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Abstract

We present a precise approach to treat modalities involving vague notions.
Vague notions, such as ‘generally’,‘many’, ‘rarely’, ‘often’, etc., occur often in
ordinary language and in some branches of science. We introduce some basic
ideas about vague notions, quantification and modalities, and address the issue
of treating them in a precise manner. Some ideas about multimodal logics are
extended to vague modalities. We also give a formal approach to these ideas.

Keywords: vague notions, ‘generally’, ‘rarely’, precise reasoning, quantification, modal-
ities.

1 Introduction

We present some ideas about certain vague notions and a way to treat modalities related
to them so as to reason in a precise manner about these modalities. The exposition
aims to convey the main ideas and results through illustrative examples.

The structure of this paper is as follows. In the remaining of this introductory
section, we will try to motivate the issues that will be treated here. In Section 2 we
will examine and illustrate some basic ideas about vague notions, quantification and
modalities. Section 3 continues examining quantification and modalities, by focusing
on the question of how to treat them in a precise way, and suggests a possible approach
to this matter. Section 4 introduces, by a concrete case study, some ideas about logics
for vague notions. Section 5 examines logics with vague multi modalities. Section 6
gives a more formal treatment for these ideas. Section 7 presents some final comments.

Vague notions, such as ‘generally’,‘many’, ‘rarely’, ‘often’, etc., occur often in or-
dinary language and in some branches of science. We wish to express such assertions
and to reason about them in a precise manner. To this end, it is important to have a
clear understanding of the vague notions involved. Here the focus is on modalities with
vague notions, but we will also examine quantification dealing with vague notions.
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One may ask why bothering with vague notions (such as ‘generally’, ‘rarely’, etc) ?
One answer has already been anticipated above: they occur often in ordinary language
and in some branches of science.

For instance, one may hear from his medical doctor the following assertion:

“A typical patient presenting these symptons is prone to develop . . . ”

Other, perhaps somewhat less vague, examples are the following:

• “ Swans generally are white.”

• “Metals rarely are liquid under normal temperature conditions”

• “ Your order will be delivery soon.”

The expressions ‘generally’, ‘rarely’ and ‘soon’, occurring in these assertions seem
to have the aspect of quantifiers or modalities but they are somehow vague. How to
understand them in a precise way?

There also seems to be inferences involving such notions, despite their vagueness,
as the next example indicates.

Example 1.1 (Vague inference) Consider the following two assertions:

1. “Boys generally like sports.”

2. “Whoever likes sports watches channel SportTV.”

These two assertions seem to lead to the following conclusion:

3. “Boys generally watch SportTV”.

How to account for such (apparent) inferences? Are they correct?
These are some of the main questions that motivate the investigation on the vague

aspects of quantifiers and modalities. We will focus on the case of vague modalities,
using vague quantifiers to introduce some auxiliary ideas.

2 Basic ideas

In this section we introduce some basic ideas about quantification and modalities
through examples. Our aim is contrasting vague and non-vague cases and introduc-
ing the issue of how to treat the vague cases in a precise manner.
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2.1 Quantification with vague notions

We now examine some ideas about quantification: vague and not vague
Consider the following assertion:

(T) “All prime numbers are odd.”

It is a strong (non-vague) assertion: ‘all’ does not accept exceptions. That is the
reason why the above assertion is false. One can try to circumvent this by trying a
“more attenuated” version.

(Q) “Almost all prime numbers are odd.”

This (somewhat vague) version could be understood as:

‘Almost all’ means “all, but 2”.

In a similar manner, one could have the attenuation:

• of “No metal is liquid (under normal temperature conditions)”

• to “Almost no metal is liquid (under normal temperature conditions)”,

where ‘almost no’ might mean “none, except mercury”.

There are some variants for vague quantification; for instance:

“‘There are nine planets in the solar system.”1

Also, there are (more complex) non-vague quantifiers variants; for instance:

“There are infinitely many prime numbers.”

Now, consider the following (non-vague) assertion:

(
∞
∃) “There are infinitely many twin primes.”2

This is an open conjecture.3

One can try to “attenuate” (
∞
∃) as follows:

1There has recently been a controversy among astronomers whether Pluto should be considered
as a planet or not. This suggests that perhaps the concept of planet was not very clear: a vague
predicate. But, ‘there are (exactly) 9’ objects has a precise meaning, as have ‘there are more
than 9’ objects, ‘there are at least 9’, etc.

2Twin primes are numbers such that p and p+ 2 are both primes; e. g. 17 and 19.
3This conjecture (of the twin primes) is related to Hilbert’s 8th Problem. One knows very large

twin primes (such as 571305 . 27701 ± 1 and 1706595 . 211235 ± 1); but it is not known whether there
are infinitely many of them.
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(
m

∃) “There are many twin primes.”

Here, in going from the strong version to the attenuated one, the speaker is on a
safer side, but the attenuated version is less clear: how one should understand ‘there
are many’?

2.2 Modalities with vague notions

We now examine some ideas about modalities: vague and not vague.
When one selects the ‘shutdown’ option in a computer menu, the following message

appears on the monitor screen:

“if you do nothing, the system will shut down within 120 seconds.”

This is a perfectly clear and precise (non-vague) information: one has exactly 2 minutes
to give up turning off the computer.

Now, imagine that the following message appears on the monitor screen:

‘if you do not take any action, the system will shut down soon.”

This (vague) information is not very clear: how much time has one got to give up
turning off the computer?

Consider the following assertion:

“The system always works without freezing.”

This is a very strong (non vague) assertive: ‘always’ (2) does not admit exceptions;
that is why it may be considered somewhat risky. One can try to circumvent this by
trying a “softer” version.

“The system almost always works without freezing.”

Here, in going from the strong version to the attenuated one, the manufacturer is
on a safer side, but the attenuated version is less clear: how should the user understand
‘almost always’? 4

4A single case of system freezing is a counter-example for the strong assertion (with ‘always’). How
could one refute the attenuated assertion (with ‘almost always’)? It is not very clear, but it seems
that just one case of freezing would not be enough: one may be need many cases of freezing.
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3 Vague quantification and vague modalities

In this section, we are going to examine some ideas about vague quantification and
vague modalities, taking back the question of how to treat them in a precise manner,
and indicating a possible approach to this matter.

Dealing with a computing system, one can find assertions like the following ones.

(O) “The system often works well.”

(S) “The message will be answered soon.”

The expressions ‘often’ and ‘soon’ in these two assertions appear to present an aspect of
modality; but they are somewhat vague. We have perhaps an intuitive understanding of
them: for instance, we can think of ‘often’ as “almost always” or “in many situations”.
But, we still have the question of how to deal with them in a precise manner.

Let us examine non vague analogues of these assertions (O) and (S).

(A) “The system always works well.”

(E) “The message will be answered eventually.”

We know, at least in principle, how to deal with these versions (A) and (E). We can
reduce:

• ‘always’ to “at all instants”;

• ‘eventually’ to “at some (future) instant”.

These explanations reduce modality to quantification as follows:

Modality Quantier

always: 2 7→ ∀: all instants

eventually: 3 7→ ∃: some instant (in the future)

If we had vague quantifiers, we could try a analogous reduction:

often: 5 7→ ∇: many instants

This is, in broad lines, the idea of the suggested approach to be presented here: to
extend the reductions of modalities to quantifiers to vague versions. In order to carry
out this plan successfully, we must also explain clearly vague quantification.

Vague notions, like ‘generally’, ‘rarely’, ‘most’, ‘several’ etc., appear often in
assertions and arguments in ordinary language and in some branches of science [1, 11].
Quantification with vague notions appear often in assertions and arguments in ordinary
language and in some branches of science. Besides the examples given in Section 1, we
can mention the following ones.
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“Brazilians rarely love cricket.”

“Birds generally fly.”

“Bodies generally expand when heated.”

“Metals rarely float in water”

We we will present our approach in a stepwise way as follows.

1. In 3.1 (Numerical approach to vague notions), we will introduce a first approach
to modalities and quantifiers with vague notions.

2. In 3.2 (Qualitative account for vague quantification), we will try to explain better
the notions of vague quantification.

3. In 3.3 (Qualitative approach to vague notions), we will put together these ideas
to have a treatment of modalities with vague nations in a general setting.

3.1 Numerical approach to vague notions

We will now examine a first explanation for quantifiers and modalities with vague
notions (in a simplified version).

Imagine that we wish to make some assertions about the color of the offsprings of a
given animal. Consider a given animal a and the following assertion:

(∀) “All offsprings of a are black .”

A formulation of this assertion with a modal aspect could be as follows:

(2) “Necessarily the offsprings of a are black.”

In this case, we have an accessibility relation R between an animal and its offsprings.
The meaning of the formulation (2) above is as follows:

For each animal a′ such that aR a′: a′ is black.

Now, consider the following vague assertion:

(q) “The offsprings of a are almost certainly black.”

We intend to reduce this assertion (q) to the following (still somewhat vague) version:

(g) “The number of black offsprings of a is big.”
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It still remains to explain what ‘big’ means. For this purpose, we are going to
consider a simplified (but intuitively reasonable) version where ‘big’ means “at least
75% of the total”.

Example 3.1 (Offspring) Imagine that animal a has 10 offsprings a1, . . . , a10, so that
the black ones are a1, . . . , a8, the remaining ones being white:

a1, . . . , a8︸ ︷︷ ︸
black

, a9, a10︸ ︷︷ ︸
white

In this case, the number of black offsprings of a (which is 8) is considered big. Hence,
the assertion (g) is satisfied and so is the assertion with the vague modality (q): “The
offsprings are almost certainly black.”

One could similarly explain assertions like “Viennese generally like music”.

3.2 Qualitative account for vague quantification

We are now going to try to clarify some ideas about quantification with vague notions [9,
10].

In 3.1, we have decided to consider ‘big’ as “at least 75% (of the total)”. It seems
that this explanation involves some arbitrary decisions: why “at least 75%”, instead of
“more than 75%”, or some other threshold, like 70% or 80%?

Let us try to alleviate such sensation of arbitrariness. For this purpose, we are going
to consider a non empty universe V and examine some properties of the sets taken as
‘big’, i. e. those with at least 75% of the universe. As a matter of fact, it seems more
intuitive to start with their duals: the small sets, namely those having less than 25% of
the universe.

We have 2 immediate and intuitively reasonable) properties of these small sets.

(∅) The empty set ∅ is small (0% < 25%).

(V ) The universe V is not small (100% 6< 25%).

Moreover, the small sets have then following (closure) property.

(⊆) A subset X of a small set Y is small.

Here two points should be noticed.5

1. The above properties continue to hold if we take ‘small’ as, say, “less than 20 %”
or “at most 30 %” of the total.

2. From these properties of such a family S of small sets, we can infer properties of
the dual family B of big sets.

These points are summarized in Table 1.

5Notice that these properties explain the vague inference in Example 1.1.
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S (small sets) B (big sets)

(+) ∅ ∈ S V ∈ B
(-) V 6∈ S ∅ 6∈ B
(⊆) X ⊆ S&S ∈ S ⇒ X ∈ S G ⊆ Y &G ∈ B ⇒ Y ∈ B

Table 1: Properties of small and big sets

On the other hand, it does not seem reasonable to expect the intersection of two big
sets to be a big set (neither the union of two small sets to be a small set).

We examine an example which illustrates well the properties mentioned above.

Example 3.2 (Brazilians) Considering the universe of inhabitants of Brazil, the fol-
lowing two assertions look quite reasonable.

(M) “Many Brazilians have their moustache shaved” (M ∈ B)

(L) “Many Brazilians have their legs shaved” (L ∈ B)

Under these conditions it also seems reasonable to state that

(∪) “Many Brazilians have their moustache shaved or support Flamengo”

but, it does not seem so reasonable the statement

(∩) “Many Brazilians have their moustache and their legs shaved”.

Indeed, assertion (∪) means M ∪ F ∈ B (which seems to follow from M ∈ B, as
M ⊆M ∪ F ); whereas the unexpected assertion (∩) means M ∩ L ∈ B.

We have just seen some (reasonable) properties of small and big sets, which serve
to provide reasons for accepting some inferences while rejecting others. These expla-
nations, however, are based on having used a threshold to describe small and big sets.
Nonetheless, this view is still somewhat restricted. This may be noticed in the next
example.

Example 3.3 (Naturals) For the universe of natural numbers, the following 3 asser-
tions seem reasonable.6

(λ) “Few naturals are smaller than 15” (L ∈ S)

(δ) “Few naturals divide 12” (D ∈ S)

6Note that these are vague assertions about a sharp domain.
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(υ) “Few naturals are smaller than 15’ or divide 12” (A ∪D ∈ P)

Indeed we may be tempted to believe that the third assertion (υ) follows from the first
two (λ) and (δ). How could we account for this? We have been inclined to expect the
family of small sets not to be closed under union!

Here, we can appeal to another “more relaxed” description of small sets. Since
the universe of naturals is infinite, it seems reasonable to understand ‘small’ as being
“finite”.7 With such a description, besides the above properties, we also have the closure
of the family of small sets under union, i. e, the following property:

if X ∈ S and Y ∈ S, then X ∪ Y ∈ S.

Summarizing, we have seen two ways of describing the vague sets that are to be con-
sidered small (and dually the big ones). These two approaches do not establish the same
properties. Moreover, there are other reasonable descriptions for these notions [11, 10].
On the other hand, the above examples suggest that certain properties are sometimes
desirable, sometimes not. How can we explain this?

We should mention that there are several distinct intuitive ideas of ‘big’: several,
many, most, almost all, etc. It does not seem reasonable to expect that all of them
sould have the same properties. What we can expect is to obtain a uniform way of
describing such vague quantifications.8

Towards this goal, we will abstract from the particular descriptions. We will consider
two families of subses of a given universe V : families N (of the negligible sets) and
W (of the important sets), which will correspond to intuitive ideas of ‘rarelly’ and
‘generally’, respectively.

Of course, these ideas of negligible and important are still more vague. But, this can
be a bonus: they are more flexible. What we will do is considering families that may
have some properties like the ones mentioned before. In each case, these dual families
may have some of the properties summarized in Table 2.

The dual families of negligible and of important sets may have some other properties.
We present some of them for the family W of important sets in Table 3.

3.3 Qualitative approach to vague notions

We will now reconsider the approach to vague notions: modalities and quantifiers.
First, we have used a simplified version for modalities and quantifiers with vague

notions (in 3.1). Then, we have encountered a better explanation for notions related

7For the universe of real numbers, one may take ‘small’ as being “denumerable”.
8In a similar way, there are several meanings for a modality like always; nevertheless we have a

unified way of characterizing them.
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N (negligible sets) W (important sets)

(∅) ∅ ∈ N ∅ 6∈ W
(V ) V 6∈ N V ∈ W

(⊆)

X ⊆ N &N ∈ N
⇓

X ∈ N

W ⊆ Y &W ∈ W
⇓

Y ∈ W

(•)
N1 ∈ N &N2 ∈ N

⇓
N1 ∪N2 ∈ N

W1 ∈ W &W2 ∈ W
⇓

W1 ∩W2 ∈ W

Table 2: Properties of negligible and important sets

Prime: X 6∈ W &Y 6∈ W ⇒ X ∪ Y 6∈ W
Rejection: X ∈ W ⇒ X 6∈ W
Attraction: X 6∈ W ⇒ X ∈ W

Table 3: Other possible properties of important sets
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to vague quantification (in 3.2). Now, we are going to put together these two parts in
order to have a general treatment of modalities and quantifiers with vague notions.

Consider a given animal a and the assertion:

“The offsprings of a are generally black.”

This assertion has been successively interpreted as:

1. “The set of of black offsprings of a is big” (cf. 3.1);

2. “The set of black offsprings of a is important” (cf. 3.2).

In Example 3.1, we have considered an animal and its offspring. We now consider
a variant of this example with two animals.

Example 3.4 (Animals) In Example 3.1, animal a has 10 offsprings a1, . . . , a10, of
which a1, . . . , a8 are black (a9 e a10 being white). Now, consider another animal c having
20 offsprings c1,. . . , c20, of which c1, . . . , c8 are black (the remaining 12 ones being
white). This situation can be visualized below (where we use aR and cR, respectively,
for the set of offspring of animals a and c):

aR︷ ︸︸ ︷
a1, . . . , a8︸ ︷︷ ︸

black

, a9, a10︸ ︷︷ ︸
white

cR︷ ︸︸ ︷
c1, . . . , c8︸ ︷︷ ︸

black

, c9, c10, . . . , c20︸ ︷︷ ︸
white

In this case we may notice that:

(a) the set {a1, . . . , a8} has 8 animals (more than 75% of the total 10); thus, it is
considered as a big set of offspring of a;

(b) the set {c1, . . . , c8} has 8 animals (less than 75% of the total 20); thus, it is not
considered as a big set of offsprings of c.

So, a set with 8 animals is big, whereas another set with 8 animals is not big.

The idea to be emphasized here is that a set being big depends not only on the (size
of) the set, but also on the total (the set of offsprings, in the Example 3.4). Recall
that ‘important’ intends to be an abstraction of ‘big’ (cf. 3.2). Thus, a set is considered
important depending not only on the set itself, but also on the universe (the set of
reachable animals by the offspring relation, in the above example).

Another example illustrating such a dependency is chess. Here, the reachable set
depends on a particular configuration (or situation) of the chessboard.
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Example 3.5 (Queen) First, consider a situation Qm where the queen is in the center
of the chessboard. In this case, the reachable (or menaced) positions by the queen are
her horizontal, her vertical and the two diagonals (following the pattern of the United
Kingdom’s flag): with a total of 27 positions (see Figure 1). Now, consider a situation
Qc where the queen is in corner of the chessboard. In this case, the reachable (or
menaced) positions by the queen are her horizontal and her diagonal: with a total of 21
positions (see Figure 2). We see that the reachable set from a given situation depends on
the particular situation itself. The queen’s accessibility relation has the aspect sketched
in Figure 3.

+ + +
+ + +

+ + +
+ + + Q + + + +

+ + +
+ + +

+ + +
+ +

Figure 1: Queen in the center: positions menaced

Q + + + + + + +
+ +
+ +
+ +
+ +
+ +
+ +
+ +

Figure 2: Queen in the corner: positions menaced

Thus, it is reasonable to consider that the notion important is also related to a
situation. Then, for each situation s:

(sR) besides the s-reachable set sR, (given by the accessibility relation R),

(Ws) we associate a family Ws of subsets of sR (considered important within sR).
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Qm︷ ︸︸ ︷
Q → Q

↓ ↘ ↓

Q

→

Q

↑

Q

︸ ︷︷ ︸
Qc

Figure 3: Queen’s accessibility relation
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4 Logics for vague notions

In this section we examine some ideas on logics for vague notions We will use a concrete
example to introduce the main ideas.

4.1 Case study

We are going to consider a case similar to Examples 3.1 and 3.4.

Example 4.1 (Animals and colors) Consider several animals. Some of them are
offspring of others. Some animals may be black or dark.
We can represent the offspring relation by an arrow between animals as shown below
(where an arrow x→ y indicates that y is offspring of x):

a2 a3 a4 → c2 c3

↖ ↑ ↗ ↖ ↗
a1 ← a → a5 → c1 ← c
↙ ↓ ↘ ↙ ↓ ↘

a8 a7 a6 c6 c5 c4

↖ ↑ ↗ ↖ ↗
e2 f2

↑ ↑
e1 ← e → e3 ← f1 ← f

↓
e4 h → h′

Assume that the colors of the animals are as follows..

(b) The black animals are:

a and its offsprings a1, . . . , a6; c and its offsprings c1, . . . , c4;
the offsprings e1 and e2 of e; f and its offsprings f1 and f2.

(d) The dark animals are:

a and its offsprings a1, . . . , a6 and a7; c and its offsprings c1, . . . , c4 and c5;
e and its offsprings e1, e2 and e3; f and its offsprings f1 and f2.

If we indicate colors by underlining the dark animals and overlining the black ones, we
have the situation shown in Figure 4.

We are going to analyze the case described in Example 4.1 by using:

1. a logic with a vague quantifier (in 4.2),

2. a logic with a vague modality (in 4.3).
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a2 a3 a4 → c2 c3

↖ ↑ ↗ ↖ ↗
a1 ← a → a5 → c1 ← c
↙ ↓ ↘ ↙ ↓ ↘

a8 a7 a6 c6 c5 c4

↖ ↑ ↗ ↖ ↗
e2 f2

↑ ↑
e1 ← e → e3 ← f1 ← f

↓
e4 h → h′

Figure 4: Animals with offspring and colors

4.2 Logic with vague quantifier

We now analyze Example 4.1 in a logic with a vague quantifier. We start with a usual
first-order logic [6] and extend it with a vague quantifier [8, 11].

To formalize this example we sill use a first-order language LF, having (besides
variables, etc.) the following (extra-logical) symbols:

bynary predicate R for ‘offspring’,
unary predicates B and D for the colours ‘black’ and ‘dark’ (respectively),
constants a e f for the animals a and f (respectively).

Example 4.1 gives a structure for this language LF: the structure

A := 〈A,RA,BA,DA, aA, fA 〉, where

A is the above universe of animals,

RA is the binary ‘offspring’ relation, as above

BA is the set {a, a1, . . . , a6, c, c1, . . . , c4, e1, e2, f, f1, f2} (of black animals),

DA is the set {a, a1, . . . , a6, a7, c, c1, . . . , c4, c5, e, e1, e2, e3, f, f1, f2},

aA is the animal a ∈ A,

fA is the animal f ∈ A.

With this language LF, we can symbolize assertions about animals involving off-
spring relation among them and their colors: black and dark. Examples of such asser-
tions and sentences symbolizing them are as follows:
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“The animal a is black” B(a)

“Animal f is not an offspring of animal a” ¬R(a, f)

“Every offspring of f is dark” ∀v [ R(f, v) → D(v) ]

“No offspring of f is dark and not black” ¬∃v [ R(f, v) ∧D(v) ∧ ¬B(v) ]

These four assertions are true and their corresponding sentences hold in structure
A. Calling τ any one of these sentences, we have A |= τ .

To interpret a formula with free variables, like ¬R(a, v), we use an assignment of
elements of A to the variables.

Formula ¬R(a, v) is satisfied by assigning b6 ∈ A to variable v:

A |= ¬R(a, v) [[ b6 ]], for (a, b6) 6∈ RA (animal b6 is not an offspring of a).

Now, the assignment of a8 to variable v does not satisfy this formula:

A 6|= ¬R(a, v) [[ a8 ]], for (a, a8) ∈ RA (animal a8 is an offspring of a).

Similarly, the formula B(v) is satisfied exactly by the assignment of a black animal
to variable v, i. e. the extension of formula B(v) is the set BA.

Now, consider the assertion with vague quantification, as:

(g) “Animals generally are black”.

To symbolize assertions such as this one, we will extend the first order language LF:
we add a new (vague) quantifier ∇, to symbolize ‘generally’, obtaining L∇F .

In this language L∇F , the above vague assertion can be symbolized as (γ): ∇vB(v).
We have seen above that the extension of the formula B(v) is the set BA of black

animals. As seen in Section 3 (cf. 3.3), the vague assertion (g) and the sentence (γ)
should be interpreted as:

1. “Black animals form an important set of animals”.

2. The extension of the formula B(v) is an important set of animals.

3. The set BA belongs to the family W of the important sets of animals.

But, for this, we must provide such a family W of the important sets of animals: we
should enrich the structure

A = 〈A,RA,BA,DA, aA, fA 〉, for the first-order language LF,

adding to it a family W of sets of animals. This would yield a modulated structure

AW := 〈A,RA,BA,DA, aA, fA,W 〉 for the extended language L∇F .

Then, a sentence holds in the modulated structure AW iff its extension belongs to
the family W , so AW |= ∇vB(v) iff BA ∈ W .
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4.3 Logic with vague modality

We are now going to examine Example 4.1 using a logic with a vague modality. We
start with a modal logic [5, 4, 2] and extend it by a vague modality.

To symbolize our example, we will use a modal language LM with modalities 3 and
2, as well as sentential letters (variables), such as b, d, p,. . .

We can view Example 4.1 as a relational structure, consisting of the following:

set A (of states) as the above universe of animals,

(accessibility) relation R as the binary relation ‘offspring’ given above

So, we have a frame F := 〈A,R 〉, giving the offspring relation between animals.
To describe our example, we choose propositional letters to represent the colors:

letter b for ‘black’ letter d for ‘dark’

By this, we mean that the animals for which the letter b holds are those having black
color; similarly, letter d holds exactly for the animals having dark color. Indicating for
which elements of A each propositional letter holds, we have a valuation v.9

Thus, we have a structure 〈A,R,v 〉 for LM: the model M := (F, v ).
We can now express some assertions. Some examples are as follows:

“Animal a is black” b holds at state a

“Necessarily the offsprings of f are dark ” 2 d holds at state f

“An offspring of f cannot be dark and not black” ¬3 ( d ∧ ¬b ) holds at f

These three assertions are true and the corresponding formulas hold at the corre-
sponding states (animals) in the model M. In other words, we have10

M 
 b [[ a ]] M 
 2 d [[ f ]] M 
 ¬3 ( d ∧ ¬b ) [[ f ]].

Similarly, we see that the formula b holds exactly for the black animals, i. e. the
extension M[[ b ]] of formula b is the set V (b) of black animals.

Now, consider an assertion with a vague modality, like:

(f) “The offsprings of a frequently have black color’.

To symbolize such assertions we will extend the modal language LM: we add a new
(vague) modality 5, to symbolize frequently, yielding the extension L5M.

In this language LOM, the vague assertion (f) can be symbolized as (φ): 5 b.
As seen before, the assertion (f) and the formula (φ) should be interpreted as:

9For instance, v(b) = {a, a1, . . . , a6, c, c1, . . . , c4, e1, e2, f, f1, f2}.
10Alternative notations for M 
 ϕ [[ a ]] are M , a 
 ϕ [2] and (F, V, a ) 
 ϕ [7].
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“The black offspings of a form an important set of offsprings of a”.

We have seen that the extension M[[ b ]] of formula b is the set of black animals. So,
the set of the black offsprings of a is the restriction of the set M[[ b ]] (of black animals)
to the set aR = {a1, . . . , a8} of offsprings of a, i. e. the set aR ∩M[[ p ]]. It remains the
question: is this set an important set of the offspring of a? To answer this question we
need a family Wa of important sets of the offsprings of a.

To deal with such assertions with vague modalities, we should associate to each
animal a family of important sets of its offsprings: we must enrich

the model M = 〈A,R,v 〉, for the modal language LM,

adding to it a function W that assigns to each animal a family of sets (considered
important) of its offsprings. This yields a modulated model

MW := 〈A,R,v,W 〉 for the extended modal language L5M.

Alternatively, we can start with the frame F = 〈A,R 〉 and first enrich it to the
modulated frame FW := 〈A,R,W 〉, and then add to it a valuation v, to obtain MW =
〈A,R,v,W 〉.

Then, a formula holds at a state s of the modulated model MW iff its restricted
extension belongs to the family Ws, so MW 
 5 b [[ a ]] iff aR ∩M[[ p ]] ∈ Wa.

5 Logics with vague modalities

We are now going to examine logics with several vague modalities. We will start in-
troducing multimodalities (in 5.1) and then extend the treatment to encompass vague
multimodalities (in 5.2). We will also briefly examine extensions to other multimodali-
ties in 5.3.

Multimodal logics have several modalities [3]. This happens to be very natural in
certain cases [7]. An example of this appears in the treatment of time by modalities:
one modality for the past, another one for the future. The treatment of programs, and
of agents in general, also happens to involve several modalities: one for each agent [2].

5.1 Multimodal logics

We are now going to examine multimodal logics: syntax and semantics.
To introduce the ideas we will use our chess example in 3.3. The queen and the king

have different moves. We have seen a chessboard configuration Qc, having the queen in
a corner of the chessboard, from which 21 squares can be accessed (cf. Figure 2). Now,
consider the case of the king in the same corner: a configuration Kc. in this case, the
king can only access the 3 contiguous squares.
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K +
+ +

Thus, it seems natural to consider an accessibly relation for each piece, say RQ for
the queen, RK for the king, etc.

First, we are going to examine modal structures corresponding to these ideas: with
several accessibility relations. We have a set S (of states or configurations). Each
piece has a state-to-sate accessibility relation. Thus, we have a multimodal frame J =
〈S,RQ,RK , . . . 〉, with several accessibility relations. In this manner, each state s ∈ S
gives rise to the reachable set for a given piece; for instance, for the king, sRK consists
of the states t ∈ S such that sRK t.

To deal with such structures, we will use a multimodal language L. Besides the
propositional letters (variables), p1, p2, . . . , we have modalities corresponding to the
accessibility of each piece. For instance, for the king we have the following modalities,
with their intended meanings:

2K at every state accessible by the king,

3K at some state accessible by the king.

In this multimodal language L, we can express some properties of the game. For
instance, property of a piece, such as:

3K > expressing “The king has some move (in this state)”.

We can also express properties of distinct pieces, like:

3K > → 3Q> expressing “If the king has a move, then so does the queen”.

More precisely, we will interpret formulas of L in a model. Much as in 4.3, a model
M consists of a frame and a valuation V (indicating for each propositional letter, the
set of states where it holds). Thus, the above mentioned intended meanings may be
captured by formulas as follows:

M 
 2K ϕ [[s]] iff for every state t ∈ sRK , M 
 ϕ [[ t ]];

M 
 3K ϕ [[s]] iff for some state t ∈ sRK , M 
 ϕ [[ t ]].

Imagine that we have a formula ξ of L describing the checkmate configurations:
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s is a checkmate configuration iff ξ holds at s (i. e. M 
 ξ [[s]]).

Then, we can express some properties of a given configuration s:

all accessible configurations by the king are checkmate by M 
 2K ξ [[s]];

some accessible configuration by the king is checkmate by M 
 3K ξ [[s]].

5.2 Extension to vague multimodalities

We are now going to examine logics with vague multimodalities. We will extend the
preceding treatment (in 5.1) to encompass vague multimodalities.

We will use similar ideas to the extension seen to the unimodal case (cf. 4.3). Now,
we will extend the multimodal language L, by adding a vague modality for each chess
piece. For instance, for the king, we have the following vague modality, with his intended
meaning:

5K in an important set of states accessible by the king.

Thus, we add to the multimodal language L, vague modalities 5Q,5K , . . . , to obtain
the extended multimodal language L∗.

As before, the idea is that 5K ϕ holds at state s iff the set of states t ∈ sRK where
ϕ holds is an important set among the states accessible by the king.

Thus, to interpret formulas with such vague modalities, we need the notion of im-
portant sets of accessible states: we should associate to each state a family of important
sets for each piece. In other words, we must enrich

the model M = 〈S,RQ,RK , . . . , V 〉, for the multimodal language L,

by a function for each piece assigning to each state a family of sets (considered important
among the accessible ones). This will yield a multimodulated model

MW∗
:= 〈S,RQ,RK , . . . , V,QW ,KW , . . . 〉 for the language L∗.

Now, the above intended meaning can be given as follows:

MW∗

 5K ϕ [[s]] iff { t ∈ sRK /M

W∗

 ϕ [[t]] } belongs to family KWs.

For instance, consider the formula ξ of L describing the checkmate configurations
(cf. 5.1). We can express some vague properties of a given configuration s; e. g. “The
accessible configurations by the king generally are checkmate” by MW∗


 ξ [[s]].
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5.3 Other vague multimodalities

So far, we have treated unary modalities, corresponding to binary accessibility relations.
We now briefly indicate how to extend our previous ideas to non-unary modalities,
corresponding to other accessibility relations.

Non-unary modalities are quite natural in some cases. An example appears in
arrow logic, where non-binary accessibility relations appear naturally [2]. Arrows can
be reversed, composed, etc., which leads to some relations comparing arrows. For
instance, the arrows a → b and a ← b are reverse to each other; an arrow such as
a → c can be decomposed into two others: a → b and b → c. Note that the relation
‘is reversible to’ compares 2 arrows, while the relation ‘is decomposable to’ envolves 3
arrows:

binary relation ternary relation
a → b a ← b︸ ︷︷ ︸

C

a → c a → b b → c︸ ︷︷ ︸
D

Thus, we are going to consider an arrow frame S, consisting of a set S (of arrows)
and the accessibility relations on S: C (binary) e D (ternary).11 So, for each arrow
s ∈ S, sC is a set of arrows and sD is a set of pairs of arrows. In this manner, one has:
(t1, t2) ∈ sD iff s can be decomposed into t1 and t2. Now, it seems natural to consider
the following modalities (with their intended meanings):

◦ϕ holds at s iff for some arrow t ∈ sC, ϕ holds at t;

ψ ⊗ θ holds at s iff for some (t1, t2) ∈ sD, ψ holds at t1 and θ holds at t2.

In this case, is seems natural to consider vague modalities associated to the reverse
and to the decomposition.

The vague modality 5◦ associated to converse is unary and its interpretation is as
before (cf. 5.2): it involves, for each arrow s ∈ S, a family CWs of sets (considered
important) of converses, i. e. of subsets of sC.

The vague modality5⊗ associated to decomposition is more interesting. This vague
modality 5⊗ is binary and its interpretation involves a family of important sets of
decompositions of each arrows. But, for that, it suffices to extend the previous ideas
of 5.2 to important sets of pairs of arrows. Thus, we associate to each arrow s ∈ S, a
family DWs of subsets (considered important) of sD.

In such a model M?, the intended meanings can be given as follows:

M? 
 5◦ ϕ [[s]] iff { t ∈ sC /M
? 
 ϕ [[s]] } belongs to CWs;

M? 
 ψ 5⊗ θ [[s]] iff { (t1, t2) ∈ sD/M? 
 ψ [[t1]] &M? 
 θ [[t2]] } ∈ DWs.

Thus, one can see how to extend the preceding ideas to other vague modalities.

11Arrow logic may also have a unary accessibility relation (for a nullary modality) [2].
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6 Logics for vague notions: a formal approach

We will now give a more formal treatment for the ideas presented previously.

6.1 Assigning precise meaning to vague notions

We first recapitulate some of the preceding ideas.
Consider a universe V . In view of the preceding considerations, the interpretation

of “the objects of V generally have property ϕ” can be seen to amount to “the set of
objects of V having ϕ belongs to a given familyWV (of important sets of V ). Similarly,
the interpretation of “the objects of V rarely have property ϕ” can be seen to amount
to the set of objects of V having ϕ belongs to a given family N V (of negligible sets of
V ). Thus, ‘generally’ and ‘rarely’, within a given universe V , can be explained in
terms of families WV of important subsets and N V of negligible subsets of universe V .

Some general properties can be expected to be shared by several notions correspond-
ing to ‘generally’ and ‘rarely’.

On the one hand, the idea of exceptions, involved in understanding “objects generally
have property ϕ” as “objects rarely fail to have property ϕ”, corresponds to the dual-
ity between these families (cf. 3.2): a subset S of the universe V is negligible (S ∈ N V )
iff its complement V \ S is important (S ∈ WV ).

On the other hand, we may wish non-trivial notions: the existence of negligible
and non-negligible sets (as well as important and non-important sets). Now, one would
probably regard the empty set as (quite) negligible (∅ ∈ N V ) and the universe as non-
negligible (V 6∈ N V ).12 We then have N V 6= ∅ and, if V 6= ∅, also N V 6= ℘(V ). Thus,
over a non-empty universe V 6= ∅, our dual families will both be proper: ∅ 6= N V 6=
℘(V ) and ∅ 6=WV 6= ℘(V ).

Other properties, however, would be expected to be shared only by families corre-
sponding to some notions of ‘generally’ and ‘rarely’.

12One often pictures the negligible and important sets by Hasse diagrams as follows:

V

∅

N

V

∅

W
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In the interpretation of ‘generally’ as ‘many’, the family of important sets is closed
under supersets: a superset Y ⊇ X of an important set X ∈ WV is important: Y ∈ WV

(cf. Example 3.2). Then, the family of important sets is upward closed.
In addition, in the interpretation of ‘rarely’ as ‘few’, the family of negligible sets,

those having few elements, is also closed under union (cf. Example 3.3). Thus the
intersection of important sets X, Y ∈ W is important: X ∩ Y ∈ W .

In such cases, the family of important sets is a (proper) filter. Also, in other in-
terpretations of ‘generally’, the family of important sets is a proper ultrafilter. Thus,
these interpretations of ‘generally’ give rise to a hierarchy of families. The family of
important subsets of the universe is:

(S) upward closed in the ‘many’ interpretation,

(F) a filter in the ‘most’ interpretation, and

(U) an ultrafilter in other interpretations.

6.2 Basic concepts and results

We will now introduce some logics embodying the preceding ideas. We start from basic
modal logic [2] (BML, for short) and extend it as in 4.3.

Our alphabet will be that of basic modal logic with a new modality ∇. The formulas
of our language LOM are obtained by closing the set of formulas of BML under the new
modality ∇. Our frames and (rooted) models are much as in BML, but we add families
of important sets to give semantics for the ∇-operator (cf. 4.3). For a (Kripkean) frame
F = 〈S,R 〉 and a state s ∈ S, we use sR for the set of states R-reachable from s:

sR := { t ∈ S / (s, t) ∈ R }. Now, complex frame is a frame with a complex K: a triple
FK = 〈S,R,K 〉, where 〈S,R 〉 is a frame and complex K is a function mapping each
s ∈ S to a family Ks ⊆ ℘(sR). A complex model is a complex frame FK with a valuation
v (noted FK[v]). A rooted complex model is a complex model with a distinguished state,
as usual. Satisfaction of a formula in a rooted complex model (noted MK, s 
 ϕ) is
defined as in BML, with the following extra clause:

MK, s 
 ∇θ iff { t ∈ sR /MK, t 
 θ } ∈ Ks

This clause is intended to express the idea that a formula ∇θ holds at a state s ∈ S iff
the set of states reachable from s where θ holds is important: is in Ks.
We use MK[ϕ] for the extension of a formula ϕ (cf. 4.2). With this notation, the above
clause for ∇θ becomes: s ∈MK[∇θ] iff sR ∩MK[θ] ∈ Ks.

We will shortly set up some logics for local vague notions and axiomatize them. For
this purpose, we shall first examine some basic ideas.
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On the semantical side, we will deal with local consequence relations. It turns out
to be convenient to present them in a relativized form.

Consider a class CC of families of sets (e. g. lattices, filters, etc.). By a CC-frame we
mean a complex frame FK = 〈S,R,Ks 〉, where each family Ks ⊆ ℘(sR) is in the given
class CC of families. We use FFCC for the class of CC-frames.

We now introduce our notion of local consequence relative to a class of frames FF ⊆
FFCC: Γ |=FF ϕ iff FK[v], s 
 ϕ, for every complex frame FK ∈ FF such that FK[v], s 
 Γ.
In the special case where FF consists of all frames, we simplify the notation by using
simply |=CC.

On the axiomatic side, the notions of theorem and derivability take into account
the rules of necessitation, Modus Ponens and uniform substitution.

Consider a normal deductive system for BML [2], having as set of logical axioms
the (instances of) tautologies, as well as the following axioms

(K) 2(p→ q)→ (2p→ 2q) (distributivity)

(Dl) 3p↔ ¬2¬p (duality)

and the following rules of inference

[MP] from (ψ → θ) and ψ, infer θ (Modus Ponens)

[Sb] from ψ, infer an instance θ of ψ (Uniform Substitution)

[Nc] from ϕ, infer 2ϕ (Necessitation)

We will consider deductive systems parameterized by axioms. Given a set Ξ of
formulas of language LOM, we form a Ξ-presentation by adding to our deductive system
for BML the formulas in set Ξ as axioms. We say that a formula τ is a Ξ-theorem iff τ
can be obtained from the axioms in K ∪Ξ by the rules of inference [MP], [Sb] and [Nc].
Now, given a set Γ of formulas, we call formula ϕ Ξ-derivable from set Γ (and write
Γ `Ξ ϕ) iff ϕ can be obtained from the Ξ-theorems by applications of Modus Ponens
[MP] and Uniform Substitution [Sb]. Notice that we have the Deduction Theorem for
Ξ-derivability: if Γ ∪ {ψ} `Ξ θ, then also Γ `Ξ ψ → θ.

Also, given a derivability relation `, we have a `-canonical model M`: its states
are maximal `-consistent sets of formulas [2].

6.3 Basic local modal logic for ‘generally’ and ‘rarely’

We now examine the basic local modal logic for ∇: with no restriction on the nature
of the local complexes.

By considering the class BB of all families of sets, we obtain the relation |=BB of basic
consequence. We thus have our modal local vague logic (LV, for short).

Now, a formula is satisfied iff its extension is in the corresponding complex (cf. 4.3
and 6.2). This fact can be expressed by the following valid formulas:
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(↔ ∇) ∀v(ψ ↔ θ)→ (∇vψ → ∇vψ) (Extensionality)

(∇α) ∇vϕ→ ∇vϕ′) for an alphabetic variant ϕ′ of ϕ (Variant)

A deductive system for LV is obtained by extending our deductive system for BML
by the extensionality and variant schemas. With B := {(↔ ∇), (∇α)}, we have B-
theorems and the relation `B of local vague derivability. We can now establish soundness
and completeness of this deductive system for our logic LV. Soundness `B ⊆ |=BB is easy
to establish, as usual. We shall now prove completeness |=BB⊆`B. For this purpose,
we consider the `B-canonical model (cf. 6.2), say M = 〈S,R,v 〉, and extend it by
the canonical complex. More precisely, we introduce the spreads of a formula ϕ: [ϕ] :
= {∆ ∈ S /ϕ ∈ ∆} and Γ[ϕ] := ΓR ∩ [ϕ]. We can now define the canonical complex K
by setting KΓ := { Γ[ϕ] ⊆ S /∇ϕ ∈ Γ }. We can then establish a satisfaction lemma:
MK,Γ 
 ϕ iff ϕ ∈ Γ (by induction on ϕ). Thus, completeness follows as usual [2].13

Our logic LV places no restriction on the complexes. We may view it as a basic local
logic for ∇, where ∇ may be interpreted as ‘generally’ or ‘rarely’. In the sequel we
will examine logics for some particular classes of complexes.

6.4 Particular local modal logics for ‘generally’ and ‘rarely’

We will now consider logics for some particular versions of ‘generally’ and ‘rarely’, cor-
responding to special classes of families. These logics will be constructed modularly by
extending our axiomatization B for basic logic LV with axioms coding properties of the
families.

Characterizing a class of families as appropriate to a particular vague notion is a
modeling issue. Associated logical problems are axiomatizing the corresponding class
of frames and consequence relation. We shall illustrate the latter with some classes of
complexes characterized by closure-like properties.

As a simple example, consider the case where the families of important sets are
lattices: closed under intersection and union. By considering the class LL of all lattices,
we obtain the local lattice frames as well as the relation |=LL of lattice consequence.
This gives modal local lattice logic (LL, for short). We can axiomatize LL by adding to
our axiomatization B for basic logic LV the following two axioms:

(∇∧) (∇p ∧∇q)→ ∇(p ∧ q) (∩-closure)

(∇∨) (∇p ∧∇q)→ ∇(p ∨ q) (∪-closure)

Axioms (∇∧) and (∇∨) express closure under ∩ and ∪, respectively.14 Thus, they

13Indeed, if ∆ 6` ϕ, then ∆ ∪ {¬ϕ} is B-consistent and can be extended to a B-maximal consistent
set Γ, then MK,Γ 6
 ϕ.

14In a rooted complex model, formulas [∇∧] and [∇∨] express if sR∩v(p) ∈ Ks and sR∩v(q) ∈ Ks,
then sR ∩ (v(p) ∩ v(q)) ∈ Ks and sR ∩ (v(p) ∪ v(q)) ∈ Ks.
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characterize the lattice frames as the complex frames where they are globally valid: FK

is a lattice frame iff FK |= { (∇∧), (∇∨) }.

6.5 Modal local logics for ‘generally’

The logics LV and LL involve families corresponding to ‘generally’ and to ‘rarely’:
no distinction between ‘important’ and ‘negligible’ is apparent.

One way of distinguishing ‘important’ from ‘negligible’ is: “the universe is important
and the empty set is not”. We will examine it shortly. First, we consider another way:
“a subset of a negligible set is also negligible”, i. e. we consider each family of important
sets to be closed under supersets of its universe. (See 6.1.)

Call a family S over universe V inclusion-closed iff it is closed under supersets of
its universe V . Now, consider the class SS consisting of all inclusion-closed families. We
then obtain local inclusion-closed frames as well as the relation |=SS of inclusion-closed
consequence. This gives modal local inclusion-closed logic (LS, for short).

To axiomatize LS, we consider an up-closure axiom, similar to (K) (cf. 6.2) and to
(↔ ∇) (cf. 6.3), namely (→ ∇): 2(p→ q)→ (∇p→ ∇q). Let us analyze this axiom.
In a complex model, its instances express only a moderate upward-closure (for definable
subsets, see below). But, in a frame, it does express superset closure; so it characterizes
the inclusion-closed frames as the complex frames where it is globally valid: FK is as
inclusion-closed frame iff FK 
 (→ ∇).

Axiom (→ ∇) is not canonical, but there is a simple constructive remedy. We shall
call a presentation up-closed iff the up-closure axiom (→ ∇) is among its theorems.
Up-closed presentations are extensional: axiom (↔ ∇) can be deduced from (→ ∇).15

Consider a complex model MK of an up-closed presentation Ξ. We can see that the
derivable instances 2(ψ → θ) → (∇ψ → ∇θ) make each family Ks ⊆ ℘(sR) closed
under definable supersets, but not necessarily under every superset of the universe

sR. Thus, we obtain canonical complex K (cf. 6.3) and take its superset closure: we
construct K⊇Γ by closing KΓ under supersets.16

With S := B ∪ {→ ∇}, we have S-theorems and the relation `S of local up-closed
derivability. We clearly have soundness (`S ⊆ |=SS) and completeness (|=SS ⊆`S) now
follows from the preceding remarks.

We have examined some modal local logics for ‘generally’: the basic logic LV and
its extensions LL and LS. Each one of these logics for ‘generally’ (as well as some

15In the presence of (↔ ∇), 2(ψ → θ) → (∇ψ → ∇θ) has several equivalent versions, like ∇ψ →
∇(ψ∨ θ), ∇(ψ∧ θ)→ ∇θ and ∇(ψ∧ θ)→ ∇(ψ∨ θ). This situation is reminiscent of the inference rule

RM [4]. Also, note that a rule such as
` p→ q

` ∇p→ ∇q
does not imply (→ ∇) thus, failing to characterize

the local inclusion-closed frames.
16This extension adds no new definable subsets.
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similar ones) is a conservative extension of the basic modal logic: for formulas without
∇, each consequence coincides with that of BML.17

6.6 Modal local logics for proper ‘generally’

We now consider distinguishing ‘important’ from ‘negligible’ by proper families.
As seen in 6.1, we can have proper families (with the universe but not the empty set)

over non-empty universes. So, let us call a complex K proper for a frame F = 〈S,R 〉
iff, for each s ∈ S, sR ∈ Ks and, whenever sR 6= ∅, Ks 6= ∅. A proper frame is a
complex frame FK whose complex is proper. The proper frames can be characterized
by the formulas ∇> and 3> → ¬∇⊥.

By considering the class PP of all proper frames, we obtain the relation |=PP of proper
consequence. We thus have our modal local proper logic (LP, for short). We can axiom-
atize LP by P := B ∪ {∇>,3> → ¬∇⊥}.

We shall now examine two other examples of logics for proper ‘generally’, with
complexes giving proper filters and ultrafilters [12, 13].

The filters are the families of subsets closed under supersets and intersection. We
can characterize the filter-frames by the previous up-closure axiom (→ ∇) (cf. 6.5)
together with ∩-closure axiom (∇∧): (∇p∧∇q)→ ∇(p∧q). By considering the proper
complex frames FK where each Ks is a filter, we have local proper filter logic (PF, for
short). As before, soundness is easy and completeness not quite so. If we consider
the canonical complex K (cf. 6.3), we can see that each KΓ has the finite intersection
property: S1 ∩ . . .∩ Sn 6= ∅, whenever S1, . . . , Sn ∈ KΓ. So, the superset-closure K⊇Γ is
a proper filter.

We now examine the case of proper ultrafilters: maximal proper filters. We can
characterize the ultrafilter-frames by the filter axioms together with attracting axiom
(¬∇): ¬∇p→ ∇(¬p).18 By considering the proper complex frames FK where each Ks is
an ultrafilter, we have local proper ultrafilter logic (PU, for short). As before, soundness
is easy and completeness is now apparent. If we consider the canonical complex K, since
each KΓ has the finite intersection property, it can be extended to a proper ultrafilter.

We mention that we can also consider vague logics based on restricted frames, like
serial frames (characterized by 3>).

7 Final comments

We now summarize our presentation and make some comments.
We have examined some ideas about vague notions such as ‘generally’, ‘rarely’, etc.,

which often occur in natural language and in some branches of science, and a way

17Each model can be expanded with the trivial complex: Es := ∅, for every state s.
18Alternatively, we can add the prime axiom (∨∇): ∇(p ∨ q)→ (∇p ∨∇q).
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to handle modalities corresponding to them in order to have a precise treatment for
reasoning about them.

In the first part of the paper (Sections 2 through 5), we have introduced the ideas in
an informal manner, motivating them through illustrative examples, with the purpose of
showing how intuitive ideas led to the treatment by families of sets. We have presented
the basic ideas for vague notions, vague quantification and vague modalities (in Section
2), addressed the question of a precise treatment to vague quantification and vague
modality, presented logics with vague modalities (in section 4) and addressed the case
of logics with vague multimodalities (in Section 5). Notice that these logics are not
fuzzy logics: we address vague assertions about precise domains (cf. Example 3.3).

In the second part of the paper (Section 6) we have treated these ideas in a more
formal way. We have examined modal logics, with a new generality operator for express-
ing and reasoning about some local versions of ‘generally’. We have introduced some
local generalized modal logics, where the locality aspect corresponds to the intended
meaning of the generalized operator as “an important part of the reachable states has
the given property”.

The various logics presented are obtained as extension of the basic modal logic
by addition of axioms which capture properties of a specific family of important sets.
The basic modal local logic LV for ‘generally’ is axiomatized by extending the usual
deductive system for basic modal logic [2]. Other modal local logics for ‘generally’ and
‘rarely’ can be characterized by some new axioms, which axiomatize them when added
to the basic logic LV. These calculi are correct [14].

We hope that the ideas presented in this paper provide a first step towards the
development of a modal framework for generalized logics where vague notions can be
represented and manipulated in a precise way and the connections among them inves-
tigated (e. g. relate ‘important’ with ‘very important’, etc.).
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