'
G
∩ [Ψ]R[K]

. N

Convention 5: Given Statement 2, if A is an equivalence class modulo '
G

and B
an equivalence class modulo R[K] both of which are subsets of

∑
, by the expression

Σ∗(A,B) we shall denote the unique Γ ∈ A ∩B.
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Set T = {[Γ]R[K]
| [Γ]R[K]

⊆
∑
} and W = {[Γ]'

G
| [Γ]'

G
⊆
∑
} and let

• For every sortal term variableM , CM = {〈(([Γ ]'
G
, [Θ ]R[K ]

)), {[x] ∈ D | ∃yM(x =M

y) ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

)}〉 | ([Γ ]'
G
, [Θ ]R[K ]

) ∈ W × T , and y is a variable other than

x}.

• S = {〈(([Γ ]'
G
, [Θ ]R[K ]

), {CM | M is a sortal term variable such that ∃L(L =
M) ∈ Σ∗([Γ ]'

G
,[Θ ]R[K ]

) , provided L is a sortal term variable other than F }〉 |
([Γ ]'

G
, [Θ ]R[K ]

) ∈ W × T }.

• For every n-place predicate variable π, Dπ = {〈〈([Γ ]'
G
, [Θ ]R[K ]

)〉, {〈[x1] . . . [xn]〉 ∈
Dn | πx1 . . . xn ∈ Σ∗([Γ ]'

G
,[Θ ]R[K ]

)}〉 | ([Γ ]'
G
, [Θ ]R[K ]

) ∈ W × T}.

• R = {([Θ ]R[K ]
,[Ψ ]R[K ]

) ∈T × T | there is a [Γ ]'
G
∈ W such that

Σ∗([Γ ]'
G
,[Θ ]R[K ]

)RGΣ∗([Γ ]'
G
,[Ψ ]R[K ]

) }.

• For every [Γ]R[K]
∈ T , K[Γ]R[K]

= {([Λ]'
G
, [Θ ]'

G
) ∈ W ×W | if [K]γ ∈ Σ∗([Λ]'

G
,[Γ ]R[K ]

),

then γ ∈ Σ∗([Θ ]'
G
,[Γ ]R[K ]

)}.

• A is the function whose domain is the set of variables such that A(x) = [x],
A(π) = Dπ and A(M) = CM .

• A∗ = 〈〈D,S,W , T ,R,K t〉 t∈T ,A〉.
Clearly, 〈D,S,W , T ,R,K t〉 t∈T is a ETS -frame. By A25-26, Kt (for every t ∈ T )
and A fulfill the two conditions for nativist models. Therefore, A∗ is a NETS -
model.

Where A∗ is the above defined NETS -model, note that by Lemmas 5-8 and the
soundness theorem, the following statements 3 and 4 can be easily shown:

Statement 3: For any wff ϕ, individual variables y and x, and Γ ∈ W , Θ ∈ T ,
V al(ϕ,A∗([x]/y),Γ,Θ) = 1 if and only if V al([ϕ(x)]x/y,A∗,Γ,Θ) = 1.

Statement 4: For any wff ϕ, sortal term variables L and S and Γ ∈ W , Θ ∈ T ,
V al(ϕ,A∗(CL/S),Γ,Θ) = 1 if and only if V al([ϕ(L)]L/S,A∗,Γ,Θ) = 1.

Statement 5: For any [Θ ]R[K ]
, [Ψ ]R[K ]

∈T , and [Γ ]'
G
, [K ]'

G
∈ W ,

if Σ∗([K ]'
G
,[Θ ]R[K ]

)RGΣ∗([K ]'
G
,[Ψ ]R[K ]

), then Σ∗([Γ ]'
G
,[Θ ]R[K ]

)RGΣ∗([Γ ]'
G
,[Ψ ]R[K ]

).
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Proof : Assume hypothesis. Since Σ∗([K ]'
G
,[Ψ ]R[K ]

) is irreflexive, there is a monadic

predicate variable Q such that [K](Qx&H¬Qx) ∈ Σ∗([K ]'
G
,[Ψ ]R[K ]

) and so

F [K](Qx&H¬Qx) ∈ Σ∗([K ]'
G
,[Θ ]R[K ]

).

Then by A23, [K]F (Qx&H¬Qx) ∈ Σ∗([K ]'
G
,[Θ ]R[K ]

) which means by A12 and defini-

tions that F ((Qx&H¬Qx) ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

). Therefore, by lemma 10 and 4, there

is a unique maxc Ω such that Σ∗([Γ ]'
G
,[Θ ]R[K ]

)RGΩ and (Qx&H¬Qx) ∈ Ω. Now, sup-

pose [K]ϕ ∈ Σ∗([K ]'
G
,[Ψ ]R[K ]

). By T31 [K](ϕ & (Qx & H¬Qx) ∈ Σ∗([K ]'
G
,[Ψ ]R[K ]

), and

by the hypothesis, F [K](ϕ & (Qx&H¬Qx) ∈ Σ∗([K ]'
G
,[Θ ]R[K ]

), from which it follows

by A23, [K]F (ϕ & (Qx & H¬Qx) ∈ Σ∗([K ]'
G
,[Θ ]R[K ]

).By A12 and definitions,F (ϕ &

(Qx&H¬Qx) ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

) and so by lemma 10 and above ϕ ∈ Ω.Consequently,

ϕ ∈ Ω if [K]ϕ ∈ Σ∗([K ]'
G
,[Ψ ]R[K ]

) . Then, by A12, A13, [K]ϕ ∈ Ω if only if [K]ϕ ∈
Σ∗([K ]'

G
,[Ψ ]R[K ]

). Clearly, Ω ∈ [Ψ ]R[K ]
∩ [Γ ]'

G
. By statement 2, Ω = Σ∗([Γ ]'

G
,[Ψ ]R[K ]

). N

Let I = {ι ∈ ω | if ϕ is of complexity ι, then for every Γ,Θ ∈
∑

, V al(ϕ,A∗,
[Γ ]'

G
, [Θ ]R[K ]

) = 1 iff ϕ ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

)}. It can be shown by strong induction that

ω ⊆ I.

Statement 6: ω ⊆ I
Proof : Suppose that ϕ is of complexity k, Γ,Θ ∈

∑
and for every i < k, i ∈ I.

There are seven cases to consider. The cases where ϕ is of the form ¬γ or γ → σ can
be easily shown by the inductive hypothesis.

1. ϕ is of the form x =M y: V al(ϕ,A∗, [Γ]'
G
, [Θ]R[K]

) = 1 if and only if (by
definition) A(x) = A(y) and A(y) ∈ A(M)([Γ]'

G
, [Θ]R[K]

) if and only if (by definition)
[x] = [y] and ∃zM(z =M y) ∈ Σ∗([Γ]'

G
,[Θ]R[K]

) if and only if (by definition) ∃zM(z =M

y) ∈ Σ∗([Γ]'
G
,[Θ]R[K]

); and for some sortal term variable B, P 〈K〉(x =B y) ∈ ∆∗ or

F 〈K〉(x =B y) ∈ ∆∗ or 〈K〉(x =B y) ∈ ∆∗, or for every sortal term variable B,
[t][K](¬∃zB(z =B x)&¬∃zB(z =B y)) ∈ ∆∗ .

Now, suppose that ∃zM(z =M y) ∈ Σ∗([Γ]'
G
,[Θ]R[K]

) and for some sortal term variable

B, F 〈K〉(x =B y) ∈ ∆∗ or P 〈K〉(x =B y) ∈ ∆∗or 〈K〉(x =B y) ∈ ∆∗. By A10, PL and
the fact that RG is a serial ordering in [∆∗]'

G
, [K]((∃xM(y =M x) → (y =M z)) ∈

Σ∗([∆∗]'
G
,[Θ]R[K]

). But Σ∗([∆∗]'
G
,[Θ]R[K]

) ∈ [Θ]R[K]
and so [K](∃xM(y =M x)→ (y =M z) ∈

Σ∗([Γ]'
G
,[Θ]R[K]

), from which it follows by A12 that (∃xM(y =M x) → (y =M z)) ∈
Σ∗([Γ]'

G
,[Θ]R[K]

). But given that ∃zM(z =M y) ∈ Σ∗([Γ]'
G
,[Θ]R[K]

), by PL (y =M z)) ∈
Σ∗([Γ]'

G
,[Θ]R[K]

).
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On the other hand, if for every sortal term variable M , [t][K](¬∃zM(x =M z)
&¬∃zM(y =M z)) ∈ ∆∗, then [K](¬∃zM(x =M z) &¬∃zM(y =M z)) ∈ Σ∗([∆∗]'

G
,[Θ]R[K]

),

since RG is a serial ordering in [∆∗]'
G

. Clearly, since Σ∗([∆∗]'
G
,[Θ]R[K]

) ∈ [Θ]R[K]
,

[K](¬∃zM(x =M z) &¬∃zM(y =M z)) ∈ Σ∗([Γ]'
G
,[Θ]R[K]

) and by A12 (¬∃zM(x =M

z) &¬∃zM(y =M z)) ∈ Σ∗([Γ]'
G
,[Θ]R[K]

), which is impossible because by assumption

∃zM(y =M z) ∈ Σ∗([Γ]'
G
,[Θ]R[K]

). Therefore, it is not the case that for every sortal term

variable M , [t][K](¬∃zM(x =M z) &¬∃zM(y =M z)) ∈ ∆∗ .
Assume now that x =M y ∈ Σ∗([Γ]'

G
,[Θ]R[K]

). Then ∃zM(z =M y) ∈ Σ∗([Γ]'
G
,[Θ]R[K]

) by

T4; and by A12 and A13 [K]〈K〉(x =M y) ∈ Σ∗([Γ]'
G
,[Θ]R[K]

). But Σ∗([Γ]'
G
,[Θ]R[K]

) ∈ [Θ]R[K]

and so [K]〈K〉(x =M y) ∈ Σ∗([∆∗]'
G
,[Θ]R[K]

), which by A12 means that 〈K〉(x =M y) ∈
Σ∗([∆∗]'

G
,[Θ]R[K]

). Since RG is a serial ordering in [∆∗]'
G

and by lemma 0, F 〈K〉(x =M

y) ∈ ∆∗ or P 〈K〉(x =M y) ∈ ∆∗ or 〈K〉(x =M y) ∈ ∆∗. Therefore, for some sortal
term M , F 〈K〉(x =M y) ∈ ∆∗ or P 〈K〉(x =M y) ∈ ∆∗ or 〈K〉(x =M y) ∈ ∆∗ and
consequently, either for some sortal term M , F 〈K〉(x =M y) ∈ ∆∗ or P 〈K〉(x =M y) ∈
∆∗ or 〈K〉(x =M y) ∈ ∆∗, or for every sortal some sortal termM [t][K]((¬∃zM(x =M z)
&¬∃zM(y =M z))) ∈ ∆∗; and ∃zM(z =M y) ∈ Σ∗([Γ]'

G
,[Θ]R[K]

)

2. ϕ is of the form πx1 . . . xn: inmediate from definitions.
3. ϕ is of the form ∀yMγ: V al(ϕ,A∗, [Γ ]'

G
, [Θ ]R[K ]

) = 1 if and only if (by definition)
for every d ∈ A(M)([Γ ]'

G
, [Θ ]R[K ]

), V al(γ,A∗(d/y), [Γ ]'
G
, [Θ ]R[K ]

) = 1 if and only
if (by definition) for every individual variable x, if [x] ∈ A(M)([Γ ]'

G
, [Θ ]R[K ]

), then
V al(γ,A∗([x]/y), [Γ ]'

G
, [Θ ]R[K ]

) = 1 if and only if (by Statement 3) for every individual

variable x, if [x] ∈ A(M)([Γ ]'
G
, [Θ ]R[K ]

), then V al([γ(x)]x/ y,A∗, [Γ ]'G
, [Θ ]R[K ]

) =
1 if and only if (by definition) for every individual variable x, if ∃zM(x =M z) ∈
Σ∗([Γ ]'

G
,[Θ ]R[K ]

) (where z is a variable other than x), then V al([γ(x)]x/ y, A∗, [Γ ]'
G
,

[Θ ]R[K ]
) = 1 if and only if (by the inductive hypothesis) for every individual variable

x, if ∃zM(x =M z) ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

), then [γ(x)]x/y ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

) if and only if

(by ω-completeness and maximality of Σ∗([Γ ]'
G
,[Θ ]R[K ]

),T0, T1, Lemma 5 and note (i)

inmediately following Lemmas 5-6) if and only if ∀yMγ ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

).

4. ϕ is of the form ∀Sγ: V al(ϕ,A∗, [Γ ]'
G
, [Θ ]R[K ]

) = 1 if and only if (by definition)
for every CF ∈ S([Γ ]'

G
, [Θ ]R[K ]

), V al(γ,A∗(CF/S), [Γ ]'
G
, [Θ ]R[K ]

) = 1 if and only if (by

Statement 4) for every CF ∈ S([Γ ]'
G
, [Θ ]R[K ]

), Val ([γ(F )]F/S,A∗, [Γ ]'
G
, [Θ ]R[K ]

) = 1 if
and only if (by definition) for every sortal term variable F and individual variables
x, y, if ∃L(L =S F ) ∈ Σ∗([Γ ]'

G
,[Θ ]R[K ]

) (where L is a sortal term variable other

than F ), then Val ([γ(F )]F/S,A∗, [Γ ]'
G
, [Θ ]R[K ]

) = 1 if and only if (by the induc-
tive hypothesis) for every sortal term variable F , if ∃L(L =S F ) ∈ Σ∗([Γ ]'

G
,[Θ ]R[K ]

),
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then, [γ(F )]F/S ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

) if and only if (by ω-completeness and maximality of

Σ∗([Γ ]'
G
,[Θ ]R[K ]

), Lemma 6 and note (ii) immediately following Lemmas 5-6, A6 and T2)

∀Sγ ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

).

5. ϕ is of the form [ K ]γ: V al(ϕ,A∗, [Γ ]'
G
, [Θ ]R[K ]

) = 1 if and only if (by definition)
for every [M ]'

G
∈ W , if [Γ ]'

G
K[Θ ]R[K ]

[M ]'
G
, V al(γ,A∗, [M ]'

G
, [Θ ]R[K ]

) = 1 if and

only if (by the inductive hypothesis)for every [M ]'
G
∈ W , if [Γ ]'

G
K[Θ ]R[K ]

[M ]'
G
, γ ∈

Σ∗([M ]'
G
,[Θ ]R[K ]

).

Now, if [K]γ ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

), then (since Σ∗([Γ ]'
G
,[Θ ]R[K ]

) ∈ [Θ]R[K ]
and by A12)

γ ∈ Σ∗([M ]'
G
,[Θ ]R[K ]

) (for every[M ]'
G
∈ W such that [Γ ]'

G
K[Θ ]R[K ]

[M ]'
G

). Suppose now

that [K]γ /∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

). Then, by Lemma 10, there is a maxc Λ such that ¬γ ∈ Λ

and {ψ | [K]ψ ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

)} ⊆ Λ. Clearly, Λ ∈ [Θ]R[K ]
and then Λ ∈

∑
, which

means that for some Ψ ∈
∑

, Λ ∈ [Ψ ]'
G

and so, by Statement 2, Λ = Σ∗([Ψ ]'
G
,[Θ ]R[K ]

).

By construction, [Γ ]'
G
K[Θ ]R[K ]

[Ψ ]'
G

Therefore, there is [Ψ ]'
G
∈ W such that both

[Γ ]'
G
K[Θ ]R[K ]

[Ψ ]'
G

and ¬γ ∈ Σ∗([Ψ ]'
G
,[Θ ]R[K ]

).

6. ϕ is of the form Gγ: V al(ϕ,A , [Γ ]'
G
, [Θ ]R[K ]

) = 1 if and only if (by definition)
for every [K]R[K ]

∈ T , if [Θ ]R[K ]
R [K]R[K ]

, then V al(γ,A , [Γ ]'
G
, [K ]R[K ]

) = 1 if and
only if (by the inductive hypothesis) for every [K]R[K ]

∈ T , if [Θ ]R[K ]
R [K]R[K ]

, then
γ ∈ Σ∗([Γ ]'

G
,[K ]R[K ]

).

Now, suppose Gγ ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

), and [Θ ]R[K ]
R [K]R[K ]

. Then, by definition of R,

there is [Λ]'
G
∈ W such Σ∗([Λ]'

G
,[Θ ]R[K ]

)RGΣ∗([Λ]'
G
,[K ]R[K ]

), which implies by statement 5

that Σ∗([Γ ]'
G
,[Θ ]R[K ]

)RGΣ∗([Γ ]'
G
,[K ]R[K ]

) and so, by assumption, that γ ∈ Σ∗([Γ ]'
G
,[K ]R[K ]

).

Suppose now that Gγ /∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

). Then, by Lemma 10, there is a maxc Λ such

that ¬γ ∈ Λ and {ψ | Gψ ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

)} ⊆ Λ. Clearly, Σ∗([Γ ]'
G
,[Θ ]R[K ]

)RGΛ and

so Λ ∈ [Γ]'
G

. Then, Λ ∈
∑

, which means that for some Ψ ∈
∑
,Λ ∈ [Ψ ]R[K]

. By

Statement 2, Λ = Σ∗([Γ ]'
G
,[Ψ ]R[K ]

) and therefore, for some [Ψ ]R[K ]
∈ T , [Θ ]R[K ]

R [Ψ]R[K ]

and ¬γ ∈ Σ∗([Γ ]'
G
,[Ψ ]R[K ]

).

7. ϕ is of the form Hγ: since it proceeds along similar lines, proof for this clause
can be easily constructed just by following the one for case 6. N

We have shown above that for every wff ϕ and Γ,Θ ∈
∑

, V al(ϕ,A∗, [Γ ]'
G
, [Θ ]R[K ]

) =

1 iff ϕ ∈ Σ∗([Γ ]'
G
,[Θ ]R[K ]

), in particular, for every wff ϕ, V al(ϕ,A∗, [∆∗]'
G
, [∆∗]R[K ]

) = 1

iff ϕ ∈ Σ∗([∆∗]'
G
,[∆∗]R[K ]

)}, since [∆∗]'
G
∈ W and [∆∗]R[K]

∈ T . By Statement 2 and

the fact that both ∆∗ ∈ [∆∗]'
G

and ∆∗ ∈ [∆∗]R[K]
, ∆∗ = Σ∗([∆∗]'

G
,[∆∗]R[K ]

). But by con-

struction ∆ ⊆ ∆∗, and consequently V al(ψ,A∗, [∆∗]'
G
, [∆∗]R[K ]

) = 1, for every ψ ∈ ∆,
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which proves the metatheorem. �

Notes

1 Examples of common nouns that are not considered to be sortal terms by many
authors are words such as “thing” and “object”. For a detailed discussion of these
and other related topics see, for example, Geach(1980), Gallois(1988), Deutsch(2007),
McGinn(2000), Noonan(1999) and Wiggins(2001). For a complete presentation of the
different criteria proposed in the literature for a term to be considered a sortal and the
issues regarding those criteria, see Grandy (2007).

2 Sortal predication has been shown to be definable in terms of sortal quantification
and sortal identity as follows: x is an A =def (∃yA)(y =A x). For this reason were are
not including it in our definition of a language for sortals.

3For details on the modern version of conceptualism here assumed see, for example,
Cocchiarella (2007)

4 For the different discussions regarding relative identity, see Deutsch (2007). For
arguments purporting to show that Leibniz law under sortal or relative identity is
untenable, see Geach (1972, pp. 238-47),(1973) and (1980).

5 Note that if γ0, . . . , γn are wffs, then
(1) if �(γ0& . . . & γn & ∃Mϕ) ∈ Γ and D is a variable new to γ0, . . . , γn , ∃Mϕ,

then by PL, UG(s), A9, A4, T2, R�, Dist� and definitions, �∃D(γ0& . . . & γn &
ϕD/M) ∈ Γ. Since Γ is ω-complete, there is a sortal term variable L other than D
which is free for D in ϕD/M such that �(γ0& . . . & γn& ∃D(D = L) & ϕD/ML/D) ∈ Γ.
Since D is new to ∃Mϕ, then ϕD/ML/D is ϕL/M

(2) If �(γ0& . . . & γn & ∃ySϕ) ∈ Γ and z is a variable new to γ0, . . . , γn, ∃ySϕ then
by UG, PL, A8, A3, T1, R�, Dist� and definitions, �∃zS(γ0& . . . & γn & ϕz/y) ∈ Γ.
But Γ is ω-complete and so there is a individual variable x other than z which is free
for z in ϕz/y such that �(γ0& . . . & γn & ∃zS(z =S x) & ϕz/yx/z) ∈ Γ . Since z is
new to ∃ySϕ, then “ϕz/yx/z” is “ϕx/y”.

(3) (a) If �((γ0& . . . & γn)& bϕc) ∈ Γ and ϕ is of the form ∃ySσ, then by the
ω-completeness of Γ there is a individual variable w other than y which is free for y
in σ such that �((γ0& . . . & γn)&b ∃yS(y =S w)& σw/y)c) ∈ Γ. It follows, by the
irreflexivity of Γ, that there is an one-place predicate variable R which do not occur in
�((γ0& . . . & γn)& b∃yS(y =S w)&σw/y)c) and individual variable x such that �((γ0&
. . . & γn)& b[K](Rx&H¬Rx) & ∃yS(y =S w) & σw/yc) ∈ Γ. (b) If �((γ0& . . . & γn)&
bϕc) ∈ Γ and ϕ is not of the form ∃ySσ, then by the irreflexivity of Γ there is an
one-place predicate variable R which do not occur in �((γ0& . . . & γn)& bϕc) and
individual variable x such that �((γ0& . . . & γn)& b[K](Rx&H¬Rx)& ϕc) ∈ Γ.
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