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Abstract

Having in mind applications to the design and verification of logic circuits, a
complete extension of classical propositional logic is presented for reasoning about
circuits with possibly erroneous inputs. The pitfalls of extrapolating classical
reasoning to such circuits are extensively illustrated. Redundancy is shown to be
effective for improving the reliability of such circuits.
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Introduction

In [11] we presented a complete extension of classical propositional logic for reasoning
about logic circuits with unreliable gates but error-free inputs, and illustrated the pit-
falls of applying classical reasoning to such probabilistic circuits. Herein we assume
that the gates are error-free and focus instead on the impact of allowing for errors on
the circuit inputs. In due course, we show that the pitfalls found in [11] when applying
classical logic to circuits with unreliable gates are already present even if the only source
of errors is in the circuit inputs. For instance, modus ponens is not sound in general.

Accordingly, our goal here is the development and study of the main properties of an
extension of classical propositional logic endowed with randomly-valued propositional
variables. Several probabilistic and non-deterministic logics have been proposed in the
literature [1, 2, 3, 4, 5, 7, 8, 9, 10] having in mind applications to computing and artificial
intelligence, but they do not address our focus: the specific problems that appear when
reasoning about circuits with random input errors.

To this end, we adopt the traditional representation of logic circuits by formulas with
logical connectives representing gates and propositional variables standing for inputs.
For instance, the formula

(x1 ∨ (¬x2)) ∧ x3
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x1 x2 x3

Figure 1: Circuit represented by the formula (x1 ∨ (¬x2)) ∧ x3.

faithfully represents the circuit depicted in Figure 1.
If the circuit gates and inputs are assumed to be error-free then this representation

can be and has been extensively used for applying classical propositional logic to the
design and verification of circuits.

When the inputs may be erroneous but with sufficiently small probability of error,
we show that redundancy can be used to improve the reliability of the circuit provided
that, as assumed in this paper, independent observations of each input are available.
The errors in different inputs are also assumed to be independent and every input
observation is assumed to have the same probability ε < 1

2
of error. Examples of

application scenarios where these assumptions hold are given in due course. Under these
assumptions it becomes possible to adapt von Neumann’s redundancy technique [13] to
circuits with possibly erroneous inputs.

Allowing for probabilistic propositional variables representing possibly erroneous
inputs of the circuit requires a major semantic shift away from classical propositional
logic: instead of valuations we need probabilistic mixtures of valuations. The proposed
complete inference calculus includes some rules that may be surprising to the newcomer
but that emerged quite naturally when adapting the calculus in [11] to the situation
at hand: the key intuition was to look at each possibly erroneous input observation as
resulting from applying the unreliable pass-through unary gate to an error-free input.

The language, the semantics and the calculus of the proposed erroneous-inputs cir-
cuit logic EICL are presented in Section 1 with some examples. Soundness and complete-
ness results are established in Section 2. Although the proposed logic is a conservative
extension of the classical propositional logic (as shown in Section 1), it is full of pitfalls
for those used to the well known meta-properties of the latter. For instance, as proved
at the end of Section 2, the metatheorem of deduction only holds with additional pro-
visos. Application scenarios are briefly discussed in Section 3. Finally, in Section 4 we
assess what was achieved and mention some open problems.
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1 Erroneous-inputs circuit logic

The envisaged erroneous-inputs circuit logic (EICL) is defined below as an extension of
classical propositional logic (PL).

Assume that PL is endowed with the rich signature Σ containing the propositional
constants ff (falsum) and tt (verum) plus the usual propositional connectives ¬ (nega-
tion), ∧ (conjunction), ∨ (disjunction), ⊃ (implication) and ≡ (equivalence), as well as
M3+2k (3 + 2k-ary majority) for each k ∈ N. Each majority connective returns true if
the majority of its inputs is true and, otherwise, it returns false. Most of these signa-
ture elements could be introduced as abbreviations from a small set of primitives (like
falsum and implication). Nevertheless, we adopt this rich signature in order to simplify
the presentation of PL, since no price has to be paid in its axiomatisation and in the
subsequent development of EICL.

For each n ∈ N, we denote by Σn the set of n-ary constructors in Σ. Clearly,
Σ0 = {ff, tt}.

Formulas of PL are composed as usual with the elements of Σ and the propositional
variables in X = {xk : k ∈ N}. The PL language (the set of its formulas) and the PL
ground language (the set of its ground formulas, that is, formulas without variables) are
denoted by L(X) and L, respectively.

Assuming that the PL semantics is provided by valuations, we write

v  ϕ

for stating that valuation v : X → {⊥,>} satisfies formula ϕ ∈ L(X), and

Λ � ϕ

for stating that ϕ is entailed from hypotheses in Λ ⊆ L(X). Furthermore, assuming
that PL is endowed with a Hilbert calculus including the tautologies (TAUT) as axioms
plus modus ponens (MP) as the unique inference rule, we write

Λ ` ϕ

for stating that ϕ can be derived from Λ. Recall that this calculus is strongly sound
and complete: Λ � ϕ if and only if Λ ` ϕ.

Before proceeding with the presentation of EICL, we also need some notation con-
cerning the first-order theory of ordered real closed fields (denoted by ORCF), having
in mind the use of its terms for denoting probabilities and other quantities.

Recall that the first-order signature of ORCF contains the constants 0 and 1, the
unary function symbol −, the binary function symbols + and ×, and the binary pred-
icate symbols = and <. As usual, we may write t1 ≤ t2 for (t1 < t2) ∨ (t1 = t2), t1 t2
for t1 × t2 and tn for the product of t by itself n times. Furthermore, we also use the



138 A. Sernadas, J. Rasga, C. Sernadas and P. Mateus

following abbreviations for any given m ∈ N+ and n ∈ N: m for the sum of 1 with

itself m− 1 times; m−1 for the unique z such that m× z = 1; and
n

m
for m−1×n. The

last two abbreviations might be extended to other terms, but we need them only for
numerals.

In order to avoid confusion with the other notions of satisfaction used herein, we
adopt  fo for denoting satisfaction in first-order logic.

Recall also that the theory ORCF is decidable [12]. This fact will be put to good use
in the proposed axiomatisation of EICL. Furthermore, every model of ORCF satisfies
the theorems and only the theorems of ORCF (Corollary 3.3.16 in [6]). We shall take
advantage of this result in the semantics of EICL for adopting the ordered field R of the
real numbers as the model of ORCF.

With this modicum of PL and of ORCF at hand, we are ready to present the syntax,
the semantics and the calculus of EICL.

1.1 Syntax of EICL

The signature of EICL is the triple (Σ, ν, µ) where Σ is the PL signature above and both
ν and µ are symbols used as follows for denoting probabilities. Each possibly erroneous
input observation port is assumed to present the correct input value with probability
ν > 1

2
and to present the incorrect input value with probability ε = 1 − ν < 1

2
. The

output produced by a circuit when all its input observation ports present correct inputs
is said to be the correct output of the circuit. A circuit is to be accepted as good
if it produces the correct output value with probability not less than the acceptance
threshold µ.

The random input variables in Ỹ = {ỹk : k ∈ N} are used for representing possibly
erroneous input observation ports. In addition, for each k ∈ N, we use yk for denoting
the correct value of ỹk. Thus, ỹk ≡ yk is intended to be true with probability ν. In
the sequel, Y = {yk : k ∈ N}. It becomes handy to use yk as an abbreviation of ¬ yk.
Clearly, ỹk ≡ yk is intended to be true with probability ε = 1− ν.

Given a set W of generators, we denote by L(W ) the set of formulas built with
propositional constants and connectives in Σ from generators in W . Given ϕ ∈ L(X∪Y )

and ψ ∈ L(X ∪ Y ∪ Ỹ ), we write
ϕ v ψ

for saying that ϕ is a possible outcome of ψ. This outcome relation is inductively defined
as expected:

• ψ v ψ provided that ψ ∈ L(X);

• yk v yk for every k ∈ N;

• yk v ỹk for every k ∈ N;
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• yk v ỹk for every k ∈ N;

• c(ϕ1, . . . , ϕn) v c(ψ1, . . . , ψn) provided that n ≥ 1, c ∈ Σn and ϕi v ψi for
i = 1, ..., n.

For each such ψ, we denote by Ωψ the set {ϕ : ϕ v ψ} of all possible outcomes of ψ.
As already mentioned, terms are needed for denoting probabilities and other quan-

tities. In EICL, by a term we mean a univariate polynomial written according to the
term syntax of ORCF, using ν as the unique variable. For example, ν × (1 − ν)2 that
we may write ν(1 − ν)2 is a term of EICL. Symbol µ is also taken as a variable in the
context of ORCF but it is not used in EICL terms.

Three kinds of formulas are needed for reasoning about circuits with possibly erro-
neous inputs:

• Circuit formulas or c-formulas that are the formulas built with propositional con-
stants and connectives in Σ from generators in X ∪Y ∪ Ỹ , that is, the formulas in
L(X∪Y ∪Ỹ ). These c-formulas can be used (among other things) for representing
circuits with possibly erroneous inputs. For instance, the c-formula

(∗) M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)

represents the circuit in Figure 2 with three independent observation ports of each
of its two inputs. This circuit achieves a more robust conjunction of its two inputs
as shown in due course. Circuit formulas can also be used for asserting relevant
properties of circuits. For example, the c-formula

(∗∗) M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2)

is intended to state that the circuit represented by (∗) can be accepted as being
good in the sense that it produces the correct output with probability of at least
µ. As we shall see, this is the case as long as µ does not exceed

3ν4 − 2ν6.

This is much better than what can be achieved, ν2, without redundancy using
the circuit represented by the c-formula

ỹ1 ∧ ỹ2.

For instance, if ν = 4
5

then µ must not exceed 11008
15625

= 0.704512 and 16
25

= 0.64,
respectively, so as to be possible to accept the circuit as good. The detailed
comparison between these two situations is made in Section 3.
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Figure 2: A robust circuit for conjunction.

• Outcome formulas or o-formulas that are of the general form

Φ vP ψ

where ψ is a c-formula, Φ ⊆ Ωψ and P is an EICL term. Such an o-formula is
used with the intent of stating that the probability of the outcome of ψ being in
Φ is at least P . For instance,

{y1 ∧ y2, y1 ∧ y2} vν ỹ1 ∧ ỹ2

should be true in any interpretation of EICL because y1 ∧ y2 and y1 ∧ y2 are
both possible outcomes of ỹ1 ∧ ỹ2 (the former when both input observation ports
present the correct input values and the latter when the first input port presents
the correct input value while the second port is erroneous), the probability of the
former is ν2, the probability of the latter is ν(1− ν), and ν2 + ν(1− ν) = ν.

• Ambition formulas or a-formulas that are of the general form

µ ≤ P

where P is a term. Such an a-formula can be used for constraining the envisaged
probability µ of the correct output. For instance, every EICL interpretation where
the a-formula

µ ≤ 3ν4 − 2ν6

holds should make the c-formula (∗∗) true, as it is shown in due course.

Given m distinct formulas ϕ1, . . . , ϕm in Ωψ, we may write

ϕ1, . . . , ϕm vP ψ
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for {ϕ1, . . . , ϕm} vP ψ. We denote by Lo(X ∪Y ∪ Ỹ ) and La the set of o-formulas and

a-formulas, respectively, and by Leic(X∪Y ∪Ỹ ) the set L(X∪Y ∪Ỹ )∪Lo(X∪Y ∪Ỹ )∪La

of all EICL formulas. Observe that each of these sets is decidable.
Given a c-formula ψ and ϕ ∈ Ωψ, we write

P[ψ . ϕ]

for the EICL term that provides the probability of ϕ being the outcome of ψ. This term
is inductively defined as follows:

• P[ψ . ψ] is 1 provided that ψ ∈ L(X);

• P[yk . yk] is 1 for each k ∈ N;

• P[ỹk . yk] is ν for each k ∈ N;

• P[ỹk . yk] is 1− ν for each k ∈ N;

• P[c(ψ1, . . . , ψn).c(ϕ1, . . . , ϕn)] is
n∏
i=1

P[ψi.ϕi] for each n ≥ 1, c ∈ Σn and ϕi v ψi

for i = 1, . . . , n.

For instance, P[ỹ1∧ ỹ2 .y1∧y2] is the polynomial ν(1−ν) since, for the given inputs
ỹ1 and ỹ2, outcome y1 ∧ y2 happens when the observation of ỹ1 gives the correct value
y1 and the observation of ỹ2 gives the wrong value y2.

1.2 Semantics of EICL

Each interpretation of EICL should provide a valuation to the variables in X∪Y , a model
of ORCF and an assignment to the variables ν and µ. The probabilistic semantics of
the possibly erroneous inputs in Ỹ is specified in the definition of EICL satisfaction.

As already mentioned, the choice of the model of ORCF is immaterial since all such
models are elementarily equivalent and, so, we adopt once and for all the ordered field
R of the real numbers.

Accordingly, by an EICL interpretation we mean a pair

I = (v, ρ)

where v : X ∪ Y → {⊥,>} is a valuation and ρ is an assignment over R such that:1{
1
2
< ρ(µ) ≤ 1

1
2
< ρ(ν) ≤ 1.

1Recall that we use ν and µ as variables in the language of ORCF.
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In such an interpretation the valuation v provides for each ỹk its correct value, while ρ(ν)
is the probability of this value being observed. Taking into account the independence
assumptions on the observations, v and ρ(ν) together specify a probabilistic mixture of
valuations as envisaged.

We now proceed to define satisfaction, by the interpretation I = (v, ρ) at hand,
of the three kinds of formulas in the language of EICL. This definition closely mimics
the one of UCL in [11] since both logics deal with random outcomes of probabilistic
formulas. The differences between the two logics are encapsulated in the definition of
P[ψ . ϕ].

Starting with c-formulas, we write

I  eic ψ

for stating that

R ρ  fo µ ≤
∑

ϕ v ψ

v  ϕ

P[ψ . ϕ].

That is, the aggregated probability of the outcomes of ψ that are satisfied by v is at
least the value of µ.

Observe that each outcome ϕ corresponds to a possible valuation (for the relevant
input variables) in the probabilistic mixture of valuations specified by I = (v, ρ) and
the value of P[ψ . ϕ] given by ρ is the probability of that valuation.

Concerning o-formulas, we write

I  eic Φ vP ψ

for stating that

R ρ  fo P ≤
∑
ϕ∈Φ

P[ψ . ϕ].

That is, the collection Φ of possible outcomes of ψ has aggregated probability not
smaller than the value of P .

Finally, concerning a-formulas, we write

I  eic µ ≤ P

for stating that
R ρ  fo µ ≤ P.

That is, the required probability ρ(µ) for the correct output being produced by the
whole circuit does not exceed the value of P .

The notion of satisfaction is taken to mixed sets of c-formulas, o-formulas and a-
formulas with no surprises. Given Γ ⊆ Leic(X ∪ Y ∪ Ỹ ),

I  eic Γ
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if I  eic γ for each γ ∈ Γ. Then, entailment and validity in EICL are also defined as
expected. Given {θ} ∪ Γ ⊆ Leic(X ∪ Y ∪ Ỹ ), we write

Γ � eic θ

for stating that Γ entails θ in the following sense:

I  eic θ whenever I  eic Γ, for every interpretation I.

Finally, we write
� eic θ

for ∅ � eic θ, saying that formula θ is valid, in which case I  eic θ for every interpretation
I.

As envisaged, the EICL entailment is a conservative extension of the PL entailment
as we now show.

Theorem 1.1 (Conservativeness of EICL) Let {ϕ} ∪ Λ ⊆ L(X). Then, Λ � eic ϕ if
and only if Λ � ϕ.

Proof. We start by proving that

(∗) I  eic ϕ if and only if v  ϕ

where I is an interpretation with valuation v:

(→) Assume that I  eic ϕ. Hence,

R ρ  fo
∑

ϕ′ ∈ Ωϕ

v  ϕ′

P[ϕ . ϕ′] ≥ µ.

Thus, {ϕ′ ∈ Ωϕ : v  ϕ′} 6= ∅ because ρ(µ) > 0. Moreover, Ωϕ = {ϕ}. Therefore,
ϕ ∈ {ϕ′ ∈ Ωϕ : v  ϕ′} and, so, v  ϕ.

(←) Assume that v  ϕ. Then, {ϕ} = {ϕ′ ∈ {ϕ} : v  ϕ′}. On the other hand,
{ϕ′ ∈ {ϕ} : v  ϕ′} = {ϕ′ ∈ Ωϕ : v  ϕ′}. Therefore,∑

ϕ′ ∈ Ωϕ

v  ϕ′

P[ϕ . ϕ′] is P[ϕ . ϕ]

and, so, it is the polynomial 1. Thus, in order to obtain I  eic ϕ, we have only to show
that R ρ  fo 1 ≥ µ which holds because ρ(µ) ≤ 1.

We are ready to prove the envisaged result:
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(→) Assume that Λ � eic ϕ. Let v be a valuation such that v  Λ. Let I be an inter-
pretation with valuation v. Then, I  eic Λ, by (∗), and, so, I  eic ϕ. Thus, v  ϕ, by
(∗).
(←) Assume that Λ � ϕ. Let I be such that I  eic Λ. Let v be the valuation in I.
Then, v  Λ, by (∗), and, so, v  ϕ. Thus, once again by (∗), I  eic ϕ. �

The following semantic lemma is quite useful later on. It states that it is possible
to transfer entailment of c-formulas to entailment of a-formulas. To this end we need
the following notation: given a valuation v and ψ ∈ L(X ∪ Y ∪ Ỹ ), we write Ωv

ψ for
{ϕ ∈ Ωψ : v  ϕ}.

Proposition 1.2 Let Γ ⊆ La, ψ ∈ L(X∪Y ∪Ỹ ) and v be a valuation. Then, Γ � eic µ ≤
P[ψ . Ωv

ψ] whenever Γ � eic ψ.

Proof. Let v be a valuation. Assume that Γ � eic ψ. Let I = (v, ρ) be an interpretation
such that I  eic Γ. Observe that

P[ψ . Ωv
ψ] =

∑
ϕ∈Ωvψ

P[ψ . ϕ] =
∑

ϕ ∈ Ωψ
v  ϕ

P[ψ . ϕ].

Moreover, since I  eic ψ,

R ρ  fo µ ≤
∑

ϕ ∈ Ωψ
v  ϕ

P[ψ . ϕ].

Thus, I  eic µ ≤ P[ψ . Ωv
ψ]. �

1.3 Hilbert calculus

The calculus of EICL capitalizes on the decidability of the following problems which are
used in some provisos:

• membership in the language L(X ∪ Y );

• PL validity within L(X ∪ Y );

• emptyness of intersection of two finite sets;

• theoremhood in ORCF.

The calculus contains the following axioms and rules:
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• the PL tautologies as axioms:

TAUT
ϕ

provided that ϕ ∈ L(X ∪ Y ) and � ϕ;

• the modus ponens rule:

MP

ψ
ψ ⊃ ϕ
ϕ

provided that ϕ ∈ L(X ∪ Y );

• the following o-axioms:

NO
∅ v0 ψ

;

VO
z v1 z

provided that z ∈ X ∪ Y ;

EIO↑
yk vν ỹk

;

EIO↓
yk v(1−ν) ỹk

;

• the following o-rules:

CO
ϕi vPi ψi for i = 1, . . . , n

c(ϕ1, . . . , ϕn) v(
∏n
i=1 Pi)

c(ψ1, . . . , ψn)
;

AO
Φi vPi ψ for i = 1, 2

Φ1 ∪ Φ2 v(P1+P2) ψ
provided that Φ1 ∩ Φ2 = ∅;

WO
Φ vP1 ψ

Φ vP2 ψ
provided that ∀ν

((
1

2
< ν ≤ 1

)
⊃ P2 ≤ P1

)
∈ ORCF;

• the following a-rule for each k ∈ N:

WA
µ ≤ Pi for i = 1, . . . , k

µ ≤ P
provided that

∀µ∀ν

((
1

2
< µ, ν ≤ 1 ∧

k∧
i=1

µ ≤ Pi

)
⊃ µ ≤ P

)
∈ ORCF;

• the following c-rule for each k ∈ N+:



146 A. Sernadas, J. Rasga, C. Sernadas and P. Mateus

LFT

k∨
i=1

(∧
Φi

)
{

Φi vPi ψ
µ ≤ Pi

for i = 1, . . . , k

ψ
.

The EICL calculus above is a close adaptation of the UCL calculus in [11] because
both logics deal with probabilistic outcomes of probabilistic formulas.

The reader will wonder why we took the tautologies over X ∪ Y as axioms (TAUT)

but not their instances with possibly erroneous inputs in Ỹ . In fact, such instances are
not valid in general. For example, the instance ỹ1⊃(y2⊃ỹ1) of the tautology x1⊃(x2⊃x1)
is not valid. Indeed, take an interpretation I = (v, ρ), such that v(y1) = >, v(y2) = >,
ρ(ν) = 0.6 and ρ(µ) = 0.8. Consider

Φ = {y1 ⊃ (y2 ⊃ y1), y1 ⊃ (y2 ⊃ y1), y1 ⊃ (y2 ⊃ y1)}.

Then,

• v  Φ;

• v 6 y1 ⊃ (y2 ⊃ y1).

Furthermore,

• P[ỹ1 ⊃ (y2 ⊃ ỹ1) . y1 ⊃ (y2 ⊃ y1)] = ν2;

• P[ỹ1 ⊃ (y2 ⊃ ỹ1) . y1 ⊃ (y2 ⊃ y1)] = ν(1− ν);

• P[ỹ1 ⊃ (y2 ⊃ ỹ1) . y1 ⊃ (y2 ⊃ y1)] = (1− ν)2.

Hence,

R ρ  fo

(∑
ϕ∈Φ

P[ỹ1 ⊃ (y2 ⊃ ỹ1) . ϕ] =
19

25

)
∧
(

19

25
< µ

)
and so I 6 eic ỹ1 ⊃ (y2 ⊃ ỹ1).

The reader will also wonder if MP is sound when the conclusion is a c-formula. It
is not always so since, for example,

ỹ1, ỹ1 ⊃ ỹ2 6� eic ỹ2.

Nevertheless, there are situations where MP is sound even in the presence of un-
reliable connectives in the conclusion. For instance, the dual of MP (conclusion in

L(X ∪Y ∪ Ỹ ) provided that the antecedent of the implication is in L(X ∪Y )) is sound.
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Derivability and theoremhood in this calculus are defined as usual. Given {θ}∪Γ ⊆
Leic(X ∪ Y ∪ Ỹ ), we write

Γ ` eic θ

for stating that θ is derivable from Γ, that is, for stating that there is a derivation
sequence for obtaining θ from the elements of Γ (as hypotheses) and the axioms, using
the rules of the calculus. Furthermore, when ∅ ` eic ψ, written ` eic ψ, we say that ψ is
a theorem of EICL.

For example, the derivation sequence in Figure 3 establishes that

µ ≤ 3ν4 − 2ν6 ` eic M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2)

where the set Φ mentioned in Figure 3 is composed of the following outcomes:

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2);

• M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2).

and the sub-derivation D0 is presented in Figure 4. For the sake of simplification, we
omit the other derivations D1 to D9 since they are similar.

Useful admissible rules

The calculations of the probabilities in o-formulas in a derivation can be encapsulated
using the following admissible rule.

Proposition 1.3 Let ψ ∈ L(X ∪ Y ∪ Ỹ ) and ϕ ∈ Ωψ. Then,

SO
ϕ vP[ψ.ϕ] ψ

is an admissible rule of EICL.
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1
∧

Φ TAUT

D0

m0 M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2)v(1−ν)2ν4

M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2)

...

D9

m9 M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2)vν6

M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2)

m9+8 Φv3ν4−2ν6

M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2) AO:m0, . . . ,m9

m9+9 µ ≤ 3ν4 − 2ν6 HYP

m9+10 M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2) LFT:1,m9+1,m9+2

Figure 3: µ ≤ 3ν4 − 2ν6 ` eic M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2).

Proof. The proof follows by induction on ψ.

(Basis) There are several cases to consider:

(i) ψ ∈ X ∪ Y . Then, ϕ is ψ. Consider the derivation:

1 ϕ v1 ψ VO.

Then, the thesis follows since P[ψ . ϕ] = 1.

(ii) ψ is ỹk ∈ Ỹ and ϕ is yk. Consider the derivation:

1 ϕ vν ψ EIO↑.

Then, the thesis follows since P[ψ . ϕ] = ν.

(iii) ψ is ỹk ∈ Ỹ and ϕ is yk. We omit the proof of this case since it is similar to the
previous case (ii).

(Step) Let ψ be c(ψ1, . . . , ψn) and ϕ be c(ϕ1, . . . , ϕn) with ϕi ∈ Ωψi for i = 1, . . . , n.
Observe that, by induction hypothesis,

ϕi vP[ψi.ϕi] ψi
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1 y1 vν ỹ1 EIO↑
2 y1 v1−ν ỹ1 EIO↓
3 y2 vν ỹ2 EIO↑
4 y2 v1−ν ỹ2 EIO↓
5 y1 ∧ y2 vν2 ỹ1 ∧ ỹ2 CO : 1, 3

6 y1 ∧ y2 v(1−ν)2 ỹ1 ∧ ỹ2 CO : 2, 4

7 M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)v(1−ν)2ν4

M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2) CO : 6, 5, 5

8 y1 v1 y1 VO

9 y2 v1 y2 VO

10 y1 ∧ y2 v1 y1 ∧ y2 CO : 8, 9

11 M3(y1 ∧ y2, y1 ∧ y2, y1 ∧ y2)≡ (y1 ∧ y2)v(1−ν)2ν4

M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2) CO : 7, 10

Figure 4: Sub-derivation D0 in Figure 3.

is an admissible rule, for i = 1, . . . , n. Denote by Di the derivations in EICL of
ϕi vP[ψi.ϕi] ψi for i = 1, . . . , n. Consider the derivation:

D1

m1 ϕ1 vP[ψ1.ϕ1] ψ1

...

Dn
mn ϕn vP[ψn.ϕn] ψn

mn+1 c(ϕ1, . . . , ϕn) vP[ψ1.ϕ1]×...×P[ψn.ϕn] c(ψ1, . . . , ψn) CO : m1, . . . ,mn.

Then, the thesis follows since P[ψ . ϕ] = P[ψ1 . ϕ1]× . . .×P[ψn . ϕn]. �

Another admissible rule is related with the intuitive fact that the probability of an
o-formula should be one when considering the set of all outcomes. In order to show this
fact we need the following auxiliary result.

Proposition 1.4 Let ψ ∈ L(X ∪ Y ∪ Ỹ ). Then,∑
ϕ∈Ωψ

P[ψ . ϕ] = 1

 ∈ ORCF.
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Proof. The proof follows straightforwardly by induction on ψ. �

Proposition 1.5 Let ψ ∈ L(X ∪ Y ∪ Ỹ ). Then,

ΩO ` eic Ωψ v1 ψ

is an admissible rule of EICL.

Proof. The proof of this fact follows from Proposition 1.4 taking into account rules
SO, AO and WO. �

The dual of the MP rule mentioned above is also an admissible rule but we omit
the details since it will not be needed in the rest of the paper.

Basic properties of derivability

The following result establishes that any c-formula is derivable as long as the acceptance
threshold µ is appropriately bounded.

Proposition 1.6 Let ψ ∈ L(X ∪ Y ∪ Ỹ ). Then,

{µ ≤ P[ψ . Ωv
ψ] : v is a valuation} ` eic ψ.

Proof. Observe that {Ωv
ψ : v is a valuation} is a finite set. The thesis follows by LFT

taking into account:

(a) `
∨
v

∧
Ωv
ψ since

∨
v

∧
Ωv
ψ is a tautology and by completeness of PL.

(b) ` eic Ωv
ψ vP[ψ.Ωvψ ] ψ for every valuation v using NO, SO and AO.

(c) {µ ≤ P[ψ . Ωv
ψ] : v is a valuation} ` eic µ ≤ P[ψ . Ωv

ψ] for every valuation v, using

the extensivity of ` eic . �

The next result states that o-formulas involving an implication are theorems of EICL
as long as: (1) we include all the outcomes of the antecedent of the implication and
only one outcome of the consequent; and (2) the probability of the outcome of the
consequent is used in the o-formula.

Proposition 1.7 Let ψ, ψ′ ∈ L(X ∪ Y ∪ Ỹ ) and ϕ′ ∈ Ωψ′. Then,

` eic {ϕ⊃ ϕ′ : ϕ ∈ Ωψ} vP[ψ′.ϕ′] ψ ⊃ ψ′.
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Proof. Observe that, by rule SO, ` eic ϕ⊃ϕ′ vP[ψ.ϕ]×P[ψ′.ϕ′] ψ⊃ψ′ for every ϕ ∈ Ωψ,
and, so, ` eic {ϕ ⊃ ϕ′ : ϕ ∈ Ωψ} v(

∑
ϕ∈Ωψ

P[ψ.ϕ]×P[ψ′.ϕ′]) ψ ⊃ ψ′ by rule AO. Note that,

in ORCF, ∑
ϕ∈Ωψ

P[ψ . ϕ]×P[ψ′ . ϕ′] = P[ψ′ . ϕ′]×
∑

ϕ∈Ωψ
P[ψ . ϕ]

= P[ψ′ . ϕ′]

by Proposition 1.4. Hence, by rule WO, the thesis follows. �

Now we identify two interesting situations in which some hypotheses can be disre-
garded.

Proposition 1.8 Let Γ1 ⊆ La, Γ2 ⊆ L(X ∪ Y ∪ Ỹ ) ∪ Lo(X ∪ Y ∪ Ỹ ) and P a term.
Then, Γ1 ` eic µ ≤ P whenever Γ1,Γ2 ` eic µ ≤ P.

Proof. The result follows by straightforward induction on the given derivation of
µ ≤ P from Γ1 ∪ Γ2. In the basis, the conclusion is either an hypothesis or follows by
WA over an empty set of premises. So the same derivation is also a derivation of µ ≤ P
from Γ1. Regarding the step, the conclusion follows by rule WA over a non-empty set
of premises in the derivation. Hence, the thesis follows by the induction hypothesis and
by applying the same rule. �

Proposition 1.9 Let Γ ⊆ La ∪L(X ∪ Y ∪ Ỹ ), ψ ∈ L(X ∪ Y ∪ Ỹ ) and Φ ⊆ Ωψ. Then,
` eic Φ vP ψ whenever Γ ` eic Φ vP ψ.

Proof. The result follows by induction on a derivation of Φ vP ψ from Γ. In the
basis, the conclusion follows by NO, VO, EIO↑ and EIO↓. Since they are axioms, the
thesis follows immediately. Regarding the step, observe that the rules used to conclude
Φ vP ψ all have o-formulas as premises. Hence, by applying the induction hypothesis
to each premise, we can conclude that they are theorems. Using the same rule the
thesis follows. �

2 Main results

In this section we start by investigating if the proposed calculus does capture the
semantics of EICL. First we prove strong soundness, that is:

if Γ ` eic θ then Γ � eic θ
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for every Γ ∪ {θ} ⊆ Leic(X ∪ Y ∪ Ỹ ).
Observe that strong completeness for o-formulas is out of question since the entail-

ment is not compact and the EICL calculus is obviously compact. So we only prove
that

if � eic Φ vP ψ then ` eic Φ vP ψ.

Strong completeness for c-formulas and a-formulas is also out of question for the
same reason. So, with respect to completeness for such formulas, we prove the following
results: {

if Γ � eic µ ≤ P then Γ ` eic µ ≤ P

if Γ � eic ψ then Γ ` eic ψ

provided that Γ is a finite subset of La.

Notice that, it is important to allow a finite number of a-formulas as hypotheses,
since no connectives are available in the EICL language for combining a-formulas and
for combining them with c-formulas.

2.1 Soundness

It is enough to show soundness of tautologies and soundness of each rule in EICL. Then,
the result follows by a straightforward induction.

Proposition 2.1 The rules of EICL are sound.

Proof. We only show that the rules VO, EIO↑, EIO↓, CO and LFT are sound since
the others follow similarly.

(VO) Let I = (v, ρ) be an EICL interpretation and z ∈ X ∪ Y . Then P[z . z] = 1 by
definition of P. Hence,

Rρ  fo 1 ≤ P[z . z]

and so I  eic z v1 z. Thus VO is sound.

(EIO↑) Let I = (v, ρ) be an EICL interpretation and ỹk ∈ Ỹ . Then P[ỹk . yk] = ν by
definition of P. Hence,

Rρ  fo ν ≤ P[ỹk . yk]

and so I  eic yk vν ỹk. Thus EIO↑ is sound.

(EIO↓) The proof that this rule is sound is similar to the one of EIO↑, so we omit it.

(CO) Let I = (v, ρ) be an EICL interpretation, ψ1 . . . , ψn ∈ L(X ∪Y ∪ Ỹ ), ϕ1, . . . , ϕn ∈
L(X ∪ Y ) and c ∈ Σ such that ϕi v ψi for i = 1, . . . , n. Assume that

I  eic ϕi vPi ψi
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for i = 1, . . . , n. Then,
Rρ  fo Pi ≤ P[ψi . ϕi]

for i = 1, . . . , n. Taking also into account that Rρ  fo 0 ≤ Pi for i = 1, . . . , n and that
P[ψ1 . ϕ1]× . . .×P[ψn . ϕn] = P[c(ψ1, . . . , ψn) . c(ϕ1, . . . , ϕn)], we have that

Rρ  fo P1 × . . .× Pn ≤ P[c(ψ1, . . . , ψn) . c(ϕ1, . . . , ϕn)]

and so I  eic c(ϕ1, . . . , ϕn) vP1×...×Pn c(ψ1, . . . , ψn). Thus the rule CO is sound.

(LFT) Let I = (v, ρ). Assume that
I  eic

k∨
i=1

∧
Φi{

I  eic Φi vPi ψ
I  eic µ ≤ Pi

for i = 1, . . . , k.

Since
∨k
i=1

∧
Φi ∈ L(X ∪ Y ), then there is i ∈ {1, . . . , k} such that v 

∧
Φi (see the

proof of Theorem 1.1). Hence,

{ϕ ∈ Ωψ : v  ϕ} ⊇ Φi

and, so,

R ρ  fo
∑

ϕ ∈ Ωψ
v  ϕ

P[ψ . ϕ] ≥
∑
ϕ∈Φi

P[ψ . ϕ].

By hypothesis,

R ρ  fo
∑
ϕ∈Φi

P[ψ . ϕ] ≥ Pi

and
R ρ  fo Pi ≥ µ.

Therefore,

R ρ  fo
∑

ϕ ∈ Ωψ
v  ϕ

P[ψ . ϕ] ≥ µ

and, so, the thesis follows. �

Theorem 2.2 (Strong soundness of EICL) Let Γ ∪ {θ} ⊆ Leic(X ∪ Y ∪ Ỹ ). Then,
Γ � eic θ whenever Γ ` eic θ.

Proof. Induction on the length of the given derivation for Γ ` eic θ. �
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2.2 Completeness

We concentrate now on the completeness of EICL. We start with the weak completeness
for o-formulas.

Proposition 2.3 Let ψ ∈ L(X ∪ Y ∪ Ỹ ), Φ ⊆ Ωψ and P a term. Then, ` eic Φ vP ψ
if � eic Φ vP ψ.

Proof. Assume that � eic Φ vP ψ. Let ρ be an assignment over R such that

R ρ  fo 1

2
< ν ≤ 1.

Let ρ′ be an assignment such that ρ′(ν) = ρ(ν) and 1
2
< ρ′(µ) ≤ 1. Then,

R ρ′  fo 1

2
< ν ≤ 1.

Let v be a valuation and I = (v, ρ′). Then, I  eic Φ vP ψ and, so,

R ρ′  fo P ≤
∑
ϕ∈Φ

P[ψ . ϕ].

Therefore,

R ρ  fo P ≤
∑
ϕ∈Φ

P[ψ . ϕ].

So

∀ν

((
1

2
< ν ≤ 1

)
⊃ (P ≤

∑
ϕ∈Φ

P[ψ . ϕ])

)
∈ ORCF.

On the other hand, by rules NO, SO and AO, ` eic Φ v∑
ϕ∈Φ P[ψ.ϕ] ψ and, so, ` eic Φ vP ψ

by rule WO. �

We now establish the constrained strong completeness for a-formulas.

Proposition 2.4 Let Γ be a finite subset of La and P a term. Then, Γ ` eic µ ≤ P if
Γ � eic µ ≤ P.

Proof. Let Γ be {µ ≤ P1, . . . , µ ≤ Pk}. Assume that Γ � eic µ ≤ P . Let ρ be an
assignment over R such that

R ρ  fo 1

2
< µ, ν ≤ 1 ∧

k∧
i=1

µ ≤ Pi
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and v an arbitrary valuation. Then,

(v, ρ)  eic
k∧
i=1

µ ≤ Pi

and, so, (v, ρ)  eic µ ≤ P since Γ � eic µ ≤ P . Hence, R ρ  fo µ ≤ P and, thus, we
have proved

R ρ  fo ∀µ∀ν

((
1

2
< µ, ν ≤ 1 ∧

k∧
i=1

µ ≤ Pi

)
⊃ µ ≤ P

)
for every assignment ρ over R. Therefore, Γ ` eic µ ≤ P , by WA. �

Finally, we prove the constrained strong completeness for c-formulas.

Theorem 2.5 (Constrained strong completeness of EICL) Let Γ be a finite sub-

set of La and ψ ∈ L(X ∪ Y ∪ Ỹ ). Then, Γ ` eic ψ if Γ � eic ψ.

Proof. Assume that Γ � eic ψ. Let ρ be an assignment over R such that

R ρ  fo 1

2
< µ, ν ≤ 1 ∧

(∧
Γ
)
.

and I = (v, ρ) an interpretation for some valuation v. Observe that I is in fact an
interpretation since R ρ  fo 1

2
< µ, ν ≤ 1. Hence, I  eic Γ and so I  eic µ ≤ P[ψ .Ωv

ψ]

since, by Proposition 1.2, Γ � eic µ ≤ P[ψ . Ωv
ψ] for every valuation v. Therefore,

R ρ  fo µ ≤ P[ψ . Ωv
ψ]. In this way, we showed that

∀µ∀ν
((

1

2
< µ, ν ≤ 1 ∧

(∧
Γ
))
⊃ µ ≤ P[ψ . Ωv

ψ]

)
∈ ORCF

for every valuation v. Then, Γ ` eic µ ≤ P[ψ . Ωv
ψ] for every valuation v, by WA since

Γ is finite. Moreover, {µ ≤ P[ψ . Ωv
ψ] : v is a valuation} ` eic ψ, by Proposition 1.6.

Thus, the result follows by idempotence of ` eic . �

2.3 Metatheorem of deduction

Herein, we discuss the metatheorem of deduction for EICL. It holds only with some
provisos. We start by introducing two relevant notions: (1) given a derivation θ1 . . . θk
of ψ from Γ, we say that θi depends on γ ∈ Γ in this derivation if either θi is γ or
θi is obtained using a rule with at least one of the premises depending on γ; (2) an
application of MP is said to be classical if both premises are in L(X ∪ Y ).
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Proposition 2.6 Let Γ ⊆ La and ψ and ψ′ be distinct formulas in L(X ∪ Y ∪ Ỹ ).
Assume that there is a derivation of ψ′ from Γ ∪ {ψ} where ψ′ depends on ψ and all
the applications of MP over dependents of ψ are classical. Then, ψ ∈ L(X ∪ Y ).

Proof. Let θ1 . . . θk be a derivation of Γ, ψ ` eic ψ′ where ψ′ depends on ψ and all the
applications of MP over dependents of ψ are classical. The proof follows by induction
on k. Since ψ′ depends on ψ, ψ′ is not obtained by TAUT. Moreover, since ψ′ is not ψ,
ψ′ does not appear as an hypothesis. Hence, we have only to consider two cases: either
ψ′ is obtained by LFT (we omit the proof of this case since it follows straightforwardly)
or ψ′ is obtained by MP from θi and θi ⊃ ψ′ where either θi or θi ⊃ ψ′ depends on
ψ in the given derivation. Since ψ′ depends on ψ, then, both θi and θi ⊃ ψ′ are in
L(X ∪ Y ). If θi ⊃ ψ′ depends on ψ in the given derivation, we need to consider two
possibilities: (i) ψ is θi ⊃ ψ′. Then, ψ is in L(X ∪ Y ); (ii) ψ is not θi ⊃ ψ′. Then,
by the induction hypothesis, ψ ∈ L(X ∪ Y ). If θi depends on ψ, yet again we need to
consider two possibilities and apply the same reasoning as when θi⊃ψ′ depends on ψ. �

Theorem 2.7 (Metatheorem of deduction - MTD) Let Γ ⊆ La and ψ, ψ′ ∈ L(X∪
Y ∪ Ỹ ). Assume that ψ′ fulfills the following proviso: either ψ′ is distinct from ψ or
ψ′ ∈ L(X∪Y ). Then, Γ` eic ψ⊃ψ′ whenever there is a derivation establishing Γ, ψ ` eic ψ′

where all the applications of MP over dependents of ψ are classical.

Proof. Let θ1 . . . θk be a derivation of ψ′ from Γ ∪ {ψ} where all the applications of
MP over dependents of ψ are classical. The proof follows by induction on k.

(Basis) Consider two cases. Either (1) ψ′ is obtained by TAUT or (2) ψ′ is ψ. Assume
that case (1) holds. Then, ψ′ ∈ L(X ∪ Y ). Take Φ = {ϕ ⊃ ψ′ : ϕ ∈ Ωψ}. Then, by

tautological reasoning ` ϕ⊃ψ′ for every ϕ ∈ Ωψ, and so, ` eic
∧

Φ. On the other hand,

by Proposition 1.7, since P[ψ′ . ψ′] = 1, ` eic Φ v1 ψ ⊃ ψ′. Hence, the thesis follows by
rule LFT. Assume now that case (2) holds. Then, by hypothesis, ψ′ ∈ L(X ∪ Y ). The
proof is similar to case (1).

(Step) There are two cases to consider. Either ψ′ is obtained by LFT from
∨n
i=1

∧
Φi,

Φi vPi ψ′ and µ ≤ Pi for i = 1, . . . , n (we omit the proof of this case since it follows
straightforwardly), or ψ′ is obtained by MP from ψ′′ and ψ′′⊃ψ′ where ψ′ ∈ L(X ∪Y ).
We have three sub cases: (a) ψ′ depends on ψ in θ1 . . . θk, and ψ′ and ψ are distinct.
Then, by Proposition 2.6, ψ ∈ L(X∪Y ). Moreover, ψ′′ ∈ L(X∪Y ) since all the applica-
tions of MP on dependents of ψ are classical. By the induction hypothesis Γ ` eic ψ⊃ψ′′
and Γ ` eic ψ ⊃ (ψ′′ ⊃ ψ′). Then, by tautological reasoning, Γ ` eic ψ ⊃ ψ′. (b) ψ′ does
not depend on ψ in θ1 . . . θk. Then, Γ ` eic ψ′. By tautological reasoning, Γ ` eic ϕ⊃ ψ′
for every ϕ ∈ Ωψ. The rest of the proof is similar to the one in (1). (c) ψ′ is ψ. Then,
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ψ ∈ L(X ∪ Y ) by hypothesis. The proof is similar to case (1). �

Observe that one would have no difficulty in refuting the metatheorem of deduction
without the proviso on ψ′. For instance,

ỹ1 ` eic ỹ1

by extensivity. On the other hand,

6� eic ỹ1 ⊃ ỹ1

as can easily be verified, and, so, by soundness of EICL (see Theorem 2.2), 6` eic ỹ1⊃ ỹ1.

3 Application scenarios

One should wonder if the assumptions on which EICL relies (availability of independent
observations of each circuit input and independence between observations of different
inputs) do have any practical significance.

To this end recall the circuit in Figure 2 represented by c-formula

(M3) M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)

where we have two inputs y1 and y2 that are each of them independently observed
thrice, once in each of the three conjunction subcircuits feeding the majority gate.

A typical application scenario would be the control of some industrial process, say
a nuclear power station, the inputs reflecting for example the temperature of the fluids
in two key pipes using for each of them three independent possibly erroneous threshold
sensors. The goal of the circuit would be to set up an alarm if both temperatures exceed
a certain critical value.

To this end, the simple conjunction circuit represented by c-formula

(M1) ỹ1 ∧ ỹ2

(that uses only one sensor on each of the two pipes) would be enough but more error
prone than the circuit above where redundancy plays a decisive role.

It is worthwhile to compare in detail the two circuits in order to show how redun-
dancy is used to achieve a higher probability of correct output.

Recall that in Subsection 1.3 we established

µ ≤ 3ν4 − 2ν6 ` eic M3(ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2, ỹ1 ∧ ỹ2)≡ (y1 ∧ y2)
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using the derivation presented in Figure 3. Therefore, circuit (M3) produces the correct
output of the envisaged conjunction with at least probability2

3ν4 − 2ν6

while circuit (M1) does so with probability at least

ν2

since
µ ≤ ν2 ` eic (ỹ1 ∧ ỹ2)≡ (y1 ∧ y2)

as derived in Figure 5.

1 (y1 ∧ y2) ≡ (y1 ∧ y2) TAUT

2 y1 vν ỹ1 EIO↑
3 y2 vν ỹ2 EIO↑
4 y1 ∧ y2 vν2 ỹ1 ∧ ỹ2 CO : 2, 3

5 y1 v1 y1 VO

6 y2 v1 y2 VO

7 y1 ∧ y2 v1 y1 ∧ y2 CO : 5, 6

8 (y1 ∧ y2)≡ (y1 ∧ y2) vν2 (ỹ1 ∧ ỹ2)≡ (y1 ∧ y2) CO : 4, 7

9 µ ≤ ν2 HYP

10 (ỹ1 ∧ ỹ2)≡ (y1 ∧ y2) LFT : 1, 8, 9

Figure 5: µ ≤ ν2 ` eic (ỹ1 ∧ ỹ2)≡ (y1 ∧ y2).

Observe that for values of ν not exceeding

√
2

2

there is no value of µ > 1
2

that entails the acceptance of circuit (M1) as good or the
acceptance of (M3). For values of ν above this acceptance threshold, the value of
3ν4 − 2ν6 exceeds the value of ν2 and, so, circuit (M3) is better than circuit (M1) as
expected.

2The probability can be higher on favourable values of the inputs y1 and y2.
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It is also worthwhile to examine how far can we go by increasing the degree of
redundancy. In general, when using the circuit represented by the c-formula

(M3 + 2k) M̃3+2k(ỹ1 ∧ ỹ2, . . . , ỹ1 ∧ ỹ2)

for obtaining the output of a conjunction with possibly erroneous inputs, we are sure
that the output is correct with at least probability

(∗)
k+1∑
i=0

(
3 + 2k

3 + 2k − i

)
(ν2)3+2k−i((1− ν)2 + 2ν(1− ν))i.

0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Term (*) for several degrees of redundancy.

Observe that an increase in the redundancy degree does not improve on the accep-
tance threshold value

√
2

2
for ν. But for ν above this threshold any increase in redun-

dancy does improve the lower bound of the probability of obtaining the correct output,
as depicted in Figure 6 where this bound is depicted as a function of ν for circuits (M1)

(dashed line), (M3), (M5) and (M7). Hence, it seems that
√

2
2

is a characteristic of the
basic circuit at hand.

From the analysis above it is clear that the redundancy technique proposed by von
Neumann in [13] for improving the overall reliability of circuits built with unreliable
gates but receiving error-free inputs also works when we are dealing with perfect gates
but receiving possibly erroneous inputs with sufficiently small probability of error, as
long as independent observations of each input are available and the observations of
different inputs are also independent.
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4 Outlook

Under some reasonable independence assumptions on the possibly erroneous observa-
tions of the inputs of logic circuits with perfect gates, we were able to set up a logic
(EICL) appropriate for reasoning about such circuits, as a conservative extension of
classical propositional logic (PL). For the axiomatic calculus we capitalized on the
decidability of the first-order theory of ordered real closed fields. Useful completeness
results were established in due course.

The pitfalls of extrapolating classical reasoning to the realm of circuits with possibly
erroneous inputs were extensively illustrated. For instance, the metatheorem of deduc-
tion was established only with additional provisos that once again show the striking
differences between PL and EICL. These differences arise from the referential opacity of
the input variables in EICL.

Concerning future work, as a first step, other metaproperties of EICL beyond com-
pleteness and the MTD should be investigated, in due course including decidability and
other algorithmic issues. In another direction, relaxing the independence assumptions
seems to be the most challenging and significant open problem. In particular, allowing
for perfect cloning of any observation input, that is, removing the fan-out restriction to
1 implicitly assumed in this paper, should be the first step. Only afterwards will the
problem of allowing for both unreliable gates and erroneous inputs be tractable.
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