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Abstract

This work is a development of some model-theoretic aspects of the theory
of Special Groups ([9]) − a first order axiomatization of the algebraic theory of
quadratic forms. In [33] we constructed a functor, the profinite hull functor, P,
from the category RSG of reduced special groups with SG-morphisms to the cat-
egory RSGpf of profinite reduced special groups with continuous SG-morphisms.
From results concerning P, we obtain here an alternative and simple proof that
the class of reduced special satisfying an interesting local-global property - for p.p.
formulas ([27], [28]) - is an elementary class in the language of special groups, ax-
iomatizable by Horn sentences or by ∀∃-sentences, a result originally established
in [6].

Keywords: special groups, profinite hull, local-global principles, positive-existential
formulas.

Introduction

Special Groups (SGs) are a first-order axiomatization of the Algebraic Theory of
Quadratic Forms (ATQF). The standard ATQF study classes of isometry of finite-
dimensional vector spaces endowed with a bilinear symmetric form, defined over a field
F with char(F ) 6= 2. Equivalently, the theory concerns classes of isometry of n × n
symmetric matrix over F , for each n ∈ N, in particular, for any such matrix S, there
are a n × n matrix T and a1, · · · , an ∈ F such that S = T tDiag(a1, . . . , an)T . It
is a fundamental result that “binary isometry determines n-ary isometry”, n ∈ N.
In 1937, E. Witt introduced the ring W (F ), that classifies the classes of isometry of
non-singular and anisotropic quadratic forms over F . The coefficients of non-singular
diagonal quadratic form are all in F • := F \ {0}: the traditional theory of quadratic
forms over F have focus on the exponent 2 group F •/F •2 and the so called reduced
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theory have coefficients in the group F •/(
∑
F 2)•. The main reference on ATQF is the

book [21].
The suitable first-order language for the study of Special Groups, LSG, contains two

symbols for constants (1 and −1), one symbol for binary operation (multiplication)
and one symbol for quaternary relation (≡, the isometry between quadratic forms with
dimension two). The class of special groups, SG, (respectively, the class of reduced
special groups RSG) is axiomatizable by LSG-sentences of the form ∀~x(ψ0(~x)→ ψ1(~x))
where ψi(~x) is positive existential (p.e.), (respectively, by sentences that are either the
negation of an atomic sentence of the form ∀~x(ψ0(~x) → ψ1(~x)), with ψi p.e.). The
central reference for special groups (SGs) is [9].

Section 1 below presents the definitions and results needed in the sequel. The theory
of quadratic forms over fields is encoded into the theory of special groups via a covariant
functor from the category of fields (with characteristic 6= 2) into the category of special
groups; formally real Pythagorean fields are mapped by this functor into the category of
reduced special groups (RSGs). A non first-order abstract presentation of the (reduced)
algebraic theory of quadratic forms is given by Murray Marshall’s notion of space of
orderings. The main reference on this subject is [25]. In Chapter 3 of [9] it is shown
that there is a duality between the category of reduced special groups and the category
of spaces of orderings.

Local-global principles are a fundamental subject in (abstract) presentations of
ATQF. Many of them have a functorial encoding in the theory of SGs via “hulls func-
tor”: an example is the Boolean Hull Functor, B ([9], [10], [12]) and the Profinite Hull
Functor P ([32], [33], [34], [35]). We present a brief reminder on local-global principles
in Section 2. In Section 3, we use the functorial encoding by P of a local-global principle
of a logical nature ([27], [28]) − with respect to positive primitive LSG-formulas − to
provide an alternative and simple proof that the class of reduced special satisfying this
local-global property is an elementary class in the language LSG, axiomatizable by sets
of Horn sentences or by a set of ∀∃-sentences, a result due to [6].

1 Preliminaries

1.1 Special Groups (SG)

Many concepts in the theory of SGs can be described by positive-existential LSG-
formulas. Examples include the isometry between n-forms, the notion of isotropic form
and the relation of a form being a subform of another. The reader is referred to [9] for
all undefined notions used below (e.g., pre-special group).

1 Basic Notions. Let G be a special group and let n ≥ 1 be an integer.
• A n-form over G, ϕ = 〈 a1, . . . , an 〉, is an element Gn; the integer n is called the
dimension of ϕ. There are natural definitions of n-dimensional isometry, of sum (⊕),
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product (⊗), isotropy, anisotropy and hiperbolicity of forms over G. Furthermore, sum
and product of forms are associative and commutative.
• If ϕ, ψ are forms over G, ϕ is a subform ψ (notation: ϕ �G ψ) if there is a form
θ such that ψ ≡G ϕ ⊕ θ; by Witt cancellation law (Proposition 1.6.(b) in [9]), θ is
unique up to isometry.
• ψ is a form over G, the Witt index of ψ (notation: indW (ψ)) is 0 if ψ is anisotropic;
otherwise, it is the largest integer k ≥ 1 such that k〈 1,−1 〉 �G ψ; hence, ψ ≡G
indW (ψ)〈 1,−1 〉 ⊕ ψan, where ψan is the anisotropic part of ψ, which is unique up
to isometry.
• An element a ∈ G is represented by a form ψ, written a ∈ DG(ψ), if 〈 a 〉 �G ψ. �

2 Pfister forms. A Pfister form of degree k ≥ 1 over G is a form P = 〈 1, a1 〉 ⊗
. . .⊗ 〈 1, ak 〉, for some a1, . . . , ak ∈ G. If P is a Pfister form over G, then DG(P ) = {a
∈ G : aP ≡G P} and is a subgroup of G. We register that any isotropic Pfister form
must be hyperbolic. �

3 The representation relation. Sometimes it is convenient to have in our first-order
language of special groups a unary predicate, D(1, ·), to express the representation by
binary forms of the type 〈 1, a 〉. This language is interdefinable with LSG, modulo the
axioms of pre-special groups. Hence, we may assume that a LSG-atomic formula φ(~v)
can be written as t0(~v) = t1(~v) or t0(~v) ∈ D(1, t1(~v)), for some LSG-terms ti(~v). If ϕ, ψ
are forms of dimension n ∈ N over a pre-special group G, it follows straightforwardly
from the definition of isometry of n-forms, that ϕ ≡G ψ can be described by a positive
primitive (pp) LSG-formula, whose parameters are the entries of ϕ, ψ. Analogously, we
can describe the following notions by means of pp-sentences of LSG with parameters in
the entries of the forms involved:
• “ϕ is a Pfister form”; • “ϕ is an isotropic form”;
• “indW (ϕ) ≥ k”, for fixed k ∈ N; • “ϕ is subform of ψ”, i.e. ϕ � ψ. �

1.2 SG-morphisms

Special group morphisms (SG-morphisms) are simply the LSG-morphisms of the
underlying LSG-structures. If f : G −→ H is a SG-morphism and ϕ = 〈 a1, . . . , an 〉
is a n-form over G, write f ? ϕ = 〈 f(a1), . . . , f(an) 〉 for the f -image form over H.
In Chapter 5 of [9] there is a detailed study of several types of morphisms between
LSG-structures.

4 Monomorphisms. Some special kinds of monomorphisms appear naturally in the
category SG:
• complete embeddings, i.e., the SG-morphisms that preserve and reflect isometry of
n-forms, n ≥ 1;
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• SG-morphisms that preserve and reflect isotropy;
• SG-morphisms that preserve and reflect subforms;
• Elementary (resp., pure) SG-morphisms, i.e., those LSG-morphisms that preserve
and reflect arbitrary (resp., positive-existential) LSG-formulas;
• LSG-sections, i.e., the SG-morphisms, G

s−→ H, such that there is a SG-morphism,
H

r−→ G, satisfying r ◦ s = IdG. �

5 Epimorphisms. The most useful notion of SG-epimorphism is that of the pro-
jection of a reduced special group (RSG) on a quotient by a saturated subgroup; the
(proper) saturated subgroups classify the congruences on a RSG whose associated quo-
tient is a RSG. If G is a RSG and Σ is a saturated subgroup of G, write pΣ : G −→ G/Σ
for the canonical SG-quotient morphism. If ϕ = 〈 a1, . . . , an 〉 is a n-form over G, when-
ever convenient, we write ϕ/Σ = 〈 a1/Σ, . . . , an/Σ 〉 = pΣ ? ϕ for the image form over
G/Σ. �

6 Classes of saturated subgroups. If G is a SG,
• Ssat(G) is the set of saturated subgroups of G;
• Ssat?(G) is the set of proper saturated subgroups of G;
• X(G) is the set of maximal saturated subgroups of G;
• F(G) is the set of saturated subgroups of G of finite index in G. �

Remark 1.1 The maximal saturated subgroups of G are precisely the kernels of the
SG-morphisms G → Z2 , i.e. the kernels of the elements of XG = HomSG(G,Z2),
called the space of orderings of G; moreover, this association is bijective. �

1.3 Boolean algebras and the Boolean Hull Functor of a RSG

In Chapters 4, 5 and 7 in [9] there is an extensive analysis of the interaction between
Boolean algebras and special groups. In particular, the Boolean hull functor and its
properties are an essential tool in the solutions of many questions in quadratic form
theory (see [10], [11], [12]). We provide here just the definitions and the results needed
below, referring the reader to the above references.

7 Boolean Algebras as Special Groups
• Let 〈B,∨,∧,⊥,>〉 be a Boolean algebra (BA). Then 〈B,4,⊥〉, where 4 is

symmetric difference, is a group of exponent 2 and 〈B,4,∧,⊥,>〉 is a Boolean unitary
ring.

For each a, b, c, d ∈ B, define
[≡B] 〈 a, b 〉 ≡B 〈 c, d 〉 ⇔ a ∧ b = c ∧ d and a ∨ b = c ∨ d.
• By Corollary 4.4.(b) in [9], 〈 〈B,4,⊥〉,≡B,>〉 is RSG, where 1 := ⊥, −1 := >.

�
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8 BAs and RSGs
• The following table describes the correspondence between BA concepts and RSG

concepts:

Reduced special groups Boolean algebras
· 4

1 ⊥
−1 >

a ∈ DG(1, b) a ≤ b
Saturated subgroup Ideal
RSG-morphism BA-morphism

• Let G be a RSG. Then G is (associated to) a Boolean algebra iff for each a, b ∈ G,
the form � 1, a, b,−ab〉 is isotropic (Proposition 7.17 in [9]).
• Let BA be the category of Boolean algebras and BA-morphisms. We have a

functor, γ : BA −→ RSG, identifying BA with a full subcategory of RSG, justifying
its frequent omission from the notation. �

9 The Boolean Hull of RSGs
• Let G be a reduced special group, XG = HomSG(G,Z2) be its space of orders

and let BG := B(XG) be BA of clopen subsets of XG. The map εG : G −→ BG, given
by

εG(a) = [a = −1] = {σ ∈ XG : σ(a) = −1} = [−a = 1],

is a RSG-embedding and the diagram G
εG−→ BG is the Boolean hull of G.

• If G
f→ −→ G′ is a RSG-morphism, let XG

X(f)→←− XG′ be the induced

continuous map. Now let BG
B(f)→ −→ BG′ be the BA-morphism dual to X(f), given

by B(f)(U) := X(f)−1[U ], U ∈ B(XG). �

10 Properties of the Boolean Hull

• The map (G
f→ −→ G′) 7→ (BG

B(f)→ −→ BG′), is a covariant functor,
B : RSG −→ BA, the Boolean Hull Functor.

• The family {(G εG→ −→ BG) : G ∈ Obj(RSG)} is a natural transformation,
ε : IdRSG −→ γ ◦ B, i.e., the square below is commutative, for all RSG-morphism
f : G −→ G′.
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G - BG

h h̃

B

εG

A
A
A
A
A
A
AU

�
�
�
�
�
�
��

G′

G

?

- BG

f

εG

BG′

B(f)

εG′

?
-

• If B is a BA and h : G −→ B is a SG-morphism, there is a unique BA-morphism,
h̃ : BG −→ B, such that the triangle above is commutative.
• The Boolean hull functor is left adjoint to the “inclusion” functor γ : BA−→RSG

and the natural transformation ε : IdRSG −→ γ ◦B is the unit of this adjunction.
• Since the “inclusion”, γ : BA −→ RSG is a right adjoint it preserves all limits.

Hence, when we consider limits of BAs, we need not specify the limit as a BA or a
RSG. �

1.4 Profinite RSGs and the Profinite Hull Functor of a RSG

Profinite RSGs appeared (in the dual setting of orderings spaces) in [23] and were
studied in [22]; [31] and [32] describe logical-categorical properties of profinite structures
and the profinite hull functor in a general setting; [36], [33], [34] and [35] describe
properties and applications of the notions of profiniteness and of the profinite hull in
the context of special groups, while [5] establishes a representation of profinite RSGs
by Pythagorean fields. As above, we register the definitions and the results needed in
what follows, referring the reader to the aforementioned references.

11 Logical notions and profinite structures
(I) Recall that a formula in L is:
• positive existential (p.e.) if it is equivalent to a formula constructed from the
atomic formula employing only the connectives ∧, ∨ and the existential quantifier ∃;
• positive primitive (p.p.) if it is equivalent to a formula of the form ∃xφ, where φ
is a conjunction of atomic formulas;
• geometrical if it is logically equivalent to one of the form ∀ x(φ(x, y) → ψ(x, y)),
where φ, ψ are p.e.-formulas, or to the negation of an atomic formula;
• basic Horn formula is a disjunction φ1∨ . . .∨φk where at most one of the formulas
φi is an atomic formula and all the others are negations of atomic formulas;
• Horn formula if it is build up from basic Horn formulas by the use of ∧, ∃, ∀.

It is well-known that every p.e.-formula is equivalent to the disjunction of finite
conjunctions of p.p.-formulas.
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(II) A map between L-structures, f : M −→ N , is a pure L-morphism if for each
p.e.-formula ϕ(~x) and for all a in M , M |= ϕ[a] ⇔ N |= ϕ[fa]. Hence, a L-morphism
g : M −→ N is pure iff it reflects the satisfaction of p.p.-formulas.

Clearly, all pure L-morphisms are L-embeddings and any elementary embedding and
any L-section are pure L-morphisms. Moreover, if Σ is a set of geometrical L-sentences
and f : M −→ N is a pure L-morphism, then N |= Σ ⇒ M |= Σ.
(III) Let L be a first-order language and let L-mod be the category of L-structures
and L-morphisms.
• A downward directed poset is a poset 〈 I,≤〉 that is non-empty and such that,
for each i, j ∈ I, there is k ∈ I with k ≤ i, j.
• A cofiltered system of L-structures is a functor (or diagram), D, from a downward
directed poset 〈 I,≤〉 into the category L-mod.
• An L-structure is profinite if it is L-isomorphic to the limit, in the category L-mod,
of a cofiltered system of finite L-structures.

(IV) Let 〈 I,≤〉 be a downward directed poset and let M = � (Mi

fij→ −→Mj) :
(i≤ j) ∈ I 〉 be a cofiltered system of L-structures and L-morphism over I.
• Denote Π(M) :=

∏
i∈I Mi, the product L-structure and, for each i ∈ I, let πi :

Π(M) −→ Mi be the corresponding coordinate projection.

• The (essentially unique) limit of M is a commutative cone {(P
pi→ −→ Mi) : i∈ I}

over the diagram M, where P is a L-structure and pi : P −→ Mi are L-morphisms
satisfying a well-known universal property.
• There is a natural L-monomorphism, ι : P −→ Π(M) , given by ι(x) = 〈 pi(x) 〉i∈I ,
such that for all i and all i ≤ j in I: fij ◦ pi = pj and πi ◦ ι = pi.
• The limit P may (and often is) identified with the closed1 L-substructure ι[P ] of M
given by:

ι[P ] = {〈 ai 〉i ∈ I ∈ Π(M) : ∀ i ≤ j in I, fij(ai) = aj}.
Under this identification, the L-morphism pi is the restriction to ι[P ] of the projection
πi, i ∈ I.
(V) A very useful characterization of profinite SGs comes from the following general
result in [30]2:

Profinite L-structures are retracts of ultraproducts of finite L-structures.

More precisely, if P is the limit of a cofiltered system M = � (Mi

fij→ −→Mj) :
(i≤ j) ∈ I 〉 of finite L-structures over the downward directed poset 〈 I,≤〉, there is an
ultrafilter U over I together with L-morphisms,

P
ι−→

∏
i∈I Mi

q−→
∏

i∈I Mi/U
γU−→ P

1I.e. ι[P ] is a closed subset of
∏

i∈I Mi endowed with the product (Boolean) topology.
2Generalizing to the category L-mod Lemma 4.4 in [23], stated for spaces of orderings.



118 H. L. Mariano and F. Miraglia

such that γU ◦ q ◦ ι = IdP , where ι is the canonical embedding of P into the product
of the Mi and q is the natural quotient morphism.
• If T is a geometrical L-theory, then Mod(T ), the full subcategory of L-mod con-
sisting of models of T , is closed under profinite limits. In particular, as RSG is a
LSG-elementary class axiomatizable by geometric sentences, then the inclusion functor
RSG ↪→ LSG-mod creates profinite limits. �

12 The class of profinite RSGs
• In [22] the reader will find a topological characterization of the profinite RSGs, analo-
gous to the well-known description of profinite topological groups and spaces. A general
statement for topological profinite structures in certain elementary classes in L-mod is
presented in [32].
• The topological characterization of profinite RSGs yields closure properties of RSGpf⊆
RSG. In particular, a non-empty product of profinite RSGs is a profinite RSG. �

13 The Profinite Hull of RSGs
• Let G be a reduced special group and let F(G) be the set of all saturated subgroup
of finite index in G. Since F(G) is the closure of X(G) under finite intersections, it is
downward directed by inclusion (in fact, it is a filter in the complete algebraic lattice
of saturated subgroups of G).
• For Γ ⊆ ∆ in F(G), let pΓ∆ : G/Γ −→ G/∆ be the unique SG-morphism such that
pΓ∆ ◦ pΓ = p∆, where p∆ and pΓ are the canonical quotient SG-morphisms. Thus,

G = � (G/Γ
pΓ∆→� G/∆) : (Γ ⊆ ∆) ∈ F(G) 〉

is a cofiltered system of finite RSGs over the downward directed poset (F(G),⊆).

• If P(G) = lim←−
∆∈F(G)

G/∆, then {(P(G)
p∆→ −→G/∆) : ∆ ∈ F(G)} is a limit cone over

G.
• We know that P(G) ∈ RSGpf and if Π(G) :=

∏
∆∈F(G) G/∆, then we also have

Π(G) ∈ RSGpf (endowed with the product topology). To keep notation straight,
let ι : P(G) ↪→ Π(G) be the inclusion morphism and consider the map a ∈ G 7−→
〈 a/∆ 〉∆∈F(G): it will be written as δG if its codomain is Π(G) and as ηG if it is considered
as a map into P(G):

δG : G −→ Π(G) and ηG : G −→ P(G).
and so δG = ι ◦ ηG.

• If G
f→ −→ G′ is a RSG-morphism, then f ∗ : F(G′)→ F(G), given by ∆′ 7→ f−1[∆′],

is a well-defined and increasing function of downward directed posets. Moreover, let
f∆′ : G/f ∗(∆′) � G′/∆′, given by g/f−1[∆′] 7→ f(g)/∆′, be the injective RSG-

morphism induced on quotients. Then, the family {(P(G)
f∆′◦pf∗(∆′)→ −→ G′/∆′) :

∆′ ∈ F(G′)} is a commutative cone over the diagram
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G ′ = � (G′/Γ′
pΓ′∆′→ −→G′/∆′) : (Γ′ ⊆ ∆′) ∈ F(G′) 〉.

Thus, by the universal property of the limit cone {(P(G′)
p′f∗(∆′)→ −→ G′/∆′) : ∆′ ∈

F(G′)}, there is a unique continuous RSG-morphism, P(f) : P(G)→ P(G′), such that
p′∆′ ◦ P(f) = f∆′ ◦ pf∗(∆′), for each ∆′ ∈ F(G′). �

14 Properties of the Profinite Hull

• The map (G
f→ −→ G′) 7→ (P(G)

P(f)→ −→ P(G′)), is a covariant functor,
P : RSG −→ RSGpf , called the Profinite Hull Functor of RSGs.

• The family {(G ηG→ −→ P(G)) : G ∈ Obj(RSG)} is a natural transformation,
η : IdRSG −→ U ◦ P , i.e., the square below is commutative, for all RSG-morphism
f : G −→ G′.

G - P(G)

h h̃

P

ηG

A
A
A
A
A
A
AU

�
�
�
�
�
�
��

G′

G

?

- P(G)

f

ηG

P(G′)

P(f)

ηG′

?
-

• If P is a profinite RSG and h : G−→ P is a SG-morphism, there is a unique continuous
SG-morphism, h̃ : P(G) −→ P , such that the triangle above is commutative.
• The Profinite hull functor is left adjoint to the “forgetful” functor, U : RSGpf −→RSG,
and the natural transformation η : IdRSG −→ U ◦ P is the unit of this adjunction.
• Since the functor U : RSGpf −→ RSG is a right adjoint it preserves all limits.
Hence, when we consider limits of profinite RSGs, we need not specify the limit as a
profinite RSG (with the endowed topology) or as a (discrete) RSG. �

2 Local-global principles in the theory of special

groups

Local-global principles in the algebraic theory of quadratic forms were developed,
initially, in the context of fields. Of fundamental importance is Pfister’s local-global
principle for isometry in the reduced theory of quadratic forms, formulated and proven
in the 60’s (see [21]), a vast generalization of Sylvester’s inertia law for forms with unit
real coefficients. This was in turn generalized to reduced special groups in [9] and also to
others non first-order codifications of the ATQF of fields as the theory of abstract order
spaces introduced by M. Marshall (see [26]). In the 1980’s, M. Marshall established
some (strong) local-global principles such as the Isotropy Theorem and the Extended
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Isotropy Theorem (see, for instance, Theorems 4.3.1 and 4.3.2 in [26]). Later, [27],
formulated a broad local-global principle of logical content, called the “pp-conjecture”
(Question 1 in [27]), that is considered in several works ([6], [17], [18], [19], [20], [27],
[28]) and has a negative answer. It should be registered that “pp-conjecture” can only
be formulated in the first-order language of special groups and not in the category of
abstract order spaces.

The Boolean hull functor of reduced special groups, developed in [9], is an essential
construction in the solution of a Marshall’s conjecture exposed in [10] and it codifies
Pfister’s local-global principle. The profinite hull functor of special groups. introduced
in [33], is a finer and more regular construction than the Boolean hull: it encodes a
new (and stronger) local-global principle − the subform reflection property ([33]) −
and preserves many properties and constructions of RSGs ([34], [35]).

We remark that all the former local-global principles (including the subform reflec-
tion property) can be described as restrictions of the general local global principle for
pp-formulas. For the reader’s convenience, we list the known local-global principles, in
increasing order of strength.

15 Pfister’s local-global principle ([9], [27])
• Usual description: ∀G ∈ RSG ∀ϕ, ψ forms of the same dimension over G :

ϕ ≡G ψ ⇔ for each σ ∈ XG = HomSG(G,Z2) σ?ϕ ≡Z2
σ?ψ.

• Equivalent description: ∀G ∈ RSG ∀ϕ, ψ forms of the same dimension over G :
ϕ ≡G ψ ⇔ for each Σ ∈ X(G) ϕ/Σ ≡G/Σ ψ/Σ.

• Functorial encoding by the Boolean Hull (B):
∀G ∈ RSG the canonical SG-morphism εG : G−→B(G) is a complete embedding. �

16 Marshall’s Isotropy Theorem ([25], [27]) For all G ∈ RSG and all forms φ over
G,

φ is isotropic over G ⇔ ∀ ∆ ∈ F(G), φ/∆ is isotropic over G/∆. �

17 Subform Reflection Property ([33])
• ∀G ∈ RSG ∀ϕ, ψ forms of the arbitrary dimensions over G:

ϕ�Gψ ⇔ for each ∆ ∈ F(G) ϕ/∆�G/∆ψ/∆.
• Functorial encoding by the Profinite Hull: ∀G ∈ RSG, the canonical SG-morphism,
G

ηG−→ P(G), reflects subforms. �

18 The p.p. local-global principle
• Let RSGpp be the subclass of RSG whose members are the RSGs, G, such that: for
each pp-formula, φ(~x), in LSG and each ~g = (g0, . . . , gn−1) ∈ Gn: G � φ[~g] ⇔ ∀
∆ ∈ F(G), G/∆ � φ[~g/∆].
• The pp-conjecture: RSGpp = RSG ([27]).
• RSGpp is an elementary class of LSG-structures ([6] and section 3 below).
• RSGpp is strictly contained in RSG ([17], [18], [19]). �
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3 On the subclass RSGpp⊆RSG

In this last section we use the previously developed instruments on the profinite
hull functor of RSGs, P , to provide a new (and simpler) proof of a result established
[6], employing deep model-theoretic tools: the class RSGpp is an elementary class of
LSG-structures.

3.1 More on local-global principle for pp-formulas

We begin recalling some general results on L-pure embeddings appearing in [32].

Fact 3.1 a) Let M
f−→ N

g−→ P be L-morphisms. Then:
(1) f , g pure ⇒ g ◦ f pure;
(2) g ◦ f pure ⇒ f pure. In particular, every L-section in L-mod is a pure

embedding.

b) If fi : Mi −→ Ni, i ∈ I, is a family of pure L-morphisms, their product,
∏

i∈I fi :∏
i∈I Mi −→

∏
i∈I Ni, is a pure L-morphism.

c) Let 〈 I,≤〉 be an upward directed poset and M = 〈Mi; {fij : i ≤ j} 〉 and N
= 〈Ni; {gij : i ≤ j} 〉 be I-diagrams in L-mod. Let lim−→ M = 〈M ; fi 〉 and lim−→
N = 〈N ; gi 〉 their colimits in L-mod. Let 〈hi 〉i∈I : M −→ N be a morphism of

I-diagrams and let lim−→ hi = h : M −→ N be the limit L-morphism. Then:
(1) If each hi is pure, then h : M −→ N is pure;
(2) If each fij is pure, i ≤ j in I, then fi : Mi −→ M is pure.

d) Let f : M −→ N be a L-morphism. Then the following conditions are equivalent:
(1) f is a pure L-embedding;
(2) There are a L-structure P , a L-morphism g : N −→ P and a pure L-embedding

h : M−→ P such that g ◦ f = h;
(3) There are a L-structure P , a L-morphism g : N−→ P and a L-elementary embed-

ding h : M−→ P such that g ◦ f = h;
(4) There is an ultrafilter pair (I, U) and a L-morphism g′ : N−→ M I/U such that

g′ ◦ f = δM , where δM : M−→M I/U is the canonical diagonal L-elementary em-
bedding.

�

The equivalent conditions below provide an useful criterion for a RSG G be in
RSGpp.

Lemma 3.2 ([33]) For a RSG, G, the following are equivalent:
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a) ηG : G −→ P(G) is a pure SG-embedding.
b) There are a profinite RSG, H, and a pure SG-embedding, j : G −→ H.
c) δG : G −→ Π(G) is a pure SG-embedding.
d) For each φ(v1, . . . , vn) in p.p.(LSG) and g ∈ Gn,

G |= φ[g] ⇔ for all ∆ ∈ F(G), G/∆ |= φ[p∆(g)].
e) For each φ(v1, . . . , vn) in p.p.(LSG) and g ∈ Gn,

G 2 φ[g] ⇒ ∃ ∆ ∈ F(G), such that G/∆ 2 φ[p∆(g)] .

Proof. Note that:
(†) The satisfaction of pp-formulas with parameters is preserved by LSG-morphisms.
(1) We first prove the equivalence between (a), (b) and (c).
Note that (a)⇒ (b) is clear, while (c)⇒ (b) follows directly from (†) and the equation
δG = ι ◦ ηG.
(b) ⇒ (a) : Given j as in (b), by 14, there is j̃ : P(G) −→ H, such that j̃ ◦ ηG = j.
Thus, if j is a pure SG-embedding, the same must be true of ηG.
(a) ⇒ (c): Since P(G) = lim←−∆∈F (G)

G/∆ , Π(G) =
∏

∆∈F (G)
G/∆ ,

ι : lim←−
∆∈F (G)

G/∆ −→
∏

∆∈F (G)
G/∆

has a retract (11) and δG = ι ◦ ηG, if ηG is a pure SG-embedding, the same must be
true of δG.
(2) The equivalence between (c), (d) and (e) follows immediately from the definition
of satisfaction on product structures and (†) above. �

Before going on with the technical results and in the hope of shedding some light
into the contents of this section, we register the remarks that follow.

Remark 3.3 a) As seen above, the class RSGpp of reduced special groups satisfying
the local-global for pp-formulas coincides with the class of RSGs such that the canonical
arrow into its profinite hull is a pure embedding. This kind of result can be stated
and proved in a vastly general context: a certain kind of elementary class A of L-
structures, for an arbitrary first-order language (see [32]). As profinite structures are
pure injective structures (Theorem 8 in [32]), it is natural consider the subclass App⊆A
of the (discrete) structures, M ∈ A, such that the canonical arrow, ηM : M−→P(M),
is a L-pure embedding. This can be rephrased as a “local-global principle”: for each
formula φ(~x) ∈ p.p.(L) and any finite sequence ~a in M the following are equivalent, for
each “saturated” congruence such that M/C ∈ Afin:

M |= φ[~a] ⇔ M/C |= φ[~a/C].
b) Every Boolean algebra satisfies the pp-local-global principle (i.e. BApp = BA). In
[33] it is shown that the BA-homomorphism ηB : B−→P(B) can be identified with the
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injective BA-homomorphism B � 2Stone(B), b 7→ {U ∈ Stone(B) : b ∈ U}, which gives
the usual Stone topology on the set Stone(B) = {U⊆2B : U is an ultrafilter in B}. But,
by Corollary 2.2 (p. 951) in [12], any BA-monomorphism is a LBA-pure embedding.
In general, the canonical arrow, ηB : B−→P(B), does not yield the (pure) injective
hull of B: just consider a (complete =) injective BA, B, that is not isomorphic any
power set algebra 2X .
c) Concerning structures M in the subclass App⊆A, the map ηM : M −→P(M) is the
canonical L-pure embedding into an L-injective pure structure but, in general, ηM is
not the pure injective hull of M : if the epimorphisms in the category App are surjective
maps and not all pure injective structures in App are profinite, then this follows from
Theorem 3.2 in [1] (e.g., in the category BApp = BA both of the above conditions are
satisfied). �

In the what follows, we apply the above results to show that, although RSGpp (
RSG, RSGpp contains some important classes of RSGs.

Proposition 3.4 If G is a RSG associated to a Boolean algebra (see 7), then G ∈
RSGpp.

Proof. We have already remarked, in 8, that a map f : A → B between RSGs
associated to Boolean algebras is a BA-morphism iff is it is a RSG-morphism. An
analogous statement holds for pure embeddings instead homomorphisms: indeed, by
8, the class of RSGs associated to a BA is a LSG-elementary class, thus it is closed
under ultraproducts and then the equivalence f is a LBA-pure embedding ⇔ f is a
LSG-pure embedding, follows from Fact 3.1.(d). By 3.3.(b), BApp = BA. Putting this
two results together, we obtain BA “⊆” RSGpp. �

Proposition 3.5 If G is a RSG with finite chain length, then G ∈ RSGpp.

Proof. If G is a RSG with finite chain length, then it satisfies the hypothesis of
Proposition 3.1.11 in [2], whence the mapping

ν : G−→
∏

p∈X+
G
G/ker(p), given by ν(g) = 〈 g/ker(p) 〉p∈X+

G

is a a LSG-pure embedding, where X+
G :=

⋃
{XH

G : H is a finite SG-retract of G}, and

for H⊆G, XH
G := {G p→ −→ H : p is a SG-morphism and p ◦ ιH = IdH}.

Now, by Lemma 3.2, it is enough to show that
∏

p∈X+
G
G/ker(p) is a profinite RSG.

If H is a finite SG-retract of G, p is a SG-morphism and p◦ιH = IdH , then H is a RSG
and p is a surjective regular SG-morphism (Definition 2.22 in [9]) and, by Proposition
2.23 in [9], p̄ : G/ker(p)→ H is an isomorphism of finite reduced special groups. Since
G is reduced, XG 6= and, as XG = XZ2

G ⊆ X+
G , we conclude X+

G to be a non-empty
set. Since the class of profinite RSGs contains the finite RSGs and is closed under
non-empty products, it follows that

∏
p∈X+

G
G/ker(p) is a profinite RSG, as needed. �
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Remark 3.6 a) By Proposition 2.3 in [27], if a RSG is in RSGpp, then all its group
extensions are in RSGpp; other closure properties of RSGpp are also established therein.
b) The class RSGpp contains the class of RSGs associated to BAs, which coincides with
the class of RSGs with stability index 6 1. On the other hand, the class RSGs with
finite stability index satisfies the restriction of the pp-conjecture with respect to set of
pp-formulas named product free and 1-related ([28]). �

3.2 The class RSGpp is elementary

Combining results on the profinite hull functor of RSGs with the equivalences in
Lemma 3.2, we obtain a new proof that RSGpp is an elementary class of LSG-structures.
We begin by analyzing the behavior of RSGpp under directed colimits. Since RSG is
axiomatizable by geometric sentences, RSG is closed under colimits of arbitrary upward
directed systems. For instance:

Example 3.7 Let G be a RSG and S⊆Ssat?(G) an upward directed set of proper sat-
urated subgroups of G. Then Θ :=

⋃
{Σ : Σ ∈ S} is a proper saturated subgroup and

G/Θ is an RSG, canonically isomorphic to the inductive limit of the directed system

� (G/Σ
pΣΣ′→� G/Σ′) : (Σ⊆Σ′) ∈ S 〉. �

For the proof of Proposition 3.10, we shall need some technical results on directed
inductive limits. Recall that if (Y,H) is an AOS, the subspace (Y ′, H ′) generated by a
subset S of Y is given by Y ′ =

⋂
{[a = 1] : a ∈ ker(σ),∀σ ∈ S}, where [a = 1] := {τ ∈

Y : τ(a) = 1}.

Lemma 3.8 If we stratify the set of pp-formulas in LSG by the number of quantified
variables (q) and the number of free variables or parameters (p) then there is a uniform
bound B′(q, p) such that for each pp-formula φ(~x) = ∃~y(atom1(~x, ~y)∧ . . .∧atomk(~x, ~y)),
with length(~y) = l ≤ q and length(~x) = m ≤ p, each space of orderings (X,G) (i.e., a
RSG G) and each ~g in Gm:

(†)


If there is a finite subspace (X ′, G′) of (X,G) (i.e., G′ ∼= G/∆ for some
∆ ∈ Ssat?(G)) such that G/∆ 2 φ[~g/∆], then there is a finite subspace
(X ′′, G′′) of (X,G) (G′′ ∼= G/Γ for some Γ ∈ Ssat?(G)), such that G/Γ 2 φ[~g/Γ]
and the minimum number of generators of (X ′′, G′′) is ≤ B′(q, p).

Proof. Lemma 4 in [6] yields a similar finite bound, B(q, p), for the cardinality
of the finite subspaces satisfying ¬φ[·]. Since for an abstract order space (Y,H), we
have card(Y ) ≤ 2card(H) and card(H) ≤ 2card(Y ) (whence Y is finite iff H is finite),
there is a finite number of isomorphism classes of finite AOSs (i.e., isomorphism classes
of finite RSGs), whose cardinality are all bounded by B(q, p). Thus, the sup of mini-
mum number of generators of these finite spaces is attained; this is precisely B′(q, p). �
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Fact 3.9 Let 〈 I,≤〉 be an upward directed poset, let G : 〈 I,≤〉−→RSG be a diagram

G =� (Gi
fij→ −→Gj) : (i ≤ j) ∈ I 〉 and let {(Gi

fi→ −→G) : i ∈ I} = lim−→ G

be the inductive limit in RSG (notation G := lim−→ Gi). Note that � (Ssat(Gj)
f∗ij→

−→Ssat(Gi)) : (i ≤ j) ∈ I 〉 and � (XGj

f?ij→ −→XGi
) : (i ≤ j) ∈ I 〉 are both

downward directed systems.
Consider the posets (by pointwise inclusion):

• Ssat(G) := lim←− Ssat(Gi) = {(∆i)i∈I ∈
∏

i∈I Ssat(Gi) : ∀i ≤ j ∈ I, f ∗ij(∆j) = ∆i};

• Ssat?(G) := lim←− Ssat?(Gi) = lim←− Ssat(Gi) ∩
∏

i∈I Ssat
?(Gi);

• For each n ∈ N , F≤n(G) := lim←− F≤n(Gi) = lim←− Ssat(Gi) ∩
∏

i∈I F≤n(Gi);

• X(G) := lim←− X(Gi) = lim←− Ssat(Gi) ∩
∏

i∈I X(Gi); • F(G) :=
⋃
n∈NF≤n(G);

• XG := lim←− XGi
= {(σi)i∈I ∈

∏
i∈I XGi

: ∀i ≤ j ∈ I, f ?ij(σj) (= σj ◦ fij) = σi}.

Consider the (increasing) mappings : Ssat(G)� Ssat(G)
D : Ssat(lim−→ Gi)−→ lim←− Ssat(Gi), given by ∆ 7→ (f ∗i (∆))i∈I and

C : lim←− Ssat(Gi)−→Ssat(lim−→ Gi), given by (∆i)i∈I 7→ lim−→ ∆i =
⋃
i∈Ifi[∆i].

Then:
a) D and C are well defined; if (∆i)i∈I ∈ Ssat(G), then (lim−→ Gi)/(lim−→ ∆i) ∼= lim−→
(Gi/∆i).
b) If ∆ ∈ Ssat(G), then ∆ = lim−→ f ∗i (∆) =

⋃
i∈Ifi[f

∗
i (∆)] (i.e. C ◦ D = id). If

(∆i)i∈I ∈ Ssat(G), then ∀j ∈ I, ∆j⊆f ∗j (lim−→ ∆i).

c) The maps C and D yield, by restriction, the following maps:
Ssat?(G)� Ssat?(G), F≤n(G)� F≤n(G), F(G)� F(G), X(G)� X(G).

d) The restrictions X(G)� X(G) are inverse bijections and yield homeomorphisms of
Boolean spaces, XG � XG. �

Proposition 3.10 RSGpp is closed by (upward) directed inductive limits.

Proof. Instead of the deep model-theoretic tools used in the proof of Proposition 6.1
in [6], we provide a “topological” flavored one, generalizing that in Theorem 2.2.1 in
[17].

We must show that for each upward directed poset 〈 I,≤〉 and each diagram G :=

� (Gi
fij→ −→Gj) : (i ≤ j) ∈ I 〉 such that Gi ∈ RSGpp, ∀i ∈ I, then G := lim−→ Gi ∈

RSGpp. Assume, to get a contradiction, that there is upward directed system G whose
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components are in RSGpp, a p.p. formula φ(~x) and parameters ~g in G := lim−→ Gi, such

that G 2 φ[~g], but for all ∆ ∈ F(G), G/∆ � φ[~g/∆]. We split the proof into several
steps.
(1) Write b := B′(q, p) and let C : = {equivalence classes modulo isomorphism of the
finite RSGs with minimum number of generator ≤ b }; we saw above that C is finite.
Now we select a (finite) subset CG⊆Ssat(G), such that if ∆ ∈ CG, then the class of
G/∆ is in C and distinct elements of CG are associated to distinct classes in C. Since for

each ∆ ∈ CG, G/∆ is finite, we may choose a finite subset of representatives, ~h∆ in Gp,

so that G/∆ � ∃~y(atom1(~x, ~y)∧ . . .∧ atomk(~x, ~y))[~x|~h∆/∆] (i.e., G/∆ � φ[~h∆/∆]) and

then a finite set of representatives, ~t∆ in Gq, such that G/∆ � atom1(~t∆/∆,~h∆/∆) ∧
. . . ∧ atomk(~t∆/∆,~h∆/∆).

Since (lim−→ Gi)/∆ ∼=lim−→
i∈I

(Gi/f
∗
i (∆)) (Fact 3.9.(a) above), the set of atomic formulas

in φ, as well as the two set of representatives fixed above are all finite and 〈 I,≤〉
is upward directed, there are j ∈ I and a two finite sets of parameters, ~h∆j

∈ Gp
j

and ~t∆j
∈ Gq

j , that are “liftings” to Gp
j of the parameters ~h∆, ~t∆ and also satisfying

Gj/∆j � atom1(~t∆j
/∆j,~h∆j

/∆j) ∧ . . . ∧ atomk(~t∆j
/∆j,~h∆j

/∆j), where ∆j := f ∗j (∆) ∈
Ssat(Gj). Now, because CG is finite and 〈 I,≤〉 is directed, we can choose i0 above

all the j associated to ∆ ∈ CG and then two finite sets of parameters ~h∆i0
, ~t∆i0

∈
Gq
i0

that are “liftings” of the parameters ~h∆ and ~t∆ to Gi0 and such that Gi0/∆i0 �

atom1(~t∆i0
/∆i0 ,

~h∆i0
/∆i0) ∧ . . . ∧ atomk(~t∆i0

/∆i0 ,
~h∆i0

/∆i0), where ∆i0 := f ?i0(∆) ∈
Ssat(Gi0).
(2) Since G 2 φ[~g], for each j ≥ i0 and each representative ~gj in Gp

j of ~g in G (i.e., ~g =
fj(~gj)), we have Gj 2 φ[~gj] (because φ is pp-formula and fj is a LSG-homomorphism).
By hypothesis, we also have Gj ∈ RSGpp, and so Lemma 3.8 yields a finite subspace of
(Xj, Gj), with a generating set Sj so that card(Sj) ≤ b and Gj/Σj 2 φ[~gj/∆j] (where
Σj = S⊥j :=

⋂
{ker(σ) : σ ∈ Sj}). For each j ≥ i0, we choose Sj as above and fix a

surjective map {1, . . . , b}� Sj. Write Sj for {σ1
j , . . . , σ

b
j}.

(3) For each j ≥ i0, consider the AOS-morphism f ?i0,j : Xj−→Xi0 . Since the set 〈 I,≤〉
is upward directed, the subset Ii0 := {j ∈ I : j ≥ i0} is cofinal in I and hence also
upward directed. Thus, for each a 6 b, the map j ∈ Ii0

sa→7→ f ?i0,j(σ
a
j ) is a net in the

Boolean space Xi0 . Since any net in a compact space has a convergent subnet and the
set {sa : a ≤ b} is finite, there is a downward directed set I ′ and a increasing cofinal
map, I ′−→Ii0 , that is the common domain of subnets s′a : I ′−→Xi0 of the nets sa, with
a ≤ b, and such that the s′a converge to some σa ∈ Xi0 , for each a ≤ b.
(4) A compactness argument (below), will yield a “lifting” τa ∈ XG of σa ∈ Xi0 (i.e.
f ?i0(τa) = σa), for each a 6 b. To this end, we must prove there is a non-empty fiber of
σa ∈ Xi0 under f ?i0 : XG−→Xi0 . By Fact 3.9.(e) and the cofinality in I of the subset
Ii0 := {j ∈ I : j ≥ i0}, this is equivalent to showing the non-emptyness of the fiber of
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σa ∈ Xi0 under the projection pi0 : lim←−
j∈Ii0

Xj−→Xi0 .

For each k, j ∈ Ii0 such that k ≥ j, consider Tjk := {(σi)i≥i0 ∈
∏

i≥i0 Xi : f ?jk(σk) (=
σk ◦ fjk) = σj}. Then Tjk is a closed subset of the Boolean product space and, because
lim←− Xj =

⋂
k≥j≥i0Tjk, the fiber p−1

i0
[{σa}] is a closed subset of the compact space∏

i≥i0 Xi; hence, it is empty iff there is a finite set k1 ≥ j1, . . . , kn ≥ jn in Ii0 such that

= π−1
i0

[{σa}] ∩ Tj1k1 ∩ . . . ∩ Tjnkn . Now assume p−1
i0

[{σa}] =; since I is directed, if l >
k1, . . . kn, then, σa is not a member of the closed set πi0 [Tj1k1∩. . .∩Tjnkn∩Tk1l∩. . .∩Tknl].
By the regularity of Boolean spaces, there is an open neighborhood V of σa such that
= V ∩ πi0 [Tj1k1 ∩ . . . ∩ Tjnkn ∩ Tk1l ∩ . . . ∩ Tknl]. Then, as there is a increasing cofinal
map I ′−→Ii0 that is the common domain of (sub)nets s′a : I ′−→Xi0 such that the s′a
is converging to σa ∈ Xi0 , there is l′ ∈ Ii0 , l′ ≥ l and σal′ ∈ Xl′ such that f ?i0l′(σ

a
l′) ∈ V .

Hence, if we consider any ~s ∈
∏

i≥i0 Xi such that for i with i0 ≤ i ≤ l′, si := f ?il′(σ
a
l′), we

obtain ~s ∈ π−1
i0

[V ]∩Tj1k1 ∩ . . .∩Tjnkn ∩Tk1l∩ . . .∩Tknl, a contradiction, that establishes
(4).
(5) Let S := {τa : a ≤ b} ⊆ XG and let Γ := S⊥ =

⋂
{ker(τa) : a ≤ b} ∈ Ssat(G);

then, (XG/Γ, G/Γ) is the subspace of (XG, G) generated by S. Since card(S) ≤ b, by
item (1) above, there is ∆ ∈ CG with G/∆ ∼= G/Γ and so (XG/∆, G/∆) is also a
subspace of (XG, G) with at most b generators, let’s say, by S ′ := {τ ′a : a ≤ b}. By the
hypothesis on G, we have G/∆ � φ[~g/∆] and in part (1) of the proof we have selected
a finite subset of Gp and a finite subset of Gq of representatives, ~g∆ in Gp, ~t∆ in Gq so
that G/∆ � atom1(~t∆/∆, ~g∆/∆)∧ . . .∧ atomk(~t∆/∆, ~g∆/∆). By the choice of i0 in (1),
there are two finite sets of parameters ~g∆i0

∈ Gp
i0

and ~t∆i0
∈ Gq

i0
that are “liftings” of

the parameters ~g∆ and ~t∆ to Gi0 and such that Gi0/∆i0 � atom1(~t∆i0
/∆i0 , ~g∆i0

/∆i0) ∧
. . . ∧ atomk(~t∆i0

/∆i0 , ~g∆i0
/∆i0), where ∆i0 := f ∗i0(∆) ∈ Ssat(Gi0). Moreover, if ∆⊥i0 :=

{σ ∈ Xi0 : ∆i0 ⊆ ker(σ)}, then {σa : a ≤ b} ⊆ ∆⊥i0 .
(6) Since for RSGs, the atomic formulas atom(~x, ~y) are equivalent to formulas u(~x, ~y) ∈
D〈 1, v(~x, ~y) 〉, where u, v are LSG-terms (see subsection 1.1), we can write

Gi0/∆i0 �
∧
l≤k ul(~t∆i0

/∆i0 , ~g∆i0
/∆i0) ∈ D〈 1, vl(~t∆i0

/∆i0 , ~g∆i0
/∆i0) 〉

which, by Pfister’s local-global principle, is equivalent to the inclusion ∆⊥i0 ⊆ Ai0
where Ai0 :=

⋂
l≤k[ul(~t∆i0

, ~g∆i0
) = 1] ∪ [−vl(~t∆i0

, ~g∆i0
) = 1]. Note that Ai0 is a

clopen in Xi0 ; since {σa : a ≤ b} ⊆ Ai0 (by (5)), item (3) yields j ≥ i0 so that
{f ?i0,j(σ

a
j ) : a ≤ b} ⊆ Ai0 . As f ?i0,j : Xj−→Xi0 satisfies (f ?i0,j)

−1[Ai0 ] = Aj, where

Aj :=
⋂
l≤k[ul(fi0,j~t∆i0

, fi0,j~g∆i0
) = 1] ∪ [−vl(fi0,j~t∆i0

, fi0,j~g∆i0
) = 1], we obtain Sj =

{σaj : a ≤ b} ⊆ Aj. As in (2), Γj = (Sj)
⊥ and Pfister’s local-global principle en-

tails Gj/Γj �
∧
l≤k ul(fi0,j~t∆i0

/Γj, fi0,j~g∆i0
/Γj) ∈ D〈 1, vl(fi0,j~t∆i0

/Γj, fi0,j~g∆i0
/Γj) 〉,

i.e., with ~gj := fi0,j~g∆i0
, Gj/Γj � φ[~gj/Γj], contradicting (2) and ending the proof.

�
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The proofs of the following results on quotients of RSGs will appear in [35].

Fact 3.11 a) Let f : G → G′ be a RSG-morphism, ∆ ∈ Ssat(G) and consider ∆′ :=
f∗(∆) = the saturated subgroup of G′ generated by ∆. If f is a pure embedding, then
∆ = f−1[∆′] and the (well-defined) map f∆,∆′ : G/∆ → G′/∆′, g/∆ 7→ f(g)/∆′ is a
pure embedding.
b) If H is a profinite RSG and Σ⊆H is a saturated subgroup that satisfies

(TSP) Σ =
⋂
{∆ ∈ V(H) : Σ⊆∆},

then the topological LSG-structure quotient H/Σ is a profinite RSG. For instance, if P
is a Pfister form over H, then DH(P )⊆H is a saturated subgroup that satisfies (TSP)
and thus H/DH(P ) is a profinite RSG.
c) If G ∈ RSG, then canonical RSG-morphism ηG/Θ : G/Θ −→ P(G/Θ), has kernel
ΣΘ :=⋂
{ker(P(G)

p∆→ −→ G/∆) : Θ⊆∆ ∈ F(G)} and ΣΘ is the least saturated subgroup
above (ηG)?(Θ) that satisfies (TSP). Moreover, ηG/Θ : G/Θ −→ P(G/Θ) it is naturally
isomorphic to the “derived” RSG-morphism (ηG)Θ,ΣΘ

: G/Θ −→ P(G)/ΣΘ, g/Θ 7→
ηG(g)/ΣΘ. �

Lemma 3.12 Let G ∈ RSG, let P be a Pfister’s form over G and write Θ := DG(P ).
Then:
a) (ηG)?(Θ) is a saturated subgroup of P(G) satisfying (TSP).
b) If ηG is pure SG-embedding, the same is true of ηG/Θ.

Proof. a) Since P is a Pfister form over G and G is reduced , we have DG(P ) ∈
Ssat(G) and it follows immediately from the definition of direct image that (ηG)?(DG(P )) =
DP(G)

(ηG?P ); since ηG?P is Pfister form over the profinite RSG P(G), Fact 3.11.(b)

entails DP(G)
(ηG?P ) satisfies (TSP). For (b), note that (a) and Fact 3.11.(c) yield

ΣΘ = (ηG)?(Θ) ; the conclusion now follows from items (a) and (b) in Fact 3.11. �

Proposition 3.13 RSGpp is closed under quotients by proper saturated subgroups.

Proof. We must prove that for each G ∈ RSG and Θ ∈ Ssat?(G), if ηG is a pure
SG-embedding, then the same is true of ηG/Θ. By Lemma 3.12 above, this is true
if Θ = DG(P ) for some P a (non-isotropic) Pfister’s form over G. The general case
can be obtained from this special case and Proposition 3.10: indeed, by Proposition
2.17 in [9], Θ =

⋃
{DG(P ) : P ∈ Pfister(Θ)} is an upward directed union and so

by 3.7, G/Θ is canonically isomorphic to the inductive limit of the directed system

� (G/DG(P )
pPP ′→� G/DG(P ′)) : P, P ′ ∈ Pfister(Θ) and DG(P )⊆DG(P ′) 〉. �

Our main results are contained in the following Theorems:
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Theorem 3.14 The category RSGpp has the following properties:

a) RSGpp is closed under isomorphisms. b) RSGpp is closed under SG-pure
subgroups.
c) RSGpp is closed under non-empty products. d) RSGpp is closed under direct
inductive limits.
e) RSGpp is closed under quotients by proper saturated subgroups.
f) RSGpp is closed under reduced products. g) RSGpp is closed under elementary
equivalence.

Proof. Items (a) and (b) are equivalent to the statement: for each G ∈ RSGpp, if G′

is a SG and there is a SG-pure embedding, j : G′−→G, then G′ ∈ RSGpp; this follows
from Lemma 3.2 , because the composition of pure embeddings is a pure embedding
(Fact 3.1.(a)).
c) Let I be a non-empty set and {Gi : i ∈ I} ⊆ RSGpp; since RSGpf is closed under
non-empty products,

∏
i∈I P(Gi) is a profinite RSG and since the product of pure

embeddings is a pure embedding (3.1.(b)),
∏

i∈I ηGi
:
∏

i∈I Gi−→
∏

i∈I P(Gi) is a pure
embedding. Now, Lemma 3.2 entails

∏
i∈I Gi ∈ RSGpp.

Items (d) and (e) were proven in Propositions 3.10 and 3.13, respectively.
f) Let F be a proper filter over a set I 6= and {Gi : i ∈ I} ⊆ RSGpp; it is well-known
that the reduced product (

∏
i∈I Gi)/F is isomorphic to the inductive limit of the direct

system� (
∏

i∈J Gi
projJK→ �

∏
i∈K Gi) : (J ⊇ K) ∈ F 〉 (see, for instance [31]), and the

conclusion follows from items (a), (c) and (d). Alternatively, the canonical projection
p :

∏
i∈I Gi � (

∏
i∈I Gi)/F is a surjective regular SG-morphism whose kernel is a

proper saturated subgroup ∆F , and so by Proposition 2.23 in [9], (
∏

i∈I Gi)/F ∼=
(
∏

i∈I Gi)/∆F and result is a consequence of items (a), (c) and (e).
g) By Fraine’s Lemma (Lemma 8.1.1 in [7]), G ≡ H iff G is elementary embeddable in
some ultrapower of H and the conclusion follows from (a), (b) and (f). �

Theorem 3.15 RSGpp is an elementary class in the language LSG. Moreover, it can
be axiomatizable by sets of: a) Horn-sentences 3 or b) ∀∃-sentences.

Proof. All the statements follow from well-known model-theoretic results applied to
Theorem 3.14 . By Theorem 4.1.12 in [8], a subclass first-order structures is elementary
if and only if it is closed under ultraproducts and elementary equivalence, conditions
guaranteed by items (f) and (g) in Theorem 3.14. By Theorem 6.2.5 in [8], an elemen-
tary class of structures can be axiomatizable by Horn-sentences if and only if it is closed
under reduced products and this condition is assured by 3.14.(f). By Theorem 5.2.6 in

3See 11.
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[8], an elementary class of structures is ∀∃ axiomatizable if and only if it is closed un-
der direct inductive limits of embeddings; the desired conclusion comes from 3.14.(d). �

Corollary 3.16 For each G ∈ RSG, the following are equivalent:
a) G ∈ RSGpp.
b) There are a non-empty set I, a ultrafilter U in I, a family {Gi : i ∈ I} ∈ RSGfin

and a SG-pure embedding f : G→ −→(→
i∈I

∏
Gi)/U .

Proof. (b) ⇒ (a): Since RSGfin⊆RSGpf ⊆RSGpp (by Lemma 3.2), this follows
directly from items (a), (b) and (f) in Theorem 3.14.
(a) ⇒ (b): Follows from Lemma 3.2 and 11, because the composition of pure embed-
dings is a pure embedding. �

References
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[2] V. Astier, Théorie des modèles des groupes spéciaux de longueur de châıne finie.
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