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Abstract

Given an infinite family of non-empty sets and its corresponding cartesian
product, we consider the intersection structure of all subsets of the cartesian
product which are themselves cartesian products (of subsets of the sets of the
initially given family). In this note we show that natural notions involving can-
cellative properties and uniqueness of representations in structures of this kind
are intrinsically related to the Axiom of Choice. Our motivation for this research
was the question of whether it is possible or not to recover the factor informa-
tion from such subsets in the absence of choice principles, and our main theorem
shows that getting such task done in its full generality is impossible in a choiceless
context. A restricted, topological version of the main theorem is also presented.

Keywords: axiom of choice, cartesian products, intersection structures, generalized
projections.

1 Introduction

Throughout this note, ZF is the Zermelo-Fraenkel set theory, AC is the Axiom of
Choice and ZFC = ZF + AC. We work within ZF, meaning that all propositions and
theorems are proved to hold in a choiceless context. Our set-theoretical notations are
standard. For instance, given any set X we denote by P(X) the powerset of X, which
is the set of all subsets of X.

The research of this paper was motivated by the following question. Let {Xi : i ∈ I}
be an infinite family of non-empty sets, and do not assume the Axiom of Choice. Let

Y ⊆
∏
i∈I

Xi be a subset of the cartesian product which is also a cartesian product,

meaning that Y can be written in the form Y =
∏
i∈I

Ai for some family {Ai : i ∈ I}
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– where, obviously, we assume Ai ⊆ Xi for every i ∈ I. Under such assumptions, is

it possible to ensure that there is a structural feature of the cartesian product
∏
i∈I

Xi

which could recover from any such subset Y the factor information on a fixed, arbitrary
coordinate j ∈ I ? Of course, this question only makes sense for the sets Y as described
with ∅ 6= Ai ⊆ Xi for every i ∈ I.

Before going further in our discussion, let us introduce a natural terminology for
our sets of interest.

Definition 1.1 Let Y be a subset of a cartesian product
∏
i∈I

Xi, where {Xi : i ∈ I} is

an arbitrary family of non-empty sets. Y will be said to be a product set if for some

family {Ai : i ∈ I} of sets satisfying Ai ⊆ Xi for every i ∈ I we have Y =
∏
i∈I

Ai. If all

sets in the family {Ai : i ∈ I} are also non-empty, Y will be said to be a product set
with non-empty factors.

Notice that the family of all product sets in P(
∏
i∈I

Xi) may be easily viewed as a

topped intersection structure.

Definition 1.2 ([1], 2.33) (i) A family L of subsets of a given set X is said to be
a intersection structure if it is closed for intersections, meaning that

⋂
A ∈ L for

every non-empty subfamily ∅ ( A ⊆ L.

(ii) If L is an intersection structure and one has X ∈ L, then L is said to be a topped
intersection structure.

The condition (ii) above may be regarded as the relaxation of (i) obtained by
removing the requirement of non-emptiness of the subfamilies to be intersected. Now

it should be clear that if X is given by X =
∏
i∈I

Xi (where {Xi : i ∈ I} is a family

of non-empty sets) then L = {Y ⊆ X : Y is a product set } is a topped intersection
structure. Topped intersection structures (ordered by inclusion) are complete lattices,
under suitable definitions of

∨
and

∧
([1], Corollary 2.32).

It turns out that the focus of our investigating is on the following notion, which we
now define as the Recovering Information Property of a given family {Xi : i ∈ I}:



RIP and the Axiom of Choice 211

Definition 1.3 A family of non-empty sets {Xi : i ∈ I} is said to satisfy RIP1, the
Recovering Information Property, if for every product set with non-empty factors

Y ⊆
∏
i∈I

Xi and for every fixed j ∈ I, there is a well-defined, canonical way of associating

the set Y to its j − th factor.

As we asked the reader not to assume the Axiom of Choice, the expected, quick
answer given by “you have only to consider the usual projections” is not necessarily
on the table. If AC fails, we could be in a case where the family of non-empty sets

{Xi : i ∈ I} satisfies
∏
i∈I

Xi = ∅. In such a case, there are no answers coming from the

projections. 2

The main result of this paper is showing that AC is equivalent to the statement
“Every family of non-empty sets satisfies RIP” – and therefore the full validity of RIP is
impossible in a choiceless context. We will establish such result that by introducing the
language of generalized projections. Generalized projections will formalize the idea of
having a canonical way of recovering factor information – as it appears in the definition
of RIP.

Some of the results of this note have an algebraic taste; in some sense, we will show
that the Axiom of Choice is equivalent to the presence of algebraic properties such as
cancellative properties and uniqueness of representations in the intersection structure
of product sets. Such properties are commonly related to algebraic features of internal
direct products.

A restricted, topological version of the main result will also be presented. Such
restricted version is related to the well-known Kuratowski’s Theorem on projections
defined in products of two topological spaces – which states that projections which are
parallel to a compact factor are closed maps.

We give an end to this introduction by pointing out two “minimal forms” of the
Axiom of Choice, meaning that we will be concerned with the precise aspect of families
which witness the failure of AC.

1The author declares he is not entirely sure whether RIP is an unhappy or catchy acronym. Nev-
ertheless, he believes this notion is worthwhile thinking of, as he will devote himself to demonstrate in
the rest of this note.

2Despite the awkwardness of the situation, if
∏
i∈I

Xi = ∅ we fix j ∈ I and conclude that the sentence

“∅ is a function and for any z ∈ ∅, there are x and y such that z = 〈x, y〉 with x ∈
∏
i∈I

Xi and y ∈ Xj”

is vacuously true; therefore we are allowed to consider the empty function as being the projection
∏

i

for any i ∈ I. Nevertheless, there are no answers for our questions arising from the projections in this
pathological case.
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Proposition 1.4 The following statements are equivalent:

(i) AC.

(ii) If I is an infinite set and {Xi : i ∈ I} is a family of non-empty sets such that

J = {j ∈ I : Xj has at least two elements} is infinite, then
∏
i∈I

Xi 6= ∅.

(iii)If I is an infinite set and {Xi : i ∈ I} is a family of non-empty sets such that

J = {j ∈ I : Xj has at least two elements} is non-empty, then
∏
i∈I

Xi 6= ∅. �

Indeed, it should be clear that if {Xi : i ∈ I} is a witness of the failure of the Axiom
of Choice then I should be infinite and not all (nor all but finitely many) of the Xi’s
could be singletons.

2 AC and generalized projections

In the following definition we introduce the notion of generalized projections, needed
for the presence of RIP. It will be clear from the below definitions that a family of
non-empty sets {Xi : i ∈ I} satisfies RIP if, and only if, {Xi : i ∈ I} admits generalized
projections.

Definition 2.1 (i) Let I be a non-empty set, F = {Xi : i ∈ I} be a family of non-

empty sets and let j ∈ I. A partial function from P
(∏

i∈I

Xi

)
into P(Xj) will be said

to be a generalized projection in the j − th coordinate if such partial function
assigns, to every product set with non-empty factors, its j − th factor.

(ii) Under the same assumptions of (i), we will say that F = {Xi : i ∈ I} admits
generalized projections if for every j ∈ I there is a generalized projection in the
j − th coordinate.

(iii) Finally, F = {Xi : i ∈ I} will be said to have an indexed family of generalized
projections if there is a family {ϕi : i ∈ I} of partial functions such that, for every
j ∈ I, ϕj is a generalized projection in the j − th coordinate.

So, a family of non-empty sets F = {Xi : i ∈ I} has an indexed family of generalized
projections if there is a family {ϕi : i ∈ I} such that, for every j ∈ I, ϕj is a partial

function from P
(∏

i∈I

Xi

)
into P(Xj) satisfying
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ϕj(
∏
i∈I

Ai) = Aj

whenever {Ai : i ∈ I} is a family of non-empty sets satisfying Ai ⊆ Xi for every i ∈ I. 3

The following theorem is the main result of this paper; we show that AC is equiv-
alent to “Every family of non-empty sets satisfies RIP”. The algebraic interpretation,
in terms of the corresponding intersection structures, is that AC is equivalent to the
the full validity of the “uniqueness of representations property” for product sets with
non-empty factors.

Theorem 2.2 The following statements are equivalent:

(i) AC.

(ii) Every infinite family of non-empty sets has an indexed family of generalized pro-
jections.

(iii) Every infinite family of non-empty sets admits generalized projections.

Proof. (i) ⇒ (ii). Let F = {Xi : i ∈ I} be an infinite family of non-empty sets.
Assuming the Axiom of Choice, we use the family of usual, canonical projections {

∏
i :

i ∈ I} to induce a family of generalized projections: as probably expected, we define

ϕi(Z) =
∏

i[Z]

for every i ∈ I and for every Z ⊆
∏
i∈I

Xi. Now, let Y =
∏
i∈I

Ai with all factors non-

empty. For a fixed j ∈ I, the inclusion ϕj(Y ) ⊆ Aj is clear. For the opposite inclusion,

let w be any element of Aj and, using AC, just take any f ∈
∏

i∈I\{j}

Ai; the extension of

such function to the domain I obtained by adding the pair 〈j, w〉 give us the desired.

(ii)⇒ (iii). Immediate.

(iii)⇒ (i). Suppose the failure of the Axiom of Choice. Then there is an infinite family

of non-empty sets, say F = {Xi : i ∈ I}, satisfying
∏
i∈I

Xi = ∅, and, by item (iii) of

Proposition 1.4, we may consider k ∈ I such that Xk has at least two elements. Let p be

3Notice that, formally, the condition given by (iii) of Definition 2.1 is stronger than the one given
by (ii) since the existence of generalized projections for each coordinate do not imply the existence of
an indexed family of generalized projections – recall that we are in a choiceless context. However, as
we will see presently in our main theorem, the “every family has” versions of (ii) and (iii) are both
equivalent to AC.
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an element of such Xk
4. Define a family of non-empty sets {Ai : i ∈ I} in the following

way: for i 6= k, let Ai := Xi , and let Ak be the non-empty set given by Ak := Xk \ {p}.
Notice that necessarily one has

∏
i∈I

Ai = ∅, since
∏
i∈I

Ai ⊆
∏
i∈I

Xi = ∅. It follows that

there is no possibility of well-defining a generalized projection in the k− th coordinate,
since, if we suppose towards a contradiction that f is such a generalized projection,
then we would have, by the definition,

f(∅) = f
(∏

i∈I

Xi

)
= Xk

but also

f(∅) = f
(∏

i∈I

Ai

)
= Ak = Xk \ {p},

which is clearly an absurd. �

3 AC and the Cancellative Property

Given the kind of uniqueness of representations proved in the previous section, it is
very natural to consider the following definition.

Definition 3.1 A family of non-empty sets {Xi : i ∈ I} is said to satisfy CP (the
Cancellative Property) if whenever {Ai : i ∈ I} and {Bi : i ∈ I} are families

of non-empty sets with Ai, Bi ⊆ Xi for every i ∈ I such that
∏
i∈I

Ai =
∏
i∈I

Bi then

necessarily one has Ai = Bi for every i ∈ I.

The following proposition is essentially a corollary (or even a rephrasing) of the
main theorem.

Proposition 3.2 The following statements are equivalent:

(i) AC.

(ii) Every non-empty family of non-empty sets satisfies CP.

Proof. (ii) ⇒ (i) follows by an argument entirely similar to the one presented for
proving the last implication of the main theorem: one has just to let the family {Bi :
i ∈ I} be {Xi : i ∈ I} itself. For (i) ⇒ (ii), notice that within ZFC we are able to
proceed with the usual manipulations involving the usual projections and therefore we

are done (since Aj =
∏

j[
∏
i∈I

Ai]=
∏

j[
∏
i∈I

Bi] = Bj for every j ∈ I). �

4Notice that there are only two arbitrary choices in the argument: that for k and that for p, so this
is indeed a ZF argument.
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4 AC and closed generalized projections

for products of compact spaces

It is well-known that if X is a compact space, then for every topological space Y the
canonical projection

∏
Y : X×Y → Y is a closed map; such result is widely known and

it is due to Kuratowski. In fact, even the reciprocal result is true, and, furthermore,
none of these implications require any form of choice.

Such interesting fact – the unnecessity of choice in both directions – was pointed
out by K. P. Hart (at Math Overflow); in what follows, we give an adaptation of his
nice ZF argument. In one hand, let X be compact, Y be any topological space, F be
a closed subset of X × Y and y ∈ Y \

∏
Y (F ); then (X × Y ) \ F can be written as the

union of basic open sets, and so there is a finite family of them, say {Um×Vm : m 6 n},
which covers the compact subset X × {y}. Of course we may suppose that y ∈ Vm for
every m 6 n, and therefore V =

⋂
m6n

Vm is an open neighbourhood of y included in

Y \
∏

Y (F ). On the other hand, suppose X not compact and let F be a family of
non-empty, closed subsets of X with the finite intersection property but with empty
intersection; we do not need AC for ensuring the existence of such a family. We may
also assume that F is closed for finite intersections. Let Y = X ∪ {F}, topologized in
the following way: points of X are declared isolated and the basic neighbourhoods of F
are all sets of the form {F}∪F for F ∈ F . Now let G be the closure of the diagonal of
X in X×Y ; as F is non-isolated in Y one has clearly F ∈

∏
Y [G], however considering

a point 〈x,F〉 ∈ X × Y it follows from
⋂
F = ∅ that there is an open neighbourhood

of 〈x,F〉 which does not intersect the diagonal – and so F /∈
∏

Y [G].
In [2], the author and J. P. C. de Jesus have proved that the Axiom of Choice is

equivalent to the following topological statement: “If a product of a non-empty family
of sets is closed in a topological (Tychonoff) product, then at least one of the factors
is closed”. Such result was obtained with a slight modification on an argument due
to Schechter, who proved in [3] that AC is equivalent to the statement “A product of
closures of subsets of topological spaces is equal to the closure of their product (in the
Tychonoff topology)”.

Essentially with the same proof of the main result of [2], the following theorem
holds:

Theorem 4.1 The following statements are equivalent:

(A) AC.

(B) Let I be an infinite set, {Xi : i ∈ I} be a family of topological spaces and {Ai : i ∈ I}
be a family of non-empty sets satisfying Ai ⊆ Xi for all i ∈ I. If

∏
i∈I

Ai is closed in the
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(Tychonoff) product
∏
i∈I

Xi, then, for all i ∈ I, Ai is a closed subset of Xi.

(C) Let I be an infinite set, {Xi : i ∈ I} be a family of compact topological spaces and

{Ai : i ∈ I} be a family of non-empty sets satisfying Ai ⊆ Xi for all i ∈ I. If
∏
i∈I

Ai is

closed in the (Tychonoff) product
∏
i∈I

Xi, then, for all i ∈ I, Ai is a closed subset of Xi.

(D) Let I be an infinite set, {Xi : i ∈ I} be a family of compact topological spaces and

{Ai : i ∈ I} be a family of non-empty sets satisfying Ai ⊆ Xi for all i ∈ I. If
∏
i∈I

Ai

is closed in the (Tychonoff) product
∏
i∈I

Xi, then exists j ∈ I such that Aj is a closed

subset of Xj.

Proof. (Outlined) (A) ⇒ (B) follows from Schechter’s equivalence and Cancellative
Property. (B) ⇒ (C) and (C) ⇒ (D) are immediate. For (D) ⇒ (A), we argue
contrapositively: notice that under the failure of AC there is an infinite family of non-

empty sets {Ai : i ∈ I} with
∏
i∈I

Ai = ∅. Let p /∈
⋃
i∈I

Ai and for all i ∈ I let Xi = Ai∪{p}

be topologized with the indiscrete (therefore, finite – thus, compact) topology given by
{∅, Xi}. As the empty set is always closed, we are done – since none of the Ai’s is closed
in the compact space Xi. �

Defining the notion of closed generalized projections in the expected way – i.e., by
saying that a partial function f is a closed generalized projection in the j−th coordinate
if f is a generalized projection in the j − th coordinate with the additional property
of always assigning a closed factor to every closed product set with non-empty factors
–, then the following proposition (which is a restricted, topological version of our main
result) holds:

Proposition 4.2 The following statements are equivalent:

(i) AC.

(ii) Every family of compact spaces {Xi : i ∈ I} has an indexed family of closed
generalized projections.

(iii) Every family of compact spaces {Xi : i ∈ I} admits closed generalized projections.

Proof. For (i) ⇒ (ii), fix any j ∈ I. By Tychonoff’s Theorem (which is equivalent

to AC),
∏

i∈I\{j}

Xi is compact, and considering that
∏
i∈I

Xi
∼= (

∏
i∈I\{j}

Xi) ×Xj then we



RIP and the Axiom of Choice 217

have that
∏

j is a closed map by Kuratowski’s result, so we may define (exactly in the

same way as done before) a function ϕj from P
(∏

i∈I

Xi

)
into P(Xj) using the usual

projection
∏

j; it is clear that such a function will be a closed generalized projection.
(ii)⇒ (iii) is obvious. The implication (iii)⇒ (i) follows from the equivalence (C) of
the previous theorem. �

The author would like to remark that the usual projections are not in position,
in general, of being used when it comes to attempting to seize the equivalence (iii)
of Theorem 4.1; as we have commented in the beginning of the paper, the canonical
projections could be empty functions in ZF. This also justifies the introduction (and
investigation) of the notion of generalized projections.

We give an end to the paper presenting the following problem.

Problem 4.3 Given an arbitrary family of non-empty sets, find topological (or alge-
braic, or any kind of) hypotheses on the family such that the exhibited hypotheses imply
the presence of RIP.

Of course, the cases of interest of the previous problem are those where the usual,
canonical projections, as we expected them to be, are not available.
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