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Abstract

Pattern matching is a basic building block on which functional programming
depends, where the computation mechanism is based on finding a correspondence
between the argument of a function and an expression called “pattern”. It has
also found its way into other programming paradigms and has proved convenient
for querying data in different formats, such as semi-structured data. In recogni-
tion of this, a recent effort is observed in which pattern matching is studied in its
purest form, namely by means of pattern calculi. These are lambda calculi with
sophisticated forms of pattern matching. We propose to contribute to this effort
by developing a combinatory logic for one such pattern calculus, namely λP . We
seek to mimic the computational process of λP where arguments can be matched
against arbitrary terms, without the use of variables. Two challenges must be met.
On the one hand, dealing with bound variables in patterns. Indeed, an abstrac-
tion is a valid pattern in λP . Here the standard combinatory logic will provide
guidance. The second is computing the counterpart, in the combinatory setting,
of the substitution that is obtained in a successful match. This requires devising
rules that pull applications apart, so to speak. We propose a combinatory logic
that serves this purpose and study its salient properties and extensions includ-
ing a typed presentation, and the introduction of constructors for modeling data
structures and different possibilities for the matching mechanism, characterizing
a family of confluent variants.

Keywords: rewriting, lambda calculus, combinatory logic, pattern, matching.

1 Introduction

Modern functional programming practice involves an extensive use of patterns. A pat-
tern is basically a syntactic specification of a family of terms, which facilitates function
definition by cases, currently a common and useful practice in declarative programming.

The λ-calculus, introduced in the 1930s and studied since then to this date, is con-
sidered a formal basis for functional programming. Having a remarkably simple and
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concise syntax, it presents a wide variety of problems which are common in many mod-
ern programming languages and paradigms, and thus has a transcendental importance
from the theoretical point of view. This is why research is currently being done for it
and its many variations.

Pattern matching is a basic building block on which all modern functional program-
mers depend. A simple example of a program that relies on patterns is the length

program for computing the length of a list (the code is written in Haskell).

length [] = 0

length (x:xs) = 1 + length xs

Another example is the following, which exhibits the use of nested patterns, Salary
being a data constructor having an employee id and his/her salary as arguments:

update [] f = []

update ((Salary id amount):xs) f = (Salary id (f amount)): update xs f

In recognition of their usefulness and in an effort to study patterns and their prop-
erties in their most essential form, a number of so called pattern calculi have recently
emerged [9, 18, 32, 23, 2, 20, 21]. As a representative example, we briefly describe the
pioneering λP [30] recently revisited in [25] (cf. Section 2 for detailed definitions). In
λP the standard functional abstraction λx.M is replaced by the more general λP.M :

M,N,P ::= x |MN |λP.M

The pattern P may be any term at all. In particular, it may be a variable, thus
subsuming the standard functional abstraction of the λ-calculus. Examples of λP -
terms are λ(λx.y).y, λz.λ(λx.x).λy.y, (λ(λx.y).y)(λw.z), and of course all the terms
of the λ-calculus. The pattern specifies which form the argument must have in order
to match. A function can only be applied to an argument which is an instance of its
pattern. Application is then performed by substituting the terms bound to the free
variables in the pattern into the function body:

(λP.M)P σ →βP M
σ

Here σ denotes a substitution from variables to terms, and P σ the result of applying
it to P . Note that in the case that P is a variable, we obtain →β. An example of a
λP -reduction step is:

(λxy.x)((λx.x)(zw))→βP λx.x (1)

Another example is the reduction step from the term (λ(λx.y).y)(λz.w). The pattern
λx.y can be matched by any constant function, and the result of the application of
λ(λx.y).y to an argument of the form λz.M (with z 6∈ FV(M)) will be M (in this case,
M = w). However, the application (λ(λx.y).y)z does not reduce, since the argument z
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does not match the pattern λx.y. Note that (λ(λx.y).y)(λz.z) does not reduce either,
since λz.z is not an instance of λx.y (variable capture is not allowed). This situation,
where reduction is permanently blocked due to the argument of an application not
matching the pattern, is known as matching failure. There are cases where an argu-
ment does not yet match a pattern, but can reduce to a term which does. For example,
(λ(λx.y).y) ((λx.x) (λz.w)). In this case, we say that the matching is still undecided.

A key issue is establishing the conditions under which confluence holds for λP , since
the unrestricted calculus is not confluent. For example, the following reduction starts
from the same λP -expression as (1) but ends in a different normal form:

(λxy.x)((λx.x)(zw))→βP (λxy.x)(zw)→βP z

In the same way that CL shows how one may compute without variables in the λ-
calculus, we seek to address a similar property for pattern calculi. This would entail that
variables and substitution in pattern calculi may be compiled away while preserving the
reduction behavior. For this purpose we fix λP as study companion and delve into the
task of formulating a corresponding combinatory logic.

In order to motivate our combinatory system CLP , recall the standard translation
from the λ-calculus to CL:

xCL , x

(MN)CL , MCLNCL

(λx.M)CL , [x].MCL

where “,” denotes definitional equality and [x].M is defined recursively as follows:

[x].x , SKK

[x].M , KM, if M = K,S, I or M = y 6= x

[x].(MM ′) , S([x].M)([x].M ′)

Note that abstractions translate to terms of the form KM or SM1M2. Therefore, the
application of an abstraction to an argument will translate to either KMN or SM1M2N
with N being the translation of the argument. In CLP , applications of an abstraction
to an argument in λP will translate to terms of the form KPMN or SPM1M2N , N
being the translation of the argument. The expressions KP and SP are combinators of
CLP . The full grammar of CLP -expressions is:

M,N ::= x | KM | SM | Π1
MN | Π2

MN |MN

Subscripts of combinators in CLP are an integral part of them. Combinators KP

and SP will behave similarly to K and S but with one important difference: while K
and S always form redexes when applied to the right number of arguments (2 and 3
respectively), KP (resp. SP ) will check its second (resp. third) argument against the
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pattern P , and will only form a redex if the match is successful. Of importance is to
note that “match” here means matching in the combinatory setting, that is first-order
matching, which is much simpler than in λP (more details towards the end of this
section). For example, KSyxSy is a redex, but KSyxKy is not. Note that the behaviour
of the standard CL-combinators K and S is given by that of KP and SP , resp., when
P is any variable. For this reason, we usually abbreviate Kx, for any variable x, as K
(and analogously for S).

Combinators of the form KP and SP alone are not expressive enough to model
reduction in λP for they lack the ability to pull applications apart. Since the pattern P
in λP.M will be translated to an application in CLP (except for the case in which P is
a variable) we need to be able to define functions which expect arguments of the form
MN and take them apart, returning terms like M , N and S(KN)M . For instance,
in order to translate λ(λx.y).y, we need a term which can access the variable y from
the translation of λx.y, which is Ky. To that effect, we define the combinators Π1

PQ

and Π2
PQ, known as projectors. Π1

PQ(MN) reduces to M when M matches P and N
matches Q. Analogously, Π2

PQ(MN) reduces to N under the same conditions.
Some examples of the translation we shall introduce in Section 4 follow. λ-terms

translate to CL-terms as per the original translation. Abstractions with non-variable
patterns translate to CLP -terms where the head combinator (the leftmost combinator)
is decorated with a pattern. For example, λ(λx.x).y translates to KSKKy, and λ(λx.y).y
translates to SKy(K(SKK))Π2

Ky.
Consider the λP -term (λ(λx.x).y)(λz.z), which matches λz.z against the pattern

λx.x and, since the match is successful, reduces in one step to y. This term can be
translated as KSKKy(SKK). The subscript SKK in KSKK is a pattern (it is, in fact,
the translation of the pattern λx.x) which must be matched by the second argument of
KSKK , namely SKK, the translation of λz.z. In this case matching is successful, and
thus the translated term reduces to y, just like the original λP -term.

More complex terms may require more steps to reduce. For instance, (λ(λx.y).y)(λw.z),
which in λP reduces to z in one step, is translated to SKy(K(SKK))Π2

Ky(Kz). The
latter requires several steps to reach a normal form:

SKy(K(SKK))Π2
Ky(Kz) → K(SKK)(Kz)(Π2

Ky(Kz))
→ SKK(Π2

Ky(Kz))
→ K(Π2

Ky(Kz))(K(Π2
Ky(Kz)))

→ Π2
Ky(Kz)→ z

Matching failure is also carried over to the translation: (λ(λx.x).y)(λw.z) translates
to KSKKy(Kz), which also contains a matching failure, since Kz does not match the
pattern SKK.

While at first sight it may seem as if having pattern matching requires substitutions
to be computed (after all, a term M matches a pattern P if and only if there is a



Combinatory logics for lambda calculi with patterns 67

substitution σ such that M = P σ), actually computing a substitution is not necessary
in our setting. All the matching algorithm has to do is decompose the pattern and
the argument and check that, wherever there is a combinator in the pattern, the same
combinator is present (in the same position) in the argument. Variables in patterns are
automatically matched by any argument.

Another reason why matching is easier to compute in a combinator-based setting
is the lack of binders. For example, in λP , the term λx.x does not match the pattern
λx.y, since there is no substitution which applied to λx.y returns λx.x (the convention
set in [30] does not allow variable capture). However, this means that a matching
algorithm would have to explicitly check that a variable not occur free in a term. On
the other hand, if we translate the λx.y and λx.x into our combinatory logic system,
we obtain Ky and SKK, and now matching failure is immediate from the fact that
SK does not match K.

The following depicts, in a bird’s eye view, how CLP and variations relate to λP
and its variations and also to SF (discussed below). All referred results are developed
in the respective sections:

λP λC

SFCLP CLP + θ

OO

Cor. 4.15, P rop. 4.18

��

Cor. 7.15

��

Rem. 7.16
oo(⊂) //

λP can be translated into CLP while preserving (weak) reduction (Corollary 4.15)
and the same holds in the reverse sense (Proposition 4.18). λC [25] is a variation of λP
in which patterns are taken to be algebraic terms and also in which multiple pattern
matching is allowed:

(λP1.M1| . . . |λPk.Mk)P
σ
i →Mσ

i

Constructors may be added to CLP together with a new set of rules (CLP + θ) and the
resulting system serves as target of a reduction preserving translation from λC. The
reverse direction should hold as well (the results we develop have not required us to do
so though). Although CLP is a first-order term rewriting system composed of a finite
number of rule schemas, an infinite number of rules result from instantiating these rule
schemas. Finally, we briefly comment on SF [21], a combinatory logic similar in spirit to
ours (see Section 8 for an in-depth comparison, and Section 7.3 for a partial translation
from SF to CLP + θ with additional patterns and generalized pattern matching).

We provide a recursive method to perform translations between the original language
and our extension of CL. We will also see that it is possible to represent our calculus with
a Term Rewriting System (TRS) with an infinite number of rules which are, however,
captured by a finite number of schemas.
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Our presentation develops a notion of CL for the λP -calculus, and then compares its
basic properties with those of CL for the λ-calculus. We have found that most of them
are well-preserved, confirming the adequacy of this extension. Moreover, we will see
that pattern matching is preserved by the translation of λP -terms to our calculus. As
a first order system, our calculus can both break (look inside) applications and encode
the behavior of a higher order calculus while remaining simpler than a Combinatory
Reduction System (CRS).

We propose some extensions and variants, including the introduction of construc-
tors, new combinators, different sets of patterns, and a generalization of the matching
mechanism which allows - among other things - the capture of certain forms of structural
polymorphism.

We are also interested in formulating an adequate type system for our main calculus,
whose filtering power is improved (with respect to the existing type systems for CL) by
the presence of patterns. For example, while the terms KxS and KKxK are typable,
KKxS is not - because S cannot be assigned the same type as the expected argument
K.

It has been of fundamental importance to develop our proposal with the base of a
formalism which can serve as a test-bed, having an adequate pattern-handling mech-
anism (see the preliminaries). That is why we have chosen the λP system: it similar
to λ-calculus, with minimal extensions to represent patterns. While other calculi could
be adapted accordingly, we have chosen λP as a starting point, as it is the simplest
formulation, and all the other known pattern calculi are in some sense generalizations
or variations of this calculus, based essentially on the same principles.

1.1 Related work

The original development of CL was initiated by Schönfinkel in [27]. Curry, Feys,
Hindley and Seldin have studied it thoroughly [10, 11, 12, 13]. Gabbay and de Queiroz
[16] have proposed celebrated approaches for restricting CL from the proof-theoretic
standpoint. A good treatment of the topic can be found in [5] and, more extensively,
in [28].

The notion of pattern matching has been present in functional programming lan-
guages during the last two decades. From the theoretical standpoint, many formula-
tions are found in various published works. Based perhaps on the pioneering ideas of
Peyton Jones [26], as well as the emergence of modern functional languages (Haskell,
ML/CaML, Miranda, Clean), the λ-calculus with patterns [30] was proposed. This cal-
culus represents a minimal and natural extension of the classical λ-calculus, including
a notion of (instant and implicit) pattern matching as a part of the β-reduction rule.
In [25] the system is revisited and compared with other formalisms. The λC-calculus,
a variant of λP , is introduced in [25] as a means to handle matching with multiple



Combinatory logics for lambda calculi with patterns 69

patterns. The ρ-calculus [9] is a very general formalism in which the pattern matching
process is delayed (represented in an explicit way with rules that handle it sequentially).
The Pure Pattern Type Systems [32, 31] are an extension of the Pure Type Systems [6]
in which patterns are incorporated, defining in this way a hierarchy of typed calculi in
a very general manner. The λ-calculus with constructors [1, 2] combines constructors
with functions, and allows both sorts to receive the same treatment, with rules having
the same behavior. The Pure Pattern Calculus [19, 22, 23] is a formalism in which
patterns are first class citizens: it is possible to use a pattern as argument of a function
and it is possible to return a pattern as function’s result. It also allows the possibility of
reduction inside the patterns themselves. This system is currently considered one of the
most flexible, according to its representative power. In [17], a general logical framework
is presented which allows the definition of different λ-calculi with their respective type
systems, based on constraints which can be seen as generalizations of pattern-matching.
Other logical frameworks are introduced as instances of the former, including a pattern
logical framework. In [15], the author introduces the idea of “inverse combinators”,
which can match arguments against predefined structures composed by variables. The
article focuses mainly on the equational point of view (logical derivations in substruc-
tural logics), rather than the rewriting point of view, and leaves out the K combinator,
as it is not reversible. Finally, in [21], a combinatory calculus with the capability to
decompose arguments is introduced; this feature, which relies on conditional rewrit-
ing rules, is used for defining different behaviors depending on the structures of the
arguments.

A first version of our main calculus is presented by the authors in [3]. We believe that
our contribution can be a starting point, and we are convinced that the current approach
can be refined and/or improved in forthcoming works. All the formalisms mentioned
above introduce languages with rules which handle patterns in different ways, thus they
could be appropriate candidates for studying the notions we have developed for λP .

1.2 Structure of the paper

We start in Section 2 with a detailed overview of λP . We then introduce the CLP
rewriting system in Section 3. Section 4 treats the translation procedure for representing
λP -terms and simulating the use of abstractions. Section 5 presents the equational
theory associated to CLP , and briefly discusses extensionality. In Section 6 we introduce
a type system for CLP , for which we prove Type Preservation and Strong Normalisation,
and consider the addition of constructors to the calculus, keeping the same spirit. Some
variants of the system are presented in Section 7; particularly, in Section 7.2, we present
a way to define variants of the calculus with different notions of pattern-matching
without losing confluence. Then, in Section 8, we discuss other pattern calculi and how
CLP relates to them. Finally, in Section 9, we conclude and discuss some avenues for
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future work.

2 Preliminaries

We shall assume familiarity with the untyped and simply-typed λ-calculus, and SK-
combinatory logic [5, 6, 10, 11, 12, 13, 27].

2.1 The λP -calculus

We will survey the λ-calculus with patterns (λP ).
We recall the set of terms of the λP -calculus, the λP -terms, from the Introduction:

M,N,P ::= x |MN |λP.M

In the abstraction λP.M , P is the pattern and M the body. Applications are left-
associative, as per the usual convention.

Definition 2.1 (Free variables of λP -terms) Free variables of terms (extended
as expected to sets of terms) are defined as follows:

FV(x) , {x}
FV(MN) , FV(M) ∪ FV(N)

FV(λP.M) , FV(M)− FV(P )

Definition 2.2 (Simultaneous substitution over λP -terms) Let X be the set
of λP -variables. A substitution in λP is a function σ from variables to λP -terms
such that σ(x) 6= x for only finitely many x ∈ X . The (finite) set of variables that σ(x)
does not map to themselves is called the domain of σ: dom(σ) , {x ∈ X | σ(x) 6= x}.
If dom(σ) = {x1, . . . , xn}, then we write σ as

σ = {x1 ← σ(x1), . . . , xn ← σ(xn)}

The restriction of σ to S, denoted σ|S, is defined as: σ|S , {x ← M | x ← M ∈
σ ∧ x ∈ S}. A substitution σ is idempotent σ(σ(x)) = σ(x) if for every x ∈ dom(σ).

The application of a substitution σ = {xi←Ni}i=1,...,n to a term M , denoted σ(M)
or Mσ, is defined as follows:

σ(x) , Ni, if x = xi
σ(x) , x, if x 6= x1, . . . , xn
σ(MN) , σ(M)σ(N)

σ(λP.M) , λP.σ(M)
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We assume the expected free variable convention over σ: (dom(σ) ∪ FV(ran(σ))) ∩
FV(P ) = ∅.

One-hole λP -contexts are λP -terms with a unique “hole” which can occur any-
where in the term except inside abstraction patterns:

C ::= 2 |MC |CM |λP.C

Reduction is given by the βP relation generalizing the original β-reduction as follows:

(λP.M)P σ →βP M
σ

We use M →βP N to denote that M reduces in one βP -step to N , that is: M =
C[(λP.R)P σ] and N = C[Rσ] where C is some context. In this case (λP.R)P σ is called
a βP−redex and Rσ the βP−reduct. Note that reduction can occur on either side of
an application, and only on the right side (body) of an abstraction. This calculus does
not allow reduction inside the patterns.

As exemplified in the Introduction, if arbitrary terms were permitted as patterns, the
calculus would not be confluent. Two restrictions have been defined in order to ensure
confluence of the calculus [25]. We discuss first a more general condition, RPC, and
then a syntax-driven restriction called RPC+. The first requires the auxiliary notion
of simultaneous reduction −→◦ allowing to contract an arbitrary set of pairwise
non-overlapping redexes simultaneously:

Definition 2.3 (Simultaneous Reduction) The relation M −→◦ N is inductively
defined as follows:

M −→◦ M

M −→◦ M ′ N −→◦ N ′

MN −→◦ M ′N ′

M −→◦ M ′

λP.M −→◦ λP.M ′

M −→◦ M ′ N1 −→◦ N ′1 . . . Nk −→◦ N ′k

(λP.M)(P{x1 ← N1, . . . xk ← Nk})−→◦ M ′{x1 ← N ′1, . . . xk ← N ′k}

For instance, I(I(IK)) −→◦ IK – with I defined as λx.x and K as λx.λy.x – by
simultaneously contracting the outer and inner redexes, however it is not the case that
IIK −→◦ K since the redex IK has been created by the first step. The following is the
first of the two conditions ensuring confluence in λP :

Definition 2.4 (Rigid Pattern Condition) A set of patterns satisfies the rigid
pattern condition (RPC), if for any pattern P in it and for any substitution of terms
N1, ..., Nn for the free variables x1, ..., xn of P we have:

P{x1 ← N1, . . . , xn ← Nn} −→◦ P ′ ⇒ P ′ = P{x1 ← N ′1, . . . , xn ← N ′n}∧Ni −→◦ N ′i(1 ≤ i ≤ n)
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Theorem 6 in [25] βP is confluent if all patterns satisfy RPC.

The second condition is as follows:

Definition 2.5 (RPC+) The set RPC+ consists of all λ-terms which:

1. are linear: (free) variables occur at most once;

2. are in normal form: they contain no β-pattern redex; and

3. have no active variables: they have no subterms of the form xM with x free.

For example, λx.x, λx.y and λx.λy.x satisfy RPC+ (and can thus be used as pat-
terns), but λ(λx.y).y, λx.λy.xy and (λy.x)z do not.

Theorem 7 in [25] The set RPC+ satisfies RPC and thus yields a confluent calculus.

More details and an analysis of properties of this calculus can be found in [30, 25].
For every notion of reduction R to be mentioned we will use:

• →R for one R-reduction step

• =→R for its reflexive closure

• +→R for its transitive closure

• �R for its reflexive-transitive closure.

• =R for its equivalence (reflexive-symmetric-transitive) closure.

3 The CLP -Calculus

The set of CLP -terms is described by the grammar:

M,N ::= x | KM | SM | Π1
MN | Π2

MN |MN

where x ranges over a given countably infinite set of variables X . Application is left-
associative, as usual. KM , SM , Π1

MN and Π2
MN will be the combinators, or primitive

functions of our calculus. The combinators KM and SM are pattern-decorated versions
of the CL combinators. Π1

MN and Π2
MN , which will be called projectors, have been

introduced in order to extract information from an application by means of decomposi-
tion. Although the grammar admits arbitrary terms as subindices in K, S, Π1 and Π2,
they will shortly be circumscribed to a subset that we shall dub patterns (Def. 3.5).
We will use the letters P and Q to refer to patterns.

The aim of the set of CLP -terms is to mimic the 3 steps required for λP -reduction:
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1. matching the pattern against the argument, which if successful

2. yields bindings of the free variables of the pattern to subterms of the argument,

3. which are then applied to the body.

In CLP , the combinators of the form SP and KP serve for the third phase, the
projectors for the second phase, and the subscripts for the first phase.

Remark 3.1 Note that we have an infinite number of combinators, one SP , KP , Π1
PQ,

Π2
PQ for each possible P and Q. For example, the CLP -terms Kx, KKy and KSy are all

different combinators.

Definition 3.2 (Free variables of CLP -terms) Free variables are defined as fol-
lows:

FV(x) , {x}
FV(MN) , FV(M) ∪ FV(N)

FV(KP ) = FV(SP ) = FV(Π1
PQ) = FV(Π2

PQ) , ∅

In the sequel of this chapter we use term for CLP -term where there is no ambiguety.
We will also adopt the following conventions:

• All free variables are considered to be different from the names of the variables in
the patterns, and the latter different from each other, even if their names clash.
There are no bound variables in this calculus; the presence of a variable in a
pattern only serves to indicate that any term is a valid match.1

• We consider that two patterns are equal if they differ in nothing but the names
of their variables, and we will work modulo renaming of variables in patterns
(Def. 3.6).

Variables in terms are used in the same way as in CL. Variables within patterns
– present as subscripts – play a slightly different role, as they represent a subterm of
the pattern which can be matched (Definition 3.3) by any given term. They have no
correspondence with any variables in the term in which they are involved, and as such
they do not act as binders. In other words, the same variable cannot appear as both a
subterm and (part of) a subscript within a term.

Definition 3.3 Substitution over CLP -terms and patterns is defined as follows:

1An alternative would be to omit variables in patterns, replacing each variable by a ?. We do not
use this approach in CLP as we are interested in providing a TRS formulation.
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xσ , σ(x)

Kσ
P , KP

SσP , SP

(Π1
QR)σ , Π1

QR

(Π2
QR)σ , Π2

QR

(MN)σ , MσNσ

A term M is an instance of a pattern P (also, M matches the pattern P ) if ∃σ.P σ =
M .

Remark 3.4 Note that substitutions do not affect the subscripts of combinators: each
combinator KP , SP , Π1

QR, Π2
QR is a constant for all patterns P , QR. Patterns are

affected by substitutions when used as terms, but not when used as subscripts. For
example, the term Kx will be affected by substitutions which affect the variable x, but
the term Π1

Kx will not.

We denote the unification relation as $. For example, P $ M should be read as
“P unifies with M”. Similarly, P 6$ M should be read as “P does not unify with M”.
The purpose of our use of unification in the definition that follows is to ensure that no
unwanted redexes are formed (that is, that terms which match a pattern do not reduce
to terms which no longer match it).

Definition 3.5 (Patterns) The set of patterns is defined as follows:

P,Q, P1, · · ·Pn ::= x
| KPP1 · · ·Pn where n < 2 ∨ P2 6$ P
| SPP1 · · ·Pn where n < 3 ∨ P3 6$ P
| Π1

PQP1 · · ·Pn where n = 0 ∨ P1 6$ PQ
| Π2

PQP1 · · ·Pn where n = 0 ∨ P1 6$ PQ

with n ≥ 0 and FV(Pi) ∩ FV(Pj) = ∅ for all 1 ≤ i, j ≤ n s.t. i 6= j (this means, by
recursion, that all patterns are linear).

A pattern of the form P1P2 is called an application pattern. We abbreviate Kx

and Sx, as K and S, respectively. Examples of patterns are: K, S, KKSKx
SKK,

SSKK, Π1
KS, Π2

KKx
. The terms KSSK, SKKSS, Π1

KSK, Π2
KKx

(KS) are also patterns
because, while they have the number of arguments required to form a redex (or more),
they contain pattern-matching failures2 which prevent them from unifying with the
left-hand side of any reduction rules: more precisely, K does not unify with S, KS nor
KK . On the other hand, xy, yS, KSSS, SKKSK, Π1

KS(KS) and Π2
KKx

(KKS) are not
patterns, as they all have subterms which unify with the left-hand side of a reduction
rule. And, of course, non-linear terms like Sx(Kx) or Syy are not patterns either.

2Not unifying with the left-hand-side of a reduction rule by itself does not guarantee a matching
failure, since a term which does not unify with another may reduce to a term which does. However,
this is not possible for patterns, since the definition is recursive and P1, . . . , Pn must be patterns too.
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The patterns defined by this syntax are those which conform to a restriction named
RPC++, which will be explained in detail in Section 3.1.1, once the reduction rules have
been introduced.

Definition 3.6 (α-equivalence over CLP -terms) The fact that variable names
within a pattern are irrelevant induces an α-equality relation between patterns, which is
defined as follows:

x =α y
KP =α KQ, if P =α Q
SP =α SQ, if P =α Q
Π1
PQ =α Π1

P ′Q′ , if P =α P
′ and Q =α Q

′

Π2
PQ =α Π2

P ′Q′ , if P =α P
′ and Q =α Q

′

PQ =α P ′Q′, if P =α P
′ and Q =α Q

′

P 6=α Q, in any other case.

Equality between arbitrary CLP -terms is defined in a similar way, except that dif-
ferent variables are treated as different terms. Only the subscripts of combinators are
subject to α-conversion.

Definition 3.7 We use the following function to measure the size of a term:

|x| , 1

|KP | = |SP | , 1 + |P |, for every pattern P

|Π1
QR| = |Π2

QR| , 1 + |Q|+ |R|, for every patterns Q, R such that QR is a pattern

|MN | , |M |+ |N |

3.1 Reduction in CLP

The aim of this subsection is to introduce a rewriting system based on the above
combinators, which will simulate λP in the sense of combinatorial completeness, as
well as mimic the pattern matching of this calculus.

Definition 3.8 (WP -reduction) WP -reduction (denoted as →WP
) is defined as

the following TRS over the signature given by the syntax presented at the beginning of
Section 3:

KPxP → x, x /∈ FV(P )
SPxyP → xP (yP ), x, y /∈ FV(P )
Π1
PQ(PQ) → P

Π2
PQ(PQ) → Q

where P and Q range over patterns, and the application PQ – where used – is also a
pattern.
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These rules are schematic, since P and Q range over an infinite set of patterns. We
have, in fact, an infinite number of rules captured by a finite number of schemas. Before
presenting some examples, three easily verifiable properties of reduction: reduction is
closed over CLP , it does not create new free variables and is well-defined over α-
equivalence classes of terms.

Lemma 3.9 Suppose M is a CLP -term and M →WP
N . Then:

1. N ∈ CLP .

2. FV(N) ⊆ FV(M).

3. M =α M
′ implies there exists a term N ′ such that M ′ →WP

N ′ and N =α N
′.

Example 3.10 We will now show some reduction and pattern-matching examples.

• KPx
σP σ →WP

xσ (for any substitution σ).

• SKxΠ1
KyΠ

2
KS(KS)→WP

Π1
Ky(KS)(Π2

KS(KS))→WP
K(Π2

KS(KS))→WP
KS.

The substitutions used here are {x← S}, {y ← S} and ∅ respectively.

• SKxΠ1
KyΠ

2
KS(KS) →WP

Π1
Ky(KS)(Π2

KS(KS)) →WP
Π1
Ky(KS)S →WP

KS is an-
other possible reduction path.

• Π2
SΠ1

Kx
(SΠ1

Ky)(KSK) →WP
Π1
Ky(KSK) →WP

K. No substitution is involved in

the first step, since SΠ1
Kx is the same as SΠ1

Ky due to α-equivalence between the
subscripts. In the second step, we use the substitution {y ← SK}.

• Π2
KKS

(KS) does not reduce, as KS does not match KKS.

• Π2
SΠ1

Kx
(SΠ1

KS) does not reduce, since Π1
KS does not match Π1

Kx and thus SΠ1
KS

does not match SΠ1
Kx. Note that, although KS matches Kx, the same does not

hold for combinators which have these patterns as their subscripts. This is because
substitutions do not affect subscripts.

Note that P σQσ is the same as (PQ)σ by definition. This means that for a term of
the form Π1

PM to be a redex, both P and M must be applications3, and M must be
an instance of P . A term is said to be active if it is used as the left-hand side of an
application. The reason why we have restricted the syntax of our terms so that Π1 and
Π2 may only have an application as their pattern should now be clear: according to the
rules, an active projector with a non-application pattern (i.e. a variable or combinator)
would never execute (that is, the projector applied to an argument would not reduce).

3We do not allow terms like Π1
x or Π2

x, since their presence could easily break the confluence of the
calculus. For example, the term Π1

xKKK would reduce to two distinct normal forms: KK and Π1
xK.
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Proposition 3.11 CLP is an extension of CL.

Proof.- There is a direct mapping from CL to CLP : variables translate to themselves,
and the combinators S and K translate as Sx and Kx respectively (this mapping is
univocal modulo α-conversion). Since a variable can be matched by any term, the
reduction rules for Sx and Kx behave in the same way as the reduction rules for S and
K in CL. �

3.1.1 The RPC++ restriction and confluence in CLP

In order to prove confluence (Corollary 3.17) and just as in λP , it is necessary to
impose restrictions over the patterns. Without them, confluence would not hold: for
instance, the term Π1

xy(KSK) would reduce to two different normal forms: KS and
Π1
xyS. Following Van Oostrom’s RPC+ restriction for λP , we call this set of restrictions

RPC++. The aim of RPC++, just like RPC+, is to define a syntax-based, easily
verifiable set of restrictions that can guarantee the confluence of the calculus.

Definition 3.12 The set of application subterms AS(M) in a CLP -term M is
defined as follows:

AS(x) , ∅,
AS(M) , ∅, if M is a combinator

AS(MN) , {MN} ∪ AS(M) ∪ AS(N)

The set of application patterns AP(M) in a term M is defined as follows:

AP(x) , ∅
AP(KP ) , AS(P ) ∪ AP(P )

AP(SP ) , AS(P ) ∪ AP(P )

AP(Π1
PQ) , AS(PQ) ∪ AP(P ) ∪ AP(Q)

AP(Π2
PQ) , AS(PQ) ∪ AP(P ) ∪ AP(Q)

AP(MN) , AP(M) ∪ AP(N)

Definition 3.13 (RPC++) A term M satisfies RPC++ if every N ∈ (AS(M)∪AP(M)):

1. is linear, i.e. no variable appears more than once,

2. has no active variables, i.e. no subterms of the form xN ′ with x ∈ X ,

3. does not unify4 with the left-hand-side of a WP -rule.

4Remember we are working modulo renaming of variables in patterns, so the pattern Ky will unify
with yS even though K does not unify with S.
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We do not require anything of non-application patterns (except, of course, that their
subscripts – when present – satisfy RPC++). A variable, for example, will trivially
satisfy the RPC++ restriction. The second and third conditions imply that application
patterns will have no active variables (i.e. they will have no subterms of the form xM),
and that they will be normal forms. These two results, along with linearity (our first
condition), constitute a translation of RPC+, minus the requirement for all patterns to
be λ-terms, to CLP .

Remark 3.14 M is a pattern if and only if M satisfies RPC++. This can be easily
verified by looking at the syntax of the patterns in Definition 3.5 and the definition of
RPC++.

Our patterns are also rigid in that an instance of a given pattern may only reduce
to another instance of the same pattern (see Lemma 7.6).

We briefly show with examples that our restrictions are well-motivated: breaking
any of the last two conditions can result in a calculus that is not even locally confluent.
(See for example the derivations starting from the terms KxyS(KKz), KKxzy(KSS)
and KΠ1

KKxy
S(Π1

KK(KK)z)).
While the use of non-linear patterns may not lead to two different normal forms, it

does break the confluence of the calculus. See Klop’s standard example [24, 25], and
define D as the term S(K(S(K(KSxxE))))S, where E is some term chosen to indicate
equality.

This is the most general definition we will use for the set of patterns for CLP . It
is also possible to work with proper subsets of this set, in order to avoid dealing with
unification and multiple levels of subscripts. See Section 7 for further details.

Lemma 3.15 WP is orthogonal in CLP .

Proof.- Left-linearity of the rules is immediate: wherever variables appear explicitly in
a rule schema, they are required to be fresh with respect to the pattern; and patterns
are required to be linear by RPC++. The absence of critical pairs is a consequence of
the restrictions that require all patterns – and their applicative subterms – not to unify
with the left-hand-side of a WP -rule. Since each rule of the TRS unifies with a rule in
the original formulation, and all patterns satisfy RPC++, this implies that no instance
of a pattern, nor any of its subterms, matches the left side of any rule. �

Remark 3.16 Note that orthogonality follows crucially from the fact that the patterns
involved in the rules satisfy RPC++.

The following corollary states the confluence of the calculus for every set of patterns
satisfying RPC++. It follows from the fact that no new patterns appear upon reduction
and the previous lemma.
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Corollary 3.17 Let Φ be any subset of the CLP -patterns, and let CLP (Φ) be the
CLP -calculus restricted to the terms whose patterns belong to Φ. Then, CLP (Φ) is
confluent.

4 Translations between λP and CLP

In order to prove that WP -reduction represents an abstraction mechanism, we will
define translations between the two systems and then show the relationship between
their respective reduction relations.

4.1 Translation from λP to CLP

Definition 4.1 (From λP -terms to combinators) Let M be a λP -term. Its cor-
responding combinator, denoted MCL, is defined as follows:

xCL , x

(MN)CL , MCLNCL

(λM.N)CL , λ∗MCL.NCL

with λ∗ defined recursively as follows:

1)λ∗x.x , SKK

2)λ∗P.M , KPM, if FV(P ) ∩ FV(M) = ∅
3)λ∗PQ.x , SPQ(Kλ∗P.x)Π1

PQ, if x ∈ (FV(P)− FV(Q))

4)λ∗PQ.x , SPQ(Kλ∗Q.x)Π2
PQ, if x ∈ FV(Q)

5)λ∗P.MN , SP (λ∗P.M)(λ∗P.N), if FV(P )∩FV(MN) 6= ∅

This translation extends to substitutions σ in λP as expected: σCL , {x←MCL | x←
M ∈ σ}.

Rules 1, 2 and 5 are inspired in the original translation from λ-calculus to CL. Rules
3 and 4 emerge from the necessity of decomposing application patterns. An abstraction
of the form λPQ.x, whose pattern expects an application, should be transformed into
a term which executes projections until the location of x is found (either inside P
or inside Q). After projecting, say, to the left (if x ∈ FV(P )), the CLP -derivation
continues by letting the projected argument match with the pattern P : this is done by
translating the term λP.x recursively. A term of the form λPQ.x should finally locate
the corresponding instance of x inside the matching argument. Thus, the resulting
translation will be a composition of S’s, K’s and projectors.

The fact that the function is well defined can be derived from a simple observation
(all recursive calculations of λ∗ are carried out over smaller terms). Furthermore, it can
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be proved with a straightforward case by case analysis that any term of the form λP.M
fits the hypotheses of one – and only one – of these 5 rules.

Clauses 1 to 5 are general enough to handle the full syntax without the RPC++

restriction. On the other hand, restricting the domain to terms with patterns will
resolve the apparent lack of symmetry of rules 3 and 4: since a free variable never
appears more than once in a pattern, their conditions can be simplified to x ∈ FV(P )
and x ∈ FV(Q) respectively. Otherwise, without the restriction, one can always choose
either case and the result will behave in the same way.

Remark 4.2 The following rule may be added as a shortcut to optimize reductions
(and reduce the size of the translated term):

6)λ∗x.Mx , M, if x 6∈ FV(M)

Clause 6 is optional, since all terms that can be translated with this rule can also
be translated via rule 5, but it can greatly reduce the amount of reduction steps required
to reach a normal form (whenever one exists). One may prove that the resulting terms
are functionally equivalent, by showing that:

Sx(λ
∗x.M)(λ∗x.x)N �WP

MN, if x 6∈ FV(M)

Indeed:

Sx(λ
∗x.M)(λ∗x.x)N =2) Sx(KxM)(λ∗x.x)N

=1) Sx(KxM)(SKK)N
= S(KM)(SKK)N
→WP

(KMN)(SKKN)
→WP

M(SKKN)
�WP

MN

Nevertheless, keeping this rule would result in a non-deterministic definition, unless
the clauses are followed in a prescribed order by verifying the conditions of rule 6 before
attempting to apply rule 5.

Just as in CL, it can be easily proved that SKKN �WP
N for every term N .

For this reason, we will allow the term SKK to be abbreviated as I to represent the
identity function. Note that this only makes sense when the patterns involved are
variables, otherwise pattern matching may fail. More generally, in CLP we have for
any pattern P :

SPKKP
σ →WP

KP σ(KP σ)→WP
P σ

The expression IP is used to denote the term SPKK.
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Remark 4.3 The definition of abstraction λ∗ extends the one for CL, i.e. for M ∈ CL
and x ∈ X , λ∗x.M coincides with the classical notion.

Remark 4.4 While it is true that every abstraction in λP fits the hypotheses of one
of the λ∗ rules, terms which do not satisfy the RPC+ restriction may translate to terms
with ill-formed patterns. For example:

(λxx.x)CL = λ∗xx.x =4) S(Kλ∗x.x)Π2
xx =1) S(KI)Π2

xx

but xx is not a pattern in CLP .

Lemma 4.5 If P is a CLP -pattern, then so is λ∗x.P .

Proof.- By induction on P .

• If P = x, then λ∗x.P = SKK, which is a CLP -pattern.

• If x 6∈ FV(P ), then λ∗x.P = KP , also a CLP -pattern.

• If P 6= x and x ∈ FV(P ), then P must be an application P1P2 (with P1 and P2

patterns) and λ∗x.P = S(λ∗x.P1)(λ∗x.P2). By IH, both λ∗x.P1 and λ∗x.P2 are
CLP -patterns. Therefore, so is S(λ∗x.P1)(λ∗x.P2).

�

Proposition 4.6 Every λP -pattern which satisfies RPC+ (Def. 2.5) translates into a
CLP -pattern.

Proof.- By induction on the pattern. Keep in mind that, since it satisfies RPC+, it
must be a λ-term, and be either a variable or an abstraction of the form λx.P with P
a pattern satisfying RPC+(an application would contain either an active variable or a
redex).

• If the pattern is a variable, then its translation is also a variable, which is a CLP -
pattern.

• If it is an abstraction λx.P , then its translation is λ∗x.PCL. Since P satisfies
RPC+, then by IH PCL is a CLP -pattern. Thus, by Lemma 4.5, so is λ∗x.PCL.

�

On the other hand, some λP -terms which do not satisfy RPC+ can still be translated
to CLP -patterns. Consider for example the term (λx.λy.x)w. This term does not satisfy
RPC+, as it is not a normal form. However, when we translate it to CLP (using rules
2 and 6 of λ∗), we obtain the term Kyw, which satisfies RPC++. In this sense, we can
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say that the RPC++ restriction is more general than RPC+ (it allows a strictly larger
set of patterns).

Even without rule 6, there are CLP -patterns which are not a direct CLP translation
of any λP -patterns. For example, there is no λP -term M such that MCL = Π1

KS (it is
immediate from the definition of −CL that the result of this translation will never be a
single projector), and yet the term Π1

KS satisfies RPC++.
Another alternative is to replace rule 1 by the more general rule:

1′) λ∗P.P , IP = SPKK, if FV(P ) 6= ∅

and since IP is the identity restricted to the set of terms matching P , the process will
yield a more efficient translation. Its condition ensures it does not overlap with rule 2,
but it will still overlap with rule 5, resulting in a non-deterministic system, just like the
system that results of including rule 6. Naturally, precedences among the rules may be
defined in order to regain determinism.

Remark 4.7 λP -patterns which satisfy RPC+ will translate into a more restricted set
of patterns, since they are λ-terms and therefore translate into CL-terms. The grammar
for the patterns which result from such a translation is: P ::= x | K | S | KP | SP |
SPP , maintaining linearity as usual. We will refer to this new set as RPC+-patterns.

4.1.1 Further results related to the translation

Lemma 4.8 (−CL preserves free variables) FV(M) = FV(MCL).

Proof.- By induction on the definition of MCL (free variables may only appear in xCL,
(MN)CL and rules 2 and 5 of λ∗). �

Lemma 4.9 (Commutation of −CL and substitution) (Mσ)CL = (MCL)σCL.

Proof.- By induction on the size of M . Our IH is that (Mσ)CL = (MCL)σCL for every
λP substitution σ and for every λP -term M which is strictly smaller than the term we
are analyzing. �

Lemma 4.10 If MCL = P σ, then there is a substitution σ′ in λP such that σ = σ′CL.

Proof.- By induction on the pattern P , using the syntax for CLP -patterns defined in
Section 3.1.1. �

Proposition 4.11 (−CL preserves pattern matching) For every λP -term P such
that PCL is a CLP -pattern, for every λP -term M : (∃σ s.t. M = P σ)⇔ (∃σ′ s.t. MCL =
P σ′
CL), where σ is a substitution in λP and σ′ is a substitution in CLP .

Proof.- The ⇒-direction is a direct consequence of Lemma 4.9 (take σ′ = σCL). The
⇐-direction is a consequence of Lemmas 4.10 and 4.9. Take any σ s.t. σ′ = σCL (by
Lemma 4.10, such a σ exists). �
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4.2 Translation from CLP to λP

Any CLP -term M can be translated to a term Mλ in λP .

Definition 4.12 (From combinators to λP -terms) Let M be a CLP -term. Its
corresponding λP term, denoted Mλ, is defined as follows:

xλ , x

(KP )λ , λx.λPλ.x, x fresh

(SP )λ , λx.λy.λPλ.xPλ(yPλ), x and y fresh

(Π1
PQ)λ , λPλQλ.Pλ

(Π2
PQ)λ , λPλQλ.Qλ

(MN)λ , MλNλ

This translation can be extended to substitutions in the same way as the previous
one:

σλ , {x←Mλ | x←M ∈ σ}

Note that the domains of substitutions are preserved by both translations (−CL and
−λ).

It can be observed that, just like the previous translation, −λ preserves free variables:
For every CLP -term M , FV(M) = FV(Mλ). This is immediate from the first 2 lines of
the above definition, the definitions of free variables in CLP and λP and the fact that
none of the lines of the definition of −λ introduces nor eliminates free variables (the
variables introduced in the third and fourth lines are bound).

Remark 4.13 −λ is not the inverse of −CL. Expanding the definitions shows that
((λx.x)CL)λ is not the same as λx.x, and that ((SP )λ)CL is not the same as SP . What
does hold, nevertheless, is that (MCL)λ =βP M (or, if we consider rule 6 for λ∗,
(MCL)λ =βPη M). In fact, if we use the original definition of λ∗ (without accelera-
tor rules), we have that (MCL)λ �βP M . We prove this later as Proposition 4.20.

4.3 Relationship between →WP
and →βP

We now analyze the connection between the WP reduction in CLP and the original βP
reduction in λP . We begin by proving that WP can provide an abstraction mechanism
(Corollary 4.15). We will also prove the following results:

• For all CLP -terms M, N : if M →WP
N then Mλ

+→βP Nλ (Prop. 4.18).

• For every λP -term M : (MCL)λ �βP M (Prop. 4.20).
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• For all CLP -terms M, N : if M =WP
N then Mλ =βP Nλ (Lem. 4.22).

• The−CL translation preserves higher-order unification and matching (Prop. 4.23).

• For all λP -terms M, N , if M =βP N then MCL =WP
NCL. (Cor. 4.24).

In order to prove Abstraction Simulation (Corollary 4.15), we need the following
two lemmas:

1. (Mσ)CL = (MCL)σCL for every λP -term M .

2. (λ∗P.M)P σ �WP
Mσ if dom(σ) ⊆ FV(P ).

The first of this lemmas has already been proved as Lemma 4.9. We now show the
proof of the second lemma.

Lemma 4.14 (λ∗P.M)P σ �WP
Mσ if dom(σ) ⊆ FV(P ).

Proof.- By induction on the definition of λ∗P.M . �

Corollary 4.15 (Abstraction Simulation) For every CLP -representable term M ,
CLP -representable pattern P and λP substitution σ s.t. dom(σ) ⊆ FV(P ):

((λP.M)P σ)CL �WP
(Mσ)CL.

Proof.- By Lemma 4.9, ((λP.M)P σ)CL = (λP.M)CL(PCL)σCL = (λ∗PCL.MCL)(PCL)σCL ,
and (Mσ)CL = (MCL)σCL . The result holds by Lemma 4.14. �

With this, we have finally proved that ((λP.M)P σ)CL �WP
(Mσ)CL whenever both

sides of the �WP
are well-formed CLP -terms and the domain of σ is contained in

FV(P). This result is an extension of its counterpart in CL: not only does −CL translate
abstraction to λ∗, but it also applies the translation to the pattern.

Note that, just as in CL, the implication M →βP N ⊃ MCL �WP
NCL does not

hold.

Other relevant results regarding the translations are listed below.

Lemma 4.16 (Mσ)λ = (Mλ)
σλ.

Proof.- By induction on M . �

Lemma 4.17 (σ ◦ σ′)λ = σλ ◦ σ′λ.
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Proof.- It is enough to prove that this holds whenever the compositions of the substitu-
tions are applied to free variables (since only free variables will be affected). Whether
the variable is contained in the domain of σ′ or not, it can be easily proved that the
result of applying either side of the equation to the variable is the same. �

Reduction within CLP functions as a weak reduction with respect to →βP (See
section [8] for the original CL-analogue).

Proposition 4.18 (Weak Reduction) If M →WP
N then Mλ

+→βP Nλ

Proof.- By induction on the context of the reduction M →WP
N . In every case we make

use of the result of Lemma 4.16 and the variable convention (that is, CLP -patterns have
no variables in common with other terms). Also keep in mind that the bound variables
x and y introduced by the −λ translation are fresh variables, and that this translation
does not introduce free variables that were not present in the original term. �

Corollary 4.19 If Mλ ∈ SNλP then M ∈ SNCLP .

Proof.- This is an immediate consequence of Proposition 4.18, as an infinite derivation
in CLP starting from M would result in an infinite derivation in λP starting from Mλ.

�

Proposition 4.20 (MCL)λ �βP M .

Proof.- By induction on M . �

Remark 4.21 The above proposition holds without the inclusion of accelerator rules.
If we introduce rule 6, the �βP relation must be replaced by =βPη since, for example,
((λx.yx)CL)λ will become y, which is η-equivalent but not βP -equivalent to λx.yx.

While the translations we presented above can simulate abstractions correctly, there
is still room for optimization. An alternate definition can be used in order to improve the
efficiency (and, at the same time, reduce the size of the translated terms by decreasing
the number of subindices) by avoiding the replication of subindices in each recursive
call.

Lemma 4.22 If M =WP
N then Mλ =βP Nλ.

Proof.- By confluence, there exists a term L such that M �WP
L and N �WP

L. Then,
by Proposition 4.18, Mλ �βP Lλ and Nλ �βP Lλ. �

Proposition 4.23
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1. If σ unifies the equation MCL =WP
NCL, then σλ unifies the equation M =βP N .

2. If σ is idempotent, then so is σλ.

3. If MCL =WP
Nσ
CL, then M =βP N

σλ (higher-order matching is preserved).

Proof.- We prove items 1 and 2, 3 being similar to 1.

1. We know that (MCL)σ =WP
(NCL)σ. Then, by Lemmas 4.16 and 4.22,

((MCL)λ)
σλ =

((MCL)σ)λ =βP

((NCL)σ)λ =
((NCL)λ)

σλ .

By Proposition 4.20, (MCL)λ �βP M and (NCL)λ �βP N . This means that
((MCL)λ)

σλ �βP M
σλ and ((NCL)λ)

σλ �βP N
σλ . Therefore Mσλ =βP N

σλ .

2. Since σ ◦ σ = σ, then by Lemma 4.17: σλ ◦ σλ = σλ.

�

Corollary 4.24 If M =βP N then MCL =WP
NCL.

Proof.- By item 3 of Proposition 4.23, using the identity substitution as σ. �

5 The CLP -Theory

Recall that the λ-calculus as well as CL can be formulated as equational theories (see
for example [5, 6, 4, 8] for details about equational theories). The theory associated to
CLP is defined as interpreting all rewriting rules by an infinite set of equalities.

KPxP
.
= x, x /∈ FV(P )

SPxyP
.
= xP (yP ), x, y /∈ FV(P )

Π1
PQ(PQ)

.
= P

Π2
PQ(PQ)

.
= Q

where P and Q range over CLP -patterns, and the application PQ – where used – is
also a pattern.

With this interpretation, the terms M and N will be considered equal whenever
M =WP

N . The CLP -theorems are the provable equalities which follow from the above
clauses, closed under applicative congruence and substitution.

Definition 5.1 A theory T1 is a proper consistent extension of a theory T2 if:
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• T1 is consistent,

• all T2-theorems are also T1-theorems, and

• some T1-theorems are not T2-theorems.

Remark 5.2 Restricting the language to any family of patterns satisfying RPC++, the
equational CLP -theory is a proper consistent extension of the equational CL-theory.

Being a proper extension is straightforward. Consistency follows by taking any two
different normal forms (such as x and y), then by confluence they will not be convertible.

5.1 Extensional CLP

There is the question of whether the CLP -theory is maximally consistent or not (some-
times known as Post consistent or saturated)5. We will see that, as in CL, the answer
is again negative. One way to extend the theory is by adding extensionality [5, 6].

Let us consider incorporating the following rewriting rule to the original formulation
of WP , to be called η (in which every pattern is a variable):

S(Kx)(SKK) → x

It is clear that, unlike its counterpart in the λ-calculus, the above rule does not
require a specific variable not to be free in M : this has already been taken care of in
the translation λ∗x.Mx = M (see the comment after translation rule 6 in subsection
4.1).

Remark 5.3 This extension can simulate the traditional η-rule. That is,

(λx.Mx)CL �WP+η MCL.

We can see that if we use rule 6 of λ∗, then (λx.Mx)CL = λ∗x.MCLx = MCL,
which reduces to MCL in 0 steps. On the other hand, if we do not allow rule 6, then
(λx.Mx)CL = λ∗x.MCLx = S(KMCL)(SKK), which reduces to MCL in 1 step of the
η-rule.

Note that our definition of RPC++ needs to be updated so that the clause that
states patterns must not unify with the left-hand-side of a WP -rule reads “WP + η”
rather than just WP . Otherwise, orthogonality would not be valid anymore, as there
would be an infinite number of critical pairs:

Πj
SPQ(S(KM)(SKK)) j = 1, 2

5That is, without adding specific reduction rules involving new combinators, which is always a
possibility, but it is not the focus of this section.
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where P,Q are patterns such that, for some substitution σ, P σ = KM and Qσ = SKK.
In all these terms, both η and projection are applicable and it is not possible to close
the diagram. Thus this system would not even be weakly confluent.

The problem originates from the fact that a pattern like Syz above has instances
which may η-reduce in the root (because S(Kx)(SKK) may match with it). Therefore,
in order to have a sound extensionality in the calculus, a new restriction should be added
to RPC++. We discuss such a condition below.

We will say that the pattern P is η-forbidden if there is an application QR such
that QR is a subterm of P and QR $ S(Kx)(SKK). That is, if any subterm of P is
an application which unifies with the left-hand-side of the η rule. Let us call this new
restriction for the set of patterns RPC++

η .

Remark 5.4 If a set Φ of patterns satisfies RPC++, then the set {P ∈ Φ | P is not
η-forbidden} satisfies RPC++

η .

Let us write CLη for CL + η extending the original formulation, and CLPη(Φ) for
the rewriting system consisting of CLP (Φ) + η, i.e. in which, as usual, all patterns
belong to Φ.

Proposition 5.5 For any set Φ of patterns satisfying RPC++
η , the rewriting system

CLPη(Φ) is confluent.

Proof.- The resulting system is left-linear and does not have critical pairs, hence it is
orthogonal. �

The CLPη-theory extends CLP with extensionality, in which the η-rule is interpreted
as an equality. Then we have, as before:

Corollary 5.6 Restricting the language to any family of patterns satisfying RPC++
η ,

the equational theory CLPη(Φ) is a proper consistent extension of both the CLη theory
and the CLP (Φ) theory.

Proof.-

• Proper: S(KΠ1
SK)(SKK)

.
= Π1

SK is a theorem in CLPη(Φ) but not in CLη nor
CLP (Φ).

• Consistent: S and K are two different normal forms with respect to CLPη(Φ).

• Extension: the set of axioms CLPη(Φ) contains the axioms of both CLη and
CLP (Φ).

�



Combinatory logics for lambda calculi with patterns 89

xA ∈ Γ
(Var)

Γ ` x : A

Γ′ ` P : A
(K)

Γ ` KP : B → A→ B

Γ′ ` P : A
(S)

Γ ` SP : (A→ B → C)→ (A→ B)→ A→ C

Γ′ ` P : A→ B Γ′ ` Q : A
(Pi-1)

Γ ` Π1
PQ : B → A→ B

Γ′ ` P : A→ B Γ′ ` Q : A
(Pi-2)

Γ ` Π2
PQ : B → A

Γ `M : A→ B Γ ` N : A
(→-Elim)

Γ `MN : B

Figure 1: Typing rules for CLP

6 A Simple Type System for CLP

We now describe a type system for CLP , named CL→P , and prove some of its salient
properties. Type expressions are defined by following grammar:

A,B ::= α | A→ B

where α ranges over a non-empty set of type variables A. As usual, arrows in types are
right-associative.

We will work with the following definitions regarding contexts. A context is a
finite set of variables with type decorations {xA1

1 , . . . , xAnn }, with xi 6= xj for i 6= j.The
domain of Γ, denoted dom(Γ), is defined as {x | ∃A(xA ∈ Γ)}. Its range, denoted
ran(Γ), is defined as {A | ∃x(xA ∈Γ)}. The intersection between two contexts (Γ ∩ Γ′)
is defined as: {xA | xA ∈ Γ ∧ xA ∈ Γ′}. Similarly, the union of two contexts (Γ ∪ Γ′)
is defined as: {xA | xA ∈ Γ ∨ xA ∈ Γ′}, and is only defined if for every x, A and B:
xA ∈ Γ∧ xB ∈ Γ′ ⊃ A = B. A substitution σ is compatible with a context Γ if for all
types A, B and every x ∈ dom(σ) : (xA ∈ Γ and Γ ` xσ : B → A = B).

We also work with type substitutions, total functions from type variables to
types. If δ(α) = A, then we often write α← A ∈ δ. The domain of δ is {α | δ(α) 6= α}.
Substitution over types (Aδ) and contexts is defined as:

αδ , δ(α)

(A→ B)δ , Aδ → Bδ

Γδ , {xAδ | xA ∈ Γ}

The typing rules for CL→P are given in Fig. 1. Note that the patterns themselves
must be typable for the term that contains them to have a type. We do not require
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them to be typable in the same context as said term, but there has to be some context
Γ′ in which the pattern can be assigned the expected type. That is, the type that will
be expected of the arguments which shall match it. This is because the pattern may
have variables that will disappear once a substitution is applied. For example, the term
KSKxS(SKK) is a ground term, which is typable in the empty context, in which its
subterm SKK has type A→ A. However, the pattern SKx is not typable in the empty
context because typing information is needed for the variable x. Hence the need for the
context Γ′, which assigns the required types to the variables in the pattern (an easy
way to obtain one such Γ′ is to extend Γ with the variables in the patterns, each with
the type of the term that will match with it). Since patterns are linear and all their
variables are fresh by convention, no conflicts may arise from extending the contexts in
this manner.

Remark 6.1 This type system is conservative with respect to the traditional one for
simply typed CL: terms which are untypable in CL are also untypable in CLP , and terms
which have a type in CL are assigned the same type in CLP . This follows from the
observation that restricting the rules to terms with no projectors and only variables as
their patterns, results in the original type system (all statements of the form Γ′ ` P : A
trivially hold for Γ′ = {PA} when P is a variable). It is not, however, conservative
with respect to type inhabitation, as mentioned above.

We now exhibit some examples.

Example 6.2 We can prove that ∅ ` SPKK : A → A, for any given type A and
pattern P such that P can be assigned type A in some context.

Γ′ ` P : A

(S)

∅ `SP : (A→(C→A)→A)→(A→C →A)→A→A

(Var)

{xC→A1 } ` x1 : C→A

(K)

∅ `Kx1: A→(C→A)→A

(→-Elim)

∅ `SPK : (A→C→A)→A→A

(Var)

{xC2 } ` x2 : C

(K)

∅ ` Kx2: A→C→A

(→-Elim)

∅ `SPKK : A→ A

Example 6.3 The term Π2
SxSK can be assigned the type A → B → A, as shown

below. We split the derivation into three parts.
Part 1:

(Var)
{xA1 } ` x1 : A

(S)
{xA→B→A} ` Sx1 : (A→ B → A)→ (A→ B)→ A→ A

(Var)
{xA→B→A} ` x : A→ B → A

(Pi-2)
∅ ` Π2

Sx : ((A→ B)→ A→ A)→ A→ B → A
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Part 2:

(Var)
{xA2 } ` x2 : A

(S)
{xA→B→A} ` Sx2 : (A→ B → A)→ (A→ B)→ A→ A

(Var)
{xB3 } ` x3 : B

(K)
∅ ` Kx3 : A→ B → A

(→-Elim)
∅ ` SK : (A→ B)→ A→ A

Part 3:

· · ·
(Pi-2)

∅ ` Π2
Sx : ((A→ B)→ A→ A)→ A→ B → A

· · ·
(→-Elim)

∅ ` SK : (A→ B)→ A→ A
(→-Elim)

∅ ` Π2
Sx(SK) : A→ B → A

Note that these typing rules allow us to prove that {xA} ` KKxK : A. However, the
term KKxS is untypable: it cannot be assigned a type in any context. This is because
KK can only be assigned types of the form C → (A → B → A) → C for some types A,
B and C, while S cannot have a type of the form A→ B → A for any types A and B.
This is an example of how (mismatched) patterns may affect the typability of a term:
if we removed the subscripts, the term KxS would, of course, be typable.

Remark 6.4 Note that every type is inhabited (for example, the term Π2
Kx(SKK) has

any given type in the empty context). While this result makes it impossible to establish
a Curry-Howard isomorphism with a consistent logic, it does not invalidate the use
of this CL→P for typing purposes, as it still satisfies important properties like Subterm
Typability, Weakening and Strengthening, Type Substitution, Type Preservation and
even Strong Normalization of typable terms.

6.1 Main Results

We now show some properties of CL→P . The first is the Inversion Lemma whose proof
is immediate from the syntax-driven nature of the typing rules.

Lemma 6.5 (Inversion Lemma) If Γ `M : D is derivable, then:

• if M = x ∈ X then xD ∈ Γ.

• if M = KP for some pattern P then there exist A,B,Γ′ s.t. D = A → B → A
and Γ′ ` P : B.

• if M = SP for some pattern P then there exist A,B,C,Γ′ s.t. D = (A→ B→
C)→(A→ B)→A→ C and Γ′ ` P : A.

• if M = Π1
PQ for some application pattern PQ then there exist A,B,Γ′ s.t. D =

B → A→ B, Γ′ ` P : A→ B and Γ′ ` Q : A.
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• if M = Π2
PQ for some application pattern PQ then there exist A,B,Γ′ s.t. D =

B → A, Γ′ ` P : A→ B and Γ′ ` Q : A.

• if M = M1M2 for some terms M1 and M2 then there exists A s.t. Γ `M1 : A→ D
and Γ `M2 : A.

Corollary 6.6 If a term is typable in an context Γ, so are all its subterms.

Proof.- By structural induction on the original term, using the last item of the Inversion
Lemma when the term is an application. �

Corollary 6.7 If Γ `M : A then FV(M) ⊆ dom(Γ).

Proof.- By structural induction on M . �

The following lemma will allow for weakening and strengthening of type derivations,
which will be needed in order to prove the Term Substitution property.

Lemma 6.8 (Weakening and Strengthening) If Γ `M : A and FV(M) ⊆ dom(Γ∩
Γ′), then Γ′ `M : A.

Proof.- By structural induction on M , using the Inversion Lemma (IL). �

Corollary 6.9 If Γ `M : A and Γ ⊆ Γ′, then Γ′ `M : A.

Proof.- We know by Corollary 6.7 that if Γ ` M : A, then FV(M) ⊆ dom(Γ). Also,
because Γ ⊆ Γ′, Γ ∩ Γ′ = Γ thus dom(Γ ∩ Γ′) = dom(Γ). It is now immediate from
Lemma 6.8 that Γ′ `M : A. �

Lemma 6.10 If FV(M) = ∅ and Γ `M : A, then Γ′ `M : A.

Proof.- If FV(M) = ∅, then FV(M) ⊆ dom(Γ ∩ Γ′). Then, by Lemma 6.8, if Γ ` M : A
then Γ′ `M : A. �

Lemma 6.11 If Γ ` P σ : A then there is a context Γ′s.t. Γ′ ` P : A.

Proof.- By structural induction on P . �

The following result states that if M can be typed in Γ extended with the adequate
types for each variable in the domain of σ, then Mσ can be typed in Γ with the same
type.

Lemma 6.12 (Term Substitution) If σ is compatible with Γ and Γ∪{xAii | ∃Mi(xi ←
Mi ∈ σ ∧ Γ `Mi : Ai)} `M : A, then Γ `Mσ : A.
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Proof.- By induction on M . �

Note that Lemma 6.12 generalizes the Term Substitution lemma for CL, in which
the domain of the substitution σ is only one variable.

Lemma 6.13 If Γ `M: A then Γδ `M: Aδ.

Proof.- By induction on the derivation of Γ `M : A. �

Using the previous results, we have proved that our typing is preserved under re-
ductions. In other words, our type system satisfies the following core property:

Proposition 6.14 (Type Preservation) If M →WP
M ′ and Γ ` M : A then Γ `

M ′ : A.

Proof.- By structural induction on M . �

Remark 6.15 Notice that, whenever a pattern is involved in each case of the above
proof, the information we obtain about the typability of this pattern from the Inversion
Lemma turns out to be a consequence of other results we previously obtained (that is,
for every pattern P , we reached the conclusion that Γ′ ` P : A in two different ways).
This poses the question of whether the restrictions of the form Γ′ ` P : A on the rules
are redundant. The answer is negative. In our proof of Type Preservation, we are al-
ways able to deduce Γ′ ` P : A by using Lemma 6.11 because we assume that the term
M as a whole is typable, and thus know that P σ can be given the type A in a context
Γ. This is not the case if we want to type a combinator without passing it all its argu-
ments. For example, KS(SKK)(SKK) is untypable, because its pattern S(SKK)(SKK)
cannot be typed in any context. If we removed the requirement for the pattern to be
typable from the K-rule, the term KS(SKK)(SKK) would be typable, which is undesirable
because S(SKK)(SKK) has no typable instances and thus an application of the form
KS(SKK)(SKK)M1 · · ·Mn would never reduce (except, of course, inside each Mi).

We will now introduce some definitions and lemmas in order to prove the strong
normalization of typable terms. Our proof is based on Sørensen and Urzyczyn’s proof
for CL [28], which uses a simplified version of Tait’s computability method [29].

Let SN denote the set of all strongly normalizable CLP -terms (we will refer to the
terms in this set as SN-terms). For each type B we define the standard notion of a set
JBK of CLP -terms computable in B:

JαK , SN

J(A→ C)K , {M | ∀N(N ∈ JAK ⊃MN ∈ JCK)}
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The following four lemmas are necessary in order to prove the strong normalization
result.

Lemma 6.16

(i) JBK ⊆ SN.

(ii) If H1, ..., Hk ∈ SN, then xH1...Hk ∈ JBK.

Proof.- By induction on B. �

Lemma 6.17

1. If LN(MN)H1...Hk ∈ JBK, then SPLMNH1...Hk ∈ JBK.

2. If MH1...Hk ∈ JBK, then KPMNH1...Hk ∈ JBK.

3. If (MN) ∈ SN and MH1...Hk ∈ JBK, then Π1
QR(MN)H1...Hk ∈ JBK.

4. If (MN) ∈ SN and NH1...Hk ∈ JBK, then Π2
QR(MN)H1...Hk ∈ JBK.

Proof.- By induction on B, using Lemma 6.16. �

Lemma 6.18 If M is not an application6 and H1, ..., Hk are SN-terms: Π1
QRMH1...Hk ∈

JBK and Π2
QRMH1...Hk ∈ JBK.

Proof.- By induction on B. �

Lemma 6.19 If Γ ` T : B then T ∈ JBK.

Proof.- By structural induction on the term T , using the Inversion Lemma (IL). �

Finally, we conclude with our main result of the section; it is an immediate conse-
quence of Lemmas 6.16(i) and 6.19.

Proposition 6.20 (Strong Normalization) Every typable CLP -term is SN.

Remark 6.21 It would be interesting to develop a (dependent) type system capable
of detecting matching failure. For example, one where KP had type A → B →P A,
where the type “A →P B” means “function with domain in A and range in B, where
the argument must match the pattern P” and “A → B” is the same as “A →x B”.
This approach would prevent matching failure if (→-Elim) requires the matching to
be successful for the application to be well-typed. However, the difficulty lies in typing
applications of the form MN with M of type A →P B and in which N reduces to an
instance of P but is not one yet.

6That is, M is either a variable, a combinator, or a constructor if we include constructors in the
calculus (see Section 6.2).
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6.2 Modelling Data Structures

Constructors for modelling applicative data structures may be incorporated into CLP .
This is achieved by enriching CLP with constants taken from some given set of constants
C. We illustrate with an example.

Example 6.22 If we are interested in supporting lists, we may assume constructors
nil and cons belong to C. A list with the elements M1 and M2 will be denoted by the
term cons M1 (cons M2 nil). Having constructors as patterns allows us to define
terms which can only be applied to structures built with a certain constructor. For
example, the term Sconsx y(KΠ2

cons z)Π
1
cons v w will return the head of a non-empty list,

and do nothing when applied to a term of any other form.

In general, a data structure takes the form CM1 · · ·Mn, with C ∈ C, and will be a
normal form whenever M1, · · ·Mn are normal forms. The set of patterns can also be
extended with constructors: if C is a constructor and P1, · · ·Pn are patterns (n ≥ 0),
then CP1 · · ·Pn is a pattern. As expected, FV(C) = ∅ and Cσ = C for all C ∈ C and for
every substitution σ. When translating between λP and CLP , constructors translate
to themselves, and the results we have obtained in 4.1.1 and 4.3 still hold.

The corresponding extension of the type system consists in adding a new rule to
determine the type of each constructor. For example, we can extend our calculus with
natural numbers by introducing the primitive type Nat, and the constructors 0 and
succ. The associated typing rules would be the following:

(Zero)
Γ ` 0 : Nat

(Succ)
Γ ` succ : Nat→ Nat

We can go one step further by allowing the use of parametric types, in order to
achieve some measure of polymorphism. For example, we can define the type List A
for any given type A, with <> and cons as its constructors.

(Nil)
Γ `<>: List A

(Cons)
Γ ` cons : A→ List A→ List A

This concept can be generalized to types with an arbitrary number of parameters
(this is useful, for example, when defining tuples).

The properties mentioned in section 6.1 still hold when constructors are introduced.
In the case of the Inversion Lemma, a new clause will be added for each new constructor.
Since the addition of constructors does not introduce new reductions, Type Preservation
and Strong Normalization are not affected by this extension (Lemma 6.16 must be
extended with a new clause to deal with terms of the form CH1...Hk, but these terms
behave in the same way as those of the form xH1...Hk, so the proof is analogous and,
as a result, every constructor is computable in every type).
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Remark 6.23 The CLP -calculus may be extended with other constants besides con-
structors, namely functional constants. These could be incorporated as syntactic sugar
to facilitate data manipulation (just like I and IP were previously defined as SKK and
SPKK respectively). For instance, the function pred may be introduced with the pur-
pose of obtaining the predecessor of a natural number, and the functions head and tail

can be used to observe the elements in a list. These functions can be defined as follows:

pred , Π2
succx

head , Sconsx y(KΠ2
cons z)Π

1
cons v w

tail , Π2
consx y

The definition of head may seem complicated at first sight, but note that, when trans-
lated to λP , the normal form of the resulting term is λconsx y.x. Following the typing
rules we have defined, it is easy to verify that Γ ` pred : Nat→ Nat, Γ ` head : ListA→ A
and Γ ` tail : ListA→ ListA for every context Γ and every type A.

7 Defining Extensions and Variants

This section considers modifications of CLP in which either the set of terms or reduction
rules are modified in some way or another. In order to aid the reader in following these
modifications, we classify them into two kinds loosely specified as follows:

• A variant of a calculus is a new calculus which is obtained from the former
by making minor modifications to the set of terms and/or the reduction rules
(for example, by imposing restrictions to the terms which are considered well-
formed, removing a reduction rule or replacing it by a slightly different one). The
modifications must be ‘minor’ in the sense that the connection to the original
calculus is still evident.

• An extension is a particular form of variant in which nothing is removed or
replaced; new terms and reduction rules may be added, maintaining the old ones.

A summary of the variants and extensions follows

CLP with matching-safe patterns Variant Section 7.1.1
CLP with generalized pattern matching Extension Section 7.2
CLP with multiple matching Extension Section 7.3
CLP with structural polymorphism Extension Section 7.3

We will now see some examples and related properties.
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7.1 Possible Restrictions to the Set of Patterns

The RPC++ restriction allows for a wide variety of patterns, with unlimited length and
depth. It was defined in this way in order to allow the user as much freedom as possible,
but in some cases this freedom may not be necessary, and simpler sets of patterns may
be used. We will now show some possibilities.

7.1.1 Matching-safe patterns

While the RPC++ restriction presented in Section 3.1.1 is enough to guarantee conflu-
ence, it is possible to impose further restrictions in order to avoid dealing with unifica-
tion while checking the syntax of patterns. This is done by eliminating patterns which
contain matching failures within them. In a setting where matching failures are un-
wanted, terms of the form KKxS would be considered undesirable, and thus we would
not want them to be used as patterns, since they would only be matched by terms of
that same unwanted form.

In this variant, the syntax of patterns is restricted to:

P,Q, P1, · · ·Pn ::= x | KP | SP | KPP1 | SPP1 | SPP1P2 | Π1
PQ | Π2

PQ | CP1 · · ·Pn

with n ≥ 0, P ′P a pattern, and maintaining linearity. Here C represents any construc-
tor.

Using this set of patterns results in a confluent calculus, as it is a subset of the
patterns that satisfy RPC++. It also removes the hassle of having to use unification to
determine whether a pattern is well-formed. We will refer to the patterns in this set as
matching-safe patterns.

Remark 7.1 Every λP -pattern which satisfies RPC+ translates into a matching-safe
CLP -pattern: since RPC+ restricts patterns to original λ-terms, the result of the trans-
lation of a λP -pattern satisfying RPC+ to CLP is a CL-term (all its subscripts are
variables) and, by Remark 4.6, it is also a CLP -pattern. As such, they must fit the syn-
tax presented in Section 3.1.1, and they may not contain combinators whose subscripts
do not unify with one of their arguments (because variables unify with everything).
Thus, the only option left is for that argument not to be present.

7.2 Parameterizing Pattern-Matching

So far we have presented a calculus which handles pattern-matching by means of substi-
tutions, using the syntactic matching mechanisms of a TRS. In this section we explore
a formulation of CLP in which the pattern matching process is abstracted away and
computed outside the formalism itself. The reduction rules of CLP (cf. Definition 3.8)
are replaced by the contextual closure of the following ones:
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KPMN →M ⇐ match(P,N)
SPM1M2N →M1N(M2N) ⇐ match(P,N)
Π1
PQ(MN) →M ⇐ match(PQ,MN)

Π2
PQ(MN) → N ⇐ match(PQ,MN)

The resulting system is a conditional TRS, where reduction depends on the matching
predicate. The first argument of match must be a pattern, and the second, an arbitrary
CLP -term. The use of an external matching predicate will be referred to as generalized
pattern matching. If we define match(P,M) = (∃σ substitution such that M = P σ),
then the resulting reduction system will be →WP

.
A recursive formulation of the standard syntactic matching would be the following:

match(P, P ) , True

match(x,M) , True if x ∈ X

match(P,M) , False if P is a combinator or constructor and M 6= P

match(PQ,MN) , match(P,M) ∧match(Q,N)

Replacing this by a different matching predicate would yield a different reduction
system. The matching predicate can be made as simple or as complex as desired,
ranging from a simple syntactic verification to an elaborate algorithm. Confluence
depends on the matching function. If, for example, we defined the matching function
so that match(P,M) ⇔ (P ∈ X ∨M = PP ), then the term KKSx(KS(KS)) would
have two different normal forms: x and KKSxS. We will see that the new calculus will
be confluent if the resulting parallel reduction is coherent (Def. 7.5).

7.2.1 Parallel Reduction and Coherence

Definition 7.2 Given a reduction→, we define its parallel reduction⇒ inductively
as follows:

M → N

M ⇒ N M ⇒M

M ⇒M ′ N ⇒ N ′

MN ⇒M ′N ′

The idea of the parallel reduction is to reduce all terms involved in an application
simultaneously. Note that, unlike the simultaneous reduction in λP , the parallel re-
duction cannot contract nested redexes in one step. For example, K(Kxy)z does not
reduce to x in one step of ⇒.

Lemma 7.3 For every pattern P , term Q, and substitution σ: if P σ ⇒ Q then there is
a σ′ s.t. Q = P σ′

, where ⇒ is the parallel reduction for →WP
.

Proof.- By structural induction on the pattern P . �
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Lemma 7.4 For every application pattern PQ and all substitutions σ, σ′: if (PQ)σ ⇒
(PQ)σ

′
, then P σ ⇒ P σ′

and Qσ ⇒ Qσ′
.

Proof.- PQ is an application pattern, which means it must be of the form TM1 · · ·Mn,
where n ≥ 1, M1, · · ·Mn are patterns and T is either a combinator or a constructor. A
simple induction on the number of arguments can prove that P σ = TMσ

1 · · ·Mσ
n−1 ⇒

TMσ′
1 · · ·Mσ′

n−1 = P σ′
and Qσ = Mσ

n ⇒Mσ′
n = Qσ′

, using Lemma 7.3 and the IH when
n > 1. �

Definition 7.5 A reduction →R satisfies the coherence property if:

1. For every pattern P and all terms M , N : if match(P,M) and M →R N , then
match(P,N).

2. For every application pattern PQ and all terms M , N , T : if match(PQ,MN)
and MN →R T , then there are terms M ′, N ′ s.t. T = M ′N ′, M

=→R M ′ and
N

=→R N
′.

Intuitively, the first condition means that a term which matches a pattern can only
reduce to terms which match the same pattern; while the second condition means that, if
an application matches an application pattern, then the result of any one-step reduction
of this application can be reached by reducing (in zero or one steps) each side of the
application separately.

Lemma 7.6 The parallel reduction associated with →WP
is coherent:

1. For every pattern P , and all CLP -terms M,N : if match(P,M) and M ⇒ N ,
then match(P,N).

2. For every application pattern PQ and all CLP -terms M,N, T : if match(PQ,MN)

and MN ⇒ T , then there exist terms M ′, N ′s.t. T = M ′N ′, M
=

⇒ M ′ and

N
=

⇒ N ′.

Proof.- Part 1 is a direct consequence of Lemma 7.3, as

match(P,M) = (∃σ substitution s.t. M = P σ)

(and analogously for N). Simply replace M by P σ and N by P σ′
, with σ′ the substitu-

tion obtained from Lemma 7.3.

Similarly, part 2 is a direct consequence of Lemma 7.4, replacing M by P σ, N by Qσ,

M ′ by P σ′
, N ′ by Qσ′

, and
=

⇒ by ⇒ (since ⇒ is reflexive, it is equal to its reflexive
closure). T will always be an application by Lemma 7.3, as only an application can
match another application. �
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Corollary 7.7 The RPC++ restriction ensures the coherence of the parallel reduc-
tion.

Proof.- This is a direct consequence of Lemma 7.6. �

We will say that a calculus is a coherent variant of the CLP -calculus if its re-
duction rules fit the schema presented at the beginning of Section 7.2 and its parallel
reduction is coherent (that is, it satisfies the coherence property). This concept was
inspired by Van Oostrom’s original RPC restriction (see Definition 2.4).

7.2.2 Confluence

We will now prove the confluence of any coherent variant of the CLP -calculus (with
or without constructors). We can no longer use the orthogonality result, as we have
no guarantee that our variant can be formulated as an orthogonal TRS (or even an
orthogonal Higher-order Rewriting System). Instead, we will use the parallel reduction
technique. To this effect, we will use the following definition and lemma. A reduction
→R satisfies the diamond property (denoted as →R|= �) if whenever A →R B and
A→R C, there is a D s.t. B →R D and C →R D.

Lemma 7.8 Let →1 be a binary relation; if there exists →2 s.t. →1⊆→2⊆�1 and
→2|= �, then →1 is confluent.

Proof.- See [4, 8]. �

The following lemmas show that the parallel reduction satisfies the hypotheses of
Lemma 7.8, using the reduction defined for our calculus (→) as →1.

Lemma 7.9 →⊆⇒⊆�

Proof.- The first inclusion is immediate from the first rule of the definition of ⇒.

The second inclusion derives from the fact that � is the reflexive transitive closure of
our reduction →. This means that:

1. →⊆�, which covers rule 1 of the definition of ⇒.
2. � is reflexive, which covers rule 2.
3. � is transitive. If M � M ′, N � N ′ and MN � M ′N � M ′N ′, then MN �
M ′N ′. This covers rule 3 of the definition of ⇒. Therefore, ⇒⊆�. �

It can be proved that ⇒ satisfies the diamond property, using the fact that ⇒ is
coherent.
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Lemma 7.10 If → is the reduction associated to a coherent variant of CLP , then ⇒|=
�.

Proof.- In order to prove that⇒ satisfies the diamond property, we will use the fact that
⇒ is coherent. We can prove that M ⇒M1 ∧M ⇒M2 ⊃ ∃M3 s.t. M1 ⇒M3 ∧M2 ⇒
M3 by induction on the reduction M ⇒M1. �

As a result of Lemmas 7.8, 7.9 and 7.10, every coherent variant of CLP is confluent.

Remark 7.11 Note that when using this generalized notion of pattern matching, pat-
terns are no longer restricted to those satisfying RPC++. Any coherent variant will be
confluent.

7.3 Representing other pattern calculi

By introducing new terms and/or changing the set of allowed patterns we obtain dif-
ferent calculi, which can introduce new features to our calculus and represent different
languages.

The λC-calculus. For example, we can translate λC into a variant of CLP . Recall
from the introduction that the λC-calculus is a variation of λP in which patterns are
taken to be algebraic terms, and where multiple pattern matching is allowed by means
of generalized abstractions of the form λP1.M1| . . . |λPk.Mk. The reduction relation is
a generalization of that of λP :

(λP1.M1| . . . |λPk.Mk)P
σ
i →Mσ

i

Confluence has been proved for linear constructor patterns, as well as for rigid multiple-
patterns (i.e. patterns satisfying the Rigid Pattern Condition introduced in [30] for λP ,
and where the different Pi in λP1.M1| . . . |λPk.Mk do not unify with each other). Since
λC does not allow abstractions to be used as patterns, we may restrict our set of
patterns to only variables and constructors applied to 0 or more arguments, which
must themselves be patterns. In other words, the syntax for the patterns would be as
follows:

P, P1 · · ·Pn ::= x | CP1 · · ·Pn
with n ≥ 0. Note that this set of patterns satisfies RPC++.

The syntax of CLP is extended with case combinators in order to allow matching
over multiple patterns, and even provide different responses depending on the pattern
that has been matched. The case combinators have the form θP1,...,Pn with n ≥ 1, where
P1,...,Pn are patterns which are not pairwise unifiable. A new rule schema is introduced:
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θP1,...,Pnx1...xnPi → xiPi, if 1 ≤ i ≤ n

Definition 7.12 The translation from λC to CLP + θ (that is, CLP extended with
the case combinator and constructors) is as follows:

xCL , x

CCL , C

(MN)CL , MCLNCL

(λP.N)CL , λ∗PCL.NCL

(λP1.M1| . . . |λPn.Mn)CL ,
θ(P1)CL,...,(Pn)CL(λ∗(P1)CL.(M1)CL) . . . (λ∗(Pn)CL.(Mn)CL),
if n ≥ 2

With λ∗ defined as before (Definition 4.1).

Here is an example of how the translation works.

(λ <> . <> |λconsx y.y)(cons x1(cons x2 <>))

would translate to:

θ<>,consx y(K <>)(Sconsx y(K(SKK))Π2
consx y)(cons x1(cons x2 <>))

which reduces as follows:

θ<>,consx y(K <>)(Sconsx y(K(SKK))Π2
consx y)(cons x1(cons x2 <>)) →WP

Sconsx y(K(SKK))Π2
consx y(cons x1(cons x2 <>)) →WP

K(SKK)(cons x1(cons x2 <>))(Π2
consx y(cons x1(cons x2 <>))) →WP

SKK(Π2
consx y(cons x1(cons x2 <>))) →WP

SKK(cons x2 <>) �WP

cons x2 <> .

The requirement for the patterns in the case not to be pairwise unifiable is needed
– as in λC – to ensure that the argument will match at most one pattern.

The argument which will be matched against the patterns is placed immediately
after the case combinator to facilitate potential implementations, as well as translations
to other combinatory calculi which handle the matching in a sequential manner. Since
the number of required arguments depends on the number of patterns used within the
case combinator, skipping through a varying (and arbitrarily high) number of arguments
in order to find the term that will be matched against each pattern would be both
difficult and inefficient.

We now prove simulation for the general case (Corollary. 7.15).

Lemma 7.13 (Mσ)CL = (MCL)σCL.
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Proof.- First note that Lemma 4.8 still holds, since none of the new cases for the
translations introduce nor erase free variables. We prove this result by induction on the
size of M , which is now a λC-term.

For the cases where M is a variable, an application or a single pattern abstraction,
the proof is analogous to that of Lemma 4.9. If M is a constructor, the result holds
trivially, since (Mσ)CL = MCL = M = (MCL)σCL .

If M = λP1.M1| . . . |λPk.Mk, then Mσ = (λP1.M1)σ| . . . |(λPn.Mn)σ and, by IH,
((λPi.Mi)

σ)CL = ((λPi.Mi)CL)σCL for i ∈ {1, . . . , n}.
(Mσ)CL =
θ(P1)CL,...,(Pn)CL((λP1.M1)CL)σCL . . . ((λPn.Mn)CL)σCL =
θ(P1)CL,...,(Pn)CL(λ∗(P1)CL.(M1)CL)σCL . . . (λ∗(Pn)CL.(Mn)CL)σCL = (MCL)σCL .

Keep in mind that substitutions in λC, as in λP , do not affect the pattern of an abstrac-
tion, since its variables are bound. This means that it is safe to use (P1)CL, . . . , (Pn)CL
as subindices for θ without applying the substitution to these patterns. �

Lemma 7.14 θP1,...,Pn(λ∗P1.M1) . . . (λ∗Pn.Mn)P σ
i �WP

Mσ
i for 1 ≤ i ≤ n, if dom(σ) ⊆

FV(Pi).

Proof.- First note that Lemma 4.14 still holds, since the definition of λ∗ has not changed.

θP1,...,Pn(λ∗P1.M1) . . . (λ∗Pn.Mn)P σ
i →WP

(λ∗Pn.Mn)P σ
i by the new reduction rule. By

Lemma 4.14, (λ∗Pn.Mn)P σ
i �WP

Mσ
i . �

Corollary 7.15 ((λP1.M1| . . . |λPk.Mk)P
σ
i )CL �WP

Mσ
i if dom(σ) ⊆ FV(Pi).

Proof.- If n ≥ 2, then by Lemma 7.13, (P σ
i )CL = ((Pi)CL)σCL .

((λP1.M1| . . . |λPk.Mk)P
σ
i )CL =

(λP1.M1| . . . |λPk.Mk)CL((Pi)CL)σCL =
θ(P1)CL,...,(Pn)CL(λ∗(P1)CL.(M1)CL) . . . (λ∗(Pn)CL.(Mn)CL)((Pi)CL)σCL .

The result follows by Lemma 7.14.

If n = 1, the result holds by Lemmas 7.13 and 4.14, as in Corollary 4.15. �

Generalized pattern matching can also be used to introduce structural polymorphism
into our calculus. For example, we can now define a term that returns the first argument
of a data structure defined by the application of a constructor to two terms (a list with
a first element followed by another list, a tree made by combining two trees, etc.), and
returns the data structure unchanged if it has fewer than two arguments (and becomes
blocked if the argument has more than two arguments or is not a data structure). If we
introduce a new pattern ♠ and extend the matching predicate so that ♠ is matched by
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every constructor (and only by constructors), then the result will be achieved by the
term θ♠xy,♠z,♠(S(KΠ2

♠w)Π1
♠uv)II. This technique can be applied with other structures

and patterns, achieving an effect resembling path polymorphism (the difference is that
we’re using an ad-hoc matching predicate that is external to the calculus in order to
produce this effect). For example, we can now define a term that returns the first
argument of a data structure defined by the application of a constructor to two terms
(a list with a first element followed by another list, a tree made by combining two trees,
etc.), and returns the data structure unchanged if it has fewer than two arguments
(and becomes blocked if the argument has more than two arguments or is not a data
structure).

In order to define a pattern that is matched by data structures in general, the
matching predicate can be extended so that every term of the form CP1...Pn, with C
a constructor and n ≥ 0, matches the new pattern. Since terms of this form may only
have internal reductions, this extension is coherent and thus confluence still holds. Data
structures which are not of the form CP1...Pn do not present a problem, as they can be
reduced to that form and then matched against the pattern.

The SF -calculus. Finally, there is another variant which can be used to capture
other forms of polymorphism and partially simulate the SF -calculus. It consists of
introducing two new special patterns (@ and ◦) in addition to the case combinator θ.
However, we only need to use the θ combinator with these two patterns, so we can
simply introduce one form of the case combinator, namely θ◦,@. In this extension we
also allow the use of the combinators Π1

@ and Π2
@, which will allow us to decompose a

wide range of applications.
We extend the original matching algorithm so that the pattern @ is matched by

all (instances of) application patterns. That is, every term of the forms KPM , SPM ,
SPM1M2 and, eventually, all applied constructors. This way the @ pattern will be
capable of dealing with applications, in spite of the presence of infinitely many constants.
We are assuming the use of matching-safe patterns.

The pattern ◦ will be matched by all constants, namely KP , SP , Π1
PQ, Π2

PQ, Π1
@, Π2

@

and eventually all constructors without their arguments. Once more, a single pattern
can ‘absorb’ the roles of infinitely many patterns.

Given this extension, we define:

F̂ , S(KK)(S(S(KS)(S(K(S(SKK)))(S(KK)Π1
@)))(S(KK)Π2

@))

This term, also a pattern, is the result of unfolding the expression

λ∗x.λ∗y.λ∗z.z(Π1
@x)(Π2

@x).

When applied to an instance of an application pattern (PQ)σ, it reduces in many steps
to K(S(SI(KP σ))(KQσ)). This way, a term of the form F̂(PQ)σMN will reduce in
many steps to NP σQσ.
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This becomes useful when we use F̂ as an argument for the case combinator. The
term θ◦,@(KK)F̂ can partially simulate the behavior of the combinator F from the
SF -calculus, if we consider all instances of application patterns as “factorable forms”.
The reduction rules of the SF -calculus are the following:

SMNX → MX(NX)
FOMN → M if O is a constant.
F (PQ)MN → NPQ if PQ is a factorable form.

Remark 7.16 If we define F as θ◦,@(KK)F̂, we can simulate those same reductions in
many steps. It is not, however, a full simulation of the SF -calculus, for the following
reasons: first, while the SF -calculus has only 2 constants, we have an infinite number of
them. Second, the term F is a constant in the SF -calculus, while in our extension it is
a factorable form. This means that reducing the term FFMN will yield different results
in each calculus, and thus ours is not an exact simulation. It would be possible to patch
the matching algorithm in order to make F̂ match the pattern ◦ and not @, but such a
modification is not necessary to achieve the distinction between atoms and compounds:
the term isComp = λx.Fx(KI)(K(KK)) defined in [21] can also be defined here as
λ∗x.Fx(KI)(K(KK)) for our definition of F . Decomposition of “factorable forms” is
already achieved in our system by projectors, thus we can already have a measure of
structural polymorphism.

This extension is coherent for the same reason as the ♠ extension (terms which
match the pattern @ can only have internal reductions, while terms that match the
pattern ◦ cannot be reduced), thus confluence still holds (note that the rules for the
θ combinators do not overlap with each other – since matching against @ and ◦ are
mutually exclusive –, nor with any of the original rules).

8 Comparison between CLP and other Pattern Cal-

culi

There are several other calculi which can handle patterns in different ways. We will
now briefly compare CLP with some of these calculi.

The Pure Pattern Calculus ([19, 23]) is more complex in its formulation, requiring
a concept of matchable forms with their own specific syntax. The matching mechanism
is also handled by an external algorithm, defined as a sequence of clauses with complex
conditions and a specific order of evaluations. The concept of variable is also less
intuitive, as each variable x has a counterpart x̂ and an associated constructor.

The logical frameworks defined in [17] rely on external algorithms in order to deter-
mine the matching process. It generalizes the settings of some of the previous works.
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It contemplates the possibility of detecting whether the term to be reduced is open or
ground.

While the need to match a given term against a pattern is made explicit in both
Rho-calculus ([9]) and the ([32]), matching itself is resolved by an external algorithm;
while in CLP the matching is handled by the TRS itself. Generalizations or variations
to the matching process may be introduced by either adding or modifying the reduction
rules, and the system will remain confluent as long as orthogonality is preserved. [32]
also proves strong normalization of typable terms.

In all the above cases the matching, once formulated, is instantaneous. And the
concept of bound variable is needed in all of the previous rewriting systems mentioned
above.

The SF -calculus, mentioned in the introduction, is a combinatory calculus which
can look into arguments much like in all known pattern calculi. However, instead of
using patterns, it defines a concept of factorable form, which can be decomposed by
a conditional combinator F . This combinator has the ability to distinguish between
atoms and compound terms, allowing it to define a number of functions based on the
structure of the arguments. On the other hand, CLP is a TRS, with atomic combinators
and no conditional rules, and the presence of projectors makes the decomposition of
arguments in our calculus more intuitive. The SF -calculus could be mapped into a
TRS by replacing the F rules by an infinite number of rules (one for each constant and
one for each application pattern which can be matched by factorable forms, the latter
being an infinite set). Additionally, [21] does not present a mapping between the SF -
calculus and a higher-order pattern calculus; nor does it present a simple type system
for the calculus, since simple types have been shown to have insufficient expressive
power to type the F and E combinators. Instead, a system with polymorphic types
is introduced, with the drawback of type assignment being undecidable. [7] introduces
a type system with a decidable type-assignment for a reduced version of the calculus
named the SFBY -calculus, which emulates the E combinator via a term constructed
with several hundred operators.

9 Further Work and Conclusion

In this article we have presented a system of combinatory logic (CLP ) for a λ-calculus
(λP ) in which functions may be abstracted over a general notion of pattern that includes
applications and abstractions themselves. We have proved that the associated notion of
pattern-matching can be handled within the context of a Term Rewriting System (TRS),
that is, by means of first-order rewriting. For that, two issues have been addressed:

1. Emulating successful matching in λP by means of combinators; and
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2. Computing the resulting substitution, also by means of combinators which have
to decompose applicative terms to achieve the desired result.

We have also worked out the necessary restrictions in order to avoid ill-formed patterns
which may break confluence. This has been achieved by introducing syntactic charac-
terizations of such restrictions. Moreover, given a term or pattern, these restrictions
can be efficiently verified. We have also presented a type system based on simple types,
for which we proved normalization of typable terms. Finally, a number of extensions
have been addressed of which CL? stands out. In contrast to CLP , which although
presented in terms of a finite number of rule schemas has an infinite number of rule in-
stances, CL? is a finite TRS. This is possible by encoding matching within the calculus
itself, albeit at the cost of complicating the combinator syntax.

We mention some possible avenues to explore.

Combinators for dynamic patterns. The Pure Pattern Calculus or PPC [19, 22,
23] is a pattern calculus in which patterns may be created during runtime. For example,
consider the PPC-term M :

x ↪→x (x ↪→ true|y ↪→ false)

The symbol “↪→” allows abstractions to be built, its first argument being the pattern
and the second one the body. A set of variable subscripts, such as x in “↪→x”, indicates
which variables in the pattern are considered matching variables (x in this example)
and which are considered free variables (these are to be replaced from the “outside”).
The order among the patterns is important, as reduction will proceed according to the
first match. The PPC-term M(Succ 0)(Succ 0) reduces in two steps to true. Note
that, after the first step, (Succ 0) becomes a new pattern producing:

Succ 0 ↪→ true|y ↪→ false

Similarly, M(Succ 0)0 reduces to false. It would be interesting to obtain a combina-
tory account of PPC.

Higher-order λP -unification via combinators. We are interested in studying uni-
fication with respect to CLP -equality [14]. The formulation of a higher-order unification
algorithm turns out to be complicated (even when restricting to simply typed λ-calculus
terms), due to the presence of bound variables. For this reason, [14] emphasizes the
importance of considering the conversion to combinatory logic as an intermediate step,
thus eliminating bound variables. In this way the formulation of the algorithm is sim-
plified considerably, according to [14]. Note that the absence of bound variables is
the only requirement for a calculus to serve this purpose. Our system of combinators
seems to be an adequate language due to the fact that all required properties extend
the classical ones.
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Detecting matching failure through type checking. It would be interesting to
study other possible type systems of CLP , particularly dependent type systems in
which the patterns play a role in detecting matching failure. The rules would have to
be chosen carefully to account for undecided matching. For instance, they should allow
the correct typing of SPMNP σ, taking into account that the normal form of NP σ

cannot be known in advance.
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