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Abstract

We use a labelled deduction system based on the concept of computa-
tional paths (sequences of rewrites) as equalities between two terms of the
same type. We also define a term rewriting system that is used to make
computations between these computational paths, establishing equalities
between equalities. We then proceed to show the main result here: using
this system to obtain the calculation of the fundamental group of the
circle, of the torus and the real projective plane.
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Introduction

The identity type is arguably one of the most interesting entities of Martin-Löf
type theory. From any type A, it is possible to construct the identity type
IdA(x, y). This type establishes the relation of identity between two terms of A,
i.e., if there is x =p y : A, then p is a witness or proof that x is indeed equal to y.
The proposal of the Univalence Axiom made the identity type one of the most
studied aspects of type theory. It proposes that x = y is equivalent to saying
that x ≃ y, that is, the identity is an equivalence of equivalences. Another
important aspect is the fact that it is possible to interpret the as paths between
two points of the same space. This interpretation gives rise to the interesting
interpretation of equality as a collection of homotopical paths. This connection
of type theory and homotopy theory makes type theory a suitable foundation
for both computation and mathematics. Nevertheless, this interpretation is only
a semantical one [29] and it was not proposed with a syntactical counterpart
for the concept of path in type theory. For that reason, the addition of paths to
the syntax of homotopy type theory has been recently proposed by De Queiroz,
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Ramos and De Oliveira [17] [24], in these works, the authors use an entity
known as ‘computational path’, proposed by De Queiroz and Gabbay in 1994
[16], and show that it can be used to formalize the identity type in a more
explicit manner.

On the other hand, one of the main interesting points of the interpretation
of logical connectives via deductive systems which use a labelling system is the
clear separation between a functional calculus on the labels (the names that
record the steps of the proof) and a logical calculus on the formulas [11, 16].
Moreover, this interpretation has important applications. Previous publications
[17, 16, 21, 23] claim that the harmony that comes with this separation makes
labelled natural deduction a suitable framework to study and develop a theory
of equality for natural deduction. Take, for example, the following cases taken
from the λ-calculus [21]:

(λx.(λy.yx)(λw.zw))v �η (λx.(λy.yx)z)v �β (λy.yv)z �β zv
(λx.(λy.yx)(λw.zw))v �β (λx(λw.zw)x)v �η (λx.zx)v �β zv

In the theory of the βη-equality of λ-calculus, we can indeed say that
(λx.(λy.yx)(λw.zw))v is equal to zv. Moreover, as we can see above, we have at
least two ways of obtaining these equalities. We can go further, and call s the
first sequence of rewrites that establish that (λx.(λy.yx)(λw.zw))v is indeed
equal to zv. The second one, for example, we can call r. Thus, we can say that
this equality is established by s and r. As we will see in this paper, we s and r
are examples of an entity known as computational path.

Since we now have labels (computational paths) that establishes the equality
between two terms, interesting questions might arise: is s different of r or are
they normal forms of this equality proof? If s is equal to r, how can we prove
this? We can answer questions like this when we work in a labelled natural
deduction framework. The idea is that we are not limited by the calculus on the
formulas, but we can also define and work with rules that apply to the labels.
That way, we can use these rules to formally establish the equality between
these labels, i.e., establish equalities between equalities. In this work, we will
use a system proposed by [13] and known as LNDEQ-TRS.

In that context, the contribution of this paper will be to propose a surprising
connection: it is possible to use a labelled natural deduction system together
with LNDEQ-TRS to obtain topological results about fundamental groups.

Indeed, in this paper we will develop a theory and show that it is powerful
enough to calculate the fundamental group of a circle, torus and real projective
plane. For this, e use a labelled deduction system based on the concept
of computational paths (sequence of rewrites). Taking into account that in
mathematics [12] the calculation of this fundamental group is quite laborious,
we believe our work accomplishes this calculation in a less complex form.



A Topological Application of Labelled Natural Deduction 3

Nevertheless, to obtain this result we need to first formally define the concept
of computational paths and define LNDEQ-TRS.

1 Computational Paths

In this paper, we introduce the main work tool, an entity known as computa-
tional paths. In [24], we have seen that it is possible to interpret the identity
type semantically, considering the terms as homotopical paths between two
points of a space. Thus, inspired by the path-based approach of the homotopy
interpretation, we can use a similar approach to define the identity type in type
theory, this entity is know as computational paths.

The interpretation will be similar to the homotopy case: a term p : IdA(a, b)
will be a computational path between terms a, b : A, and such path will be
the result of a sequence of rewrites. In the sequel, we shall define formally
the concept of a computational path. The main idea, i.e. proofs of equality
statements as (reversible) sequences of rewrites, is not new, as it goes back
to a paper entitled “Equality in labeled deductive systems and the functional
interpretation of propositional equality, presented in December 1993 at the 9th
Amsterdam Colloquium, and published in the proceedings in 1994[16].

Indeed, one of the most interesting aspects of the identity type is the fact
that it can be used to construct higher structures. This is a rather natural
consequence of the fact that it is possible to construct higher identities. For any
a, b : A, we have type IdA(a, b). If this type is inhabited by any p, q : IdA(a, b),
then we have type IdIdA(a,b)(p, q). If the latter type is inhabited, we have a
higher equality between p and q[4]. This concept is also present in computational
paths. One can show the equality between two computational paths s and t by
constructing a third one between s and t. We show in this paper a system of
rules used to establish equalities between computational paths[13].

Another important question we want to answer is one that arises naturally
when talking about equality: Is there a canonical proof for an expression t1 = t2?
In the language of computational paths, is there a normal path between t1 and
t2 such that every other path can be reduced to this one? In [25], it was proved
that the answer is negative, this model also refutes the Uniquiness of Identity
Proofs (UIP))

1.1 Introducing Computational Paths

Before we enter in details of computational paths, let’s recall what motivated the
introduction of computational paths to type theory. In type theory, our types
are interpreted using the so-called Brower-Heyting-Kolmogorov Interpretation.
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That way, a semantic interpretation of formulas are not given by truth-values,
but by the concept of proof as a primitive notion. Thus, we have [17]:

a proof of the proposition: is given by:

A ∧B a proof of A and a proof of B

A ∨B a proof of A or a proof of B

A→ B a function that turns a proof of A into a proof of B

∀xD.P (x) a function that turns an element a into a proof of P (a)

∃xD.P (x) an element a (witness) and a proof of P (a)

Also, based on the Curry-Howard functional interpretation of logical con-
nectives, one have [17]:

a proof of the proposition: has the canonical form of:

A ∧B ⟨p, q⟩ where p is a proof of A and q is a proof of B

A ∨B i(p) where p is a proof of A or j(q) where q is a proof of B

(‘i’ and ‘j’ abbreviate ‘into the left/right disjunct’)

A→ B λx.b(x) where b(p) is a proof of B

provided p is a proof of A

∀xA.B(x) Λx.f(x) where f(a) is a proof of B(a)

provided a is an arbitrary individual chosen

from the domain A

∃xA.B(x) εx.(f(x), a) where a is a witness

from the domain A, f(a) is a proof of B(a)

If one looks closely, there is one interpretation missing in the BHK-Interpretation.
What constitutes a proof of t1 = t2? In other words, what is a proof of an
equality statement? In [17] it was proposed that an equality between these two
terms should be a sequence of rewritings starting at t1 and ending at t2

We answer this by proposing that an equality between those two terms
should be a sequence of rewrites starting from t1 and ending at t2. Thus, we
would have [17]:

a proof of the proposition: is given by:

t1 = t2 ?

(Perhaps a sequence of rewrites

starting from t1 and ending in t2?)

We call computational path the sequence of rewrites between these terms.
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1.2 Formal Definition

Since computational path is a generic term, it is important to emphasize the
fact that we are using the term computational path in the sense defined by[21].
A computational path is based on the idea that it is possible to formally define
when two computational objects a, b : A are equal. These two objects are equal
if one can reach b from a by applying a sequence of axioms or rules. This
sequence of operations forms a path. Since it is between two computational
objects, it is said that this path is a computational one. Also, an application of
an axiom or a rule transforms (or rewrite) an term in another. For that reason,
a computational path is also known as a sequence of rewrites. Nevertheless,
before we define formally a computational path, we can take a look at one
famous equality theory, the λβη − equality[5]:

Definition 1.1 The λβη-equality is composed by the following axioms:

(α) λx.M = λy.M [y/x] if y /∈ FV (M);

(β) (λx.M)N = M [N/x];

(ρ) M = M ;

(η) (λx.Mx) = M (x /∈ FV (M)).

And the following rules of inference:

M = M ′
(µ)

NM = NM ′
M = N N = P(τ)

M = P

M = M ′
(ν)

MN = M ′N
M = N(σ)
N = M

M = M ′
(ξ)

λx.M = λx.M ′

Definition 1.2 [5] P is β-equal or β-convertible to Q (notation P =β Q) iff
Q is obtained from P by a finite (perhaps empty) series of β-contractions and
reversed β-contractions and changes of bound variables. That is, P =β Q iff
there exist P0, . . . , Pn (n ≥ 0) such that P0 ≡ P , Pn ≡ Q, (∀i ≤ n− 1)(Pi ▷1β
Pi+1 or Pi+1 ▷1β Pi or Pi ≡α Pi+1).

(Note that equality has an existential force, which will show in the proof rules
for the identity type.)

The same happens with λβη-equality:
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Definition 1.3 (λβη-equality[5]) The equality-relation determined by the the-
ory λβη is called =βη; that is, we define

M =βη N ⇔ λβη ⊢M = N.

Example 1.4 Take the term M ≡ (λx.(λy.yx)(λw.zw))v. Then, it is βη-equal
to N ≡ zv because of the sequence:
(λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v, (λy.yv)z, zv
which starts from M and ends with N , and each member of the sequence is
obtained via 1-step β- or η-contraction of a previous term in the sequence. To
take this sequence into a path, one has to apply transitivity twice, as we do in
the example below.

Example 1.5 The term M ≡ (λx.(λy.yx)(λw.zw))v is βη-equal to N ≡ zv
because of the sequence:
(λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v, (λy.yv)z, zv
Now, taking this sequence into a path leads us to the following:
The first is equal to the second based on the grounds:
η((λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v)
The second is equal to the third based on the grounds:
β((λx.(λy.yx)z)v, (λy.yv)z)
Now, the first is equal to the third based on the grounds:
τ(η((λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v), β((λx.(λy.yx)z)v, (λy.yv)z))
Now, the third is equal to the fourth one based on the grounds:
β((λy.yv)z, zv)
Thus, the first one is equal to the fourth one based on the grounds:
τ(τ(η((λx.(λy.yx)(λw.zw))v, (λx.(λy.yx)z)v), β((λx.(λy.yx)z)v, (λy.yv)z)), β((λy.yv)z, zv))).

The aforementioned theory establishes the equality between two λ-terms.
Since we are working with computational objects as terms of a type, we can
consider the following definition:

Definition 1.6 The equality theory of Martin Löf ’s type theory has the follow-
ing basic proof rules for the Π-type:

N : A

[x : A]

M : B(β)
(λx.M)N = M [N/x] : B[N/x]

[x : A]

M = M ′ : B(ξ)
λx.M = λx.M ′ : (Πx : A)B

M : A(ρ)
M = M : A

M = M ′ : A N : (Πx : A)B
(µ)

NM = NM ′ : B[M/x]

M = N : A(σ)
N = M : A

N : A M = M ′ : (Πx : A)B
(ν)

MN = M ′N : B[N/x]
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M = N : A N = P : A(τ)
M = P : A

M : (Πx : A)B
(η) (x /∈ FV (M))

(λx.Mx) = M : (Πx : A)B

We are finally able to formally define computational paths:

Definition 1.7 Let a and b be elements of a type A. Then, a computational
path s from a to b is a composition of rewrites (each rewrite is an application
of the inference rules of the equality theory of type theory or is a change of
bound variables). We denote that by a =s b.

As we have seen in example 1.5, composition of rewrites are applications of
the rule τ . Since change of bound variables is possible, each term is considered
up to α-equivalence.

1.3 Equality Equations

One can use the aforementioned axioms to show that computational paths es-
tablishes the three fundamental equations of equality: the reflexivity, symmetry
and transitivity:

a =t b : A b =u c : A
transitivity

a =τ(t,u) c : A
a : A reflexivity

a =ρ a : A

a =t b : A symmetry
b =σ(t) a : A

1.4 Identity Type

We have said that it is possible to formulate the identity type using computa-
tional paths. As we have seen, the best way to define any formal entity of type
theory is by a set of natural deductions rules. Thus, we define our path-based
approach as the following set of rules:

• Formation and Introduction rules [17, 24]:

A type a : A b : A
Id− F

IdA(a, b) type

a =s b : A
Id− I

s(a, b) : IdA(a, b)
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One can notice that our formation rule is exactly equal to the traditional
identity type. From terms a, b : A, one can form that is inhabited only if
there is a proof of equality between those terms, i.e., IdA(a, b).

The difference starts with the introduction rule. In our approach, one can
notice that we do not use a reflexive constructor r. In other words, the
reflexive path is not the main building block of our identity type. Instead,
if we have a computational path a =s b : A, we introduce s(a, b) as a term
of the identity type. That way, one should see s(a, b) as a sequence of
rewrites and substitutions (i.e., a computational path) which would have
started from a and arrived at b

• Elimination rule [17, 24]:

m : IdA(a, b)

[a =g b : A]

h(g) : C
Id− E

REWR(m, ǵ.h(g)) : C

Let’s recall the notation being used. First, one should see h(g) as a
functional expression h which depends on g. Also, one should notice the
use of ‘́ ’ in ǵ. One should see ‘́ ’ as an abstractor that binds the occurrences
of the variable g introduced in the local assumption [a =g b : A] as a kind
of Skolem-type constant denoting the reason why a was assumed to be
equal to b.

We also introduce the constructor REWR. In a sense, it is similar to
the constructor J of the traditional approach, since both arise from the
elimination rule of the identity type. The behavior of REWR is simple. If
from a computational path g that establishes the equality between a and
b one can construct h(g) : C, then if we also have this equality established
by a term C, we can put together all this information in REWR to
construct C, eliminating the type IdA(a, b) in the process. The idea is
that we can substitute g for m in ǵ.h(g), resulting in h(m/g) : C. This
behavior is established next by the reduction rule.

• Reduction rule [17, 24]:

a =m b : A
Id− I

m(a, b) : IdA(a, b)

[a =g b : A]

h(g) : C
Id− E �β

REWR(m, ǵ.h(g)) : C
[a =m b : A]

h(m/g) : C
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• Induction rule:

e : IdA(a, b)

[a =t b : A]
Id− I

t(a, b) : IdA(a, b)
Id− E �η e : IdA(a, b)

REWR(e, t́.t(a, b)) : IdA(a, b)

Our introduction and elimination rules reassure the concept of equality as
an existential force. In the introduction rule, we encapsulate the idea that a
witness of a identity type IdA(a, b) only exists if there exist a computational
path establishing the equality of a and b. Also, one can notice that elimination
rule is similar to the elimination rule of the existential quantifier.

1.5 Path-based Examples

The objective of this subsection is to show how to use in practice the rules
that we have just defined. The idea is to show construction of terms of some
important types. The constructions that we have chosen to build are the
reflexive, transitive and symmetric type of the identity type. Those were not
random choices. The main reason is the fact that reflexive, transitive and
symmetric types are essential to the process of building a groupoid model for
the identity type[6]. As we shall see, these constructions come naturally from
simple computational paths constructed by the application of axioms of the
equality of type theory, as we have done in our construction of the type of
computational paths as a weak groupoid [27].

Before we start the constructions, we think that it is essential to understand
how to use the eliminations rules. The process of building a term of some
type is a matter of finding the right reason. In the case of J , the reason is the
correct x, y : A and z : IdA(a, b) that generates the adequate C(x, y, z). In our
approach, the reason is the correct path a =g b that generates the adequate
g(a, b) : Id(a, b).

1.5.1 Reflexivity

One could find strange the fact that we need to prove the reflexivity. Neverthe-
less, just remember that our approach is not based on the idea that reflexivity
is the base of the identity type. As usual in type theory, a proof of something
comes down to a construction of a term of a type. In this case, we need to
construct a term of type Π(a:A)IdA(a, a). The reason is extremely simple: from
a term a : A, we obtain the computational path a =ρ a : A [24]:
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[a : A]

a =ρ a : A
Id− I

ρ(a, a) : IdA(a, a)
Π− I

λa.ρ(a, a) : Π(a:A)IdA(a, a)

1.5.2 Symmetry

The second proposed construction is the symmetry. Our objective is to obtain
a term of type Π(a:A)Π(b:A)(IdA(a, b)→ IdA(b, a)).

We construct a proof using computational paths. As expected, we need to
find a suitable reason. Starting from a =t b, we could look at the axioms of
definition 4.1 to plan our next step. One of those axioms makes the symmetry
clear: the σ axiom. If we apply σ, we will obtain b =σ(t) a. From this, we can
then infer that IdA is inhabited by (σ(t))(b, a). Now, it is just a matter of
applying the elimination [24]:

[a : A] [b : A]

[p(a, b) : IdA(a, b)]

[a =t b : A]

b =σ(t) a : A
Id− I

(σ(t))(b, a) : IdA(b, a)
Id− E

REWR(p(a, b), t́.(σ(t))(b, a)) : IdA(b, a) → −I
λp.REWR(p(a, b), t́.(σ(t))(b, a)) : IdA(a, b)→ IdA(b, a)

Π− I
λb.λp.REWR(p(a, b), t́.(σ(t))(b, a)) : Π(b:A)(IdA(a, b)→ IdA(b, a))

Π− I
λa.λb.λp.REWR(p(a, b), t́.(σ(t))(b, a)) : Π(a:A)Π(b:A)(IdA(a, b)→ IdA(b, a))

1.5.3 Transitivity

The third and last construction will be the transitivity. Our objective is to
obtain a term of type

Π(a:A)Π(b:A)Π(c:A)(IdA(a, b)→ IdA(b, c)→ IdA(a, c)).

To build our path-based construction, the first step, as expected, is to find
the reason. Since we are trying to construct the transitivity, it is natural to
think that we should start with paths a =t b and b =u c and then, from these
paths, we should conclude that there is a path z that establishes that a =z c.
To obtain z, we could try to apply the axioms of definition 4.1. Looking at
the axioms, one is exactly what we want: the axiom τ . If we apply τ to a =t b
and b =u c, we will obtain a new path τ(t, u) such that a =τ(t,u) c. Using that
construction as the reason, we obtain the following term [24]:
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As one can see, each step is just straightforward applications of introduction,
elimination rules and abstractions. The only idea behind this construction is
just the simple fact that the axiom τ guarantees the transitivity of paths.

1.6 Term Rewrite System

As we have just shown, a computational path establishes when two terms of the
same type are equal. From the theory of computational paths, an interesting
case arises. Suppose we have a path s that establishes that a =s b : A and a
path t that establishes that a =t b : A. Consider that s and t are formed by
distinct compositions of rewrites. Is it possible to conclude that there are cases
that s and t should be considered equivalent? The answer is yes. Consider the
following examples [25]:

Example 1.8 Consider the path a =t b : A. By the symmetric property, we
obtain b =σ(t) a : A. What if we apply the property again on the path σ(t)?
We would obtain a path a =σ(σ(t)) b : A. Since we applied symmetry twice
in succession, we obtained a path that is equivalent to the initial path t. For
that reason, we would like to conclude the act of applying symmetry twice in
succession is a redundancy. We say that the path σ(σ(t)) reduce to the path t.

Example 1.9 Consider the reflexive path a =ρ a : A. It one applies the
symmetric axiom, one ends up with a =σ(ρ) a : A. Thus, the obtained path is
equivalent to the initial one, since the symmetry was applied to the reflexive
path. Therefore, σ(ρ) is a redundant way of expressing the path ρ. Thus, σ(ρ)
should be reduced to ρ.

Example 1.10 Consider a path a =t b : A. Applying the symmetry, one ends
up with b =σ(t) a : A. One can take those two paths and apply the transitivity,
ending up with a =τ(t,σ(t)) a. Since the path τ is the inverse of the σ(τ), the
composition of those two paths should be equivalent to the reflexive path. Thus,
τ(t, σ(t)) should be reduced to ρ.

As one could see in the aforementioned examples, different paths should be
considered equal if one is just a redundant form of the other. The examples
that we have just seen are just straightforward and simple cases. Since the
equality theory has a total of 7 axioms, the possibility of combinations that
could generate redundancies are high. Fortunately, all possible redundancies
were thoroughly mapped by[13]. In that work, a system that establishes all
redundancies and creates rules that solve them was proposed. This system,
known as LNDEQ − TRS, maps a total of 39 rules that solve redundancies.
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1.7 LND-EQ-TRS

In this subsection, we show the rules that compose the LNDEQ − TRS. All
those rules comes from the mapping of redundancies between computational
paths, as we have seen in the 3 previous examples.

1.7.1 Subterm Substitution

Before we introduce the rewriting rules, it is important to introduce the concept
of subterm substitution. In Equational Logic, the subterm substitution is given
by the following inference rule[18]:

s = t
sθ = tθ

where θ is a substitution. One problem is that such rule does not respect the
sub-formula property. To deal with that,[1] proposes two inference rules:

M = N C[N ] = O
IL

C[M ] = O

M = C[N ] N = O
IR

M = C[O]

where M, N and O are terms.
As proposed in [17], we can define similar rules using computational paths,

as follows:

x =r C[y] : A y =s u : A′

x =subL(r,s) C[u] : A
x =r w : A′ C[w] =s u : A

C[x] =subR(r,s) u : A

where C is the context in which the sub-term detached by ’[ ]’ appears and A′

could be a sub-domain of A, equal to A or disjoint to A.
In the rule above, C[u] should be understood as the result of replacing every

occurrence of y by u in C.

1.7.2 Rewriting Rules

In this subsection, our objective is to show all rewrite reductions and their
associated rewriting rules. The idea is to analyze all possible occurrences of
redundancies in proofs which involves the rules of rewritings.

We start with the transitivity:

Definition 1.11 (reductions involving τ [17])

x =r y : A y =σ(r) x : A

x =τ(r,σ(r)) x : A
▷tr x =ρ x : A
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y =σ(r) x : A x =r y : A

y =τ(σ(r),r) y : A
▷tsr y =ρ y : A

u =r v : A v =ρ v : A

u =τ(r,ρ) v : A
▷trr u =r v : A

u =ρ u : A u =r v : A

u =τ(ρ,r) v : A
▷tlr u =r v : A

Associated rewriting rules:

τ(r, σ(r)) ▷tr ρ

τ(σ(r), r) ▷tsr ρ

τ(r, ρ) ▷trr r

τ(ρ, r) ▷tlr r.

These reductions can be generalized to transformations where the reasons r
and σ(r) (transf. 1 and 2) and r and ρ (transf. 3 and 4) appear in some context,
as illustrated by the following example: [17]:

Example 1.12

x =r y : A

i(x) =ξ1(r) i(y) : A+B

x =r y : A

y =σ(r) x : A

i(y) =ξ1(σ(r)) i(x) : A+B

i(x) =τ(ξ1(r),ξ1(σ(r))) i(x) : A+B

▷tr
x =r y : A

i(x) =ξ1(r) i(y) : A+B

Associated rewriting: τ(ξ1(r), ξ1(σ(r))) ▷tr ξ1(r).

For the general context C[ ]:
Associated rewritings:
τ(C[r], C[σ(r)]) ▷tr C[ρ]
τ(C[σ(r)], C[r]) ▷tsr C[ρ]
τ(C[r], C[ρ]) ▷trr C[r]
τ(C[ρ], C[r]) ▷tlr C[r]

The transitivity rules are pretty straightforward. We have more complicated
cases [17]:
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Definition 1.13

a : A

[x : A]
...

b(x) =r g(x) : B

λx.b(x) =ξ(r) λx.g(x) : A→ B
→ -intr

APP (λx.b(x), a) =ν(ξ(r)) APP (λx.g(x), a) : B
→ -elim

▷mxl
a : A

b(a/x) =r g(a/x) : B

Associated rewriting rule:

ν(ξ(r)) ▷mxl r.

Definition 1.14 (reductions involving ρ and σ [17])

x =ρ x : A

x =σ(ρ) x : A
▷sr x =ρ x : A

x =r y : A

y =σ(r) x : A

x =σ(σ(r)) y : A
▷sr x =r y : A

Associated rewritings:
σ(ρ) ▷sr ρ
σ(σ(r)) ▷sr r

Definition 1.15 (Substitution rules [17])

u =r C[x] : A x =ρ x : A′

u =subL(r,ρ) C[x] : A
▷slr u =r C[x] : A

x =ρ x : A′ C[x] =r z : A

C[x] =subR(ρ,r) z : A
▷srr C[x] =r z : A

z =s C[y] : A y =r w : A′

z =subL(s,r) C[w] : D
y =r w : A′

w =σ(r) y : D′

z =subL(subL(s,r),σ(r)) C[y] : A
▷sls z =s C[y] : A
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z =s C[y] : A y =r w : A′

z =subL(s,r) C[w] : A
y =r w : A′

w =σ(r) y : A′

z =subL(subL(s,r),σ(r)) C[y] : A
▷slss z =s C[y] : A

x =s w : A′

x =s w : A′

w =σ(s) x : A′ C[x] =r z : A

C[w] =subR(σ(s),r) z : A

C[x] =subR(s,subR(σ(s),r)) z : A
▷srs C[x] =r z : A

x =s w : A′

w =σ(s) x : A′
x =s w : A′ C[w] =r z : A

C[x] =subR(s,r) z : A

C[w] =subR(σ(s),subR(s,r)) z : A
▷srrr C[w] =r z : A

Associated rewritings:
subL(C[r], C[ρ]) ▷slr C[r]
subR(C[ρ], C[r]) ▷srr C[r]
subL(subL(s, C[r]), C[σ(r)]) ▷sls s
subL(subL(s, C[σ(r)]), C[r]) ▷slss s
subR(s, subR(C[σ(s)], r)) ▷srs r
subR(C[σ(s)], subR(C[s], r)) ▷srrr r

Definition 1.16 ([17])

βrewr-×-reduction
x =r y : A z : B

⟨x, z⟩ =ξ1(r) ⟨y, z⟩ : A×B
× -intr

FST (⟨x, z⟩) =µ1(ξ1(r)) FST (⟨y, z⟩) : A
× -elim

▷mx2l x =r y : A

x =r x
′ : A y =s z : B

⟨x, y⟩ =ξ∧(r,s) ⟨x′, z⟩ : A×B
× -intr

FST (⟨x, y⟩) =µ1(ξ∧(r,s)) FST (⟨x′, z⟩) : A
× -elim

▷mx2l x =r x
′ : A

x =r y : A z =s w : B

⟨x, z⟩ =ξ∧(r,s) ⟨y, w⟩ : A×B
× -intr

SND(⟨x, z⟩) =µ2(ξ∧(r,s)) SND(⟨y, w⟩) : B
× -elim

▷mx2r z =s w : B
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x : A z =s w : B

⟨x, z⟩ =ξ2(s) ⟨x,w⟩ : A×B
× -intr

SND(⟨x, z⟩) =µ2(ξ2(s)) SND(⟨x,w⟩) : B
× -elim

▷mx2r z =s w : B

Associated rewritings:
µ1(ξ1(r)) ▷mx2l1 r
µ1(ξ∧(r, s)) ▷mx2l2 r
µ2(ξ∧(r, s)) ▷mx2r1 s
µ2(ξ2(s)) ▷mx2r2 s

βrewr-+-reduction
a =r a

′ : A

i(a) =ξ1(r) i(a
′) : A+B

+ -intr
[x : A]

f(x) =s k(x) : C

[y : B]

g(y) =u h(y) : C

D(i(a), x́f(x), ýg(y)) =µ(ξ1(r),s,u) D(i(a′), x́k(x), ýh(y)) : C
+ -elim

▷mx3l
a =r a

′ : A

f(a/x) =s k(a′/x) : C

b =r b
′ : B

j(b) =ξ2(r) j(b
′) : A+B

+ -intr
[x : A]

f(x) =s k(x) : C

[y : B]

g(y) =u h(y) : C

D(j(b), x́f(x), ýg(y)) =µ(ξ2(r),s,u) D(j(b′), x́k(x), ýh(y)) : C
+ -elim

▷mx3r
b =s b

′ : B

g(b/y) =u h(b′/y) : C

Associated rewritings:
µ(ξ1(r), s, u) ▷mx3l s
µ(ξ2(r), s, u) ▷mx3r u

βrewr-Π-reduction

a : A

[x : A]

f(x) =r g(x) : B(x)

λx.f(x) =ξ(r) λx.g(x) : Πx : A.B(x)

APP (λx.f(x), a) =ν(ξ(r)) APP (λx.g(x), a) : B(a)

▷mxl
a : A

f(a/x) =r g(a/x) : B(a)

Associated rewriting:
ν(ξ(r)) ▷mxl r

βrewr-Σ-reduction
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a =r a
′ : A f(a) : B(a)

εx.(f(x), a) =ξ1(r) εx.(f(x), a
′) : Σx : A.B(x)

[t : A, g(t) : B(t)]

d(g, t) =s h(g, t) : C

E(εx.(f(x), a), ǵt́d(g, t)) =µ(ξ1(r),s) E(εx.(f(x), a′), ǵt́h(g, t)) : C

▷mxr
a =r a

′ : A f(a) : B(a)

d(f/g, a/t) =s h(f/g, a′/t) : C

a : A f(a) =r i(a) : B(a)

εx.(f(x), a) =ξ2(r) εx.(i(x), a) : Σx : A.B(x)

[t : A, g(t) : B(t)]

d(g, t) =s h(g, t) : C

E(εx.(f(x), a), ǵt́d(g, t)) =µ(ξ2(r),s) E(εx.(i(x), a), ǵt́h(g, t)) : C

▷mxl
a : A f(a) =r i(a) : B(a)

d(f/g, a/t) =s h(i/g, a/t) : C

Associated rewritings:
µ(ξ1(r), s) ▷mxr s
µ(ξ2(r), s) ▷mxl s

Definition 1.17 (ηrewr [17])

ηrewr- ×-reduction
x =r y : A×B

FST (x) =µ1(r) FST (y) : A
× -elim

x =r y : A×B

SND(x) =µ2(r) SND(y) : B
× -elim

⟨FST (x), SND(x)⟩ =ξ(µ1(r),µ2(r)) ⟨FST (y), SND(y)⟩ : A×B
×

-intr
▷mx x =r y : A×B

ηrewr- +-reduction

c =t d : A+B

[a1 =r a2 : A]

i(a1) =ξ1(r) i(a2) : A+B
+ -intr

[b1 =s b2 : B]

j(b1) =ξ2(s) j(b2) : A+B
+ -intr

D(c, á1i(a1), b́1j(b1)) =µ(t,ξ1(r),ξ2(s)) D(d, á2i(a2), b́2j(b2))
+

-elim
▷mxx c =t d : A+B

Π-ηrewr-reduction
[t : A] c =r d : Πx : A.B(x)

APP (c, t) =ν(r) APP (d, t) : B(t)
Π-elim

λt.APP (c, t) =ξ(ν(r)) λt.APP (d, t) : Πt : A.B(t)
Π-intr

▷xmr c =r d : Πx : A.B(x)
where c and d do not depend on x.

Σ-ηrewr-reduction
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c =s b : Σx : A.B(x)

[t : A] [g(t) =r h(t) : B(t)]

εy.(g(y), t) =ξ2(r) εy.(h(y), t) : Σy : A.B(y)
Σ-intr

E(c, ǵt́εy.(g(y), t)) =µ(s,ξ2(r)) E(b, h́t́εy.(h(y), t)) : Σy : A.B(y)
Σ-elim

▷mxlr c =s b : Σx : A.B(x)

Associated rewritings:
ξ(µ1(r), µ2(r)) ▷mx r
µ(t, ξ1(r), ξ2(s)) ▷mxx t
ξ(ν(r)) ▷xmr r
µ(s, ξ2(r)) ▷mxlr s

Definition 1.18 (σ and τ [17])

x =r y : A y =s w : A

x =τ(r,s) w : A

w =σ(τ(r,s)) x : A
▷stss

y =s w : A

w =σ(s) y : A

x =r y : A

y =σ(r) x : A

w =τ(σ(s),σ(r)) x : A

Associated rewriting:
σ(τ(r, s)) ▷stss τ(σ(s), σ(r))

Definition 1.19 (σ and sub [17])

x =r C[y] : A y =s w : A′

x =subL(r,s) C[w] : A
C[w] =σ(subL(r,s)) x : A

▷ssbl

y =s w : A′

w =σ(s) y : A′
x =r C[y] : A
C[y] =σ(r) x : A

C[w] =subR(σ(s),σ(r)) x : A

x =r y : A′ C[y] =s w : A

C[x] =subR(r,s) w : A

w =σ(subR(r,s)) C[x] : D
▷ssbr

C[y] =s w : A

w =σ(s) C[y] : A
x =r y : A′

y =σ(r) x : A′

w =subL(σ(s),σ(r)) C[x] : A

Associated rewritings:
σ(subL(r, s)) ▷ssbl subR(σ(s), σ(r))
σ(subR(r, s)) ▷ssbr subL(σ(s), σ(r))
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Definition 1.20 (σ and ξ [17])

x =r y : A

i(x) =ξ1(r) i(y) : A+B

i(y) =σ(ξ1(r)) i(x) : A+B
▷sx

x =r y : A

y =σ(r) x : A

i(y) =ξ1(σ(r)) i(x) : A+B

x =r y : A z =s w : B

⟨x, z⟩ =ξ(r,s) ⟨y, w⟩ : A×B

⟨y, w⟩ =σ(ξ(r,s)) ⟨x, z⟩ : A×B
▷sxss

x =r y : A

y =σ(r) x : A

z =s w : B

w =σ(s) z : B

⟨y, w⟩ =ξ(σ(r),σ(s)) ⟨x, z⟩ : A×B

[x : A]

f(x) =s g(x) : B(x)

λx.f(x) =ξ(s) λx.g(x) : Πx : A.B(x)

λx.g(x) =σ(ξ(s)) λx.f(x) : Πx : A.B(x)
▷smss

[x : A]

f(x) =s g(x) : B(x)

g(x) =σ(s) f(x) : B(x)

λx.g(x) =ξ(σ(s)) λx.f(x) : Πx : A.B(x)

Associated rewritings:
σ(ξ(r)) ▷sx ξ(σ(r))
σ(ξ(r, s)) ▷sxss ξ(σ(r), σ(s))
σ(ξ(s) ▷smss ξ(σ(s))

Definition 1.21 (σ and µ [17])

x =r y : A×B

FST (x) =µ1(r) FST (y) : A

FST (y) =σ(µ1(r)) FST (x) : A
▷sm

x =r y : A×B

y =σ(r) x : A×B

FST (y) =µ1(σ(r)) FST (x) : A

x =r y : A×B

SND(x) =µ2(r) SND(y) : A

SND(y) =σ(µ2(r)) SND(x) : A
▷sm

x =r y : A×B

y =σ(r) x : A×B

SND(y) =µ2(σ(r)) SND(x) : A

x =s y : A f =r g : A→ B

APP (f, x) =µ(s,r) APP (g, y) : B

APP (g, y) =σ(µ(s,r)) APP (f, x) : B
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▷smss

x =s y : A

y =σ(s) x : A

f =r g : A→ B

g =σ(r) f : A→ B

APP (g, y) =µ(σ(s),σ(r)) APP (f, x) : B

x =r y : A+B

[s : A]
...

d(s) =u f(s) : C

[t : B]
...

e(t) =v g(t) : C

D(x, śd(s), t́e(t)) =µ(r,u,v) D(y, śf(s), t́g(t)) : C

D(y, śf(s), t́g(t)) : C =σ(µ(r,u,v)) D(x, śd(s), t́e(t)) : C

▷smsss

x =r y : A+B

y =σ(r) x : A+B

[s : A]

d(s) =u f(s) : C

f(s) =σ(u) d(s) : C

[t : B]

e(t) =v g(t) : C

g(t) =σ(v) e(t) : C

D(y, śf(s), t́g(t)) =µ(σ(r),σ(u),σ(v)) D(x, śd(s), t́e(t)) : C

e =s b : Σx : A.B(x)

[t : A, g(t) : B(t)]

d(g, t) =r f(g, t) : C

E(e, ǵt́d(g, t)) =µ(s,r) E(b, ǵt́f(g, t)) : C

E(b, ǵt́f(g, t)) =σ(µ(s,r)) E(e, ǵt́d(g, t)) : C

▷smss

e =s b : Σx : A.B(x)

b =σ(s) e : Σx : A.B(x)

[t : A, g(t) : B(t)]

d(g, t) =r f(g, t) : C

f(g, t) =σ(r) d(g, t) : C

E(b, ǵt́f(g, t)) =µ(σ(s),σ(r)) E(e, ǵt́d(g, t)) : C

Associated rewritings:
σ(µ1(r)) ▷sm µ1(σ(r))
σ(µ2(r)) ▷sm µ2(σ(r))
σ(µ(s, r)) ▷smss µ(σ(s), σ(r))
σ(µ(r, u, v)) ▷smsss µ(σ(r), σ(u), σ(v))

Definition 1.22 (τ and sub [17])

x =r C[y] : A y =s w : A′

x =subL(r,s) C[w] : A C[w] =t z : A

x =τ(subL(r,s),t) z : A

▷tsbll
x =r C[y] : A

y =s w : A′ C[w] =t z : A

C[y] =subR(s,t) z : A

x =τ(r,subR(s,t)) z : A

y =s w : A C[w] =t z : A

C[y] =subR(s,t) z : A z =u v : A

C[y] =τ(subR(s,t),u) v : A
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▷tsbrl
y =s w : D′

C[w] =t z : A z =u v : A

C[w] =τ(t,u) v : A

C[y] =subR(s,τ(t,u)) v : A

x =r C[z] : A
C[z] =ρ C[z] : A z =s w : A′

C[z] =subL(ρ,s) C[w] : A
x =τ(r,subL(ρ,s)) C[w] : A

▷tsblr
x =r C[z] : A z =s w : A′

x =subL(r,s) C[w] : A

x =r C[w] : A
w =s z : A′ C[z] =ρ C[z] : A
C[w] =subR(s,ρ) C[z] : A

x =τ(r,subR(s,ρ)) C[z] : A

▷tsbrr
x =r C[w] : D w =s z : A′

x =subL(r,s) C[z] : A

Definition 1.23 (τ and τ [17])

x =t y : A y =r w : A

x =τ(t,r) w : A w =s z : A

x =τ(τ(t,r),s) z : A

▷tt
x =t y : A

y =r w : A w =s z : A

y =τ(r,s) z : A

x =τ(t,τ(r,s)) z : A

Associated rewritings:
τ(subL(r, s), t) ▷tsbll τ(r, subR(s, t))
τ(subR(s, t), u)) ▷tsbrl subR(s, τ(t, u))
τ(r, subL(τ, s)) ▷tsblr subL(r, s)
τ(r, subR(s, τ)) ▷tsbrr subL(r, s)
τ(τ(t, r), s) ▷tt τ(t, τ(r, s))

Thus, we put together all those rules to compose our rewrite system:

Definition 1.24 (LNDEQ − TRS [17])
1. σ(ρ) ▷sr ρ
2. σ(σ(r)) ▷ss r
3. τ(C[r], C[σ(r)]) ▷tr C[ρ]
4. τ(C[σ(r)], C[r]) ▷tsr C[ρ]
5. τ(C[r], C[ρ]) ▷trr C[r]
6. τ(C[ρ], C[r]) ▷tlr C[r]
7. subL(C[r], C[ρ]) ▷slr C[r]
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8. subR(C[ρ], C[r]) ▷srr C[r]
9. subL(subL(s, C[r]), C[σ(r)]) ▷sls s
10. subL(subL(s, C[σ(r)]), C[r]) ▷slss s
11. subR(C[s], subR(C[σ(s)], r)) ▷srs r
12. subR(C[σ(s)], subR(C[s], r)) ▷srrr r
13. µ1(ξ1(r)) ▷mx2l1 r
14. µ1(ξ∧(r, s)) ▷mx2l2 r
15. µ2(ξ∧(r, s)) ▷mx2r1 s
16. µ2(ξ2(s)) ▷mx2r2 s
17. µ(ξ1(r), s, u) ▷mx3l s
18. µ(ξ2(r), s, u) ▷mx3r u
19. ν(ξ(r)) ▷mxl r
20. µ(ξ2(r), s) ▷mxr s
21. ξ(µ1(r), µ2(r)) ▷mx r
22. µ(t, ξ1(r), ξ2(s)) ▷mxx t
23. ξ(ν(r)) ▷xmr r
24. µ(s, ξ2(r)) ▷mx1r s
25. σ(τ(r, s)) ▷stss τ(σ(s), σ(r))
26. σ(subL(r, s)) ▷ssbl subR(σ(s), σ(r))
27. σ(subR(r, s)) ▷ssbr subL(σ(s), σ(r))
28. σ(ξ(r)) ▷sx ξ(σ(r))
29. σ(ξ(s, r)) ▷sxss ξ(σ(s), σ(r))
30. σ(µ(r)) ▷sm µ(σ(r))
31. σ(µ(s, r)) ▷smss µ(σ(s), σ(r))
32. σ(µ(r, u, v)) ▷smsss µ(σ(r), σ(u), σ(v))
33. τ(r, subL(ρ, s)) ▷tsbll subL(r, s)
34. τ(r, subR(s, ρ)) ▷tsbrl subL(r, s)
35. τ(subL(r, s), t) ▷tsblr τ(r, subR(s, t))
36. τ(subR(s, t), u) ▷tsbrr subR(s, τ(t, u))
37. τ(τ(t, r), s) ▷tt τ(t, τ(r, s))
38. τ(C[u], τ(C[σ(u)], v)) ▷tts v
39. τ(C[σ(u)], τ(C[u], v)) ▷tst u.

1.8 Normalization

In the previous subsection, we have seen a system of rewrite rules that resolves
reductions in a computational path. When we talk about these kind of systems,
two questions arise: Every computational path has a normal form? And if a
computational path has a normal form, is it unique? To show that it has a
normal form, one has to prove that every computational path terminates, i.e.,
after a finite number of rewrites, one will end up with a path that does not have
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any additional reduction. To show that it is unique, one needs to show that the
system is confluent. In other words, if one has a path with 2 or more reductions,
one needs to show that the choice of the rewrite rule does not matter. In the
end, one will always obtain the same end-path without any redundancies.

1.8.1 Termination

We are interested in the following theorem [23, 17]:

Theorem 1.25 (Termination property for LNDEQ − TRS) LNDEQ−TRS
is terminating.

The proofs uses a special kind of ordering, known as recursive parth ordering,
proposed by [3]:

Definition 1.26 (Recursive path ordering [3, 17]) Let > be a partial or-
dering on a set of operators F. The recursive path ordering >∗ on the set T(F)
of terms over F is defined recursively as follows:

s = f(s1, . . . , sm) >∗ g(t1, . . . , tn) = t,

if and only if

1. f = g and {s1, . . . , sm} ≫∗ {t1, . . . , tn}, or

2. f > g and {s} ≫∗ {t1, . . . , tn}, or

3. f ≱ g and {s1, . . . , sm} ≫∗ or = {t}

where ≫∗ is the extension of >∗ to multisets.

This definition uses the notion of partial ordering in multisets. A given
partial ordering > on a set S may be extended to a partial ordering ≫ on finite
multisets of elements of S, wherein a multiset is reduced by removing one or
more elements and replacing them with any finite number of elements, each
one which is smaller than one of the elements removed [3].

Thus, one can proof the termination property by showing that all rules
e→ d of the system, one has that e >∗ d.We also need to define the precedence
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ordering on the rewrite operators. We define as follows [17, 23]:

σ > τ > ρ,
σ > ξ,
σ > ξ∧,
σ > ξ1,
σ > ξ2,
σ > µ,
σ > µ1,
σ > µ2,
σ > subL,
σ > subR,
τ > subL

Thus, one can prove the termination by showing that for every rule of e→ d
of LNDEQ − TRS, e >∗ d. For almost every rule it is a straightforward and
tedious process. We are not going to show all those steps in this work, but we
can give the proof of two examples.

26. σ(subL(r, s)) >
∗ subR(σ(s), σ(r)) :

– σ > subR from the precedence ordering on the rewrite operators.

– {σ(subL(r, s))} ≫∗ {σ(r), σ(r)} :
- σ(subL(r, s)) >

∗ σ(s) e σ(subL(r, s)) >
∗ σ(r):

· σ = σ

· {sub(r, s)} ≫ {s} from the subterm condiction.

· {sub(r, s)} ≫ {r} from the subterm condiction.

27. σ(subR(r, s))� subL(σ(s), σ(r)) :

– σ > subL from the precedence ordering on the rewrite operators.

– {σ(subR(r, s))} ≫∗ {σ(r), σ(r)} :
∗ σ = σ

∗ {subR(r, s)} ≫ {s} from the subterm condiction.

∗ {subR(r, s)} ≫ {r} from the subterm condiction.

All others proof can check the full proof in [23].
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1.8.2 Confluence

Before we go to the proof of confluence, one needs to notice that LNDEQ−TRS
is a conditional term rewriting system. This means that some rules can only be
applied if the terms of the associated equation follow some rules. For example,
for the rule µ1(ξ∧(r, s)) ▷mx2l2 r, it is necessary to have an β-Reduction like
FST ⟨x, y⟩. With that in mind, one has the following definition [23]:

Definition 1.27 (Conditional term rewriting system) In conditional term
rewriting systems, the rules have conditions attached, which must be true for the
rewrite occur. For example, a rewrite rule e→ d with condition C is expressed
as:

C|e→ d

To prove the confluence, one should analyze all possible critical pairs using
the superposition algorithm proposed by [7]. Thus, there should not be any
divergent critical pair. For example, one can take the superposition of rules 1
and 2, obtaining: σ(σ(ρ)). We have two possible rewrites [23]:

• σ(σ(ρ))�sr σ(ρ)�sr ρ

• σ(σ(ρ))�ss ρ.

As one can see, we ended up with the same term ρ. Thus, no divergence
has been generated.

One should compare every pair of rules to find all critical pairs and see if
there are divergences. If some divergence happens, the superposition algorithm
proposed by [7] shows how to add new rules to the system in such a way that
it becomes confluent. As a matter of fact, that was the reason why the rules 38
and 39 of LNDEQ − TRS have been introduced to the system [17]:

38. τ(C[u], τ(C[σ(u)], v)) ▷tts v
39. τ(C[σ(u)], τ(C[u], v)) ▷tst u.

Those two rules introduced the following reductions to the system [23]:

x =s u : D

x =s u : D
u =σ(s) x : D x =v w : D

u =τ(σ(s),v) w : D
�tts x =v w

x =τ(s,τ(σ(s),v)) w : D
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x =s w : D
w =σ(s) x : D

x =s w : D w =v z : D
x =τ(s,v) z : D

�ss w =v z
w =τ(σ(s),τ(s,v)) z : D

One can check a full proof of confluence in [13, 18, 15, 23].

1.8.3 Normalization Procedure

We can now state two normalization theorems:

Theorem 1.28 (normalization [23]) Every derivation in the LNDEQ −
TRS converts to a normal form.

Proof 1.29 Direct consequence of the termination property.

Theorem 1.30 (strong normalization [23]) Every derivation in the LNDEQ−
TRS converts to a unique normal form.

Proof 1.31 Direct consequence of the termination and confluence properties.

In this sense, every proof can be reduced to a normal one. To do that,
one should identify the redundancies and, based on the rewrite rules, one can
construct a proof without any redundancies. We show that in an example. It is
the following [23]:

f(x, z) =s f(w, y) : D

f(w, y) =σ(s) f(x, z) : D x =r c : D

f(w, y) =subL(σ(s),r) f(c, z) : D

f(c, z) =σ(subL(σ(s),r)) f(w, y) : D y =t b : D

f(c, z) =subL(σ(subL(σ(s),r))) f(w, b) : D

This deduction generates the following path: subL(σ(subL(σ(s), r))). This
path is not in normal form, having two redundancies [23]:

subL(σ(subL(σ(s), r)))�ssbl subL(subR(σ(r), σ(σ(s)), t)
subL(subR(σ(r), σ(σ(s)), t)�ss subL(subR(σ(r), s), t)
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Thus, one can identify those reductions and conceive a deduction without
any redundancies [23]:

x =r c : D
c =σ(r) x : D f(x, z) =s f(w, y) : D

f(c, z) =subR(σ(r),s) f(w, y) : D y =t b : D

f(c, z) =subL(subR(σ(r),s),t) f(w, b) : D

It is important to emphasize that although each computational path has
a unique normal form, there may be two computational paths ”r” and ”s”
between elements ”a” and ”b” which have different normal forms.

1.9 Rewrite Equality

As we have just seen, the LNDEQ − TRS has 39 rewrite rules. We call each
rule as a rewrite rule (abbreviation: rw-rule). We have the following definition:

Definition 1.32 (Rewrite Rule [24]) An rw-rule is any of the rules defined
in LNDEQ − TRS.

Similarly to the β-reduction of λ-calculus, we have a definition for rewrite
reduction:

Definition 1.33 (Rewrite reduction [24]) Let s and t be computational
paths. We say that s�1rw t (read as: s rw-contracts to t) iff we can obtain t
from s by an application of only one rw-rule. If s can be reduced to t by finite
number of rw-contractions, then we say that s�rw t (read as s rw-reduces to t).

We also have rewrite contractions and equality:

Definition 1.34 (Rewrite contraction and equality [24]) Let s and t be
computational paths. We say that s =rw t (read as: s is rw-equal to t) iff t can
be obtained from s by a finite (perhaps empty) series of rw-contractions and
reversed rw-contractions. In other words, s =rw t iff there exists a sequence
R0, ...., Rn, with n ≥ 0, such that

(∀i ≤ n− 1)(Ri �1rw Ri+1 or Ri+1 �1rw Ri)
R0 ≡ s, Rn ≡ t

A fundamental result is the fact that rewrite equality is an equivalence
relation [24]:

Proposition 1.35 Rewrite equality is transitive, symmetric and reflexive.
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Proof 1.36 Comes directly from the fact that rw-equality is the transitive,
reflexive and symmetric closure of rw.

Rewrite reduction and equality play fundamental roles in the groupoid
model of a type based on computational paths, as we are going to see in the
sequel.

1.10 LNDEQ-TRS(2)

Until now, this subsection has concluded that there exist redundancies which are
resolved by a system called LNDEQ− TRS. This system establishes rules that
reduces these redundancies. Moreover, we concluded that these redundancies
are just redundant uses of the equality axioms showed in section 2. In fact,
since these axioms just define an equality theory for type theory, one can
specify and say that these are redundancies of the equality of type theory. As
we mentioned, the LNDEQ − TRS has a total of 39 rules[13, 17]. Since the
rw-equality is based on the rules of LNDEQ − TRS, one can just imagine
the high number of redundancies that rw-equality could cause. In fact, a
thoroughly study of all the redundancies caused by these rules led to the work
done in [25], that only interested in the redundancies caused by the fact that
rw-equality is transitive, reflexive and symmetric with the addition of only one
specific rw2-rule. This way up, was created a system, called LNDEQ − TRS2,
that resolves all the redundancies caused by rw-equality (the same way that
LNDEQ − TRS resolves all the redundancies caused by equality). Since we
know that rw-equality is transitive, symmetric and reflexive, it should have
the same redundancies that the equality had involving only these properties.
Since rw-equality is just a sequence of rw-rules (also similar to equality, since
equality is just a computational path, i.e., a sequence of identifiers), then we
could put a name on these sequences. For example, if s and t are rw-equal
because there exists a sequence θ : R0, ...., Rn that justifies the rw-equality,
then we can write that s =rwθ

t. Thus, we can rewrite, using rw-equality, all
the rules that originated the rules involving τ , σ and ρ. For example, we have
[24]:

x =rwt y : A y =rwr w : A

x =rwτ(t,r)
w : A w =rws z : A

x =rwτ(τ(t,r),s)
z : A

x =rwt y : A

y =rwr w : A w =rws z : A

y =rwτ(r,s)
z : A

�tt2 x =rwτ(t,τ(r,s))
z : A
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Therefore, we obtain the rule tt2, that resolves one of the redundancies
caused by the transitivity of rw-equality (the 2 in tt2 indicates that it is a rule
that resolves a redundancy of rw-equality). In fact, using the same reasoning,
we can obtain, for rw-equality, all the redundancies that we have shown in
definition 1.24. In other words, we have tr2, tsr2, trr2, tlr2, sr2, ss2 and tt2.
Since we have now rules of LNDEQ − TRS2, we can use all the concepts that
we have just defined for LNDEQ − TRS. The only difference is that instead of
having rw-rules and rw-equality, we have rw2-rules and rw2-equality.

There is an important rule specific to this system. It stems from the fact that
transitivity of reducible paths can be reduced in different ways, but generating
the same result. For example, consider the simple case of τ(s, t) and consider
that it is possible to reduce s to s′ and t to t′. There is two possible rw-sequences
that reduces this case: The first one is θ : τ(s, t)�1rw τ(s′, t)�1rw τ(s′, t′) and
the second θ′ : τ(s, t)�1rw τ(s, t′)�1rw τ(s′, t′). Both rw-sequences obtained the
same result in similar ways, the only difference being the choices that have been
made at each step. Since the variables, when considered individually, followed
the same reductions, these rw-sequences should be considered redundant relative
to each other and, for that reason, there should be rw2-rule that establishes
this reduction. This rule is called independence of choice and is denoted by
cd2. Since we already understand the necessity of such a rule, we can define it
formally:

Definition 1.37 (Independence of choice [24]) Let θ and ϕ be rw-equalities
expressed by two rw-sequences: θ : θ1, ..., θn, with n ≥ 1, and ϕ : ϕ1, ..., ϕm,
with m ≥ 1. Let T be the set of all possible rw-equalities from τ(θ1, ϕ1) to
τ(θn, θm) described by the following process: t ∈ T is of the form τ(θl1 , ϕr1)�1rw

τ(θl2 , ϕr2) �1rw ... �1rw τ(θlx , ϕry), with l1 = 1, r1 = 1, lx = n, ry = m and
li+1 = 1 + li and ri+1 = ri or li+1 = li and ri+1 = 1 + ri. The independence of
choice, denoted by cd2, is defined as the rule of LNDEQ−TRS2 that establishes
the equality between any two different terms of T . In other words, if x, y ∈ T
and x ̸= y, then x =cd2 y and y =cd2 x.

Analogously to the rw-equality, rw2-equality is also an equivalence relation
[24]:

Proposition 1.38 rw2-equality is transitive, symmetric and reflexive.

Proof 1.39 Analogous to Proposition 1.35.
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2 A Topological Application of Labelled Natural
Deduction.

Once we have built up all the necessary basis of computational paths to develop
our work, it would be interesting to consult two proofs of the calculation of
the fundamental group of the circle: The first is the mathematically proven
proof that appears in the book of algebraic topology [12] in chapter 9, section
54. The second is a proof using homotopic type theory, which is in the book of
[28] in chapter 8. Both cases have the proofs of the fundamental group of the
circle, but to obtain such a success the amount of information needed is much
higher and much more complex than we will propose in the sequel.

In homotopy theory, the fundamental group is the one formed by all equiva-
lence classes up to homotopy of paths (loops) starting from a point x0 and also
ending at x0. Since we use computational paths as the syntactic counterpart of
homotopic paths in type theory, we use computational paths to propose the
following definition:

Definition 2.1 Let

(i) A be a type.

(ii) x0 : A a base point.

(iii) x0 =
αi

x0, be a family of generator paths with i ∈ I.

(iv) A family of relationships between the terms paths τj(x0 =
αr

x0, x0 =
αs

x0).

We can define the structure Π1(A, x0) as the set of terms αx0, given by finite
applications of τ , σ, and ρ in αi, modulo rw equality and modulo the family of
identity type terms Idτj .

Since each element in Π1(A, x0) is a loop in x0, we will give a important
definition indispensable to our work:

Definition 2.2 We can define and denote by

[loopn]rw

the path naturally obtained by the application the of path-axioms ρ, τ and σ to
the base path x0 =

loop
x0, where n ∈ N. Particularly we can say:

(i) [loop0]rw = [ρx0 ]rw, n = 0.

(ii) [loopn]rw = τ
(
[loopn−1]rw, [loop

1]rw
)
, n > 0.
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(iii) [loopn]rw = σ([loop−n]rw), −n > 0.

For example, we have:

a) τ([loop1]rw, [loop
1]rw) = [loop2]rw

a) τ
(
σ([loop1]rw), σ([loop

1]rw)
)
= σ([loop2]rw) = [loop−2]rw

c) τ
(
σ([loop1]rw), [loop

1]rw

)
=
tsr

[ρ]rw.

Here we need to show relevant information regarding the equalities we can
get using these paths. Consider the following examples:

(p1)

τ

(
τ
(
[loop1]rw, [loop

1]rw
)
, σ

(
[loop1]rw

))
=
tt

τ

(
[loop1]rw, τ

(
[loop1]rw, σ

(
[loop1]rw

)))
=
tr

τ
(
[loop1]rw, [ρ]rw

)
=
trr

[loop1]rw

(p2)

τ

(
τ
(
[loop1]rw, σ

(
[loop1]rw

))
, [loop1]rw

)
=
tr

τ
(
[ρ]rw, [loop

1]rw
)

=
tlr

[loop1]rw

Notice that the paths (p1) and (p2) initially look like distinct paths. Nevertheless,
applying only the properties of computational paths, together with the rewrite rules
(rw-rules), we end up with the path [loop1]rw in both derivations. So we can say that:

By (p1),

τ

(
τ
(
[loop1]rw, [loop

1]rw
)
, σ

(
[loop1]rw

))
=
trr

[loop1]rw

and by (p2),

τ

(
τ
(
[loop1]rw, σ

(
[loop1]rw

))
, [loop1]rw

)
=
tlr

[loop1]rw.

They are said to be rw-equal to the base path [loop1]rw because they can be
rewritten to [loop1]rw after applying rw-rules. Therefore, we can say that these paths
are in the same equivalence class as [loop1]rw and thus, they are equal up to rw -equality.



A Topological Application of Labelled Natural Deduction 33

2.1 Fundamental Group of Circle

Definition 2.3 (The circle S1) The circle is the type generated by:

(i) A base point - x0 : S1

(ii) A base computational path - x0 =
loop

x0 : S1.

The first thing one should notice is that this definition does not use only the points
of the type S1, but also a base computational path called loop between those points.
That is why it is called a higher inductive type [28]. Our approach differs from the
one developed in the HTT book [28] on the fact that we do not need to simulate the
path-space between those points, since we add computational paths to the syntax of
the theory.

In Martin-Löf’s type theory, the existence of those additional paths comes from
establishing that the paths should be freely generated by the constructors [28]. In our
approach, we do not have to appeal to this kind of argument, since all paths come
naturally from direct applications of the axioms and the inference rules which define
the theory of equality. We proceed with the following definition:

Definition 2.4 In S1, we define the following canonical loops (canonical paths):

(i) [loop0]rw = [ρx0
]rw, n = 0

(ii) [loopn]rw = σ([loop−n]rw), n < 0.

(iii) [loopn]rw = τ
(
[loopn−1]rw, [loop

1]rw
)
, n > 0.

Lemma 2.5 All paths in S1 are rw-equals to a path [loopn]rw, for n ∈ N.

Proof 2.6 Let φ be a computational path in S1.

I. If φ = ρ:

(i) φ = [loop0]rw, n = 0.

(ii) φ = σ([loopn]rw) = σ(σ([loop−n]rw)) =
ss

[loop−n]rw = ρ, n = 0.

(iii) φ = τ
(
[loopm]rw, [loop

n]rw
)
= ρ, if m+ n = 0. Therefore,

φ = τ
(
[loopm]rw, [loop

n]rw
)

= τ
(
[loop−n]rw, [loop

n]rw
)

= τ
(
[loop−n]rw, σ([loop

−n]rw)
)

=
tr

ρ.

II.. If φ = σ([loopn]) :

(i) For n = 0 we have φ = σ([loop0]rw) = ρ.
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(ii) Suppose true for n = k that every paths in S1 are rw-equals to a path
[loopn]rw . For n = k + 1 we have:

φ = σ([loopk+1]rw)

= σ
(
τ
(
[loopk]rw, [loop

1]rw
))

=
stss

τ
(
σ([loopk]rw), σ([loop

1]rw)
)

= τ
(
[loop−k]rw, [loop

−1]rw
)

= [loop−k−1]rw

= [loop−(k+1)]rw.

III. If φ = τ
(
[loopn−1]rw, [loop

1]rw
)
:

(i) For n = 0, we have:

φ = τ([loop−1]rw, [loop
1]rw) = τ(σ([loop1]rw), [loop

1]rw) =
tsr

ρ = [loop0]rw.

(ii) Suppose true for n = k, to n = k + 1 we have:

φ = τ
(
[loopk+1−1]rw, [loop

1]rw
)

= τ
(
[loopk]rw, τ([loop

1]rw)
)

hip
= τ

(
τ([loopk−1]rw, [loop

1]), [loop1]rw

)
=
rw

[loop1]rw ◦ [loopk]rw

= [loopk+1]rw.

All paths in S1 are rw-equals to a path [loopn]rw, for n ∈ N.

Lemma 2.7 All paths in S1 are generated by application ρ,τ and σ in base path
[loop1]rw.

Proof 2.8 For the base case [ρ]rw, it is trivially true, since we define it to be equal
to [loop0]rw. From [ρ]rw, one can construct more complex paths by composing with
[loop1]rw or σ([loop1]rw) on each step. Concatenating paths we have:

(i) A path of the form [ρ]rw concatenated with [loop1]rw:

[ρ]rw ◦ [loop1]rw = τ([loop1]rw, [ρ]rw) =
trr

[loop1]rw.

(ii) A path of the form [ρ]rw concatenated with σ([loop1]rw):

[ρ]rw ◦ σ([loop1]rw) = τ(σ([loop1]rw), [ρ]rw) =
trr

σ([loop1]rw) = [loop−1]rw.
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(iii) A path of the form [loopn]rw concatenated with [loop1]rw:

[loopn]rw ◦ [loop1]rw = τ([loop1]rw, [loop
n]rw) = [loopn+1]rw.

(iv) A path of the form [loopn]rw concatenated with σ([loop1]rw):

[loopn]rw ◦ σ([loop1]rw) = τ
(
σ([loop1]rw), [loop

n]rw
)

= τ

(
σ([loop1]rw), τ

(
[loop1]rw, [loop

n−1]rw

))
=

σ(tt)
τ

(
τ
(
σ([loop1]rw), [loop

1]rw

)
, [loopn−1]rw

)
=
tsr

τ
(
[ρ]rw, [loop

n−1]rw

)
=
tlr

[loopn−1]rw.

(v) A path of the form [loop−n]rw concatenated with [loop1]rw:

[loop−n]rw ◦ [loop1]rw = τ
(
[loop1]rw, [loop

−n]rw
)

= τ

(
[loop1]rw, τ

(
σ([loop1]rw), [loop

−(n−1)]rw

))
=

σ(tt)
τ

(
τ
(
[loop1]rw, σ([loop

1]rw)
)
, [loop−(n−1)]rw

)
=
tr

τ
(
[ρ]rw, [loop

−(n−1)]rw

)
=
tlr

[loop−(n−1)]rw.

(vi) a path of the form [loop−n]rw concatenated with σ([loop1]rw):

[loop−n]rw ◦ σ([loop1]rw) = τ
(
σ([loop1]rw), [loop

−n]rw
)

= τ

(
σ([loop1]rw), τ

(
[loop1]rw, [loop

−(n+1)]rw

))
=

σ(tt)
τ

(
τ
(
σ([loop1]rw), [loop

1]rw

)
, [loop−(n+1)]rw

)
=
tsr

τ
(
[ρ]rw, [loop

−(n+1)]rw

)
=
tlr

[loop−(n+1)]rw.

For simplicity, we will denote by x0 =
r
x0 whenever we refer to a computational

path r is generated by ρ, σ and τ .
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Proposition 2.9
(
Π1(S

1, x0), ◦
)
is a group.

Proof 2.10 The first thing to define is the group operation ◦. Given any x0 =
r
x0 : S1

and x0 =
t
x0 : S1, we define r ◦ s as τ(s, r). Thus, we now need to check the group

conditions:

(i) Closure: Given x0 =
r
x0 : S1 and x0 =

t
x0 : S1, r ◦ s must be a member of the

group. Indeed, r ◦ s = τ(s, r) is a computational path x0 =
τ(s,r)

x0 : S1.

(ii) Inverse: Every member of the group must have an inverse. Indeed, if we have a
path r, we can apply σ(r). We claim that σ(r) is the inverse of r, since we have:

σ(r) ◦ r = τ(r, σ(r)) =
tr

ρ

r ◦ σ(r) = τ(σ(r), r) =
tsr

ρ

Since we are working up to rw-equality, the equalities hold strictly.

(iii) Identity: We use the path x0 =
ρ
x0 : S1 as the identity. Indeed, we have:

r ◦ ρ = τ(ρ, r) =
tlr

r

ρ ◦ r = τ(r, ρ) =
trr

r.

(iv) Associativity: Given any members of the group x0 =
r
x0 : S1, x0 =

t
x0 and

x0 =
s
x0, we want that r ◦ (s ◦ t) = (r ◦ s) ◦ t:

r ◦ (s ◦ t) = τ(τ(t, s), r) =
tt
τ(t, τ(s, r)) = (r ◦ s) ◦ t

All conditions have been satisfied.
(
Π1(S

1, x0), ◦
)
is a group.

Thus,
(
Π1(S

1, x0), ◦
)
is indeed a group. We call this group the fundamental group

of S1.
In [28] the next theorem was proof defining a pair of encode and decode functions,

there it was necessary simulate a path-space and, by end, the work was very laborious.
Nevertheless, since our computational paths are already part of the syntax, one does
not need to rely on this kind of approach to simulate a path-space. In [12] the proof
of this theorem is quite laborious. Work directly with the concept of computational
paths, we hope that these same accounts can be performed more simple and affordably.

Theorem 2.11 Π1(S, x0) ≃ Z
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Proof 2.12 Consider the application defined and denoted by:

toPath : Z→ Π1(S)

z → toPath(z) = [loopz]rw.

(i) toPath is a homomorphism.

Let z = n+m ∈ Z, then:

toPath(z) = toPath(n+m)

= [loopn+m]rw

= τ([loopn]rw, [loop
m]rw)

= toPath(m) ◦ toPath(n).

By the other hand, how z = m+ n we have:

toPath(z) = toPath(m+ n)

= [loopm+n]rw

= τ([loopm]rw, [loop
n]rw)

= toPath(n) ◦ toPath(m).

Thus, toPath(n+m) = toPath(n) ◦ toPath(m).

(ii) toPath is surjective.

By Lemma 2.5, as every path in S1 is rw-equal to one path [loopi]rw, we
have that for all for all path [loopi]rw ∈ Π1(S

1),∃i ∈ Z, such that, toPath(i) =
[loopi]rw.

(iii) Ker(toPath) = {0}.
Suppose there is z ̸= 0 ∈ Z, such that z ∈ Ker(toPath). Thus,

toPath(z) = toPath(z + 0)
hom
= toPath(z) ◦ toPath(0) = τ(ρ, [loopz]rw)

Ker
= ρ.

If τ(ρ, α) = ρ, by rw-rule ▷
tr

we have, α = σ(ρ)⇒ z = 0→←. Therefore,

Ker(toPath) = {0}.

As ToPath is a homomorphism surjective with Ker(toPath) = {0}, then toPath
is a isomorphism, that is, Π1(S, x0) ≃ Z.
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Figure 1: Paths α and β with base point x0 in Torus

2.2 Fundamental Group of the Torus

Consider T2 as the surface known as Torus and the point x0 ∈ T2. We will prove
using computational paths that the fundamental group of the torus is isomorphic to
Z× Z. Here we will also use in definition 2.1 with some simple adaptations. We will
continue to work with paths up to rw-equality.

Since the fundamental groups are obtained by analysing the loops, we will be
interested in working with loops that cannot be homotopic to base point x0, like loops
α and β. These loops will be the generators of T2, as shown in figure1, so we can give
them a special definition for both.

Definition 2.13 (vertical loop) We define and denote by

αn = [loopnv ]rw

the path that passes through the inner part of T2 in the vertical direction, naturally
obtained by applications the of path-axioms ρ, τ and σ to the base path x0 =

α
x0, where

n ∈ Z. Particularly, we have

(i) [loop0v]rw = [ρ]rw = α0, n = 0.

(ii) [loopn+1
v ]rw = τ

(
[loopnv ]rw, [loop

1
v]rw

)
= αn, n > 0.

(iii) [loopnv ]rw = σ([loop−n
v ]rw) = α−n, n < 0.

In figure 1, this vertical path (loop) has the same orientation of the path denoted
by α.

Definition 2.14 (horizontal loop) We define and denote by

βm = [loopmh ]rw

the path that passes the inner part of T2 in the horizontal direction, naturally
obtained by applications the of path-axioms ρ, τ and σ to the base path x0 =

β
x0, where

n ∈ Z. Particularly, we have:
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(i) [loop0h]rw = [ρ]rw = β0, m = 0.

(ii) [loopm+1
h ]rw = τ

(
[loopmh ]rw, [loop

1
h]rw

)
= βm, m > 0.

(iii) [loopmh ]rw = σ([loop−m
h ]rw) = β−m, m < 0.

In figure 1, this horizontal path (loop) has the same orientation of the path
denoted by β. By definitions 2.13 and 2.14, We can also represent the path
homotopic to the constant one by: [ρ]rw = α0β0, or [ρ]rw = α0, or [ρ]rw = β0. For
simplicity, we denote it by ρ.

We now give the formal definition of the torus in homotopy type theory:

Definition 2.15 The torus T2 is generated by:

(i) A base point x0 : T2.

(ii) Two base paths α and β such that: x0 =
α
x0 and x0 =

β
x0.

(iii) One path co that establishes βα =
co

αβ, i.e., a term co : Id(βα, αβ).

Based on definition 2.15, we can establish the following definition in computational
paths:

Definition 2.16 In T2, we define the following canonical loops (canonical paths):

(i) A base point α0β0 =
rw

[ρx0 ]rw.

(ii) The path βmαn = τ(αn, βm).

(iii) The path = σ(βmαn) = σ(τ(αn, βm)).

(iv) One path co that establishes τ(αn, βm) =
co

τ(βm, αn).

By [12], given a point x0 ∈ T2, the Torus can be expressed as a square whose sides
are the base paths (loops) α and β, as shown in figure 2.

Figure 2: Square Torus representation with oriented paths α and β
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Consider the following path in the figure:

α−1 ◦ β−1 ◦ α ◦ β = τ

(
τ
(
τ(β, α), σ(β)

)
, σ(α)

)
.

Proposition 2.17 The aforementioned path is rw-equal to the reflexive path.

Proof 2.18 Indeed,

α−1 ◦ β−1 ◦ α ◦ β = τ

(
τ
(
τ(β, α), σ(β)

)
, σ(α)

)
=
tt

τ

(
τ
(
β, τ

(
α, σ(β)

))
, σ(α)

)
=
co

τ

(
τ
(
β, τ

(
σ(β), α

))
, σ(α)

)
=

σ(tt)
τ

(
τ
(
τ(β, σ(β)), α

)
, σ(α)

)
=
tr

τ

(
τ
(
ρ, α

)
, σ(α)

)
=
tlr

τ
(
α, σ(α)

)
=
tr

ρ.

and thus,

α−1 ◦ β−1 ◦ α ◦ β = τ

(
τ
(
τ(β, α), σ(β)

)
, σ(α)

)
=
rw

[ρ]rw.

Lemma 2.19 All path in T2 are rw-equal to the path βmαn, with m,n ∈ Z.

Proof 2.20 Let φ be a computational path in T2.

• If φ = ρ then φ = τ(α0, β0) = β0α0.

• If φ = σ(µ) = σ(βmαn) = σ
(
τ(αn, βm)

)
=
stss

τ
(
σ(αn), σ(βm)

)
= τ(αn, β−m) =

β−mα−n.

• If

φ = τ(µ, ω)

= τ(βmαn, βrαs)

= τ
(
τ(αn, βm), τ(αs, βr)

)
= (βr ◦ αs) ◦ (βm ◦ αn)

= βr ◦ αs ◦ βm ◦ αn

=
co

βr ◦ βm ◦ αs ◦ αn = βm+rαn+s
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Lemma 2.21 All paths in T2 are generated by application ρ,τ and σ in base paths
[loop1v]rw = α1 and [loop1h]rw = β1.

Proof 2.22 Consider the following cases

(i) Base case: β0α0 = ρ.

(ii) ρ ◦ α = τ(α, ρ) =
trr

α = β0α1.

(iii) ρ ◦ β = τ(β, ρ) =
trr

β = β1α0.

(iv) ρ ◦ α−1 = τ(σ(α), ρ) =
trr

σ(α) = β0α−1.

(v) ρ ◦ β−1 = τ(σ(β), ρ) =
trr

σ(β) = β−1α0.

Assuming, by the induction hypothesis that every path in T2 is rw-equal to βmαn,
we have:

(1) ρ ◦ βmαn = τ(βmαn, ρ) =
trr

βmαn.

(2) α ◦ βmαn =
co

α ◦ αnβm = αn+1βm =
co

βmαn+1.

(3) β ◦ βmαn = βm+1αn.

(4) β−1 ◦ βmαn = (β−1 ◦ (β ◦ βm−1))αn =
tt

((β−1 ◦ β) ◦ βm−1)αn =
tsr

(ρ ◦ βm−1)αn =

βm−1αn.

(4) α−1 ◦ βmαn =
co

α−1 ◦ αnβm = (α−1 ◦ (α ◦ αn−1))βm =
tt

((α−1 ◦ α) ◦ αn−1)βm =
tsr

(ρ ◦ αn−1)βm = αn−1βm =
co

βmαn−1.

So all paths in T2 are rw-equal to βmαn.

Proposition 2.23
(
Π1(T2, x0), ◦

)
is a group.

Proof 2.24

(+): Sum

.
x0 =

βuαv
x0 x0 =

βrαs
x0

x0 =
τ(βuαv,βrαs)

x0

But,

τ(βuαv, βrαs) = (βrαs) ◦ (βuαv)

= βuαvβrαs

=
co

βuβrαvαs

= βu+rαv+s
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(σ): Inverse

.
x0 =

βmαn
x0 x0 =

σ(βm)σ(αn)
x0

x0 =
τ(βmαn,σ(βm)σ(αn))

x0

But,

τ(βmαn, σ(βm)σ(αn)) = (σ(βm)σ(αn)) ◦ (βmαn)

= σ(βm)σ(αn)βmαn

=
co

σ(βm)βmσ(αn)αn

=
tsr

ρβρα

=
trr

ρx0 .

On the other hand, we have:

.
x0 =

σ(βm)σ(αn)
x0 x0 =

βmαn
x0

x0 =
τ(σ(βm)σ(αn),βmαn)

x0

But,

τ(σ(βm)σ(αn), βmαn) = (βmαn) ◦ (σ(βm)σ(αn))

= βmαnσ(βm)σ(αn)

=
co

βmσ(βm)αnσ(αn)

=
tr

ρβρα =
trr

ρx0
.

(ϵ): Identity

x0 =
βmαn

x0 x0 =
ρx0

x0

x0 =
τ(βmαn,ρx0)

x0

But,

τ(βmαn, ρx0
) = (ρx0

) ◦ (βmαn)

= ρx0
βmαn

=
tlr

βmαn

and so
τ(βmαn, ρx0

) =
trr

βmαn.

On the other hand, we have:
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.
x0 =

ρx0

x0 x0 =
βmαn

x0

x0 =
τ(ρx0,βmαn)

x0

But,

τ (ρx0
, βmαn) = (βmαn) ◦ (ρx0

)

= βmαnρx0

=
trr

βmαn

and so
τ(ρx0

, βmαn) =
trr

βmαn.

( ◦ ): Associativity

.

x0 =
βmαn

x0 x0 =
βiαj

x0

x0 =
τ(βmαn,βiαj)

x0 x0 =
βrαs

x0

x0 =
τ(τ(βmαn,βiαj),βrαs)

x0

But,

τ
(
τ
(
βmαn, βiαj

)
, βrαs

)
= (βrαs) ◦ τ(βmαn, βiαj)

= (βrαs) ◦ (βiαj ◦ βmαn)

= (βrαs) ◦ (βiαjβmαn)

= βrαsβiαjβmαn.

On the other hand, we have:

. x0 =
βmαn

x0

x0 =
βiαj

x0 x0 =
βrαs

x0

x0 =
τ(βiαj ,βrαs)

x0

x0 =
τ(βmαn,τ(βiαj ,βrαs))

x0

But,
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τ
(
βmαn, τ

(
βiαj , βrαs

))
= τ(βiαj , βrαs) ◦ (βmαn)

= (βrαs ◦ βiαj) ◦ (βmαn)

= (βrαsβiαj) ◦ (βmαn)

= βrαsβiαjβmαn.

Therefore, it follows that
(
Π1(T2, x0), ◦

)
is a group.

Theorem 2.25 Π1

(
T2, x0

)
≃ Z× Z.

Proof 2.26 Consider the map:

toPath2 : Z× Z −→ Π1

(
T2, x0

)
(m,n) −→ βmαn.

i toPath2 is a homomorphism.

Let (m1 +m2, n1 + n2) ∈ Z× Z, then:

toPath2(m1 +m2, n1 + n2) = βm1+m2αn1+n2

= βm1βm2αn1αn2

=
co

βm1αn1βm2αn2

= toPath2(m1, n1) ◦ toPath2(m2, n2).

ii toPath is surjective.

By Lemma 2.19, as every path in T2 is rw-equal to one path βmαn, we have
that for all path βiαj ∈ Π1(T2),∃(i, j) ∈ Z× Z, such that, toPath(i, j) = βiαj.

iii Ker(toPath2) = {(0, 0)}.
Suppose there is (m,n) ̸= (0, 0) ∈ Z × Z, such that (m,n) ∈ Ker(toPath2).
Thus,

toPath2(m,n) = toPath2(m+ 0, n+ 0)
hom
= toPath2(m,n) ◦ toPath2(0, 0)

= βmαnβ0α0

= τ(β0α0, βmαn)

= τ(ρ, βmαn)

= ρ.

If τ(ρ, α) = ρ, by rw-rule ▷
tr

we have, α = σ(ρ) ⇒ (m,n) = (0, 0) →←.

Therefore,
Ker(toPath2) = {(0, 0)}.

As ToPath2 is a homomorphism surjective with Ker(toPath2) = {(0, 0)}, then
toPath2 is a isomorphism, that is, Π1(T2) ≃ Z× Z.
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3 Fundamental Group of the Real Projective Plane

The real projective plane, denoted by RP2, is by definition the set of all straight lines
that pass through the origin of space R3. We can define each of these lines by a position
vector vr, with ∥vr∥ ≠ 0, this way we have that RP2 is a quotient space of R3 − (0, 0)
under the equivalence relation vr ∼ λvr for scalars λ ≠ 0. If we impose the condition
that the vectors ∥vr∥ = 1 then RP2 is a quotient space S2 under the equivalence relation
vr ∼ −vr, the sphere with antipodal points identified, where vr is position vector.

Let [vr] = [x, y, z], where [x, y, z] = {vr = (x, y, z),−vr = (−x,−y,−z)} with z ̸= 0.
This is equivalent to saying that RP2 is the quotient space of a upper hemisphere D2

with antipodal points of ∂D2 identified, as show in figure 3.

Figure 3: P and P
′
are antipodal points in ∂D2.

Let’s then map it on the unit disk through the following map [x, y, z] −→ (x, y, 0),
as follows in the figure 4)

Figure 4: Mapping Projection in the unit disk on xy plane.

This way we have that RP2 is a quotient space of D with antipodal points of ∂D
identified. Therefore we can study the fundamental group of RP2 by the disk shown
on the right side of the figure 4.

We denote by α any loop that connects the identified antipodal points, so we can
consider α as a loop (as follows in the figure 5) and any other loop that connects the
identified antipodal points is homotopic to α. Note that ∀Q ∈ D, any loop based on Q
is homotopic to the point, these are not in our interest to study.
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Figure 5: loop α.

Since we can represent the real projective plane RP2 for a disk D, we can define
RP2, homotopically, as follows:

Definition 3.1 The real projective plane RP2 is defined by:

(i) The types Q : D, such that Q ∈ D.

(ii) The pair P, P ′ : ∂D, such that: P, P ′ are the pairs of antipodal points identified in
∂D.

(iii) A path α such that: P =
α
P ′.

(iv) A path cicl that establishes α ◦ α =
cicl

ρ, i.e, cicl : IdP2(α ◦ α, ρ).

Lemma 3.2 All paths in P2 generated by ρ, σ and τ are rw-equal to ρ or α.

Proof 3.3 Consider the following base cases:

Base case φ = ρ:

(i) Trivial case.

Base case φ = σ(ϕ):

(i) φ = σ(α) =
cicl

α.

(ii) φ = σ(ρ) =
rw

ρ.

Base case φ = τ(ϕ, κ):

(i) φ = τ(ρ, ρ) =
trr

ρ

(ii) φ = τ(α, ρ) =
trr

α

(iii) φ = τ(ρ, α) =
tlr

α

(iv) φ = τ(α, α) =
cicl

ρ

Inductive case: Assuming true for n, we have:

If [loopn]rw = [ρ]rw, we have two possibilities for n+ 1:
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(i) [loopn+1]rw = [loopn]rw ◦ [ρ]rw = τ(ρ, ρ) =
trr

[ρ]rw.

(ii) [loopn+1]rw = [loopn]rw ◦ α = [ρ]rw ◦ α = τ(α, ρ) =
trr

α.

If [loopn]rw = α, we have two possibilities for n+ 1:

(i) [loopn+1]rw = [loopn]rw ◦ α = α ◦ ρ = τ(ρ, α) =
tlr

α.

(ii) [loopn+1]rw = [loopn] ◦ α = α ◦ α = τ(α, α) =
cicl

[ρ]rw.

Thus, all paths in P2 generated by ρ or α are rw-equal to either α or ρ. Since we
have α ◦ α = τ(α, α) =

cicl
[ρ]rw, the term cicl give us one important result: α = σ(α).

Proposition 3.4
(
Π1(P2), ◦

)
is a group.

Proof 3.5

(+): Sum

P =
α
P P =

α
P

P =
τ(α,α)

P

But,
α ◦ α = τ (α, α) =

cicl
ρ ∈ Π1

(
P2

)
.

(σ): Inverse

P =
α
P P =

σ(α)
P

P =
τ(α,σ(α))

P

But,

σ(α) ◦ α = τ (α, σ(α)) =
tr

ρ ∈ Π1

(
P2

)
.

On the other hand, we have:

P =
σ(α)

P P =
α
P

P =
τ(σ(α),α)

P

But,

α ◦ σ(α) = τ (σ(α), α) =
tsr

ρ ∈ Π1

(
P2

)
.
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(ϵ): Identity

P =
α
P P =

ρ
P

P =
τ(α,ρ)

P

But,

ρ ◦ α = τ (α, ρ) =
tlr

α ∈ Π1

(
P2

)
.

On the other hand, we have:

P =
ρ
P P =

α
P

P =
τ(ρ,α)

P

But,

α ◦ ρ = τ (ρ, α) =
trr

α ∈ Π1

(
P2

)
.

( ◦ ): Associativity

P =
α
P P =

α
P

P =
τ(α,α)

P P =
α
P

P =
τ(τ(α,α),α)

P

But,

τ (τ (α, α) , α) = α ◦ τ (α, α)
=
cicl

α ◦ ρ

= τ (ρ, α)

=
trr

α

On the other hand, we have:

P =
α
P

P =
α
P P =

α
P

P =
τ(α,α)

P

P =
τ(α,τ(α,α))

P
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But,

τ(α, τ (α, α)) = τ(α, α) ◦ α
=
cicl

ρ ◦ α

= τ (α, ρ)

=
tlr

α

Since τ (τ (α, α) , α) = τ(α, τ (α, α)), it follows that associativity is valid and there-
fore

(
Π1(P2), ◦

)
is a group generated by ρ and α.

Theorem 3.6 Π1(P2) ≃ Z2.

Proof 3.7 Consider the application defined and denoted by:

toPathZ2
: Z2 → Π1

(
P2

)
z → toPathZ2

= [loopz]rw.

(i) toPathZ2
is a homomorphism.

Let z1 and z2 ∈ Z2, then:

toPathhZ2
(z1 + z2) = [loopz1+z2 ]rw

= τ([loopz1 ]rw, [loop
z2 ]rw)

= toPathhZ2
(z2) ◦ toPathhZ2

(z1).

By the other hand,we have:

toPathhZ2
(z2 + z1) = [loopz2+z1 ]rw

= τ([loopz2 ]rw, [loop
z1 ]rw)

= toPathhZ2
(z1) ◦ toPathhZ2

(z2).

Thus, toPathZ2(z1 + z2) = toPathZ2(z1) ◦ toPath(z2).

(ii) toPathZ2
is surjective.

By Lemma 3.2, every path in P2 is rw-equal to ρ and α. So given any
path in Π1(P2),for z = 0 and z = 1 we have ρ = toPathZ2(0) and α =
toPathZ2(1), respectively.

(iii) Ker(toPathZ2) = {0}.
By Lemma 3.2, there is only one element in z ∈ Z2 that toPathhZ2

(z) = 0.
Therefore, Ker(toPathZ2) = {0}.

toInt =

{
toInt([loop0]rw = [ρ]rw) = 0

toInt([loop1]rw = α) = 1

Thus, the isomorphism holds
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4 Conclusion

Our main objective has been the calculation of the fundamental groups of many
surfaces using a labelled deduction system based on the concept of computational
paths (sequences of rewrites). The main advantage of this approach is that we avoid
the use of more complex techniques, such as those made in algebraic topology in pure
mathematics or by the method of encoding-decoding used in homotopy type theory.
As a consequence, our calculations proved to be straightforward and simple. Using
computational paths as our main tool, we have calculated the fundamental group of
the circle, torus and projective plane. Therefore, we have shown that it is possible to
use the theory of computational paths to obtain useful results in algebraic topology.

Finally, an almost natural question of our study would be: is it possible to calculate
the fundamental group of the Klein bottle using the same technique? This question is
a new north to develop our study.
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R. Manuel de Medeiros, Dois Irmãos, CEP 52171-900, Recife, PE, Brazil
E-mail: tiago.veras@ufrpe.br

Arthur F. Ramos
UFPE Informatics Center
Federal University of Pernambuco (UFPE)
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